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Introduction

Crowdsourcing systems

provide a significant new type of work organization paradigm

solve a wide range of complex problems in a scalable way

integrate a large number of human and/or computer efforts
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Introduction

The key characteristic of crowdsourcing systems is that:

a requester structures his problem in a set of tasks

it assigns every tasks to a set of workers

workers provide unreliable answers, (for simplicity answers are
assumed to be binary)

the correct task solution is obtained from answers through a decision
rule
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Assumptions

T binary tasks whose outcome is represented by i.i.d. uniform random
variables (RV’s) τ1, τ2, . . . , τT over {±1}, i.e., P{τt = ±1} = 1

2 ,
t = 1, . . . ,T

W workers, each one modeled as a binary symmetric channel (BSC);
i.e., providing a wrong answer with probability ptw and a correct
answer with probability 1− ptw
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State of the Art Crowdsourcing Systems

Normally

every task is assigned to K randomly chosen workers (uniform
assignment)

task decision is made by adopting a simple majority rule

Better performance can be achieved by designing smarter assignment
schemes and decision rules!
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Motivations

The performance of crowdsourcing systems has been explored, but

most previous works assume no a-priori information about worker
reliability (worker reputation - or earnestness) at the scheduler

smart decision rules exploit redundancy and correlation in the pattern
of answers to infer an a-posteriori reliability estimate for every worker

Understanding the potential impact of a-priori information about worker
reliability is extremely important
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Paper Goal

We provide the first systematic analysis of the potential benefits deriving
from a-priori knowledge about the reputation of workers

workers can be grouped into classes, each one composed of workers
with similar accuracy and skills

each worker belongs to one of K classes, C1, C2, . . . , CK
each class is characterized, for each task, by an average error
probability πtk , known to the requester

two extreme scenarios are possible:

Full Knowledge: the error probability of each worker in Ck is
deterministically equal to πtk for task t (zero variance case)
Hammer-Spammer (HS): perfectly reliable and completely unreliable
users coexists within the same class (maximum variance case)
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Task assignment

An allocation is a set of assignments of tasks to workers; a generic
allocation corresponds to a set G of pairs (t,w) with t ∈ {1, · · · ,T}
and w ∈ {1, · · · ,W }

O is the complete allocation set (O is the set composed of all the
possible T ·W pairs (t,w))

We impose the following constraints:

a given task t can be assigned at most once to a given worker w
no more than rw tasks can be assigned to worker w
the total number of assignments cannot be larger than C
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Greedy task assignment

The task assignment we propose to approximate the optimum behavior is
a simple greedy algorithm that starts from an empty assignment
(G(0) = ∅), and at every iteration i adds to G(i−1) the individual
assignment (t,w)(i), so as to maximize an objective function P():

(t,w)(i) = arg max
(t,w)∈O\G(i−1),(G(i−1)∪{(t,w)})∈F

P(G(i−1) ∪ {(t,w)})

The algorithm stops when no assignment can be further added to G
without violating the cost constraint C

M. Ajmone Marsan (Politecnico di Torino) Crowdsourcing INW 9 / 19



Greedy task assignment

The task assignment we propose to approximate the optimum behavior is
a simple greedy algorithm that starts from an empty assignment
(G(0) = ∅), and at every iteration i adds to G(i−1) the individual
assignment (t,w)(i), so as to maximize an objective function P():

(t,w)(i) = arg max
(t,w)∈O\G(i−1),(G(i−1)∪{(t,w)})∈F

P(G(i−1) ∪ {(t,w)})

The algorithm stops when no assignment can be further added to G
without violating the cost constraint C

M. Ajmone Marsan (Politecnico di Torino) Crowdsourcing INW 9 / 19



Greedy task assignment

Several choices are possible for the objective function P():

P1 = 1− 1
T

∑
t Pe,t

P2 = 1−maxt Pe,t

P3 =
∑T

t=1 I (at ; τt)
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Decision Rules

Majority rule: τ̂t(at) = sgn (
∑

w atw )

MAP rule: τ̂t(at) = sgn
(∑

w atwσk(w)

)
with σk(w) = log

1−πw,k(w)

πt,k(w)

Low Rank Approximation (LRA) rule [1]:

τ̂t(at) = sgn

(∑
w

atwvw

)

where vw are the components of the leading right singular vector
associated with the matrix of answers [atw ]

[1] D. R. Karger, S. Oh, D. Shah, “Budget-Optimal Task Allocation for
Reliable Crowdsourcing Systems,” Operations Research, vol. 62, no. 1, pp.
1–24, 2014.
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Results: Considered Algorithms

“Majority voting” + “Uniform allocation” → “Majority”

“LRA” + “Uniform allocation” → “LRA uniform”

“LRA” + “Greedy allocation” → “LRA greedy”

“MAP” + “Greedy allocation” → “MAP greedy”
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Results: a first scenario

Number of i.i.d tasks: T = 100

3 classes of workers: πt1 = 0.1, πt2 = 0.2, πt3 = 0.5

Number of workers per class: W1 = 30,W2 = 120, and W3 = 150

Maximum number of tasks per worker: rw = 20
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Full Knowledge
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β is the average number workers per task
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Hammer-Spammer
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Results: a second scenario

Two groups of 50 tasks each

Error probabilities for the tasks in group 1 and 2 are given by
πt11 = 0.1, πt12 = 0.25, πt13 = 0.5
πt21 = 0.5, πt22 = 0.25, πt23 = 0.1

Number of workers per class: W1 = 40,W2 = 120, and W3 = 40

Maximum number of tasks per worker: rw = 20
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Hammer-Spammer
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Several other results in the paper!
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Conclusions

Main findings of our paper are:

even largely inaccurate estimates of workers’ reputation during task
assignment → large improvements of system performance

a simple optimal task-independent MAP decision rule is proposed for
the case of full knowledge of workers’ reputation

when workers’ reputation estimates are significantly inaccurate, the
best performance can be obtained by combining our proposed task
assignment algorithm with advanced decision rules such as LRA
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Many, many thanks!

Questions?
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