Statistics
| Branch: | Revision:

iof-tools @ master

Name Size Revision Age Author Comment
  BGPpysim d7009b04 4 months Michele Segata remove unneeded comments
  BirdParseRoutes 64774b1c 7 months Marco Nesler Added parse route help
  birdPolicyGenerator 9a18ba0c 7 months tiamilani bug fixes
  confFileGenerator e9d029b0 about 1 month Mattia Milani RFC7908 5 experiments
  experimentFiles 026cf67d 7 months Michele Segata experimentFiles: update README.md
  graphGenerator 452f1915 7 months Marco Nesler Added argument parsing and random seed setting,...
  logHandlers 538d7092 4 months Leonardo Maccari more refactor of test functions
  mrai_setter c9f0b2d1 7 months tiamilani stable state pre merge
  playbooks cd2dad8f 4 months Michele Segata point bird repo link to github
  plotsGenerator b795fd41 6 months Leonardo Maccari uses final distance
  templates 344e481a 7 months tiamilani config script updated
  tests 6e165721 7 months Michele Segata remove unneeded files
  utils be4ff507 7 months Marco Nesler Added 2 nodes rspec file template
.gitignore 408 Bytes d7009b04 4 months Michele Segata remove unneeded comments
README.md 26.6 KB f5455729 7 months Michele Segata change name of certificates from twist to iminds
check-sessions.sh 908 Bytes 909c7b79 10 months Marco Nesler Added script to check BGP sessions
config_templates.py 2.64 KB dc88fbaa 12 months Michele Segata gen-config.py: generate user independent config...
configure_env.sh 460 Bytes 1d1d88d3 7 months Marco Nesler reproducibility bugfixes
const.py 850 Bytes f5455729 7 months Michele Segata change name of certificates from twist to iminds
deploy-experiment.sh 2.22 KB 75f8c7f9 7 months Marco Nesler Reproducibility Fixes
fetch-results.sh 2.63 KB 52dade90 8 months Marco Nesler Scripts and fixes to playbooks to manage the ex...
gen-config.py 3.9 KB 28dbee38 9 months Marco Nesler Added multiple rspec files support
gen-deploy.py 6.75 KB eca68d51 7 months Marco Nesler Deploy description added
gen-rspec.py 5.39 KB 63130429 12 months Marco Nesler Added basic network interface reservation
get-node-info.sh 451 Bytes 10eb07d9 8 months Marco Nesler Minor bugfixes
nodes_info.py 3.28 KB 26bd881f about 1 year Michele Segata add script and edit nodes_info.py to retrieve i...
omni_config 864 Bytes d7009b04 4 months Michele Segata remove unneeded comments
reserve.py 5.65 KB d7009b04 4 months Michele Segata remove unneeded comments
run-experiment.sh 6.08 KB 10eb07d9 8 months Marco Nesler Minor bugfixes
setup-nodes-environment.sh 1.46 KB 1d1d88d3 7 months Marco Nesler reproducibility bugfixes
twisttemplates.py 1.16 KB 2e7a003b about 1 year Michele Segata gen-rspec.py: dump information on hardware type...
wall1templates.py 1.64 KB 63130429 12 months Marco Nesler Added basic network interface reservation
wall2templates.py 1.64 KB 63130429 12 months Marco Nesler Added basic network interface reservation
wilabtemplates.py 1.16 KB 2e7a003b about 1 year Michele Segata gen-rspec.py: dump information on hardware type...

Latest revisions

# Date Author Comment
e9d029b0 07/04/2020 05:02 PM Mattia Milani

RFC7908 5 experiments

c618e4cb 07/01/2020 03:46 PM Mattia Milani

introduced possibility to define custom policies for each bgp link between nodes, introduced possibility to deactivate valleyfree policies

cd2dad8f 04/02/2020 01:40 PM Michele Segata

point bird repo link to github

d7009b04 04/02/2020 01:40 PM Michele Segata

remove unneeded comments

538d7092 03/27/2020 07:21 AM Leonardo Maccari

more refactor of test functions

217deb5f 03/27/2020 07:15 AM Leonardo Maccari

refactors plot functions

42fbbd52 03/27/2020 06:47 AM Leonardo Maccari

adds check for samping period

0b3e1715 03/25/2020 09:24 AM Leonardo Maccari

now creates graphs

5827e7ad 03/25/2020 08:05 AM Leonardo Maccari

now able to parse partial deployment files

80487c8a 03/24/2020 06:04 PM Leonardo Maccari

fixes generation bug

View all revisions | View revisions

README


Internet on FIRE Scripts Repo

ASSUMPTIONS

This README assumes that: * you are working on a Unix-like system, so the variable $HOME is available; * all the software will be in the $HOME/src folder; * this repository has been cloned to $HOME/src/iof-tools;

Please execute the following beforehand: mkdir -p $HOME/src

Key pair setup

First of all, we assume that the user has a valid iMinds Authority account. We also assume that the user's public and private keys associated with the iMinds Authority account are located in ~/.ssh/iminds.pub and ~/.ssh/iminds.key respectively (the private key MUST NOT be encrypted). If you don't have the keys already setup, you can follow these instructions:

Go to iMinds Authority account management and download your certificate clicking on the "Download Login Certificate" button. Save it with the name iminds.cert. Extract the public key with the following command:

openssl x509 -pubkey -noout -in iminds.cert > ~/.ssh/iminds.pub

Edit theiminds.cert file and copy the private key part in a new file named iminds.protected.key.

Remove the password from the private key:

openssl rsa -in iminds.protected.key -out ~/.ssh/iminds.key

Omni tool

The Omni command line tool is required to perform operations on the remote testbeds. Supported operations include querying for testbed status/available resources, allocating/releasing resources (slices) and creating/deleting experiments.

Omni software dependencies

omni only works with Python version 2, so you should either switch your system wide installation of Python to version 2 or install Python 2 and then change the first line of the omni tool source code (see Omni installation). On ubuntu, in order to install the omni's software dependencies run the following command:

sudo apt install python-m2crypto python-dateutil python-openssl libxmlsec1 xmlsec1 libxmlsec1-openssl libxmlsec1-dev autoconf

For other operating systems take a look at the official wiki page

Omni installation

In order to install omni execute the following commands:

cd $HOME/src && git clone https://github.com/GENI-NSF/geni-tools omni && cd omni && ./autogen.sh && ./configure && make && make install

If you are using Python version 3 and you don't want to switch system-wide to Python 2, edit the first line of the omni source file and change it to ```

!/usr/bin/env python2

```

Verify that omni has been installed correctly by executing omni --version. This command should print something that resembles the following:

omni: GENI Omni Command Line Aggregate Manager Tool Version 2.11 Copyright (c) 2011-2016 Raytheon BBN Technologies

Omni configuration file

The omni_config file provided in this repository is a template of the omni configuration file. Before running any other omni command, this template file must be modified in order to adapt it to the local host environment.

The users whose public keys will be installed on the testbed's nodes are listed (comma separated list) in the value of the users key in the omni section. For each user listed in the users key, there is a corresponding section (named after the user name) containing the specific configuration for that particular user. For example, in the current template configuration file one of the user is segata, and the corresponding configuration section looks like this:

[segata] urn = urn:publicid:IDN+wall2.ilabt.iminds.be+user+segata keys = ~/.ssh/iminds.pub

The value of the field keys must be modified to point to the public key of the user segata.

In case you need to add a new user, these are the required steps: 1. append the new user name in the comma separated list of the users key in the omni section. 2. add to the omni_config file a new section for the new user. 3. commit and push the new omni_config template.

Testbed resource reservation

You can use jFed directly to reserve nodes, if you plan on using a lot of nodes, you can use the rspec generation scripts to ease this step.

RSPEC generation

RSPEC files (extension .rspec) are XML files that describes which nodes to allocate in a given testbed. For the TWIST and w.iLab1 testbeds the .rspec files can be generated automatically using the gen-rspec.py script. The script supports the following command line parameters:

  • -t (--testbed): specifies which testbed the RSPEC will be generated for. Use twist for the TWIST testbed, wilab for w.iLab1, wall1 for VirtualWall1, and wall2 for VirtualWall2. It is possible to specify a comma-separated list of testbeds, e.g. wall1,wall2.

  • -f (--filter): comma separated list of node name prefixes. Only the available nodes whose name starts with one of the specified prefixes are inserted in the generated RSPEC. By default all the available nodes are used for generating the RSPEC file.

  • -n (--nodes): comma separated list of node names. Only the available nodes whose name is listed with the -n option are inserted in the RSPEC file. By default all the available nodes are used. The -n option takes precedence over -f.

  • -w (--hardware): comma separated list of hardware types (e.g., pcgen05). To know the type of hardware, look inside the Virtual Walls webpage or inside jFed.

For example, an RSPEC containing all the available nodes in the TWIST testbed can be generated with the following command:

./gen-rspec.py -t twist > twist_all.rspec

Instead, an RSPEC containing all the nuc nodes in the TWIST testbed can be generated with the following command:

./gen-rspec.py -t twist -f nuc > twist_nuc.rspec

An RSPEC containing only nuc4 and nuc6 from the TWIST testbed can be generated with the following command:

./gen-rspec.py -t twist -n nuc4,nuc6 > twist_nuc_4_6.rspec

An RSPEC containing nodes of hardware type pcgen05 from both the VirtualWall1 and the VirtualWall2 testbeds can be generated with the following command:

./gen-rspec.py -t wall1,wall2 -w pcgen05 > iof.rspec

Note that, in any case, a node is inserted in the RSPEC only if it is available in the moment the gen-rspec.py command is executed. For this reason the suggested best practice is to execute gen-rspec.py just before allocating the resources using the reserve.py command.

Reserving resources

One simple way of reserving the resource is to open the generated .rspec file inside jFed and click on Run. This is also the safest option as the reserve.py script is still under development.

The reserve.py command can be used to allocate nodes specified in an .rspec file and to release resources previously allocated. The command supports the following parameters:

  • -t (--testbed): specifies in which testbed to allocate the nodes. The testbed specified here must match the testbed used in the .rspec file specified with the parameter -f. Use twist for the TWIST testbed and wilab for w.iLab1;

  • -d (--duration): it's an integer value that specifies how many hours the nodes will be reserved for. The minimum value currently supported is 3.

  • -s (--name): specifies the name that identify the experiment. Every experiment whose allocation time overlaps must have a unique name.

  • -f (--rspec): specifies the path to the .rspec file generated with the gen-rspec.py command.

  • -p (--project): specifies the project the experiments belongs to (by default internetonfire).

By default reserve.py allocate the resources specified in the .rspec file. The same command can be used also to release previously allocated resources using the -r (--release) parameter.

For example, an experiment called iofexp1 that allocates in the Wall1 testbed the nodes specified in the file iof.rspec for 4 hours can be created with the following command:

./reserve.py -t wall1 -d 4 -n iofexp1 -f iof.rspec

Instead, the resources allocated in iofexp1 can be released with the following command:

./reserve.py -t wall1 -d 4 -n iofexp1 -f iof.rspec -r

The command queries for the status of the testbed every 10 seconds, and reports when everything is up and running.

WARNING: the reserve.py script currently works only when a single testbed is involved. In case of an .rspec files with nodes from multiple testbeds, the operations needs to be performed twice. This is under development.

Generating SSH and Ansible config

After generating the rspec file, the gen-config.py script can generate the SSH and the ansible configuration files to access the nodes of the testbeds. To do so, simply run:

./gen-config.py -r <rspec files> -u <username> -k <identity file>

The identity file is the private key or the certificate obtained after getting an account from the iMinds authority. This file will be copied under the current directory with the name id.cert. The username is your username on the Testbed.

The script will generate: * ssh-config: the configuration file to be given to the SSH command (e.g., ssh -F ssh-config ...). This defines the names of the hosts as node<i>, for i going from 0 to N-1. To connect to one host, you can thus run ssh -F ssh-config node0. To connect to the node, the configuration uses a proxy node with public IP address, which is called proxy0. * ssh-config-no-proxy: the same configuration file as ssh-config but without the ProxyCommand through proxy0. This can be used by ansible when run on a testbed node. * ansible.cfg: the Ansible configuration file. * ansible-hosts: the Ansible inventory (list of nodes). In this file the group of nodes reserved for the experiments is named nodes. To test that this is properly working, try with ansible nodes -m shell -a "uptime".

The filename of the configuration files can be changed via command line arguments (see ./gen-config.py --help).

Setting up the testing environment on the nodes

The process of setting up the testing environment on the nodes is composed by two steps. The first one takes care of installing all the needed software and tweaks some system parameters. ansible-playbook playbooks/setup-nodes.yaml from your local machine.

The second step is needed to configure the node0 as the master node for the experiments and will correctly setup the syslog collection system on that node. ansible-playbook playbooks/setup-syslog.yaml on your local machine. If you want you can automate the whole procedure executing the setup-nodes-environment.sh script.

To test the installation run from your local machine (do so only if you have reserved a few nodes) ansible nodes -m shell -a "~/iof-bird-daemon/bird --version" The result should be the version of the bird daemon for each node in the testbed.

Retrieving CPU and network info

To retrieve CPU and interface information for all the nodes in the testbed run ./get-node-info.sh This will create a cpu_info containing one json file for each node in the testbed. The information can be used within python programs using the nodes_info::NodesInfo class. See the unit test test_nodes_info.py for an example usage.

If you used the setup-nodes-environment.sh in the previous step, the informations have already been retrieved by the script. If you want to do it by hand, be sure to delete the cpu_info directory first.

Topologies and BGP configurations

This section describes the tools that are used to generate network topologies to test and the corresponding bird configuration files.

Chain gadget topology

This tool generates chain gadget topologies as described in the Fabrikant and Rexford paper There's something about MRAI: Timing diversity can exponentially worsen BGP convergence. The tool is composed by two files * chain_gadget.py: main library that exposes the gen_chain_gadget method. * gen_chain_gadget.py: script that invokes the gen_chain_gadget method of the library and writes the graph on a .graphml output file.

The parameters that both the method accepts as inputs are the following (the parameters of the script have different names, but the same meaning): * n_rings: the number of rings to generate in the topology. For example, the number of rings in Figs. 1 and 3 in the paper is 3. The rings connected together form the chain. * n_inner: the number of inner nodes. Each ring as inner nodes (marked with Y_i in the paper). The topology in Fig. 1 in the paper has only 1 inner node per ring, while Fig. 3 has 3. * add_outer: if set to true, the tool will generate outer nodes as well (nodes marked with Z_i in the paper). The topology in Fig. 1 in the paper has no outer nodes, while Fig. 3 has 4. The number of outer nodes is automatically derived, and it is simply the number of inner nodes plus 1. * node_type: the node type to assign to nodes. This can either be T, M, CP, or C. * edge_type: the edge type to assign to edges. This can either be transit or peer. By default this is set to transit. * set_timer: if set to true, the tool will compute the MRAI timer for the nodes, so that the automatic BGP configuration tool can use them during the generation phase. The timer is assigned with an exponentially decreasing value, starting with the default of 30 s. The left-most ring (according to the graphical description of the topology in the paper) has the highest timer. Each ring's timer is halved with respect to the one of its left ring.

As an example, if you want to generate an eight ring Fabrikant topology:

cd graphGenerator/fabrikant && python3 gen_chain_gadget.py -r 8 -i 1 -t M -w OUTPUTFILE.graphml

AS graph generator

This tool generates graphs resembling the Internet BGP speaker topology.

Generation is as easy as typing:

python3 generate.py <number_of_nodes> <number_of_graphs>

Adding multiple destinations on the topology

If you plan to experiment on Elmokashfi graphs or you want to correctly calculate the DPC value for the nodes, you'll need to have all the nodes exporting a destination. In the utils folder you'll find a small tool you can use to add destinations to a graph. Actually it adds a single destination to every non-tier1 node. You can use it as follows:

cd utils && python3 gen-destinations.py -g <input-graph> -o <output-graph>

In order to correctly set the DPC MRAI values, this step MUST be done before using the MRAI Setter tool.

MRAI Setter

This tool sets the MRAI value on a graphml topology, using a specific strategy. You can look at the Readme file in the mrai_setter folder for a complete explanation of the arguments.

Bird Policy file generator

If you want to simulate a chain gadget topology you must also generate a Bird policy file. This generator implements the routing policies needed on for the correct functioning of the Fabrikant topologies. The policy generator will also add three nodes needed to manage the routing change in the topology. It is mandatory to have a single destination route to be announced configured in the graph. If you have more than one (because you added them to correctly calculate the DPC values), you need to remove them by hand, editing the graphml file and deleting the "destination" entries on every node (except the last one). If you plan to use the Elmokashfi generator, you can skip this step.

To generate the policy file, use the tools as follows:

cd birdPolicyGenerator && python3 gen_bird_preferences.py -g <graph_name>

Bird Config file generator

This tool is available in the confFileGenerator folder, it can be used to generate the Bird configuration files to deploy on the Testbed. You can refer to the tool Readme for a complete explanation of the different options.

Custom modifications needed on Bird config files

AS_PATH prepending on Fabrikant topologies

If you plan to simulate a Fabrikant topology, some custom modification on the config must be made. In order to simulate the change in the network we added three additional nodes, these nodes are in charge of managing the "d" destination. The nodes are always identified as the three nodes with the highest number id. As an example, if you generated with the chain gadget generator a 17 nodes topology, the nodes with id 0 to 16 are the nodes of the chain gadget and the nodes with id 17,18 and 19 are in charge of managing the destination. The node exporting the destination is always the one with the highest id (in this case the node with id 19). To simulate a change in the network we use the path prepending technique. For this reason, before deploying the experiment you must enable the prepending on one of the links. In all our experiments we added the prepending in the highest odd numbered node not announcing the route. In the example of the 17 nodes Fabrikant topology you'll need to edit the bgp session file on node with id 17:

cd h_17/ && vim bgpSession_h_17_h_16.conf

In the section named filter filter_out_h_17_h_16 uncomment four of the six lines starting with bgp_path.prepend.

With this modification, the initial path preferred will be the one between node 16 and 18 ( AS 17 and 19 respectively),and this will be the link to be specified as the "broken" link (see section below for more details) with the command ./run-experiment.sh -a 19 -n 17

Destinations removal on Elmokashfi topologies

Multiple destinations in Elmokashfi topologies are fully supported, but having a lot of destination routes will slow down the first convergence phase (when the network topology is starting up). Depending on the number of nodes, if you don't remove the destinations this step can take hours/days (as an example, a 4000nodes topology with 4000 destinations configured is converging in around 37 hours using DPC MRAI settings). The best solution is to keep the destinations on the graph and have them configured and ready to use in the Bird configuration files. Before we deploy the experiment we can easily comment out the export command on all the Bird configuration files. With this method you can easily start up a simulation with a single node exporting a destination (we always export a destination on the node generating the change in the network). With a single destination exported, the network will usually converge in less than 5/10 minutes.

To comment out all the exported destinations you can use sed:

cd BIRD-CONFIG-FILES-DIR && sed -i -E 's/(^include "bgpSessionExp.*)/#\1/' h_*/bgp_h_*.conf

You can then decide which node will trigger the change in the network, as an example if you decide to use the Autonomous System 100, you'll need to uncomment the export session on that node (so it will correctly announce his route). IMPORTANT NOTE to remember: on the graphml and on the Bird directory structure the Node ID is always the Autonomous System Number minus one (the graphml node ids are starting from 0, while the AS0 does not exist) so if you want to have AS 100 announcing his route this is the sed command to use:

cd BIRD-CONFIG-FILES-DIR && sed -i -E 's/(#)(include "bgpSessionExp.*)/\2/' h_99/bgp_h_99.conf

After this modification, when you deploy the topology, the AS100 will start announcing his route.

Experiment deployment and execution

To deploy an experiment on the Testbed, a mix of ansible playbooks and various scripts is needed. You'll need:

  • A set of nodes reserved on the Testbed
  • The output directory of the Bird policy generator tool, containing the configuration files of the selected topology to be tested.

If you are testing a fabrikant gadget topology, only two nodes are needed. If you are testing an Elmokashfi topology, the total number of cores needed is dependant upon the number of Autonomous Systems of the topology. We tried topologies up to 4000 Autonomous Systems, using a 6:1 ratio (6 AS on a single core).

Deployment of the topology

  1. Copy the Bird config file directory in ~/src/iof-tools/
  2. You can use the ./deploy-experiment.sh script to automate all the deployment steps.

Running the experiment

After you successfully deployed the experiment files, you can connect to the control node to run the experiment: ssh -F ssh-config node0 From the control node, execute the ./run-experiment.sh script. You'll need to specify some arguments:

  1. -a ASNumber this flag specifies which AS is going to trigger the change in the topology
  2. -n ASNumber this flag specifies the adjacency that will be changed, if you want to trigger the change on the AS 10 over the adjacency with the AS 15, the command line will be -a 10 -n 15. If you don't specify a neighbor, the first one will be selected.
  3. -r runs this flag specifies the number of runs to execute, on each run the script will:
    • Start via ansible the bird process on all the nodes;
    • Check if all the bird processes and adjacencies are ok;
    • Wait for the topology to converge;
    • Trigger the change on the network;
    • Wait for the topology to converge;
    • Collect all the relevant logs;
    • Kill all Bird processes;
  4. -o outdir output directory for the logs.

Running multiple experiments

You can easily run the same topology (breaking the same link) using the -r flag on the run-experiment.sh script. This will generate a single output directory with a subdirectory for every run. You can use this method to have the same experiment running, as an example, 10 times, and then use the log parsing script to calculate the average convergence times.

Changing the "breaking" node

While on Fabrikant topologies changing how the network breaks does not make sense, on Elmokashfi topologies we can test the change on the network from different nodes, to see how the topology behaves. Having to redeploy all the topology files to do this kind of changes is very time consuming, so it's possible to do it directly on the testbed without having to redeploy a new set of Bird configuration files.

To achieve this, some manual intervention is required. For every different type of "node break" you want to test, you need to:

  • Be sure that the Bird daemons have been killed;
  • Modify the nodes export configuration (remember, the node triggering the change is the one exporting a destination);
  • Restart the simulation, specifying the new AS of the node who will trigger the change.

As an example, let's suppose you ran an Elmokashfi topology and followed the instructions above, the first run has been done with the AS100 announcing the route and triggering the change (so in the pre-deploy steps you modified with sed the AS100 configuration). Now let's do a new simulation, on the same topology but with a different triggering node (let's suppose as an example the new triggering node will be AS200), the steps will be:

  • Be sure that all the Bird processes have been killed;
  • Change the AS100 configuration, removing the announce of the route;
  • Change the AS200 configuration, adding the announce of the route;
  • Run the new simulation, specifying the new "breaking" node and a new output dir.

To change the configuration of the Bird processes, you'll need to know on which node they are running. This information can be retrieved from the as.json file, available in the node0 home directory and also in you local machine in ~/src/iof-tools. This file is generated by the deployment scripts and contains all the AS numbers and their relative running node in json format.

You can simply look at the file with grep:

  • Locate the node where AS100 is running: grep -A1 "\"as\": 100," as.json the output of the command will contain the AS number and the node in which it's running, in the form "node": "nodeXX";
  • Do the same thing for the AS200.

All these steps will be done on the Testbed:

  • ansible-playbook playbooks/kill-bird.yaml This command will kill all the bird daemons;
  • Now you need to connect to the node where AS100 is running and remove the announce of the route, you can do this step with a single command: ssh -F ssh-config nodeXX "sed -i -E 's/(^include \"bgpSessionExp.*)/#\1/' iof-bird-daemon/nodes-config/h_99/bgp_h_*.conf" The nodeXX must be change to the correct node value obtained on the previous steps.
  • Now you need to configure AS200 to announce his own route: ssh -F ssh-config nodeYY "sed -i -E 's/(#)(include \"bgpSessionExp.*)/\2/' iof-bird-daemon/nodes-config/h_199/bgp_h_*.conf"
  • Now you can launch a new set of simulations: ./run-experiment.sh -a 200 -r 5 -o RUN-AS200-BROKEN

Getting random nodes to break

A simple utility is available in utils/get_random_nodes.py to extract random nodes with some specific characteristics. In our tests we used this script to get the 10 different random nodes where the change on the network occurs. We wanted to reproduce a worst case scenario so we extracted 10 random client "C" nodes, with a single BGP adjacency (this ensures that the change of path will be spread on all the nodes of the network) with this command:

python3 get_random_nodes.py -n 10 -t C -l -g GRAPHML-TOPOLOGY-FILE.graphml

Running a different topology

If you plan to run a different topology (or the same topology with a different MRAI strategy), you'll need to redeploy the experiment. You can use the same reserved resources on the Testbed but you must be sure to reset all the network configurations, otherwise the new deploy will fail:

  • Be sure all the Bird processes are stopped: ansible-playbook playbooks/kill-bird.yaml
  • Reset the network namespace configuration: ansible-playbook playbooks/clear-ns.yaml
  • Now you can deploy a new topology, using the ./deploy-experiment.sh script

Fetching the logs

The fetch-results.sh script can be used to fetch the logs from the testbed control node. If you are experimenting with a Fabrikant topology it will also clean the logs related to the nodes used to trigger the change in the network.

Analysis of the logs

Once you have collected all the logs files you can analyze them with our tolls, we developed two versions of them you can find both of them inside the logHadlers folder.

  • logToCSV, this logger will convert all the logs files in a CSV that can be analyzed with other tools
  • log_reader, this tool is used to produce an output that can be easily interpreted by our Gnuplot scripts

For both of this tools there is a complete README inside each one folder.

Plot results

When you have translated your logs into CSVs or Gnuplot compatible files you can plot them with our scripts. We developed some R scripts to interpret CSVs files and a Gnuplot script, both of them are in the folder plotsGenerator and inside each folder there is a README.md file that explains how to use them with the input files.

Also available in: Atom