iof-bird-daemon / sysdep / unix / io.c @ 8e433d6a
History | View | Annotate | Download (45.9 KB)
1 |
/*
|
---|---|
2 |
* BIRD Internet Routing Daemon -- Unix I/O
|
3 |
*
|
4 |
* (c) 1998--2004 Martin Mares <mj@ucw.cz>
|
5 |
* (c) 2004 Ondrej Filip <feela@network.cz>
|
6 |
*
|
7 |
* Can be freely distributed and used under the terms of the GNU GPL.
|
8 |
*/
|
9 |
|
10 |
/* Unfortunately, some glibc versions hide parts of RFC 3542 API
|
11 |
if _GNU_SOURCE is not defined. */
|
12 |
#define _GNU_SOURCE 1 |
13 |
|
14 |
#include <stdio.h> |
15 |
#include <stdlib.h> |
16 |
#include <time.h> |
17 |
#include <sys/time.h> |
18 |
#include <sys/types.h> |
19 |
#include <sys/socket.h> |
20 |
#include <sys/uio.h> |
21 |
#include <sys/un.h> |
22 |
#include <poll.h> |
23 |
#include <unistd.h> |
24 |
#include <fcntl.h> |
25 |
#include <errno.h> |
26 |
#include <net/if.h> |
27 |
#include <netinet/in.h> |
28 |
#include <netinet/tcp.h> |
29 |
#include <netinet/udp.h> |
30 |
#include <netinet/icmp6.h> |
31 |
|
32 |
#include "nest/bird.h" |
33 |
#include "lib/lists.h" |
34 |
#include "lib/resource.h" |
35 |
#include "lib/timer.h" |
36 |
#include "lib/socket.h" |
37 |
#include "lib/event.h" |
38 |
#include "lib/string.h" |
39 |
#include "nest/iface.h" |
40 |
|
41 |
#include "lib/unix.h" |
42 |
#include "lib/sysio.h" |
43 |
|
44 |
/* Maximum number of calls of tx handler for one socket in one
|
45 |
* poll iteration. Should be small enough to not monopolize CPU by
|
46 |
* one protocol instance.
|
47 |
*/
|
48 |
#define MAX_STEPS 4 |
49 |
|
50 |
/* Maximum number of calls of rx handler for all sockets in one poll
|
51 |
iteration. RX callbacks are often much more costly so we limit
|
52 |
this to gen small latencies */
|
53 |
#define MAX_RX_STEPS 4 |
54 |
|
55 |
/*
|
56 |
* Tracked Files
|
57 |
*/
|
58 |
|
59 |
struct rfile {
|
60 |
resource r; |
61 |
FILE *f; |
62 |
}; |
63 |
|
64 |
static void |
65 |
rf_free(resource *r) |
66 |
{ |
67 |
struct rfile *a = (struct rfile *) r; |
68 |
|
69 |
fclose(a->f); |
70 |
} |
71 |
|
72 |
static void |
73 |
rf_dump(resource *r) |
74 |
{ |
75 |
struct rfile *a = (struct rfile *) r; |
76 |
|
77 |
debug("(FILE *%p)\n", a->f);
|
78 |
} |
79 |
|
80 |
static struct resclass rf_class = { |
81 |
"FILE",
|
82 |
sizeof(struct rfile), |
83 |
rf_free, |
84 |
rf_dump, |
85 |
NULL,
|
86 |
NULL
|
87 |
}; |
88 |
|
89 |
void *
|
90 |
tracked_fopen(pool *p, char *name, char *mode) |
91 |
{ |
92 |
FILE *f = fopen(name, mode); |
93 |
|
94 |
if (f)
|
95 |
{ |
96 |
struct rfile *r = ralloc(p, &rf_class);
|
97 |
r->f = f; |
98 |
} |
99 |
return f;
|
100 |
} |
101 |
|
102 |
/**
|
103 |
* DOC: Timers
|
104 |
*
|
105 |
* Timers are resources which represent a wish of a module to call
|
106 |
* a function at the specified time. The platform dependent code
|
107 |
* doesn't guarantee exact timing, only that a timer function
|
108 |
* won't be called before the requested time.
|
109 |
*
|
110 |
* In BIRD, time is represented by values of the &bird_clock_t type
|
111 |
* which are integral numbers interpreted as a relative number of seconds since
|
112 |
* some fixed time point in past. The current time can be read
|
113 |
* from variable @now with reasonable accuracy and is monotonic. There is also
|
114 |
* a current 'absolute' time in variable @now_real reported by OS.
|
115 |
*
|
116 |
* Each timer is described by a &timer structure containing a pointer
|
117 |
* to the handler function (@hook), data private to this function (@data),
|
118 |
* time the function should be called at (@expires, 0 for inactive timers),
|
119 |
* for the other fields see |timer.h|.
|
120 |
*/
|
121 |
|
122 |
#define NEAR_TIMER_LIMIT 4 |
123 |
|
124 |
static list near_timers, far_timers;
|
125 |
static bird_clock_t first_far_timer = TIME_INFINITY;
|
126 |
|
127 |
/* now must be different from 0, because 0 is a special value in timer->expires */
|
128 |
bird_clock_t now = 1, now_real, boot_time;
|
129 |
|
130 |
static void |
131 |
update_times_plain(void)
|
132 |
{ |
133 |
bird_clock_t new_time = time(NULL);
|
134 |
int delta = new_time - now_real;
|
135 |
|
136 |
if ((delta >= 0) && (delta < 60)) |
137 |
now += delta; |
138 |
else if (now_real != 0) |
139 |
log(L_WARN "Time jump, delta %d s", delta);
|
140 |
|
141 |
now_real = new_time; |
142 |
} |
143 |
|
144 |
static void |
145 |
update_times_gettime(void)
|
146 |
{ |
147 |
struct timespec ts;
|
148 |
int rv;
|
149 |
|
150 |
rv = clock_gettime(CLOCK_MONOTONIC, &ts); |
151 |
if (rv != 0) |
152 |
die("clock_gettime: %m");
|
153 |
|
154 |
if (ts.tv_sec != now) {
|
155 |
if (ts.tv_sec < now)
|
156 |
log(L_ERR "Monotonic timer is broken");
|
157 |
|
158 |
now = ts.tv_sec; |
159 |
now_real = time(NULL);
|
160 |
} |
161 |
} |
162 |
|
163 |
static int clock_monotonic_available; |
164 |
|
165 |
static inline void |
166 |
update_times(void)
|
167 |
{ |
168 |
if (clock_monotonic_available)
|
169 |
update_times_gettime(); |
170 |
else
|
171 |
update_times_plain(); |
172 |
} |
173 |
|
174 |
static inline void |
175 |
init_times(void)
|
176 |
{ |
177 |
struct timespec ts;
|
178 |
clock_monotonic_available = (clock_gettime(CLOCK_MONOTONIC, &ts) == 0);
|
179 |
if (!clock_monotonic_available)
|
180 |
log(L_WARN "Monotonic timer is missing");
|
181 |
} |
182 |
|
183 |
|
184 |
static void |
185 |
tm_free(resource *r) |
186 |
{ |
187 |
timer *t = (timer *) r; |
188 |
|
189 |
tm_stop(t); |
190 |
} |
191 |
|
192 |
static void |
193 |
tm_dump(resource *r) |
194 |
{ |
195 |
timer *t = (timer *) r; |
196 |
|
197 |
debug("(code %p, data %p, ", t->hook, t->data);
|
198 |
if (t->randomize)
|
199 |
debug("rand %d, ", t->randomize);
|
200 |
if (t->recurrent)
|
201 |
debug("recur %d, ", t->recurrent);
|
202 |
if (t->expires)
|
203 |
debug("expires in %d sec)\n", t->expires - now);
|
204 |
else
|
205 |
debug("inactive)\n");
|
206 |
} |
207 |
|
208 |
static struct resclass tm_class = { |
209 |
"Timer",
|
210 |
sizeof(timer),
|
211 |
tm_free, |
212 |
tm_dump, |
213 |
NULL,
|
214 |
NULL
|
215 |
}; |
216 |
|
217 |
/**
|
218 |
* tm_new - create a timer
|
219 |
* @p: pool
|
220 |
*
|
221 |
* This function creates a new timer resource and returns
|
222 |
* a pointer to it. To use the timer, you need to fill in
|
223 |
* the structure fields and call tm_start() to start timing.
|
224 |
*/
|
225 |
timer * |
226 |
tm_new(pool *p) |
227 |
{ |
228 |
timer *t = ralloc(p, &tm_class); |
229 |
return t;
|
230 |
} |
231 |
|
232 |
static inline void |
233 |
tm_insert_near(timer *t) |
234 |
{ |
235 |
node *n = HEAD(near_timers); |
236 |
|
237 |
while (n->next && (SKIP_BACK(timer, n, n)->expires < t->expires))
|
238 |
n = n->next; |
239 |
insert_node(&t->n, n->prev); |
240 |
} |
241 |
|
242 |
/**
|
243 |
* tm_start - start a timer
|
244 |
* @t: timer
|
245 |
* @after: number of seconds the timer should be run after
|
246 |
*
|
247 |
* This function schedules the hook function of the timer to
|
248 |
* be called after @after seconds. If the timer has been already
|
249 |
* started, it's @expire time is replaced by the new value.
|
250 |
*
|
251 |
* You can have set the @randomize field of @t, the timeout
|
252 |
* will be increased by a random number of seconds chosen
|
253 |
* uniformly from range 0 .. @randomize.
|
254 |
*
|
255 |
* You can call tm_start() from the handler function of the timer
|
256 |
* to request another run of the timer. Also, you can set the @recurrent
|
257 |
* field to have the timer re-added automatically with the same timeout.
|
258 |
*/
|
259 |
void
|
260 |
tm_start(timer *t, unsigned after)
|
261 |
{ |
262 |
bird_clock_t when; |
263 |
|
264 |
if (t->randomize)
|
265 |
after += random() % (t->randomize + 1);
|
266 |
when = now + after; |
267 |
if (t->expires == when)
|
268 |
return;
|
269 |
if (t->expires)
|
270 |
rem_node(&t->n); |
271 |
t->expires = when; |
272 |
if (after <= NEAR_TIMER_LIMIT)
|
273 |
tm_insert_near(t); |
274 |
else
|
275 |
{ |
276 |
if (!first_far_timer || first_far_timer > when)
|
277 |
first_far_timer = when; |
278 |
add_tail(&far_timers, &t->n); |
279 |
} |
280 |
} |
281 |
|
282 |
/**
|
283 |
* tm_stop - stop a timer
|
284 |
* @t: timer
|
285 |
*
|
286 |
* This function stops a timer. If the timer is already stopped,
|
287 |
* nothing happens.
|
288 |
*/
|
289 |
void
|
290 |
tm_stop(timer *t) |
291 |
{ |
292 |
if (t->expires)
|
293 |
{ |
294 |
rem_node(&t->n); |
295 |
t->expires = 0;
|
296 |
} |
297 |
} |
298 |
|
299 |
static void |
300 |
tm_dump_them(char *name, list *l)
|
301 |
{ |
302 |
node *n; |
303 |
timer *t; |
304 |
|
305 |
debug("%s timers:\n", name);
|
306 |
WALK_LIST(n, *l) |
307 |
{ |
308 |
t = SKIP_BACK(timer, n, n); |
309 |
debug("%p ", t);
|
310 |
tm_dump(&t->r); |
311 |
} |
312 |
debug("\n");
|
313 |
} |
314 |
|
315 |
void
|
316 |
tm_dump_all(void)
|
317 |
{ |
318 |
tm_dump_them("Near", &near_timers);
|
319 |
tm_dump_them("Far", &far_timers);
|
320 |
} |
321 |
|
322 |
static inline time_t |
323 |
tm_first_shot(void)
|
324 |
{ |
325 |
time_t x = first_far_timer; |
326 |
|
327 |
if (!EMPTY_LIST(near_timers))
|
328 |
{ |
329 |
timer *t = SKIP_BACK(timer, n, HEAD(near_timers)); |
330 |
if (t->expires < x)
|
331 |
x = t->expires; |
332 |
} |
333 |
return x;
|
334 |
} |
335 |
|
336 |
void io_log_event(void *hook, void *data); |
337 |
|
338 |
static void |
339 |
tm_shot(void)
|
340 |
{ |
341 |
timer *t; |
342 |
node *n, *m; |
343 |
|
344 |
if (first_far_timer <= now)
|
345 |
{ |
346 |
bird_clock_t limit = now + NEAR_TIMER_LIMIT; |
347 |
first_far_timer = TIME_INFINITY; |
348 |
n = HEAD(far_timers); |
349 |
while (m = n->next)
|
350 |
{ |
351 |
t = SKIP_BACK(timer, n, n); |
352 |
if (t->expires <= limit)
|
353 |
{ |
354 |
rem_node(n); |
355 |
tm_insert_near(t); |
356 |
} |
357 |
else if (t->expires < first_far_timer) |
358 |
first_far_timer = t->expires; |
359 |
n = m; |
360 |
} |
361 |
} |
362 |
while ((n = HEAD(near_timers)) -> next)
|
363 |
{ |
364 |
int delay;
|
365 |
t = SKIP_BACK(timer, n, n); |
366 |
if (t->expires > now)
|
367 |
break;
|
368 |
rem_node(n); |
369 |
delay = t->expires - now; |
370 |
t->expires = 0;
|
371 |
if (t->recurrent)
|
372 |
{ |
373 |
int i = t->recurrent - delay;
|
374 |
if (i < 0) |
375 |
i = 0;
|
376 |
tm_start(t, i); |
377 |
} |
378 |
io_log_event(t->hook, t->data); |
379 |
t->hook(t); |
380 |
} |
381 |
} |
382 |
|
383 |
/**
|
384 |
* tm_parse_datetime - parse a date and time
|
385 |
* @x: datetime string
|
386 |
*
|
387 |
* tm_parse_datetime() takes a textual representation of
|
388 |
* a date and time (dd-mm-yyyy hh:mm:ss)
|
389 |
* and converts it to the corresponding value of type &bird_clock_t.
|
390 |
*/
|
391 |
bird_clock_t |
392 |
tm_parse_datetime(char *x)
|
393 |
{ |
394 |
struct tm tm;
|
395 |
int n;
|
396 |
time_t t; |
397 |
|
398 |
if (sscanf(x, "%d-%d-%d %d:%d:%d%n", &tm.tm_mday, &tm.tm_mon, &tm.tm_year, &tm.tm_hour, &tm.tm_min, &tm.tm_sec, &n) != 6 || x[n]) |
399 |
return tm_parse_date(x);
|
400 |
tm.tm_mon--; |
401 |
tm.tm_year -= 1900;
|
402 |
t = mktime(&tm); |
403 |
if (t == (time_t) -1) |
404 |
return 0; |
405 |
return t;
|
406 |
} |
407 |
/**
|
408 |
* tm_parse_date - parse a date
|
409 |
* @x: date string
|
410 |
*
|
411 |
* tm_parse_date() takes a textual representation of a date (dd-mm-yyyy)
|
412 |
* and converts it to the corresponding value of type &bird_clock_t.
|
413 |
*/
|
414 |
bird_clock_t |
415 |
tm_parse_date(char *x)
|
416 |
{ |
417 |
struct tm tm;
|
418 |
int n;
|
419 |
time_t t; |
420 |
|
421 |
if (sscanf(x, "%d-%d-%d%n", &tm.tm_mday, &tm.tm_mon, &tm.tm_year, &n) != 3 || x[n]) |
422 |
return 0; |
423 |
tm.tm_mon--; |
424 |
tm.tm_year -= 1900;
|
425 |
tm.tm_hour = tm.tm_min = tm.tm_sec = 0;
|
426 |
t = mktime(&tm); |
427 |
if (t == (time_t) -1) |
428 |
return 0; |
429 |
return t;
|
430 |
} |
431 |
|
432 |
static void |
433 |
tm_format_reltime(char *x, struct tm *tm, bird_clock_t delta) |
434 |
{ |
435 |
static char *month_names[12] = { "Jan", "Feb", "Mar", "Apr", "May", "Jun", |
436 |
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec" }; |
437 |
|
438 |
if (delta < 20*3600) |
439 |
bsprintf(x, "%02d:%02d", tm->tm_hour, tm->tm_min);
|
440 |
else if (delta < 360*86400) |
441 |
bsprintf(x, "%s%02d", month_names[tm->tm_mon], tm->tm_mday);
|
442 |
else
|
443 |
bsprintf(x, "%d", tm->tm_year+1900); |
444 |
} |
445 |
|
446 |
#include "conf/conf.h" |
447 |
|
448 |
/**
|
449 |
* tm_format_datetime - convert date and time to textual representation
|
450 |
* @x: destination buffer of size %TM_DATETIME_BUFFER_SIZE
|
451 |
* @fmt_spec: specification of resulting textual representation of the time
|
452 |
* @t: time
|
453 |
*
|
454 |
* This function formats the given relative time value @t to a textual
|
455 |
* date/time representation (dd-mm-yyyy hh:mm:ss) in real time.
|
456 |
*/
|
457 |
void
|
458 |
tm_format_datetime(char *x, struct timeformat *fmt_spec, bird_clock_t t) |
459 |
{ |
460 |
const char *fmt_used; |
461 |
struct tm *tm;
|
462 |
bird_clock_t delta = now - t; |
463 |
t = now_real - delta; |
464 |
tm = localtime(&t); |
465 |
|
466 |
if (fmt_spec->fmt1 == NULL) |
467 |
return tm_format_reltime(x, tm, delta);
|
468 |
|
469 |
if ((fmt_spec->limit == 0) || (delta < fmt_spec->limit)) |
470 |
fmt_used = fmt_spec->fmt1; |
471 |
else
|
472 |
fmt_used = fmt_spec->fmt2; |
473 |
|
474 |
int rv = strftime(x, TM_DATETIME_BUFFER_SIZE, fmt_used, tm);
|
475 |
if (((rv == 0) && fmt_used[0]) || (rv == TM_DATETIME_BUFFER_SIZE)) |
476 |
strcpy(x, "<too-long>");
|
477 |
} |
478 |
|
479 |
|
480 |
/**
|
481 |
* DOC: Sockets
|
482 |
*
|
483 |
* Socket resources represent network connections. Their data structure (&socket)
|
484 |
* contains a lot of fields defining the exact type of the socket, the local and
|
485 |
* remote addresses and ports, pointers to socket buffers and finally pointers to
|
486 |
* hook functions to be called when new data have arrived to the receive buffer
|
487 |
* (@rx_hook), when the contents of the transmit buffer have been transmitted
|
488 |
* (@tx_hook) and when an error or connection close occurs (@err_hook).
|
489 |
*
|
490 |
* Freeing of sockets from inside socket hooks is perfectly safe.
|
491 |
*/
|
492 |
|
493 |
#ifndef SOL_IP
|
494 |
#define SOL_IP IPPROTO_IP
|
495 |
#endif
|
496 |
|
497 |
#ifndef SOL_IPV6
|
498 |
#define SOL_IPV6 IPPROTO_IPV6
|
499 |
#endif
|
500 |
|
501 |
#ifndef SOL_ICMPV6
|
502 |
#define SOL_ICMPV6 IPPROTO_ICMPV6
|
503 |
#endif
|
504 |
|
505 |
|
506 |
/*
|
507 |
* Sockaddr helper functions
|
508 |
*/
|
509 |
|
510 |
static inline int sockaddr_length(int af) |
511 |
{ return (af == AF_INET) ? sizeof(struct sockaddr_in) : sizeof(struct sockaddr_in6); } |
512 |
|
513 |
static inline void |
514 |
sockaddr_fill4(struct sockaddr_in *sa, ip_addr a, struct iface *ifa, uint port) |
515 |
{ |
516 |
memset(sa, 0, sizeof(struct sockaddr_in)); |
517 |
#ifdef HAVE_SIN_LEN
|
518 |
sa->sin_len = sizeof(struct sockaddr_in); |
519 |
#endif
|
520 |
sa->sin_family = AF_INET; |
521 |
sa->sin_port = htons(port); |
522 |
sa->sin_addr = ipa_to_in4(a); |
523 |
} |
524 |
|
525 |
static inline void |
526 |
sockaddr_fill6(struct sockaddr_in6 *sa, ip_addr a, struct iface *ifa, uint port) |
527 |
{ |
528 |
memset(sa, 0, sizeof(struct sockaddr_in6)); |
529 |
#ifdef SIN6_LEN
|
530 |
sa->sin6_len = sizeof(struct sockaddr_in6); |
531 |
#endif
|
532 |
sa->sin6_family = AF_INET6; |
533 |
sa->sin6_port = htons(port); |
534 |
sa->sin6_flowinfo = 0;
|
535 |
sa->sin6_addr = ipa_to_in6(a); |
536 |
|
537 |
if (ifa && ipa_is_link_local(a))
|
538 |
sa->sin6_scope_id = ifa->index; |
539 |
} |
540 |
|
541 |
void
|
542 |
sockaddr_fill(sockaddr *sa, int af, ip_addr a, struct iface *ifa, uint port) |
543 |
{ |
544 |
if (af == AF_INET)
|
545 |
sockaddr_fill4((struct sockaddr_in *) sa, a, ifa, port);
|
546 |
else if (af == AF_INET6) |
547 |
sockaddr_fill6((struct sockaddr_in6 *) sa, a, ifa, port);
|
548 |
else
|
549 |
bug("Unknown AF");
|
550 |
} |
551 |
|
552 |
static inline void |
553 |
sockaddr_read4(struct sockaddr_in *sa, ip_addr *a, struct iface **ifa, uint *port) |
554 |
{ |
555 |
*port = ntohs(sa->sin_port); |
556 |
*a = ipa_from_in4(sa->sin_addr); |
557 |
} |
558 |
|
559 |
static inline void |
560 |
sockaddr_read6(struct sockaddr_in6 *sa, ip_addr *a, struct iface **ifa, uint *port) |
561 |
{ |
562 |
*port = ntohs(sa->sin6_port); |
563 |
*a = ipa_from_in6(sa->sin6_addr); |
564 |
|
565 |
if (ifa && ipa_is_link_local(*a))
|
566 |
*ifa = if_find_by_index(sa->sin6_scope_id); |
567 |
} |
568 |
|
569 |
int
|
570 |
sockaddr_read(sockaddr *sa, int af, ip_addr *a, struct iface **ifa, uint *port) |
571 |
{ |
572 |
if (sa->sa.sa_family != af)
|
573 |
goto fail;
|
574 |
|
575 |
if (af == AF_INET)
|
576 |
sockaddr_read4((struct sockaddr_in *) sa, a, ifa, port);
|
577 |
else if (af == AF_INET6) |
578 |
sockaddr_read6((struct sockaddr_in6 *) sa, a, ifa, port);
|
579 |
else
|
580 |
goto fail;
|
581 |
|
582 |
return 0; |
583 |
|
584 |
fail:
|
585 |
*a = IPA_NONE; |
586 |
*port = 0;
|
587 |
return -1; |
588 |
} |
589 |
|
590 |
|
591 |
/*
|
592 |
* IPv6 multicast syscalls
|
593 |
*/
|
594 |
|
595 |
/* Fortunately standardized in RFC 3493 */
|
596 |
|
597 |
#define INIT_MREQ6(maddr,ifa) \
|
598 |
{ .ipv6mr_multiaddr = ipa_to_in6(maddr), .ipv6mr_interface = ifa->index } |
599 |
|
600 |
static inline int |
601 |
sk_setup_multicast6(sock *s) |
602 |
{ |
603 |
int index = s->iface->index;
|
604 |
int ttl = s->ttl;
|
605 |
int n = 0; |
606 |
|
607 |
if (setsockopt(s->fd, SOL_IPV6, IPV6_MULTICAST_IF, &index, sizeof(index)) < 0) |
608 |
ERR("IPV6_MULTICAST_IF");
|
609 |
|
610 |
if (setsockopt(s->fd, SOL_IPV6, IPV6_MULTICAST_HOPS, &ttl, sizeof(ttl)) < 0) |
611 |
ERR("IPV6_MULTICAST_HOPS");
|
612 |
|
613 |
if (setsockopt(s->fd, SOL_IPV6, IPV6_MULTICAST_LOOP, &n, sizeof(n)) < 0) |
614 |
ERR("IPV6_MULTICAST_LOOP");
|
615 |
|
616 |
return 0; |
617 |
} |
618 |
|
619 |
static inline int |
620 |
sk_join_group6(sock *s, ip_addr maddr) |
621 |
{ |
622 |
struct ipv6_mreq mr = INIT_MREQ6(maddr, s->iface);
|
623 |
|
624 |
if (setsockopt(s->fd, SOL_IPV6, IPV6_JOIN_GROUP, &mr, sizeof(mr)) < 0) |
625 |
ERR("IPV6_JOIN_GROUP");
|
626 |
|
627 |
return 0; |
628 |
} |
629 |
|
630 |
static inline int |
631 |
sk_leave_group6(sock *s, ip_addr maddr) |
632 |
{ |
633 |
struct ipv6_mreq mr = INIT_MREQ6(maddr, s->iface);
|
634 |
|
635 |
if (setsockopt(s->fd, SOL_IPV6, IPV6_LEAVE_GROUP, &mr, sizeof(mr)) < 0) |
636 |
ERR("IPV6_LEAVE_GROUP");
|
637 |
|
638 |
return 0; |
639 |
} |
640 |
|
641 |
|
642 |
/*
|
643 |
* IPv6 packet control messages
|
644 |
*/
|
645 |
|
646 |
/* Also standardized, in RFC 3542 */
|
647 |
|
648 |
/*
|
649 |
* RFC 2292 uses IPV6_PKTINFO for both the socket option and the cmsg
|
650 |
* type, RFC 3542 changed the socket option to IPV6_RECVPKTINFO. If we
|
651 |
* don't have IPV6_RECVPKTINFO we suppose the OS implements the older
|
652 |
* RFC and we use IPV6_PKTINFO.
|
653 |
*/
|
654 |
#ifndef IPV6_RECVPKTINFO
|
655 |
#define IPV6_RECVPKTINFO IPV6_PKTINFO
|
656 |
#endif
|
657 |
/*
|
658 |
* Same goes for IPV6_HOPLIMIT -> IPV6_RECVHOPLIMIT.
|
659 |
*/
|
660 |
#ifndef IPV6_RECVHOPLIMIT
|
661 |
#define IPV6_RECVHOPLIMIT IPV6_HOPLIMIT
|
662 |
#endif
|
663 |
|
664 |
|
665 |
#define CMSG6_SPACE_PKTINFO CMSG_SPACE(sizeof(struct in6_pktinfo)) |
666 |
#define CMSG6_SPACE_TTL CMSG_SPACE(sizeof(int)) |
667 |
|
668 |
static inline int |
669 |
sk_request_cmsg6_pktinfo(sock *s) |
670 |
{ |
671 |
int y = 1; |
672 |
|
673 |
if (setsockopt(s->fd, SOL_IPV6, IPV6_RECVPKTINFO, &y, sizeof(y)) < 0) |
674 |
ERR("IPV6_RECVPKTINFO");
|
675 |
|
676 |
return 0; |
677 |
} |
678 |
|
679 |
static inline int |
680 |
sk_request_cmsg6_ttl(sock *s) |
681 |
{ |
682 |
int y = 1; |
683 |
|
684 |
if (setsockopt(s->fd, SOL_IPV6, IPV6_RECVHOPLIMIT, &y, sizeof(y)) < 0) |
685 |
ERR("IPV6_RECVHOPLIMIT");
|
686 |
|
687 |
return 0; |
688 |
} |
689 |
|
690 |
static inline void |
691 |
sk_process_cmsg6_pktinfo(sock *s, struct cmsghdr *cm)
|
692 |
{ |
693 |
if (cm->cmsg_type == IPV6_PKTINFO)
|
694 |
{ |
695 |
struct in6_pktinfo *pi = (struct in6_pktinfo *) CMSG_DATA(cm); |
696 |
s->laddr = ipa_from_in6(pi->ipi6_addr); |
697 |
s->lifindex = pi->ipi6_ifindex; |
698 |
} |
699 |
} |
700 |
|
701 |
static inline void |
702 |
sk_process_cmsg6_ttl(sock *s, struct cmsghdr *cm)
|
703 |
{ |
704 |
if (cm->cmsg_type == IPV6_HOPLIMIT)
|
705 |
s->rcv_ttl = * (int *) CMSG_DATA(cm);
|
706 |
} |
707 |
|
708 |
static inline void |
709 |
sk_prepare_cmsgs6(sock *s, struct msghdr *msg, void *cbuf, size_t cbuflen) |
710 |
{ |
711 |
struct cmsghdr *cm;
|
712 |
struct in6_pktinfo *pi;
|
713 |
int controllen = 0; |
714 |
|
715 |
msg->msg_control = cbuf; |
716 |
msg->msg_controllen = cbuflen; |
717 |
|
718 |
cm = CMSG_FIRSTHDR(msg); |
719 |
cm->cmsg_level = SOL_IPV6; |
720 |
cm->cmsg_type = IPV6_PKTINFO; |
721 |
cm->cmsg_len = CMSG_LEN(sizeof(*pi));
|
722 |
controllen += CMSG_SPACE(sizeof(*pi));
|
723 |
|
724 |
pi = (struct in6_pktinfo *) CMSG_DATA(cm);
|
725 |
pi->ipi6_ifindex = s->iface ? s->iface->index : 0;
|
726 |
pi->ipi6_addr = ipa_to_in6(s->saddr); |
727 |
|
728 |
msg->msg_controllen = controllen; |
729 |
} |
730 |
|
731 |
|
732 |
/*
|
733 |
* Miscellaneous socket syscalls
|
734 |
*/
|
735 |
|
736 |
static inline int |
737 |
sk_set_ttl4(sock *s, int ttl)
|
738 |
{ |
739 |
if (setsockopt(s->fd, SOL_IP, IP_TTL, &ttl, sizeof(ttl)) < 0) |
740 |
ERR("IP_TTL");
|
741 |
|
742 |
return 0; |
743 |
} |
744 |
|
745 |
static inline int |
746 |
sk_set_ttl6(sock *s, int ttl)
|
747 |
{ |
748 |
if (setsockopt(s->fd, SOL_IPV6, IPV6_UNICAST_HOPS, &ttl, sizeof(ttl)) < 0) |
749 |
ERR("IPV6_UNICAST_HOPS");
|
750 |
|
751 |
return 0; |
752 |
} |
753 |
|
754 |
static inline int |
755 |
sk_set_tos4(sock *s, int tos)
|
756 |
{ |
757 |
if (setsockopt(s->fd, SOL_IP, IP_TOS, &tos, sizeof(tos)) < 0) |
758 |
ERR("IP_TOS");
|
759 |
|
760 |
return 0; |
761 |
} |
762 |
|
763 |
static inline int |
764 |
sk_set_tos6(sock *s, int tos)
|
765 |
{ |
766 |
if (setsockopt(s->fd, SOL_IPV6, IPV6_TCLASS, &tos, sizeof(tos)) < 0) |
767 |
ERR("IPV6_TCLASS");
|
768 |
|
769 |
return 0; |
770 |
} |
771 |
|
772 |
static inline int |
773 |
sk_set_high_port(sock *s) |
774 |
{ |
775 |
/* Port range setting is optional, ignore it if not supported */
|
776 |
|
777 |
#ifdef IP_PORTRANGE
|
778 |
if (sk_is_ipv4(s))
|
779 |
{ |
780 |
int range = IP_PORTRANGE_HIGH;
|
781 |
if (setsockopt(s->fd, SOL_IP, IP_PORTRANGE, &range, sizeof(range)) < 0) |
782 |
ERR("IP_PORTRANGE");
|
783 |
} |
784 |
#endif
|
785 |
|
786 |
#ifdef IPV6_PORTRANGE
|
787 |
if (sk_is_ipv6(s))
|
788 |
{ |
789 |
int range = IPV6_PORTRANGE_HIGH;
|
790 |
if (setsockopt(s->fd, SOL_IPV6, IPV6_PORTRANGE, &range, sizeof(range)) < 0) |
791 |
ERR("IPV6_PORTRANGE");
|
792 |
} |
793 |
#endif
|
794 |
|
795 |
return 0; |
796 |
} |
797 |
|
798 |
static inline byte * |
799 |
sk_skip_ip_header(byte *pkt, int *len)
|
800 |
{ |
801 |
if ((*len < 20) || ((*pkt & 0xf0) != 0x40)) |
802 |
return NULL; |
803 |
|
804 |
int hlen = (*pkt & 0x0f) * 4; |
805 |
if ((hlen < 20) || (hlen > *len)) |
806 |
return NULL; |
807 |
|
808 |
*len -= hlen; |
809 |
return pkt + hlen;
|
810 |
} |
811 |
|
812 |
byte * |
813 |
sk_rx_buffer(sock *s, int *len)
|
814 |
{ |
815 |
if (sk_is_ipv4(s) && (s->type == SK_IP))
|
816 |
return sk_skip_ip_header(s->rbuf, len);
|
817 |
else
|
818 |
return s->rbuf;
|
819 |
} |
820 |
|
821 |
|
822 |
/*
|
823 |
* Public socket functions
|
824 |
*/
|
825 |
|
826 |
/**
|
827 |
* sk_setup_multicast - enable multicast for given socket
|
828 |
* @s: socket
|
829 |
*
|
830 |
* Prepare transmission of multicast packets for given datagram socket.
|
831 |
* The socket must have defined @iface.
|
832 |
*
|
833 |
* Result: 0 for success, -1 for an error.
|
834 |
*/
|
835 |
|
836 |
int
|
837 |
sk_setup_multicast(sock *s) |
838 |
{ |
839 |
ASSERT(s->iface); |
840 |
|
841 |
if (sk_is_ipv4(s))
|
842 |
return sk_setup_multicast4(s);
|
843 |
else
|
844 |
return sk_setup_multicast6(s);
|
845 |
} |
846 |
|
847 |
/**
|
848 |
* sk_join_group - join multicast group for given socket
|
849 |
* @s: socket
|
850 |
* @maddr: multicast address
|
851 |
*
|
852 |
* Join multicast group for given datagram socket and associated interface.
|
853 |
* The socket must have defined @iface.
|
854 |
*
|
855 |
* Result: 0 for success, -1 for an error.
|
856 |
*/
|
857 |
|
858 |
int
|
859 |
sk_join_group(sock *s, ip_addr maddr) |
860 |
{ |
861 |
if (sk_is_ipv4(s))
|
862 |
return sk_join_group4(s, maddr);
|
863 |
else
|
864 |
return sk_join_group6(s, maddr);
|
865 |
} |
866 |
|
867 |
/**
|
868 |
* sk_leave_group - leave multicast group for given socket
|
869 |
* @s: socket
|
870 |
* @maddr: multicast address
|
871 |
*
|
872 |
* Leave multicast group for given datagram socket and associated interface.
|
873 |
* The socket must have defined @iface.
|
874 |
*
|
875 |
* Result: 0 for success, -1 for an error.
|
876 |
*/
|
877 |
|
878 |
int
|
879 |
sk_leave_group(sock *s, ip_addr maddr) |
880 |
{ |
881 |
if (sk_is_ipv4(s))
|
882 |
return sk_leave_group4(s, maddr);
|
883 |
else
|
884 |
return sk_leave_group6(s, maddr);
|
885 |
} |
886 |
|
887 |
/**
|
888 |
* sk_setup_broadcast - enable broadcast for given socket
|
889 |
* @s: socket
|
890 |
*
|
891 |
* Allow reception and transmission of broadcast packets for given datagram
|
892 |
* socket. The socket must have defined @iface. For transmission, packets should
|
893 |
* be send to @brd address of @iface.
|
894 |
*
|
895 |
* Result: 0 for success, -1 for an error.
|
896 |
*/
|
897 |
|
898 |
int
|
899 |
sk_setup_broadcast(sock *s) |
900 |
{ |
901 |
int y = 1; |
902 |
|
903 |
if (setsockopt(s->fd, SOL_SOCKET, SO_BROADCAST, &y, sizeof(y)) < 0) |
904 |
ERR("SO_BROADCAST");
|
905 |
|
906 |
return 0; |
907 |
} |
908 |
|
909 |
/**
|
910 |
* sk_set_ttl - set transmit TTL for given socket
|
911 |
* @s: socket
|
912 |
* @ttl: TTL value
|
913 |
*
|
914 |
* Set TTL for already opened connections when TTL was not set before. Useful
|
915 |
* for accepted connections when different ones should have different TTL.
|
916 |
*
|
917 |
* Result: 0 for success, -1 for an error.
|
918 |
*/
|
919 |
|
920 |
int
|
921 |
sk_set_ttl(sock *s, int ttl)
|
922 |
{ |
923 |
s->ttl = ttl; |
924 |
|
925 |
if (sk_is_ipv4(s))
|
926 |
return sk_set_ttl4(s, ttl);
|
927 |
else
|
928 |
return sk_set_ttl6(s, ttl);
|
929 |
} |
930 |
|
931 |
/**
|
932 |
* sk_set_min_ttl - set minimal accepted TTL for given socket
|
933 |
* @s: socket
|
934 |
* @ttl: TTL value
|
935 |
*
|
936 |
* Set minimal accepted TTL for given socket. Can be used for TTL security.
|
937 |
* implementations.
|
938 |
*
|
939 |
* Result: 0 for success, -1 for an error.
|
940 |
*/
|
941 |
|
942 |
int
|
943 |
sk_set_min_ttl(sock *s, int ttl)
|
944 |
{ |
945 |
if (sk_is_ipv4(s))
|
946 |
return sk_set_min_ttl4(s, ttl);
|
947 |
else
|
948 |
return sk_set_min_ttl6(s, ttl);
|
949 |
} |
950 |
|
951 |
#if 0
|
952 |
/**
|
953 |
* sk_set_md5_auth - add / remove MD5 security association for given socket
|
954 |
* @s: socket
|
955 |
* @local: IP address of local side
|
956 |
* @remote: IP address of remote side
|
957 |
* @ifa: Interface for link-local IP address
|
958 |
* @passwd: Password used for MD5 authentication
|
959 |
* @setkey: Update also system SA/SP database
|
960 |
*
|
961 |
* In TCP MD5 handling code in kernel, there is a set of security associations
|
962 |
* used for choosing password and other authentication parameters according to
|
963 |
* the local and remote address. This function is useful for listening socket,
|
964 |
* for active sockets it may be enough to set s->password field.
|
965 |
*
|
966 |
* When called with passwd != NULL, the new pair is added,
|
967 |
* When called with passwd == NULL, the existing pair is removed.
|
968 |
*
|
969 |
* Note that while in Linux, the MD5 SAs are specific to socket, in BSD they are
|
970 |
* stored in global SA/SP database (but the behavior also must be enabled on
|
971 |
* per-socket basis). In case of multiple sockets to the same neighbor, the
|
972 |
* socket-specific state must be configured for each socket while global state
|
973 |
* just once per src-dst pair. The @setkey argument controls whether the global
|
974 |
* state (SA/SP database) is also updated.
|
975 |
*
|
976 |
* Result: 0 for success, -1 for an error.
|
977 |
*/
|
978 |
|
979 |
int
|
980 |
sk_set_md5_auth(sock *s, ip_addr local, ip_addr remote, struct iface *ifa, char *passwd, int setkey)
|
981 |
{ DUMMY; }
|
982 |
#endif
|
983 |
|
984 |
/**
|
985 |
* sk_set_ipv6_checksum - specify IPv6 checksum offset for given socket
|
986 |
* @s: socket
|
987 |
* @offset: offset
|
988 |
*
|
989 |
* Specify IPv6 checksum field offset for given raw IPv6 socket. After that, the
|
990 |
* kernel will automatically fill it for outgoing packets and check it for
|
991 |
* incoming packets. Should not be used on ICMPv6 sockets, where the position is
|
992 |
* known to the kernel.
|
993 |
*
|
994 |
* Result: 0 for success, -1 for an error.
|
995 |
*/
|
996 |
|
997 |
int
|
998 |
sk_set_ipv6_checksum(sock *s, int offset)
|
999 |
{ |
1000 |
if (setsockopt(s->fd, SOL_IPV6, IPV6_CHECKSUM, &offset, sizeof(offset)) < 0) |
1001 |
ERR("IPV6_CHECKSUM");
|
1002 |
|
1003 |
return 0; |
1004 |
} |
1005 |
|
1006 |
int
|
1007 |
sk_set_icmp6_filter(sock *s, int p1, int p2) |
1008 |
{ |
1009 |
/* a bit of lame interface, but it is here only for Radv */
|
1010 |
struct icmp6_filter f;
|
1011 |
|
1012 |
ICMP6_FILTER_SETBLOCKALL(&f); |
1013 |
ICMP6_FILTER_SETPASS(p1, &f); |
1014 |
ICMP6_FILTER_SETPASS(p2, &f); |
1015 |
|
1016 |
if (setsockopt(s->fd, SOL_ICMPV6, ICMP6_FILTER, &f, sizeof(f)) < 0) |
1017 |
ERR("ICMP6_FILTER");
|
1018 |
|
1019 |
return 0; |
1020 |
} |
1021 |
|
1022 |
void
|
1023 |
sk_log_error(sock *s, const char *p) |
1024 |
{ |
1025 |
log(L_ERR "%s: Socket error: %s%#m", p, s->err);
|
1026 |
} |
1027 |
|
1028 |
|
1029 |
/*
|
1030 |
* Actual struct birdsock code
|
1031 |
*/
|
1032 |
|
1033 |
static list sock_list;
|
1034 |
static struct birdsock *current_sock; |
1035 |
static struct birdsock *stored_sock; |
1036 |
|
1037 |
static inline sock * |
1038 |
sk_next(sock *s) |
1039 |
{ |
1040 |
if (!s->n.next->next)
|
1041 |
return NULL; |
1042 |
else
|
1043 |
return SKIP_BACK(sock, n, s->n.next);
|
1044 |
} |
1045 |
|
1046 |
static void |
1047 |
sk_alloc_bufs(sock *s) |
1048 |
{ |
1049 |
if (!s->rbuf && s->rbsize)
|
1050 |
s->rbuf = s->rbuf_alloc = xmalloc(s->rbsize); |
1051 |
s->rpos = s->rbuf; |
1052 |
if (!s->tbuf && s->tbsize)
|
1053 |
s->tbuf = s->tbuf_alloc = xmalloc(s->tbsize); |
1054 |
s->tpos = s->ttx = s->tbuf; |
1055 |
} |
1056 |
|
1057 |
static void |
1058 |
sk_free_bufs(sock *s) |
1059 |
{ |
1060 |
if (s->rbuf_alloc)
|
1061 |
{ |
1062 |
xfree(s->rbuf_alloc); |
1063 |
s->rbuf = s->rbuf_alloc = NULL;
|
1064 |
} |
1065 |
if (s->tbuf_alloc)
|
1066 |
{ |
1067 |
xfree(s->tbuf_alloc); |
1068 |
s->tbuf = s->tbuf_alloc = NULL;
|
1069 |
} |
1070 |
} |
1071 |
|
1072 |
static void |
1073 |
sk_free(resource *r) |
1074 |
{ |
1075 |
sock *s = (sock *) r; |
1076 |
|
1077 |
sk_free_bufs(s); |
1078 |
if (s->fd >= 0) |
1079 |
{ |
1080 |
close(s->fd); |
1081 |
|
1082 |
/* FIXME: we should call sk_stop() for SKF_THREAD sockets */
|
1083 |
if (s->flags & SKF_THREAD)
|
1084 |
return;
|
1085 |
|
1086 |
if (s == current_sock)
|
1087 |
current_sock = sk_next(s); |
1088 |
if (s == stored_sock)
|
1089 |
stored_sock = sk_next(s); |
1090 |
rem_node(&s->n); |
1091 |
} |
1092 |
} |
1093 |
|
1094 |
void
|
1095 |
sk_set_rbsize(sock *s, uint val) |
1096 |
{ |
1097 |
ASSERT(s->rbuf_alloc == s->rbuf); |
1098 |
|
1099 |
if (s->rbsize == val)
|
1100 |
return;
|
1101 |
|
1102 |
s->rbsize = val; |
1103 |
xfree(s->rbuf_alloc); |
1104 |
s->rbuf_alloc = xmalloc(val); |
1105 |
s->rpos = s->rbuf = s->rbuf_alloc; |
1106 |
} |
1107 |
|
1108 |
void
|
1109 |
sk_set_tbsize(sock *s, uint val) |
1110 |
{ |
1111 |
ASSERT(s->tbuf_alloc == s->tbuf); |
1112 |
|
1113 |
if (s->tbsize == val)
|
1114 |
return;
|
1115 |
|
1116 |
byte *old_tbuf = s->tbuf; |
1117 |
|
1118 |
s->tbsize = val; |
1119 |
s->tbuf = s->tbuf_alloc = xrealloc(s->tbuf_alloc, val); |
1120 |
s->tpos = s->tbuf + (s->tpos - old_tbuf); |
1121 |
s->ttx = s->tbuf + (s->ttx - old_tbuf); |
1122 |
} |
1123 |
|
1124 |
void
|
1125 |
sk_set_tbuf(sock *s, void *tbuf)
|
1126 |
{ |
1127 |
s->tbuf = tbuf ?: s->tbuf_alloc; |
1128 |
s->ttx = s->tpos = s->tbuf; |
1129 |
} |
1130 |
|
1131 |
void
|
1132 |
sk_reallocate(sock *s) |
1133 |
{ |
1134 |
sk_free_bufs(s); |
1135 |
sk_alloc_bufs(s); |
1136 |
} |
1137 |
|
1138 |
static void |
1139 |
sk_dump(resource *r) |
1140 |
{ |
1141 |
sock *s = (sock *) r; |
1142 |
static char *sk_type_names[] = { "TCP<", "TCP>", "TCP", "UDP", NULL, "IP", NULL, "MAGIC", "UNIX<", "UNIX", "DEL!" }; |
1143 |
|
1144 |
debug("(%s, ud=%p, sa=%I, sp=%d, da=%I, dp=%d, tos=%d, ttl=%d, if=%s)\n",
|
1145 |
sk_type_names[s->type], |
1146 |
s->data, |
1147 |
s->saddr, |
1148 |
s->sport, |
1149 |
s->daddr, |
1150 |
s->dport, |
1151 |
s->tos, |
1152 |
s->ttl, |
1153 |
s->iface ? s->iface->name : "none");
|
1154 |
} |
1155 |
|
1156 |
static struct resclass sk_class = { |
1157 |
"Socket",
|
1158 |
sizeof(sock),
|
1159 |
sk_free, |
1160 |
sk_dump, |
1161 |
NULL,
|
1162 |
NULL
|
1163 |
}; |
1164 |
|
1165 |
/**
|
1166 |
* sk_new - create a socket
|
1167 |
* @p: pool
|
1168 |
*
|
1169 |
* This function creates a new socket resource. If you want to use it,
|
1170 |
* you need to fill in all the required fields of the structure and
|
1171 |
* call sk_open() to do the actual opening of the socket.
|
1172 |
*
|
1173 |
* The real function name is sock_new(), sk_new() is a macro wrapper
|
1174 |
* to avoid collision with OpenSSL.
|
1175 |
*/
|
1176 |
sock * |
1177 |
sock_new(pool *p) |
1178 |
{ |
1179 |
sock *s = ralloc(p, &sk_class); |
1180 |
s->pool = p; |
1181 |
// s->saddr = s->daddr = IPA_NONE;
|
1182 |
s->tos = s->priority = s->ttl = -1;
|
1183 |
s->fd = -1;
|
1184 |
return s;
|
1185 |
} |
1186 |
|
1187 |
static int |
1188 |
sk_setup(sock *s) |
1189 |
{ |
1190 |
int y = 1; |
1191 |
int fd = s->fd;
|
1192 |
|
1193 |
if (fcntl(fd, F_SETFL, O_NONBLOCK) < 0) |
1194 |
ERR("O_NONBLOCK");
|
1195 |
|
1196 |
if (!s->af)
|
1197 |
return 0; |
1198 |
|
1199 |
if (ipa_nonzero(s->saddr) && !(s->flags & SKF_BIND))
|
1200 |
s->flags |= SKF_PKTINFO; |
1201 |
|
1202 |
#ifdef CONFIG_USE_HDRINCL
|
1203 |
if (sk_is_ipv4(s) && (s->type == SK_IP) && (s->flags & SKF_PKTINFO))
|
1204 |
{ |
1205 |
s->flags &= ~SKF_PKTINFO; |
1206 |
s->flags |= SKF_HDRINCL; |
1207 |
if (setsockopt(fd, SOL_IP, IP_HDRINCL, &y, sizeof(y)) < 0) |
1208 |
ERR("IP_HDRINCL");
|
1209 |
} |
1210 |
#endif
|
1211 |
|
1212 |
if (s->iface)
|
1213 |
{ |
1214 |
#ifdef SO_BINDTODEVICE
|
1215 |
struct ifreq ifr = {};
|
1216 |
strcpy(ifr.ifr_name, s->iface->name); |
1217 |
if (setsockopt(s->fd, SOL_SOCKET, SO_BINDTODEVICE, &ifr, sizeof(ifr)) < 0) |
1218 |
ERR("SO_BINDTODEVICE");
|
1219 |
#endif
|
1220 |
|
1221 |
#ifdef CONFIG_UNIX_DONTROUTE
|
1222 |
if (setsockopt(s->fd, SOL_SOCKET, SO_DONTROUTE, &y, sizeof(y)) < 0) |
1223 |
ERR("SO_DONTROUTE");
|
1224 |
#endif
|
1225 |
} |
1226 |
|
1227 |
if (s->priority >= 0) |
1228 |
if (sk_set_priority(s, s->priority) < 0) |
1229 |
return -1; |
1230 |
|
1231 |
if (sk_is_ipv4(s))
|
1232 |
{ |
1233 |
if (s->flags & SKF_LADDR_RX)
|
1234 |
if (sk_request_cmsg4_pktinfo(s) < 0) |
1235 |
return -1; |
1236 |
|
1237 |
if (s->flags & SKF_TTL_RX)
|
1238 |
if (sk_request_cmsg4_ttl(s) < 0) |
1239 |
return -1; |
1240 |
|
1241 |
if ((s->type == SK_UDP) || (s->type == SK_IP))
|
1242 |
if (sk_disable_mtu_disc4(s) < 0) |
1243 |
return -1; |
1244 |
|
1245 |
if (s->ttl >= 0) |
1246 |
if (sk_set_ttl4(s, s->ttl) < 0) |
1247 |
return -1; |
1248 |
|
1249 |
if (s->tos >= 0) |
1250 |
if (sk_set_tos4(s, s->tos) < 0) |
1251 |
return -1; |
1252 |
} |
1253 |
|
1254 |
if (sk_is_ipv6(s))
|
1255 |
{ |
1256 |
if (s->flags & SKF_V6ONLY)
|
1257 |
if (setsockopt(fd, SOL_IPV6, IPV6_V6ONLY, &y, sizeof(y)) < 0) |
1258 |
ERR("IPV6_V6ONLY");
|
1259 |
|
1260 |
if (s->flags & SKF_LADDR_RX)
|
1261 |
if (sk_request_cmsg6_pktinfo(s) < 0) |
1262 |
return -1; |
1263 |
|
1264 |
if (s->flags & SKF_TTL_RX)
|
1265 |
if (sk_request_cmsg6_ttl(s) < 0) |
1266 |
return -1; |
1267 |
|
1268 |
if ((s->type == SK_UDP) || (s->type == SK_IP))
|
1269 |
if (sk_disable_mtu_disc6(s) < 0) |
1270 |
return -1; |
1271 |
|
1272 |
if (s->ttl >= 0) |
1273 |
if (sk_set_ttl6(s, s->ttl) < 0) |
1274 |
return -1; |
1275 |
|
1276 |
if (s->tos >= 0) |
1277 |
if (sk_set_tos6(s, s->tos) < 0) |
1278 |
return -1; |
1279 |
} |
1280 |
|
1281 |
return 0; |
1282 |
} |
1283 |
|
1284 |
static void |
1285 |
sk_insert(sock *s) |
1286 |
{ |
1287 |
add_tail(&sock_list, &s->n); |
1288 |
} |
1289 |
|
1290 |
static void |
1291 |
sk_tcp_connected(sock *s) |
1292 |
{ |
1293 |
sockaddr sa; |
1294 |
int sa_len = sizeof(sa); |
1295 |
|
1296 |
if ((getsockname(s->fd, &sa.sa, &sa_len) < 0) || |
1297 |
(sockaddr_read(&sa, s->af, &s->saddr, &s->iface, &s->sport) < 0))
|
1298 |
log(L_WARN "SOCK: Cannot get local IP address for TCP>");
|
1299 |
|
1300 |
s->type = SK_TCP; |
1301 |
sk_alloc_bufs(s); |
1302 |
s->tx_hook(s); |
1303 |
} |
1304 |
|
1305 |
static int |
1306 |
sk_passive_connected(sock *s, int type)
|
1307 |
{ |
1308 |
sockaddr loc_sa, rem_sa; |
1309 |
int loc_sa_len = sizeof(loc_sa); |
1310 |
int rem_sa_len = sizeof(rem_sa); |
1311 |
|
1312 |
int fd = accept(s->fd, ((type == SK_TCP) ? &rem_sa.sa : NULL), &rem_sa_len); |
1313 |
if (fd < 0) |
1314 |
{ |
1315 |
if ((errno != EINTR) && (errno != EAGAIN))
|
1316 |
s->err_hook(s, errno); |
1317 |
return 0; |
1318 |
} |
1319 |
|
1320 |
sock *t = sk_new(s->pool); |
1321 |
t->type = type; |
1322 |
t->fd = fd; |
1323 |
t->af = s->af; |
1324 |
t->ttl = s->ttl; |
1325 |
t->tos = s->tos; |
1326 |
t->rbsize = s->rbsize; |
1327 |
t->tbsize = s->tbsize; |
1328 |
|
1329 |
if (type == SK_TCP)
|
1330 |
{ |
1331 |
if ((getsockname(fd, &loc_sa.sa, &loc_sa_len) < 0) || |
1332 |
(sockaddr_read(&loc_sa, s->af, &t->saddr, &t->iface, &t->sport) < 0))
|
1333 |
log(L_WARN "SOCK: Cannot get local IP address for TCP<");
|
1334 |
|
1335 |
if (sockaddr_read(&rem_sa, s->af, &t->daddr, &t->iface, &t->dport) < 0) |
1336 |
log(L_WARN "SOCK: Cannot get remote IP address for TCP<");
|
1337 |
} |
1338 |
|
1339 |
if (sk_setup(t) < 0) |
1340 |
{ |
1341 |
/* FIXME: Call err_hook instead ? */
|
1342 |
log(L_ERR "SOCK: Incoming connection: %s%#m", t->err);
|
1343 |
|
1344 |
/* FIXME: handle it better in rfree() */
|
1345 |
close(t->fd); |
1346 |
t->fd = -1;
|
1347 |
rfree(t); |
1348 |
return 1; |
1349 |
} |
1350 |
|
1351 |
sk_insert(t); |
1352 |
sk_alloc_bufs(t); |
1353 |
s->rx_hook(t, 0);
|
1354 |
return 1; |
1355 |
} |
1356 |
|
1357 |
/**
|
1358 |
* sk_open - open a socket
|
1359 |
* @s: socket
|
1360 |
*
|
1361 |
* This function takes a socket resource created by sk_new() and
|
1362 |
* initialized by the user and binds a corresponding network connection
|
1363 |
* to it.
|
1364 |
*
|
1365 |
* Result: 0 for success, -1 for an error.
|
1366 |
*/
|
1367 |
int
|
1368 |
sk_open(sock *s) |
1369 |
{ |
1370 |
int af = BIRD_AF;
|
1371 |
int fd = -1; |
1372 |
int do_bind = 0; |
1373 |
int bind_port = 0; |
1374 |
ip_addr bind_addr = IPA_NONE; |
1375 |
sockaddr sa; |
1376 |
|
1377 |
switch (s->type)
|
1378 |
{ |
1379 |
case SK_TCP_ACTIVE:
|
1380 |
s->ttx = ""; /* Force s->ttx != s->tpos */ |
1381 |
/* Fall thru */
|
1382 |
case SK_TCP_PASSIVE:
|
1383 |
fd = socket(af, SOCK_STREAM, IPPROTO_TCP); |
1384 |
bind_port = s->sport; |
1385 |
bind_addr = s->saddr; |
1386 |
do_bind = bind_port || ipa_nonzero(bind_addr); |
1387 |
break;
|
1388 |
|
1389 |
case SK_UDP:
|
1390 |
fd = socket(af, SOCK_DGRAM, IPPROTO_UDP); |
1391 |
bind_port = s->sport; |
1392 |
bind_addr = (s->flags & SKF_BIND) ? s->saddr : IPA_NONE; |
1393 |
do_bind = 1;
|
1394 |
break;
|
1395 |
|
1396 |
case SK_IP:
|
1397 |
fd = socket(af, SOCK_RAW, s->dport); |
1398 |
bind_port = 0;
|
1399 |
bind_addr = (s->flags & SKF_BIND) ? s->saddr : IPA_NONE; |
1400 |
do_bind = ipa_nonzero(bind_addr); |
1401 |
break;
|
1402 |
|
1403 |
case SK_MAGIC:
|
1404 |
af = 0;
|
1405 |
fd = s->fd; |
1406 |
break;
|
1407 |
|
1408 |
default:
|
1409 |
bug("sk_open() called for invalid sock type %d", s->type);
|
1410 |
} |
1411 |
|
1412 |
if (fd < 0) |
1413 |
ERR("socket");
|
1414 |
|
1415 |
s->af = af; |
1416 |
s->fd = fd; |
1417 |
|
1418 |
if (sk_setup(s) < 0) |
1419 |
goto err;
|
1420 |
|
1421 |
if (do_bind)
|
1422 |
{ |
1423 |
if (bind_port)
|
1424 |
{ |
1425 |
int y = 1; |
1426 |
|
1427 |
if (setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &y, sizeof(y)) < 0) |
1428 |
ERR2("SO_REUSEADDR");
|
1429 |
|
1430 |
#ifdef CONFIG_NO_IFACE_BIND
|
1431 |
/* Workaround missing ability to bind to an iface */
|
1432 |
if ((s->type == SK_UDP) && s->iface && ipa_zero(bind_addr))
|
1433 |
{ |
1434 |
if (setsockopt(fd, SOL_SOCKET, SO_REUSEPORT, &y, sizeof(y)) < 0) |
1435 |
ERR2("SO_REUSEPORT");
|
1436 |
} |
1437 |
#endif
|
1438 |
} |
1439 |
else
|
1440 |
if (s->flags & SKF_HIGH_PORT)
|
1441 |
if (sk_set_high_port(s) < 0) |
1442 |
log(L_WARN "Socket error: %s%#m", s->err);
|
1443 |
|
1444 |
sockaddr_fill(&sa, af, bind_addr, s->iface, bind_port); |
1445 |
if (bind(fd, &sa.sa, SA_LEN(sa)) < 0) |
1446 |
ERR2("bind");
|
1447 |
} |
1448 |
|
1449 |
if (s->password)
|
1450 |
if (sk_set_md5_auth(s, s->saddr, s->daddr, s->iface, s->password, 0) < 0) |
1451 |
goto err;
|
1452 |
|
1453 |
switch (s->type)
|
1454 |
{ |
1455 |
case SK_TCP_ACTIVE:
|
1456 |
sockaddr_fill(&sa, af, s->daddr, s->iface, s->dport); |
1457 |
if (connect(fd, &sa.sa, SA_LEN(sa)) >= 0) |
1458 |
sk_tcp_connected(s); |
1459 |
else if (errno != EINTR && errno != EAGAIN && errno != EINPROGRESS && |
1460 |
errno != ECONNREFUSED && errno != EHOSTUNREACH && errno != ENETUNREACH) |
1461 |
ERR2("connect");
|
1462 |
break;
|
1463 |
|
1464 |
case SK_TCP_PASSIVE:
|
1465 |
if (listen(fd, 8) < 0) |
1466 |
ERR2("listen");
|
1467 |
break;
|
1468 |
|
1469 |
case SK_MAGIC:
|
1470 |
break;
|
1471 |
|
1472 |
default:
|
1473 |
sk_alloc_bufs(s); |
1474 |
} |
1475 |
|
1476 |
if (!(s->flags & SKF_THREAD))
|
1477 |
sk_insert(s); |
1478 |
return 0; |
1479 |
|
1480 |
err:
|
1481 |
close(fd); |
1482 |
s->fd = -1;
|
1483 |
return -1; |
1484 |
} |
1485 |
|
1486 |
int
|
1487 |
sk_open_unix(sock *s, char *name)
|
1488 |
{ |
1489 |
struct sockaddr_un sa;
|
1490 |
int fd;
|
1491 |
|
1492 |
/* We are sloppy during error (leak fd and not set s->err), but we die anyway */
|
1493 |
|
1494 |
fd = socket(AF_UNIX, SOCK_STREAM, 0);
|
1495 |
if (fd < 0) |
1496 |
return -1; |
1497 |
|
1498 |
if (fcntl(fd, F_SETFL, O_NONBLOCK) < 0) |
1499 |
return -1; |
1500 |
|
1501 |
/* Path length checked in test_old_bird() */
|
1502 |
sa.sun_family = AF_UNIX; |
1503 |
strcpy(sa.sun_path, name); |
1504 |
|
1505 |
if (bind(fd, (struct sockaddr *) &sa, SUN_LEN(&sa)) < 0) |
1506 |
return -1; |
1507 |
|
1508 |
if (listen(fd, 8) < 0) |
1509 |
return -1; |
1510 |
|
1511 |
s->fd = fd; |
1512 |
sk_insert(s); |
1513 |
return 0; |
1514 |
} |
1515 |
|
1516 |
|
1517 |
#define CMSG_RX_SPACE MAX(CMSG4_SPACE_PKTINFO+CMSG4_SPACE_TTL, \
|
1518 |
CMSG6_SPACE_PKTINFO+CMSG6_SPACE_TTL) |
1519 |
#define CMSG_TX_SPACE MAX(CMSG4_SPACE_PKTINFO,CMSG6_SPACE_PKTINFO)
|
1520 |
|
1521 |
static void |
1522 |
sk_prepare_cmsgs(sock *s, struct msghdr *msg, void *cbuf, size_t cbuflen) |
1523 |
{ |
1524 |
if (sk_is_ipv4(s))
|
1525 |
sk_prepare_cmsgs4(s, msg, cbuf, cbuflen); |
1526 |
else
|
1527 |
sk_prepare_cmsgs6(s, msg, cbuf, cbuflen); |
1528 |
} |
1529 |
|
1530 |
static void |
1531 |
sk_process_cmsgs(sock *s, struct msghdr *msg)
|
1532 |
{ |
1533 |
struct cmsghdr *cm;
|
1534 |
|
1535 |
s->laddr = IPA_NONE; |
1536 |
s->lifindex = 0;
|
1537 |
s->rcv_ttl = -1;
|
1538 |
|
1539 |
for (cm = CMSG_FIRSTHDR(msg); cm != NULL; cm = CMSG_NXTHDR(msg, cm)) |
1540 |
{ |
1541 |
if ((cm->cmsg_level == SOL_IP) && sk_is_ipv4(s))
|
1542 |
{ |
1543 |
sk_process_cmsg4_pktinfo(s, cm); |
1544 |
sk_process_cmsg4_ttl(s, cm); |
1545 |
} |
1546 |
|
1547 |
if ((cm->cmsg_level == SOL_IPV6) && sk_is_ipv6(s))
|
1548 |
{ |
1549 |
sk_process_cmsg6_pktinfo(s, cm); |
1550 |
sk_process_cmsg6_ttl(s, cm); |
1551 |
} |
1552 |
} |
1553 |
} |
1554 |
|
1555 |
|
1556 |
static inline int |
1557 |
sk_sendmsg(sock *s) |
1558 |
{ |
1559 |
struct iovec iov = {s->tbuf, s->tpos - s->tbuf};
|
1560 |
byte cmsg_buf[CMSG_TX_SPACE]; |
1561 |
sockaddr dst; |
1562 |
|
1563 |
sockaddr_fill(&dst, s->af, s->daddr, s->iface, s->dport); |
1564 |
|
1565 |
struct msghdr msg = {
|
1566 |
.msg_name = &dst.sa, |
1567 |
.msg_namelen = SA_LEN(dst), |
1568 |
.msg_iov = &iov, |
1569 |
.msg_iovlen = 1
|
1570 |
}; |
1571 |
|
1572 |
#ifdef CONFIG_USE_HDRINCL
|
1573 |
byte hdr[20];
|
1574 |
struct iovec iov2[2] = { {hdr, 20}, iov }; |
1575 |
|
1576 |
if (s->flags & SKF_HDRINCL)
|
1577 |
{ |
1578 |
sk_prepare_ip_header(s, hdr, iov.iov_len); |
1579 |
msg.msg_iov = iov2; |
1580 |
msg.msg_iovlen = 2;
|
1581 |
} |
1582 |
#endif
|
1583 |
|
1584 |
if (s->flags & SKF_PKTINFO)
|
1585 |
sk_prepare_cmsgs(s, &msg, cmsg_buf, sizeof(cmsg_buf));
|
1586 |
|
1587 |
return sendmsg(s->fd, &msg, 0); |
1588 |
} |
1589 |
|
1590 |
static inline int |
1591 |
sk_recvmsg(sock *s) |
1592 |
{ |
1593 |
struct iovec iov = {s->rbuf, s->rbsize};
|
1594 |
byte cmsg_buf[CMSG_RX_SPACE]; |
1595 |
sockaddr src; |
1596 |
|
1597 |
struct msghdr msg = {
|
1598 |
.msg_name = &src.sa, |
1599 |
.msg_namelen = sizeof(src), // XXXX ?? |
1600 |
.msg_iov = &iov, |
1601 |
.msg_iovlen = 1,
|
1602 |
.msg_control = cmsg_buf, |
1603 |
.msg_controllen = sizeof(cmsg_buf),
|
1604 |
.msg_flags = 0
|
1605 |
}; |
1606 |
|
1607 |
int rv = recvmsg(s->fd, &msg, 0); |
1608 |
if (rv < 0) |
1609 |
return rv;
|
1610 |
|
1611 |
//ifdef IPV4
|
1612 |
// if (cf_type == SK_IP)
|
1613 |
// rv = ipv4_skip_header(pbuf, rv);
|
1614 |
//endif
|
1615 |
|
1616 |
sockaddr_read(&src, s->af, &s->faddr, NULL, &s->fport);
|
1617 |
sk_process_cmsgs(s, &msg); |
1618 |
|
1619 |
if (msg.msg_flags & MSG_TRUNC)
|
1620 |
s->flags |= SKF_TRUNCATED; |
1621 |
else
|
1622 |
s->flags &= ~SKF_TRUNCATED; |
1623 |
|
1624 |
return rv;
|
1625 |
} |
1626 |
|
1627 |
|
1628 |
static inline void reset_tx_buffer(sock *s) { s->ttx = s->tpos = s->tbuf; } |
1629 |
|
1630 |
static int |
1631 |
sk_maybe_write(sock *s) |
1632 |
{ |
1633 |
int e;
|
1634 |
|
1635 |
switch (s->type)
|
1636 |
{ |
1637 |
case SK_TCP:
|
1638 |
case SK_MAGIC:
|
1639 |
case SK_UNIX:
|
1640 |
while (s->ttx != s->tpos)
|
1641 |
{ |
1642 |
e = write(s->fd, s->ttx, s->tpos - s->ttx); |
1643 |
|
1644 |
if (e < 0) |
1645 |
{ |
1646 |
if (errno != EINTR && errno != EAGAIN)
|
1647 |
{ |
1648 |
reset_tx_buffer(s); |
1649 |
/* EPIPE is just a connection close notification during TX */
|
1650 |
s->err_hook(s, (errno != EPIPE) ? errno : 0);
|
1651 |
return -1; |
1652 |
} |
1653 |
return 0; |
1654 |
} |
1655 |
s->ttx += e; |
1656 |
} |
1657 |
reset_tx_buffer(s); |
1658 |
return 1; |
1659 |
|
1660 |
case SK_UDP:
|
1661 |
case SK_IP:
|
1662 |
{ |
1663 |
if (s->tbuf == s->tpos)
|
1664 |
return 1; |
1665 |
|
1666 |
e = sk_sendmsg(s); |
1667 |
|
1668 |
if (e < 0) |
1669 |
{ |
1670 |
if (errno != EINTR && errno != EAGAIN)
|
1671 |
{ |
1672 |
reset_tx_buffer(s); |
1673 |
s->err_hook(s, errno); |
1674 |
return -1; |
1675 |
} |
1676 |
|
1677 |
if (!s->tx_hook)
|
1678 |
reset_tx_buffer(s); |
1679 |
return 0; |
1680 |
} |
1681 |
reset_tx_buffer(s); |
1682 |
return 1; |
1683 |
} |
1684 |
default:
|
1685 |
bug("sk_maybe_write: unknown socket type %d", s->type);
|
1686 |
} |
1687 |
} |
1688 |
|
1689 |
int
|
1690 |
sk_rx_ready(sock *s) |
1691 |
{ |
1692 |
int rv;
|
1693 |
struct pollfd pfd = { .fd = s->fd };
|
1694 |
pfd.events |= POLLIN; |
1695 |
|
1696 |
redo:
|
1697 |
rv = poll(&pfd, 1, 0); |
1698 |
|
1699 |
if ((rv < 0) && (errno == EINTR || errno == EAGAIN)) |
1700 |
goto redo;
|
1701 |
|
1702 |
return rv;
|
1703 |
} |
1704 |
|
1705 |
/**
|
1706 |
* sk_send - send data to a socket
|
1707 |
* @s: socket
|
1708 |
* @len: number of bytes to send
|
1709 |
*
|
1710 |
* This function sends @len bytes of data prepared in the
|
1711 |
* transmit buffer of the socket @s to the network connection.
|
1712 |
* If the packet can be sent immediately, it does so and returns
|
1713 |
* 1, else it queues the packet for later processing, returns 0
|
1714 |
* and calls the @tx_hook of the socket when the tranmission
|
1715 |
* takes place.
|
1716 |
*/
|
1717 |
int
|
1718 |
sk_send(sock *s, unsigned len)
|
1719 |
{ |
1720 |
s->ttx = s->tbuf; |
1721 |
s->tpos = s->tbuf + len; |
1722 |
return sk_maybe_write(s);
|
1723 |
} |
1724 |
|
1725 |
/**
|
1726 |
* sk_send_to - send data to a specific destination
|
1727 |
* @s: socket
|
1728 |
* @len: number of bytes to send
|
1729 |
* @addr: IP address to send the packet to
|
1730 |
* @port: port to send the packet to
|
1731 |
*
|
1732 |
* This is a sk_send() replacement for connection-less packet sockets
|
1733 |
* which allows destination of the packet to be chosen dynamically.
|
1734 |
* Raw IP sockets should use 0 for @port.
|
1735 |
*/
|
1736 |
int
|
1737 |
sk_send_to(sock *s, unsigned len, ip_addr addr, unsigned port) |
1738 |
{ |
1739 |
s->daddr = addr; |
1740 |
if (port)
|
1741 |
s->dport = port; |
1742 |
|
1743 |
s->ttx = s->tbuf; |
1744 |
s->tpos = s->tbuf + len; |
1745 |
return sk_maybe_write(s);
|
1746 |
} |
1747 |
|
1748 |
/*
|
1749 |
int
|
1750 |
sk_send_full(sock *s, unsigned len, struct iface *ifa,
|
1751 |
ip_addr saddr, ip_addr daddr, unsigned dport)
|
1752 |
{
|
1753 |
s->iface = ifa;
|
1754 |
s->saddr = saddr;
|
1755 |
s->daddr = daddr;
|
1756 |
s->dport = dport;
|
1757 |
s->ttx = s->tbuf;
|
1758 |
s->tpos = s->tbuf + len;
|
1759 |
return sk_maybe_write(s);
|
1760 |
}
|
1761 |
*/
|
1762 |
|
1763 |
/* sk_read() and sk_write() are called from BFD's event loop */
|
1764 |
|
1765 |
int
|
1766 |
sk_read(sock *s, int revents)
|
1767 |
{ |
1768 |
switch (s->type)
|
1769 |
{ |
1770 |
case SK_TCP_PASSIVE:
|
1771 |
return sk_passive_connected(s, SK_TCP);
|
1772 |
|
1773 |
case SK_UNIX_PASSIVE:
|
1774 |
return sk_passive_connected(s, SK_UNIX);
|
1775 |
|
1776 |
case SK_TCP:
|
1777 |
case SK_UNIX:
|
1778 |
{ |
1779 |
int c = read(s->fd, s->rpos, s->rbuf + s->rbsize - s->rpos);
|
1780 |
|
1781 |
if (c < 0) |
1782 |
{ |
1783 |
if (errno != EINTR && errno != EAGAIN)
|
1784 |
s->err_hook(s, errno); |
1785 |
else if (errno == EAGAIN && !(revents & POLLIN)) |
1786 |
{ |
1787 |
log(L_ERR "Got EAGAIN from read when revents=%x (without POLLIN)", revents);
|
1788 |
s->err_hook(s, 0);
|
1789 |
} |
1790 |
} |
1791 |
else if (!c) |
1792 |
s->err_hook(s, 0);
|
1793 |
else
|
1794 |
{ |
1795 |
s->rpos += c; |
1796 |
if (s->rx_hook(s, s->rpos - s->rbuf))
|
1797 |
{ |
1798 |
/* We need to be careful since the socket could have been deleted by the hook */
|
1799 |
if (current_sock == s)
|
1800 |
s->rpos = s->rbuf; |
1801 |
} |
1802 |
return 1; |
1803 |
} |
1804 |
return 0; |
1805 |
} |
1806 |
|
1807 |
case SK_MAGIC:
|
1808 |
return s->rx_hook(s, 0); |
1809 |
|
1810 |
default:
|
1811 |
{ |
1812 |
int e = sk_recvmsg(s);
|
1813 |
|
1814 |
if (e < 0) |
1815 |
{ |
1816 |
if (errno != EINTR && errno != EAGAIN)
|
1817 |
s->err_hook(s, errno); |
1818 |
return 0; |
1819 |
} |
1820 |
|
1821 |
s->rpos = s->rbuf + e; |
1822 |
s->rx_hook(s, e); |
1823 |
return 1; |
1824 |
} |
1825 |
} |
1826 |
} |
1827 |
|
1828 |
int
|
1829 |
sk_write(sock *s) |
1830 |
{ |
1831 |
switch (s->type)
|
1832 |
{ |
1833 |
case SK_TCP_ACTIVE:
|
1834 |
{ |
1835 |
sockaddr sa; |
1836 |
sockaddr_fill(&sa, s->af, s->daddr, s->iface, s->dport); |
1837 |
|
1838 |
if (connect(s->fd, &sa.sa, SA_LEN(sa)) >= 0 || errno == EISCONN) |
1839 |
sk_tcp_connected(s); |
1840 |
else if (errno != EINTR && errno != EAGAIN && errno != EINPROGRESS) |
1841 |
s->err_hook(s, errno); |
1842 |
return 0; |
1843 |
} |
1844 |
|
1845 |
default:
|
1846 |
if (s->ttx != s->tpos && sk_maybe_write(s) > 0) |
1847 |
{ |
1848 |
if (s->tx_hook)
|
1849 |
s->tx_hook(s); |
1850 |
return 1; |
1851 |
} |
1852 |
return 0; |
1853 |
} |
1854 |
} |
1855 |
|
1856 |
void
|
1857 |
sk_dump_all(void)
|
1858 |
{ |
1859 |
node *n; |
1860 |
sock *s; |
1861 |
|
1862 |
debug("Open sockets:\n");
|
1863 |
WALK_LIST(n, sock_list) |
1864 |
{ |
1865 |
s = SKIP_BACK(sock, n, n); |
1866 |
debug("%p ", s);
|
1867 |
sk_dump(&s->r); |
1868 |
} |
1869 |
debug("\n");
|
1870 |
} |
1871 |
|
1872 |
|
1873 |
/*
|
1874 |
* Internal event log and watchdog
|
1875 |
*/
|
1876 |
|
1877 |
#define EVENT_LOG_LENGTH 32 |
1878 |
|
1879 |
struct event_log_entry
|
1880 |
{ |
1881 |
void *hook;
|
1882 |
void *data;
|
1883 |
btime timestamp; |
1884 |
btime duration; |
1885 |
}; |
1886 |
|
1887 |
static struct event_log_entry event_log[EVENT_LOG_LENGTH]; |
1888 |
static struct event_log_entry *event_open; |
1889 |
static int event_log_pos, event_log_num, watchdog_active; |
1890 |
static btime last_time;
|
1891 |
static btime loop_time;
|
1892 |
|
1893 |
static void |
1894 |
io_update_time(void)
|
1895 |
{ |
1896 |
struct timespec ts;
|
1897 |
int rv;
|
1898 |
|
1899 |
if (!clock_monotonic_available)
|
1900 |
return;
|
1901 |
|
1902 |
/*
|
1903 |
* This is third time-tracking procedure (after update_times() above and
|
1904 |
* times_update() in BFD), dedicated to internal event log and latency
|
1905 |
* tracking. Hopefully, we consolidate these sometimes.
|
1906 |
*/
|
1907 |
|
1908 |
rv = clock_gettime(CLOCK_MONOTONIC, &ts); |
1909 |
if (rv < 0) |
1910 |
die("clock_gettime: %m");
|
1911 |
|
1912 |
last_time = ((s64) ts.tv_sec S) + (ts.tv_nsec / 1000);
|
1913 |
|
1914 |
if (event_open)
|
1915 |
{ |
1916 |
event_open->duration = last_time - event_open->timestamp; |
1917 |
|
1918 |
if (event_open->duration > config->latency_limit)
|
1919 |
log(L_WARN "Event 0x%p 0x%p took %d ms",
|
1920 |
event_open->hook, event_open->data, (int) (event_open->duration TO_MS));
|
1921 |
|
1922 |
event_open = NULL;
|
1923 |
} |
1924 |
} |
1925 |
|
1926 |
/**
|
1927 |
* io_log_event - mark approaching event into event log
|
1928 |
* @hook: event hook address
|
1929 |
* @data: event data address
|
1930 |
*
|
1931 |
* Store info (hook, data, timestamp) about the following internal event into
|
1932 |
* a circular event log (@event_log). When latency tracking is enabled, the log
|
1933 |
* entry is kept open (in @event_open) so the duration can be filled later.
|
1934 |
*/
|
1935 |
void
|
1936 |
io_log_event(void *hook, void *data) |
1937 |
{ |
1938 |
if (config->latency_debug)
|
1939 |
io_update_time(); |
1940 |
|
1941 |
struct event_log_entry *en = event_log + event_log_pos;
|
1942 |
|
1943 |
en->hook = hook; |
1944 |
en->data = data; |
1945 |
en->timestamp = last_time; |
1946 |
en->duration = 0;
|
1947 |
|
1948 |
event_log_num++; |
1949 |
event_log_pos++; |
1950 |
event_log_pos %= EVENT_LOG_LENGTH; |
1951 |
|
1952 |
event_open = config->latency_debug ? en : NULL;
|
1953 |
} |
1954 |
|
1955 |
static inline void |
1956 |
io_close_event(void)
|
1957 |
{ |
1958 |
if (event_open)
|
1959 |
io_update_time(); |
1960 |
} |
1961 |
|
1962 |
void
|
1963 |
io_log_dump(void)
|
1964 |
{ |
1965 |
int i;
|
1966 |
|
1967 |
log(L_DEBUG "Event log:");
|
1968 |
for (i = 0; i < EVENT_LOG_LENGTH; i++) |
1969 |
{ |
1970 |
struct event_log_entry *en = event_log + (event_log_pos + i) % EVENT_LOG_LENGTH;
|
1971 |
if (en->hook)
|
1972 |
log(L_DEBUG " Event 0x%p 0x%p at %8d for %d ms", en->hook, en->data,
|
1973 |
(int) ((last_time - en->timestamp) TO_MS), (int) (en->duration TO_MS)); |
1974 |
} |
1975 |
} |
1976 |
|
1977 |
void
|
1978 |
watchdog_sigalrm(int sig UNUSED)
|
1979 |
{ |
1980 |
/* Update last_time and duration, but skip latency check */
|
1981 |
config->latency_limit = 0xffffffff;
|
1982 |
io_update_time(); |
1983 |
|
1984 |
/* We want core dump */
|
1985 |
abort(); |
1986 |
} |
1987 |
|
1988 |
static inline void |
1989 |
watchdog_start1(void)
|
1990 |
{ |
1991 |
io_update_time(); |
1992 |
|
1993 |
loop_time = last_time; |
1994 |
} |
1995 |
|
1996 |
static inline void |
1997 |
watchdog_start(void)
|
1998 |
{ |
1999 |
io_update_time(); |
2000 |
|
2001 |
loop_time = last_time; |
2002 |
event_log_num = 0;
|
2003 |
|
2004 |
if (config->watchdog_timeout)
|
2005 |
{ |
2006 |
alarm(config->watchdog_timeout); |
2007 |
watchdog_active = 1;
|
2008 |
} |
2009 |
} |
2010 |
|
2011 |
static inline void |
2012 |
watchdog_stop(void)
|
2013 |
{ |
2014 |
io_update_time(); |
2015 |
|
2016 |
if (watchdog_active)
|
2017 |
{ |
2018 |
alarm(0);
|
2019 |
watchdog_active = 0;
|
2020 |
} |
2021 |
|
2022 |
btime duration = last_time - loop_time; |
2023 |
if (duration > config->watchdog_warning)
|
2024 |
log(L_WARN "I/O loop cycle took %d ms for %d events",
|
2025 |
(int) (duration TO_MS), event_log_num);
|
2026 |
} |
2027 |
|
2028 |
|
2029 |
/*
|
2030 |
* Main I/O Loop
|
2031 |
*/
|
2032 |
|
2033 |
volatile int async_config_flag; /* Asynchronous reconfiguration/dump scheduled */ |
2034 |
volatile int async_dump_flag; |
2035 |
|
2036 |
void
|
2037 |
io_init(void)
|
2038 |
{ |
2039 |
init_list(&near_timers); |
2040 |
init_list(&far_timers); |
2041 |
init_list(&sock_list); |
2042 |
init_list(&global_event_list); |
2043 |
krt_io_init(); |
2044 |
init_times(); |
2045 |
update_times(); |
2046 |
boot_time = now; |
2047 |
srandom((int) now_real);
|
2048 |
} |
2049 |
|
2050 |
static int short_loops = 0; |
2051 |
#define SHORT_LOOP_MAX 10 |
2052 |
|
2053 |
void
|
2054 |
io_loop(void)
|
2055 |
{ |
2056 |
int poll_tout;
|
2057 |
time_t tout; |
2058 |
int nfds, events, pout;
|
2059 |
sock *s; |
2060 |
node *n; |
2061 |
int fdmax = 256; |
2062 |
struct pollfd *pfd = xmalloc(fdmax * sizeof(struct pollfd)); |
2063 |
|
2064 |
watchdog_start1(); |
2065 |
for(;;)
|
2066 |
{ |
2067 |
events = ev_run_list(&global_event_list); |
2068 |
timers:
|
2069 |
update_times(); |
2070 |
tout = tm_first_shot(); |
2071 |
if (tout <= now)
|
2072 |
{ |
2073 |
tm_shot(); |
2074 |
goto timers;
|
2075 |
} |
2076 |
poll_tout = (events ? 0 : MIN(tout - now, 3)) * 1000; /* Time in milliseconds */ |
2077 |
|
2078 |
io_close_event(); |
2079 |
|
2080 |
nfds = 0;
|
2081 |
WALK_LIST(n, sock_list) |
2082 |
{ |
2083 |
pfd[nfds] = (struct pollfd) { .fd = -1 }; /* everything other set to 0 by this */ |
2084 |
s = SKIP_BACK(sock, n, n); |
2085 |
if (s->rx_hook)
|
2086 |
{ |
2087 |
pfd[nfds].fd = s->fd; |
2088 |
pfd[nfds].events |= POLLIN; |
2089 |
} |
2090 |
if (s->tx_hook && s->ttx != s->tpos)
|
2091 |
{ |
2092 |
pfd[nfds].fd = s->fd; |
2093 |
pfd[nfds].events |= POLLOUT; |
2094 |
} |
2095 |
if (pfd[nfds].fd != -1) |
2096 |
{ |
2097 |
s->index = nfds; |
2098 |
nfds++; |
2099 |
} |
2100 |
else
|
2101 |
s->index = -1;
|
2102 |
|
2103 |
if (nfds >= fdmax)
|
2104 |
{ |
2105 |
fdmax *= 2;
|
2106 |
pfd = xrealloc(pfd, fdmax * sizeof(struct pollfd)); |
2107 |
} |
2108 |
} |
2109 |
|
2110 |
/*
|
2111 |
* Yes, this is racy. But even if the signal comes before this test
|
2112 |
* and entering poll(), it gets caught on the next timer tick.
|
2113 |
*/
|
2114 |
|
2115 |
if (async_config_flag)
|
2116 |
{ |
2117 |
io_log_event(async_config, NULL);
|
2118 |
async_config(); |
2119 |
async_config_flag = 0;
|
2120 |
continue;
|
2121 |
} |
2122 |
if (async_dump_flag)
|
2123 |
{ |
2124 |
io_log_event(async_dump, NULL);
|
2125 |
async_dump(); |
2126 |
async_dump_flag = 0;
|
2127 |
continue;
|
2128 |
} |
2129 |
if (async_shutdown_flag)
|
2130 |
{ |
2131 |
io_log_event(async_shutdown, NULL);
|
2132 |
async_shutdown(); |
2133 |
async_shutdown_flag = 0;
|
2134 |
continue;
|
2135 |
} |
2136 |
|
2137 |
/* And finally enter poll() to find active sockets */
|
2138 |
watchdog_stop(); |
2139 |
pout = poll(pfd, nfds, poll_tout); |
2140 |
watchdog_start(); |
2141 |
|
2142 |
if (pout < 0) |
2143 |
{ |
2144 |
if (errno == EINTR || errno == EAGAIN)
|
2145 |
continue;
|
2146 |
die("poll: %m");
|
2147 |
} |
2148 |
if (pout)
|
2149 |
{ |
2150 |
/* guaranteed to be non-empty */
|
2151 |
current_sock = SKIP_BACK(sock, n, HEAD(sock_list)); |
2152 |
|
2153 |
while (current_sock)
|
2154 |
{ |
2155 |
sock *s = current_sock; |
2156 |
if (s->index == -1) |
2157 |
{ |
2158 |
current_sock = sk_next(s); |
2159 |
goto next;
|
2160 |
} |
2161 |
|
2162 |
int e;
|
2163 |
int steps;
|
2164 |
|
2165 |
steps = MAX_STEPS; |
2166 |
if (s->fast_rx && (pfd[s->index].revents & (POLLIN | POLLHUP | POLLERR)) && s->rx_hook)
|
2167 |
do
|
2168 |
{ |
2169 |
steps--; |
2170 |
io_log_event(s->rx_hook, s->data); |
2171 |
e = sk_read(s, pfd[s->index].revents); |
2172 |
if (s != current_sock)
|
2173 |
goto next;
|
2174 |
} |
2175 |
while (e && s->rx_hook && steps);
|
2176 |
|
2177 |
steps = MAX_STEPS; |
2178 |
if (pfd[s->index].revents & POLLOUT)
|
2179 |
do
|
2180 |
{ |
2181 |
steps--; |
2182 |
io_log_event(s->tx_hook, s->data); |
2183 |
e = sk_write(s); |
2184 |
if (s != current_sock)
|
2185 |
goto next;
|
2186 |
} |
2187 |
while (e && steps);
|
2188 |
current_sock = sk_next(s); |
2189 |
next: ;
|
2190 |
} |
2191 |
|
2192 |
short_loops++; |
2193 |
if (events && (short_loops < SHORT_LOOP_MAX))
|
2194 |
continue;
|
2195 |
short_loops = 0;
|
2196 |
|
2197 |
int count = 0; |
2198 |
current_sock = stored_sock; |
2199 |
if (current_sock == NULL) |
2200 |
current_sock = SKIP_BACK(sock, n, HEAD(sock_list)); |
2201 |
|
2202 |
while (current_sock && count < MAX_RX_STEPS)
|
2203 |
{ |
2204 |
sock *s = current_sock; |
2205 |
if (s->index == -1) |
2206 |
{ |
2207 |
current_sock = sk_next(s); |
2208 |
goto next2;
|
2209 |
} |
2210 |
|
2211 |
if (!s->fast_rx && (pfd[s->index].revents & (POLLIN | POLLHUP | POLLERR)) && s->rx_hook)
|
2212 |
{ |
2213 |
count++; |
2214 |
io_log_event(s->rx_hook, s->data); |
2215 |
sk_read(s, pfd[s->index].revents); |
2216 |
if (s != current_sock)
|
2217 |
goto next2;
|
2218 |
} |
2219 |
current_sock = sk_next(s); |
2220 |
next2: ;
|
2221 |
} |
2222 |
|
2223 |
stored_sock = current_sock; |
2224 |
} |
2225 |
} |
2226 |
} |
2227 |
|
2228 |
void
|
2229 |
test_old_bird(char *path)
|
2230 |
{ |
2231 |
int fd;
|
2232 |
struct sockaddr_un sa;
|
2233 |
|
2234 |
fd = socket(AF_UNIX, SOCK_STREAM, 0);
|
2235 |
if (fd < 0) |
2236 |
die("Cannot create socket: %m");
|
2237 |
if (strlen(path) >= sizeof(sa.sun_path)) |
2238 |
die("Socket path too long");
|
2239 |
bzero(&sa, sizeof(sa));
|
2240 |
sa.sun_family = AF_UNIX; |
2241 |
strcpy(sa.sun_path, path); |
2242 |
if (connect(fd, (struct sockaddr *) &sa, SUN_LEN(&sa)) == 0) |
2243 |
die("I found another BIRD running.");
|
2244 |
close(fd); |
2245 |
} |