Statistics
| Branch: | Revision:

iof-bird / bird-2.0.1 / filter / trie.c @ 6b3f1a54

History | View | Annotate | Download (9.54 KB)

1
/*
2
 *        Filters: Trie for prefix sets
3
 *
4
 *        Copyright 2009 Ondrej Zajicek <santiago@crfreenet.org>
5
 *
6
 *        Can be freely distributed and used under the terms of the GNU GPL.
7
 */
8

    
9
/**
10
 * DOC: Trie for prefix sets
11
 *
12
 * We use a (compressed) trie to represent prefix sets. Every node
13
 * in the trie represents one prefix (&addr/&plen) and &plen also
14
 * indicates the index of the bit in the address that is used to
15
 * branch at the node. If we need to represent just a set of
16
 * prefixes, it would be simple, but we have to represent a
17
 * set of prefix patterns. Each prefix pattern consists of
18
 * &ppaddr/&pplen and two integers: &low and &high, and a prefix
19
 * &paddr/&plen matches that pattern if the first MIN(&plen, &pplen)
20
 * bits of &paddr and &ppaddr are the same and &low <= &plen <= &high.
21
 *
22
 * We use a bitmask (&accept) to represent accepted prefix lengths
23
 * at a node. As there are 33 prefix lengths (0..32 for IPv4), but
24
 * there is just one prefix of zero length in the whole trie so we
25
 * have &zero flag in &f_trie (indicating whether the trie accepts
26
 * prefix 0.0.0.0/0) as a special case, and &accept bitmask
27
 * represents accepted prefix lengths from 1 to 32.
28
 *
29
 * There are two cases in prefix matching - a match when the length
30
 * of the prefix is smaller that the length of the prefix pattern,
31
 * (&plen < &pplen) and otherwise. The second case is simple - we
32
 * just walk through the trie and look at every visited node
33
 * whether that prefix accepts our prefix length (&plen). The
34
 * first case is tricky - we don't want to examine every descendant
35
 * of a final node, so (when we create the trie) we have to propagate
36
 * that information from nodes to their ascendants.
37
 *
38
 * Suppose that we have two masks (M1 and M2) for a node. Mask M1
39
 * represents accepted prefix lengths by just the node and mask M2
40
 * represents accepted prefix lengths by the node or any of its
41
 * descendants. Therefore M2 is a bitwise or of M1 and children's
42
 * M2 and this is a maintained invariant during trie building.
43
 * Basically, when we want to match a prefix, we walk through the trie,
44
 * check mask M1 for our prefix length and when we came to
45
 * final node, we check mask M2.
46
 *
47
 * There are two differences in the real implementation. First,
48
 * we use a compressed trie so there is a case that we skip our
49
 * final node (if it is not in the trie) and we came to node that
50
 * is either extension of our prefix, or completely out of path
51
 * In the first case, we also have to check M2.
52
 *
53
 * Second, we really need not to maintain two separate bitmasks.
54
 * Checks for mask M1 are always larger than &applen and we need
55
 * just the first &pplen bits of mask M2 (if trie compression
56
 * hadn't been used it would suffice to know just $applen-th bit),
57
 * so we have to store them together in &accept mask - the first
58
 * &pplen bits of mask M2 and then mask M1.
59
 *
60
 * There are four cases when we walk through a trie:
61
 *
62
 * - we are in NULL
63
 * - we are out of path (prefixes are inconsistent)
64
 * - we are in the wanted (final) node (node length == &plen)
65
 * - we are beyond the end of path (node length > &plen)
66
 * - we are still on path and keep walking (node length < &plen)
67
 *
68
 * The walking code in trie_match_prefix() is structured according to
69
 * these cases.
70
 */
71

    
72
#include "nest/bird.h"
73
#include "lib/string.h"
74
#include "conf/conf.h"
75
#include "filter/filter.h"
76

    
77

    
78
/*
79
 * In the trie code, the prefix length is internally treated as for the whole
80
 * ip_addr, regardless whether it contains an IPv4 or IPv6 address. Therefore,
81
 * remaining definitions make sense.
82
 */
83

    
84
#define ipa_mkmask(x) ip6_mkmask(x)
85
#define ipa_masklen(x) ip6_masklen(&x)
86
#define ipa_pxlen(x,y) ip6_pxlen(x,y)
87
#define ipa_getbit(x,n) ip6_getbit(x,n)
88

    
89

    
90
/**
91
 * f_new_trie - allocates and returns a new empty trie
92
 * @lp: linear pool to allocate items from
93
 * @node_size: node size to be used (&f_trie_node and user data)
94
 */
95
struct f_trie *
96
f_new_trie(linpool *lp, uint node_size)
97
{
98
  struct f_trie * ret;
99
  ret = lp_allocz(lp, sizeof(struct f_trie) + node_size);
100
  ret->lp = lp;
101
  ret->node_size = node_size;
102
  return ret;
103
}
104

    
105
static inline struct f_trie_node *
106
new_node(struct f_trie *t, int plen, ip_addr paddr, ip_addr pmask, ip_addr amask)
107
{
108
  struct f_trie_node *n = lp_allocz(t->lp, t->node_size);
109
  n->plen = plen;
110
  n->addr = paddr;
111
  n->mask = pmask;
112
  n->accept = amask;
113
  return n;
114
}
115

    
116
static inline void
117
attach_node(struct f_trie_node *parent, struct f_trie_node *child)
118
{
119
  parent->c[ipa_getbit(child->addr, parent->plen) ? 1 : 0] = child;
120
}
121

    
122
/**
123
 * trie_add_prefix
124
 * @t: trie to add to
125
 * @net: IP network prefix
126
 * @l: prefix lower bound
127
 * @h: prefix upper bound
128
 *
129
 * Adds prefix (prefix pattern) @n to trie @t.  @l and @h are lower
130
 * and upper bounds on accepted prefix lengths, both inclusive.
131
 * 0 <= l, h <= 32 (128 for IPv6).
132
 *
133
 * Returns a pointer to the allocated node. The function can return a pointer to
134
 * an existing node if @px and @plen are the same. If px/plen == 0/0 (or ::/0),
135
 * a pointer to the root node is returned.
136
 */
137

    
138
void *
139
trie_add_prefix(struct f_trie *t, const net_addr *net, uint l, uint h)
140
{
141
  ip_addr px = net_prefix(net);
142
  uint plen = net_pxlen(net);
143

    
144
  if (net->type == NET_IP4)
145
  {
146
    const uint delta = IP6_MAX_PREFIX_LENGTH - IP4_MAX_PREFIX_LENGTH;
147
    plen += delta;
148
    l += delta;
149
    h += delta;
150
  }
151

    
152
  if (l == 0)
153
    t->zero = 1;
154
  else
155
    l--;
156

    
157
  if (h < plen)
158
    plen = h;
159

    
160
  ip_addr amask = ipa_xor(ipa_mkmask(l), ipa_mkmask(h));
161
  ip_addr pmask = ipa_mkmask(plen);
162
  ip_addr paddr = ipa_and(px, pmask);
163
  struct f_trie_node *o = NULL;
164
  struct f_trie_node *n = t->root;
165

    
166
  while (n)
167
    {
168
      ip_addr cmask = ipa_and(n->mask, pmask);
169

    
170
      if (ipa_compare(ipa_and(paddr, cmask), ipa_and(n->addr, cmask)))
171
        {
172
          /* We are out of path - we have to add branching node 'b'
173
             between node 'o' and node 'n', and attach new node 'a'
174
             as the other child of 'b'. */
175
          int blen = ipa_pxlen(paddr, n->addr);
176
          ip_addr bmask = ipa_mkmask(blen);
177
          ip_addr baddr = ipa_and(px, bmask);
178

    
179
          /* Merge accept masks from children to get accept mask for node 'b' */
180
          ip_addr baccm = ipa_and(ipa_or(amask, n->accept), bmask);
181

    
182
          struct f_trie_node *a = new_node(t, plen, paddr, pmask, amask);
183
          struct f_trie_node *b = new_node(t, blen, baddr, bmask, baccm);
184
          attach_node(o, b);
185
          attach_node(b, n);
186
          attach_node(b, a);
187
          return a;
188
        }
189

    
190
      if (plen < n->plen)
191
        {
192
          /* We add new node 'a' between node 'o' and node 'n' */
193
          amask = ipa_or(amask, ipa_and(n->accept, pmask));
194
          struct f_trie_node *a = new_node(t, plen, paddr, pmask, amask);
195
          attach_node(o, a);
196
          attach_node(a, n);
197
          return a;
198
        }
199

    
200
      if (plen == n->plen)
201
        {
202
          /* We already found added node in trie. Just update accept mask */
203
          n->accept = ipa_or(n->accept, amask);
204
          return n;
205
        }
206

    
207
      /* Update accept mask part M2 and go deeper */
208
      n->accept = ipa_or(n->accept, ipa_and(amask, n->mask));
209

    
210
      /* n->plen < plen and plen <= 32 (128) */
211
      o = n;
212
      n = n->c[ipa_getbit(paddr, n->plen) ? 1 : 0];
213
    }
214

    
215
  /* We add new tail node 'a' after node 'o' */
216
  struct f_trie_node *a = new_node(t, plen, paddr, pmask, amask);
217
  attach_node(o, a);
218

    
219
  return a;
220
}
221

    
222
static int
223
trie_match_prefix(struct f_trie *t, ip_addr px, uint plen)
224
{
225
  ip_addr pmask = ipa_mkmask(plen);
226
  ip_addr paddr = ipa_and(px, pmask);
227

    
228
  if (plen == 0)
229
    return t->zero;
230

    
231
  int plentest = plen - 1;
232
  struct f_trie_node *n = t->root;
233

    
234
  while(n)
235
    {
236
      ip_addr cmask = ipa_and(n->mask, pmask);
237

    
238
      /* We are out of path */
239
      if (ipa_compare(ipa_and(paddr, cmask), ipa_and(n->addr, cmask)))
240
        return 0;
241

    
242
      /* Check accept mask */
243
      if (ipa_getbit(n->accept, plentest))
244
        return 1;
245

    
246
      /* We finished trie walk and still no match */
247
      if (plen <= n->plen)
248
        return 0;
249

    
250
      /* Choose children */
251
      n =  n->c[(ipa_getbit(paddr, n->plen)) ? 1 : 0];
252
    }
253

    
254
  return 0;
255
}
256

    
257
/**
258
 * trie_match_net
259
 * @t: trie
260
 * @n: net address
261
 *
262
 * Tries to find a matching net in the trie such that
263
 * prefix @n matches that prefix pattern. Returns 1 if there
264
 * is such prefix pattern in the trie.
265
 */
266
int
267
trie_match_net(struct f_trie *t, const net_addr *n)
268
{
269
  uint add = 0;
270

    
271
  switch (n->type) {
272
    case NET_IP4:
273
    case NET_VPN4:
274
    case NET_ROA4:
275
      add = IP6_MAX_PREFIX_LENGTH - IP4_MAX_PREFIX_LENGTH;
276
  }
277

    
278
  return trie_match_prefix(t, net_prefix(n), net_pxlen(n) + add);
279
}
280

    
281
static int
282
trie_node_same(struct f_trie_node *t1, struct f_trie_node *t2)
283
{
284
  if ((t1 == NULL) && (t2 == NULL))
285
    return 1;
286

    
287
  if ((t1 == NULL) || (t2 == NULL))
288
    return 0;
289

    
290
  if ((t1->plen != t2->plen) ||
291
      (! ipa_equal(t1->addr, t2->addr)) ||
292
      (! ipa_equal(t1->accept, t2->accept)))
293
    return 0;
294

    
295
  return trie_node_same(t1->c[0], t2->c[0]) && trie_node_same(t1->c[1], t2->c[1]);
296
}
297

    
298
/**
299
 * trie_same
300
 * @t1: first trie to be compared
301
 * @t2: second one
302
 *
303
 * Compares two tries and returns 1 if they are same
304
 */
305
int
306
trie_same(struct f_trie *t1, struct f_trie *t2)
307
{
308
  return (t1->zero == t2->zero) && trie_node_same(t1->root, t2->root);
309
}
310

    
311
static void
312
trie_node_format(struct f_trie_node *t, buffer *buf)
313
{
314
  if (t == NULL)
315
    return;
316

    
317
  if (ipa_nonzero(t->accept))
318
    buffer_print(buf, "%I/%d{%I}, ", t->addr, t->plen, t->accept);
319

    
320
  trie_node_format(t->c[0], buf);
321
  trie_node_format(t->c[1], buf);
322
}
323

    
324
/**
325
 * trie_format
326
 * @t: trie to be formatted
327
 * @buf: destination buffer
328
 *
329
 * Prints the trie to the supplied buffer.
330
 */
331
void
332
trie_format(struct f_trie *t, buffer *buf)
333
{
334
  buffer_puts(buf, "[");
335

    
336
  if (t->zero)
337
    buffer_print(buf, "%I/%d, ", IPA_NONE, 0);
338
  trie_node_format(t->root, buf);
339

    
340
  if (buf->pos == buf->end)
341
    return;
342

    
343
  /* Undo last separator */
344
  if (buf->pos[-1] != '[')
345
    buf->pos -= 2;
346

    
347
  buffer_puts(buf, "]");
348
}