Statistics
| Branch: | Revision:

mobicen / documents / manifest / manifest.tex @ e1cf8bea

History | View | Annotate | Download (3.8 KB)

1
\documentclass[12pt]{report}
2
\usepackage[english]{babel}
3
%\usepackage{natbib}
4
\usepackage{url}
5
\usepackage[utf8x]{inputenc}
6
\usepackage{amsmath}
7
\usepackage{graphicx}
8
\graphicspath{{images/}}
9
\usepackage{parskip}
10
\usepackage{fancyhdr}
11
\usepackage{hyperref}
12
\usepackage{multicol}
13
\usepackage{float}
14
\usepackage[top=1.25in, bottom=1.25in, left=0.8in, right=0.8in]{geometry}
15
%\usepackage{vmargin}
16
%\setmarginsrb{3 cm}{2.5 cm}{3 cm}{2.5 cm}{1 cm}{1.5 cm}{1 cm}{1.5 cm}
17

    
18
\title{Study of Graph Metrics on Evolving Dynamic Graphs}								
19
\author{Lorenzo Ghiro}						
20
\date{\today}
21

    
22
\makeatletter
23
\let\thetitle\@title
24
\let\theauthor\@author
25
\let\thedate\@date
26
\makeatother
27

    
28
\pagestyle{fancy}
29
\fancyhf{}
30
\rhead{\theauthor}
31
\lhead{\thetitle}
32
\cfoot{\thepage}
33

    
34
\usepackage[capitalise]{cleveref}
35
\crefname{lemma}{Lemma}{Lemmas}
36
\crefname{theorem}{Theorem}{Theorems}
37
\crefname{figure}{Fig.}{Figs.}
38
\crefname{table}{Table}{Tables}
39
\crefname{section}{Sec.}{Secs.}
40
\crefname{equation}{Eq.}{Eqs.}
41
\crefname{algocfline}{Algorithm}{Algorithms}
42
\Crefname{algocfline}{Algorithm}{Algorithms}
43
\usepackage[nohyperlinks]{acronym}
44

    
45
\acrodef{AC}{autocorrelation}
46
\acrodef{BC}{Betweenness Centrality}
47
\acrodef{LC}{Load Centrality}
48
\acrodef{DES}{Discrete Event Simulator}
49

    
50
\begin{document}
51

    
52
\begin{titlepage}
53
	\centering
54
    \vspace*{0.5 cm}
55
   % \includegraphics[scale = 0.075]{bsulogo.png}\\[1.0 cm]	% University Logo
56
\begin{center}    \textsc{\Large   Advanced Networking Systems}\\[2.0 cm]	\end{center}% University Name
57
	\textsc{\Large Research Project Description  }\\[0.5 cm]				% Course Code
58
	\rule{\linewidth}{0.2 mm} \\[0.4 cm]
59
	{ \huge \bfseries \thetitle}\\
60
	\rule{\linewidth}{0.2 mm} \\[3.5 cm]
61
	
62
%	\begin{minipage}{0.4\textwidth}
63
%		\begin{flushleft} \large
64
%		%	\emph{Submitted To:}\\
65
%		%	Name\\
66
%          % Affiliation\\
67
%           %contact info\\
68
%			\end{flushleft}
69
%			\end{minipage}~
70
%			\begin{minipage}{0.4\textwidth}
71
%			\begin{flushright} \large
72
%			\emph{Submitted By :} \\
73
%			Student Name  
74
%		\end{flushright}
75
%	\end{minipage}
76
	\includegraphics[scale = 0.8]{logo-ans.pdf}
77
\end{titlepage}
78
%\tableofcontents
79
%\pagebreak
80
\renewcommand{\thesection}{\arabic{section}}
81

    
82
\section{Goal}
83
 Study the evolution of Graph Metrics, above all Centrality metrics, in dynamic graphs.
84
 
85
\section{General Description}
86
 This is a Simulation Study based on a Python \ac{DES}. The core idea is the following: while we simulate the evolution of dynamic graphs, we
87
log the many graph metrics of potential interest, so to allow a later offline analysis.
88

    
89
\begin{figure}[H]
90
\centering
91
  \includegraphics[width=.65\linewidth]{workflow.pdf}
92
  \caption{Workflow of Experiment to allow autocorrelation analysis}
93
  \label{fig:workflow}
94
\end{figure}
95

    
96
To simulate dynamic graphs we will use the Mobility Models implemented \href{https://github.com/panisson/pymobility}{here}.
97

    
98
Supported Mobility models are:
99
\begin{multicols}{2}
100
  \begin{itemize}
101
     \item Random Walk
102
     \item Random Waypoint
103
     \item Random Direction
104
     \item Truncated Levy Walk \cite{rhee2011levy}
105
     \item Gauss-Markov \cite{camp2002survey}
106
     \item Reference Point Group Mobility model \cite{hong1999group}
107
     \item Time-variant Community \cite{hsu2007modeling}
108
  \end{itemize}
109
\end{multicols}
110

    
111
The control parameters to configure the above mobility models (e.g. area of simulation and the distribution of the nodes' speed) are still to be chosen.
112

    
113
The first analysis to be performed could be a classic \ac{AC} analysis of time series, that could be performed with Python as described \href{https://machinelearningmastery.com/gentle-introduction-autocorrelation-partial-autocorrelation/}{here}. For example, the time series of interest could be the evolving \ac{BC} index of a given node, as shown in \cref{sec:demo}.
114

    
115
\section{Preliminary Demo}\label{sec:demo}
116

    
117

    
118

    
119
\bibliographystyle{IEEEtran}
120
\bibliography{references}
121

    
122

    
123
\end{document}