Statistics
| Branch: | Revision:

ffmpeg / libavcodec / vp3.c @ 0448ef77

History | View | Annotate | Download (77.1 KB)

1
/*
2
 * Copyright (C) 2003-2004 the ffmpeg project
3
 *
4
 * This file is part of FFmpeg.
5
 *
6
 * FFmpeg is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2.1 of the License, or (at your option) any later version.
10
 *
11
 * FFmpeg is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with FFmpeg; if not, write to the Free Software
18
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19
 */
20

    
21
/**
22
 * @file libavcodec/vp3.c
23
 * On2 VP3 Video Decoder
24
 *
25
 * VP3 Video Decoder by Mike Melanson (mike at multimedia.cx)
26
 * For more information about the VP3 coding process, visit:
27
 *   http://wiki.multimedia.cx/index.php?title=On2_VP3
28
 *
29
 * Theora decoder by Alex Beregszaszi
30
 */
31

    
32
#include <stdio.h>
33
#include <stdlib.h>
34
#include <string.h>
35

    
36
#include "avcodec.h"
37
#include "dsputil.h"
38
#include "get_bits.h"
39

    
40
#include "vp3data.h"
41
#include "xiph.h"
42

    
43
#define FRAGMENT_PIXELS 8
44

    
45
static av_cold int vp3_decode_end(AVCodecContext *avctx);
46

    
47
//FIXME split things out into their own arrays
48
typedef struct Vp3Fragment {
49
    int16_t dc;
50
    uint8_t coding_method;
51
    int8_t motion_x;
52
    int8_t motion_y;
53
    uint8_t qpi;
54
} Vp3Fragment;
55

    
56
#define SB_NOT_CODED        0
57
#define SB_PARTIALLY_CODED  1
58
#define SB_FULLY_CODED      2
59

    
60
// This is the maximum length of a single long bit run that can be encoded
61
// for superblock coding or block qps. Theora special-cases this to read a
62
// bit instead of flipping the current bit to allow for runs longer than 4129.
63
#define MAXIMUM_LONG_BIT_RUN 4129
64

    
65
#define MODE_INTER_NO_MV      0
66
#define MODE_INTRA            1
67
#define MODE_INTER_PLUS_MV    2
68
#define MODE_INTER_LAST_MV    3
69
#define MODE_INTER_PRIOR_LAST 4
70
#define MODE_USING_GOLDEN     5
71
#define MODE_GOLDEN_MV        6
72
#define MODE_INTER_FOURMV     7
73
#define CODING_MODE_COUNT     8
74

    
75
/* special internal mode */
76
#define MODE_COPY             8
77

    
78
/* There are 6 preset schemes, plus a free-form scheme */
79
static const int ModeAlphabet[6][CODING_MODE_COUNT] =
80
{
81
    /* scheme 1: Last motion vector dominates */
82
    {    MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
83
         MODE_INTER_PLUS_MV,    MODE_INTER_NO_MV,
84
         MODE_INTRA,            MODE_USING_GOLDEN,
85
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
86

    
87
    /* scheme 2 */
88
    {    MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
89
         MODE_INTER_NO_MV,      MODE_INTER_PLUS_MV,
90
         MODE_INTRA,            MODE_USING_GOLDEN,
91
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
92

    
93
    /* scheme 3 */
94
    {    MODE_INTER_LAST_MV,    MODE_INTER_PLUS_MV,
95
         MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV,
96
         MODE_INTRA,            MODE_USING_GOLDEN,
97
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
98

    
99
    /* scheme 4 */
100
    {    MODE_INTER_LAST_MV,    MODE_INTER_PLUS_MV,
101
         MODE_INTER_NO_MV,      MODE_INTER_PRIOR_LAST,
102
         MODE_INTRA,            MODE_USING_GOLDEN,
103
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
104

    
105
    /* scheme 5: No motion vector dominates */
106
    {    MODE_INTER_NO_MV,      MODE_INTER_LAST_MV,
107
         MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV,
108
         MODE_INTRA,            MODE_USING_GOLDEN,
109
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
110

    
111
    /* scheme 6 */
112
    {    MODE_INTER_NO_MV,      MODE_USING_GOLDEN,
113
         MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
114
         MODE_INTER_PLUS_MV,    MODE_INTRA,
115
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
116

    
117
};
118

    
119
static const uint8_t hilbert_offset[16][2] = {
120
    {0,0}, {1,0}, {1,1}, {0,1},
121
    {0,2}, {0,3}, {1,3}, {1,2},
122
    {2,2}, {2,3}, {3,3}, {3,2},
123
    {3,1}, {2,1}, {2,0}, {3,0}
124
};
125

    
126
#define MIN_DEQUANT_VAL 2
127

    
128
typedef struct Vp3DecodeContext {
129
    AVCodecContext *avctx;
130
    int theora, theora_tables;
131
    int version;
132
    int width, height;
133
    AVFrame golden_frame;
134
    AVFrame last_frame;
135
    AVFrame current_frame;
136
    int keyframe;
137
    DSPContext dsp;
138
    int flipped_image;
139
    int last_slice_end;
140

    
141
    int qps[3];
142
    int nqps;
143
    int last_qps[3];
144

    
145
    int superblock_count;
146
    int y_superblock_width;
147
    int y_superblock_height;
148
    int y_superblock_count;
149
    int c_superblock_width;
150
    int c_superblock_height;
151
    int c_superblock_count;
152
    int u_superblock_start;
153
    int v_superblock_start;
154
    unsigned char *superblock_coding;
155

    
156
    int macroblock_count;
157
    int macroblock_width;
158
    int macroblock_height;
159

    
160
    int fragment_count;
161
    int fragment_width;
162
    int fragment_height;
163

    
164
    Vp3Fragment *all_fragments;
165
    int fragment_start[3];
166
    int data_offset[3];
167

    
168
    ScanTable scantable;
169

    
170
    /* tables */
171
    uint16_t coded_dc_scale_factor[64];
172
    uint32_t coded_ac_scale_factor[64];
173
    uint8_t base_matrix[384][64];
174
    uint8_t qr_count[2][3];
175
    uint8_t qr_size [2][3][64];
176
    uint16_t qr_base[2][3][64];
177

    
178
    /**
179
     * This is a list of all tokens in bitstream order. Reordering takes place
180
     * by pulling from each level during IDCT. As a consequence, IDCT must be
181
     * in Hilbert order, making the minimum slice height 64 for 4:2:0 and 32
182
     * otherwise. The 32 different tokens with up to 12 bits of extradata are
183
     * collapsed into 3 types, packed as follows:
184
     *   (from the low to high bits)
185
     *
186
     * 2 bits: type (0,1,2)
187
     *   0: EOB run, 14 bits for run length (12 needed)
188
     *   1: zero run, 7 bits for run length
189
     *                7 bits for the next coefficient (3 needed)
190
     *   2: coefficient, 14 bits (11 needed)
191
     *
192
     * Coefficients are signed, so are packed in the highest bits for automatic
193
     * sign extension.
194
     */
195
    int16_t *dct_tokens[3][64];
196
    int16_t *dct_tokens_base;
197
#define TOKEN_EOB(eob_run)              ((eob_run) << 2)
198
#define TOKEN_ZERO_RUN(coeff, zero_run) (((coeff) << 9) + ((zero_run) << 2) + 1)
199
#define TOKEN_COEFF(coeff)              (((coeff) << 2) + 2)
200

    
201
    /**
202
     * number of blocks that contain DCT coefficients at the given level or higher
203
     */
204
    int num_coded_frags[3][64];
205
    int total_num_coded_frags;
206

    
207
    /* this is a list of indexes into the all_fragments array indicating
208
     * which of the fragments are coded */
209
    int *coded_fragment_list[3];
210

    
211
    VLC dc_vlc[16];
212
    VLC ac_vlc_1[16];
213
    VLC ac_vlc_2[16];
214
    VLC ac_vlc_3[16];
215
    VLC ac_vlc_4[16];
216

    
217
    VLC superblock_run_length_vlc;
218
    VLC fragment_run_length_vlc;
219
    VLC mode_code_vlc;
220
    VLC motion_vector_vlc;
221

    
222
    /* these arrays need to be on 16-byte boundaries since SSE2 operations
223
     * index into them */
224
    DECLARE_ALIGNED_16(int16_t, qmat)[3][2][3][64];     //<qmat[qpi][is_inter][plane]
225

    
226
    /* This table contains superblock_count * 16 entries. Each set of 16
227
     * numbers corresponds to the fragment indexes 0..15 of the superblock.
228
     * An entry will be -1 to indicate that no entry corresponds to that
229
     * index. */
230
    int *superblock_fragments;
231

    
232
    /* This is an array that indicates how a particular macroblock
233
     * is coded. */
234
    unsigned char *macroblock_coding;
235

    
236
    uint8_t edge_emu_buffer[9*2048]; //FIXME dynamic alloc
237
    int8_t qscale_table[2048]; //FIXME dynamic alloc (width+15)/16
238

    
239
    /* Huffman decode */
240
    int hti;
241
    unsigned int hbits;
242
    int entries;
243
    int huff_code_size;
244
    uint16_t huffman_table[80][32][2];
245

    
246
    uint8_t filter_limit_values[64];
247
    DECLARE_ALIGNED_8(int, bounding_values_array)[256+2];
248
} Vp3DecodeContext;
249

    
250
/************************************************************************
251
 * VP3 specific functions
252
 ************************************************************************/
253

    
254
/*
255
 * This function sets up all of the various blocks mappings:
256
 * superblocks <-> fragments, macroblocks <-> fragments,
257
 * superblocks <-> macroblocks
258
 *
259
 * Returns 0 is successful; returns 1 if *anything* went wrong.
260
 */
261
static int init_block_mapping(Vp3DecodeContext *s)
262
{
263
    int i, j;
264
    signed int hilbert_walk_mb[4];
265

    
266
    int current_fragment = 0;
267
    int current_width = 0;
268
    int current_height = 0;
269
    int right_edge = 0;
270
    int bottom_edge = 0;
271
    int superblock_row_inc = 0;
272
    int mapping_index = 0;
273

    
274
    static const signed char travel_width[16] = {
275
         1,  1,  0, -1,
276
         0,  0,  1,  0,
277
         1,  0,  1,  0,
278
         0, -1,  0,  1
279
    };
280

    
281
    static const signed char travel_height[16] = {
282
         0,  0,  1,  0,
283
         1,  1,  0, -1,
284
         0,  1,  0, -1,
285
        -1,  0, -1,  0
286
    };
287

    
288
    hilbert_walk_mb[0] = 1;
289
    hilbert_walk_mb[1] = s->macroblock_width;
290
    hilbert_walk_mb[2] = 1;
291
    hilbert_walk_mb[3] = -s->macroblock_width;
292

    
293
    /* iterate through each superblock (all planes) and map the fragments */
294
    for (i = 0; i < s->superblock_count; i++) {
295
        /* time to re-assign the limits? */
296
        if (i == 0) {
297

    
298
            /* start of Y superblocks */
299
            right_edge = s->fragment_width;
300
            bottom_edge = s->fragment_height;
301
            current_width = -1;
302
            current_height = 0;
303
            superblock_row_inc = 3 * s->fragment_width -
304
                (s->y_superblock_width * 4 - s->fragment_width);
305

    
306
            /* the first operation for this variable is to advance by 1 */
307
            current_fragment = -1;
308

    
309
        } else if (i == s->u_superblock_start) {
310

    
311
            /* start of U superblocks */
312
            right_edge = s->fragment_width / 2;
313
            bottom_edge = s->fragment_height / 2;
314
            current_width = -1;
315
            current_height = 0;
316
            superblock_row_inc = 3 * (s->fragment_width / 2) -
317
                (s->c_superblock_width * 4 - s->fragment_width / 2);
318

    
319
            /* the first operation for this variable is to advance by 1 */
320
            current_fragment = s->fragment_start[1] - 1;
321

    
322
        } else if (i == s->v_superblock_start) {
323

    
324
            /* start of V superblocks */
325
            right_edge = s->fragment_width / 2;
326
            bottom_edge = s->fragment_height / 2;
327
            current_width = -1;
328
            current_height = 0;
329
            superblock_row_inc = 3 * (s->fragment_width / 2) -
330
                (s->c_superblock_width * 4 - s->fragment_width / 2);
331

    
332
            /* the first operation for this variable is to advance by 1 */
333
            current_fragment = s->fragment_start[2] - 1;
334

    
335
        }
336

    
337
        if (current_width >= right_edge - 1) {
338
            /* reset width and move to next superblock row */
339
            current_width = -1;
340
            current_height += 4;
341

    
342
            /* fragment is now at the start of a new superblock row */
343
            current_fragment += superblock_row_inc;
344
        }
345

    
346
        /* iterate through all 16 fragments in a superblock */
347
        for (j = 0; j < 16; j++) {
348
            current_fragment += travel_width[j] + right_edge * travel_height[j];
349
            current_width += travel_width[j];
350
            current_height += travel_height[j];
351

    
352
            /* check if the fragment is in bounds */
353
            if ((current_width < right_edge) &&
354
                (current_height < bottom_edge)) {
355
                s->superblock_fragments[mapping_index] = current_fragment;
356
            } else {
357
                s->superblock_fragments[mapping_index] = -1;
358
            }
359

    
360
            mapping_index++;
361
        }
362
    }
363

    
364
    return 0;  /* successful path out */
365
}
366

    
367
/*
368
 * This function wipes out all of the fragment data.
369
 */
370
static void init_frame(Vp3DecodeContext *s, GetBitContext *gb)
371
{
372
    int i;
373

    
374
    /* zero out all of the fragment information */
375
    for (i = 0; i < s->fragment_count; i++) {
376
        s->all_fragments[i].motion_x = 127;
377
        s->all_fragments[i].motion_y = 127;
378
        s->all_fragments[i].dc = 0;
379
        s->all_fragments[i].qpi = 0;
380
    }
381
}
382

    
383
/*
384
 * This function sets up the dequantization tables used for a particular
385
 * frame.
386
 */
387
static void init_dequantizer(Vp3DecodeContext *s, int qpi)
388
{
389
    int ac_scale_factor = s->coded_ac_scale_factor[s->qps[qpi]];
390
    int dc_scale_factor = s->coded_dc_scale_factor[s->qps[qpi]];
391
    int i, plane, inter, qri, bmi, bmj, qistart;
392

    
393
    for(inter=0; inter<2; inter++){
394
        for(plane=0; plane<3; plane++){
395
            int sum=0;
396
            for(qri=0; qri<s->qr_count[inter][plane]; qri++){
397
                sum+= s->qr_size[inter][plane][qri];
398
                if(s->qps[qpi] <= sum)
399
                    break;
400
            }
401
            qistart= sum - s->qr_size[inter][plane][qri];
402
            bmi= s->qr_base[inter][plane][qri  ];
403
            bmj= s->qr_base[inter][plane][qri+1];
404
            for(i=0; i<64; i++){
405
                int coeff= (  2*(sum    -s->qps[qpi])*s->base_matrix[bmi][i]
406
                            - 2*(qistart-s->qps[qpi])*s->base_matrix[bmj][i]
407
                            + s->qr_size[inter][plane][qri])
408
                           / (2*s->qr_size[inter][plane][qri]);
409

    
410
                int qmin= 8<<(inter + !i);
411
                int qscale= i ? ac_scale_factor : dc_scale_factor;
412

    
413
                s->qmat[qpi][inter][plane][s->dsp.idct_permutation[i]]= av_clip((qscale * coeff)/100 * 4, qmin, 4096);
414
            }
415
            // all DC coefficients use the same quant so as not to interfere with DC prediction
416
            s->qmat[qpi][inter][plane][0] = s->qmat[0][inter][plane][0];
417
        }
418
    }
419

    
420
    memset(s->qscale_table, (FFMAX(s->qmat[0][0][0][1], s->qmat[0][0][1][1])+8)/16, 512); //FIXME finetune
421
}
422

    
423
/*
424
 * This function initializes the loop filter boundary limits if the frame's
425
 * quality index is different from the previous frame's.
426
 *
427
 * The filter_limit_values may not be larger than 127.
428
 */
429
static void init_loop_filter(Vp3DecodeContext *s)
430
{
431
    int *bounding_values= s->bounding_values_array+127;
432
    int filter_limit;
433
    int x;
434
    int value;
435

    
436
    filter_limit = s->filter_limit_values[s->qps[0]];
437

    
438
    /* set up the bounding values */
439
    memset(s->bounding_values_array, 0, 256 * sizeof(int));
440
    for (x = 0; x < filter_limit; x++) {
441
        bounding_values[-x] = -x;
442
        bounding_values[x] = x;
443
    }
444
    for (x = value = filter_limit; x < 128 && value; x++, value--) {
445
        bounding_values[ x] =  value;
446
        bounding_values[-x] = -value;
447
    }
448
    if (value)
449
        bounding_values[128] = value;
450
    bounding_values[129] = bounding_values[130] = filter_limit * 0x02020202;
451
}
452

    
453
/*
454
 * This function unpacks all of the superblock/macroblock/fragment coding
455
 * information from the bitstream.
456
 */
457
static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb)
458
{
459
    int bit = 0;
460
    int current_superblock = 0;
461
    int current_run = 0;
462
    int num_partial_superblocks = 0;
463

    
464
    int i, j;
465
    int current_fragment;
466
    int plane;
467

    
468
    if (s->keyframe) {
469
        memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count);
470

    
471
    } else {
472

    
473
        /* unpack the list of partially-coded superblocks */
474
        bit = get_bits1(gb);
475
        while (current_superblock < s->superblock_count) {
476
                current_run = get_vlc2(gb,
477
                    s->superblock_run_length_vlc.table, 6, 2) + 1;
478
                if (current_run == 34)
479
                    current_run += get_bits(gb, 12);
480

    
481
            if (current_superblock + current_run > s->superblock_count) {
482
                av_log(s->avctx, AV_LOG_ERROR, "Invalid partially coded superblock run length\n");
483
                return -1;
484
            }
485

    
486
            memset(s->superblock_coding + current_superblock, bit, current_run);
487

    
488
            current_superblock += current_run;
489
            if (bit)
490
                num_partial_superblocks += current_run;
491

    
492
            if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN)
493
                bit = get_bits1(gb);
494
            else
495
                bit ^= 1;
496
        }
497

    
498
        /* unpack the list of fully coded superblocks if any of the blocks were
499
         * not marked as partially coded in the previous step */
500
        if (num_partial_superblocks < s->superblock_count) {
501
            int superblocks_decoded = 0;
502

    
503
            current_superblock = 0;
504
            bit = get_bits1(gb);
505
            while (superblocks_decoded < s->superblock_count - num_partial_superblocks) {
506
                        current_run = get_vlc2(gb,
507
                            s->superblock_run_length_vlc.table, 6, 2) + 1;
508
                        if (current_run == 34)
509
                            current_run += get_bits(gb, 12);
510

    
511
                for (j = 0; j < current_run; current_superblock++) {
512
                    if (current_superblock >= s->superblock_count) {
513
                        av_log(s->avctx, AV_LOG_ERROR, "Invalid fully coded superblock run length\n");
514
                        return -1;
515
                    }
516

    
517
                /* skip any superblocks already marked as partially coded */
518
                if (s->superblock_coding[current_superblock] == SB_NOT_CODED) {
519
                    s->superblock_coding[current_superblock] = 2*bit;
520
                    j++;
521
                }
522
                }
523
                superblocks_decoded += current_run;
524

    
525
                if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN)
526
                    bit = get_bits1(gb);
527
                else
528
                    bit ^= 1;
529
            }
530
        }
531

    
532
        /* if there were partial blocks, initialize bitstream for
533
         * unpacking fragment codings */
534
        if (num_partial_superblocks) {
535

    
536
            current_run = 0;
537
            bit = get_bits1(gb);
538
            /* toggle the bit because as soon as the first run length is
539
             * fetched the bit will be toggled again */
540
            bit ^= 1;
541
        }
542
    }
543

    
544
    /* figure out which fragments are coded; iterate through each
545
     * superblock (all planes) */
546
    s->total_num_coded_frags = 0;
547
    memset(s->macroblock_coding, MODE_COPY, s->macroblock_count);
548

    
549
    for (plane = 0; plane < 3; plane++) {
550
        int sb_start = (int[3]){ 0, s->u_superblock_start, s->v_superblock_start }[plane];
551
        int sb_end = sb_start + (plane ? s->c_superblock_count : s->y_superblock_count);
552
        int num_coded_frags = 0;
553

    
554
    for (i = sb_start; i < sb_end; i++) {
555

    
556
        /* iterate through all 16 fragments in a superblock */
557
        for (j = 0; j < 16; j++) {
558

    
559
            /* if the fragment is in bounds, check its coding status */
560
            current_fragment = s->superblock_fragments[i * 16 + j];
561
            if (current_fragment >= s->fragment_count) {
562
                av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_superblocks(): bad fragment number (%d >= %d)\n",
563
                    current_fragment, s->fragment_count);
564
                return 1;
565
            }
566
            if (current_fragment != -1) {
567
                int coded = s->superblock_coding[i];
568

    
569
                if (s->superblock_coding[i] == SB_PARTIALLY_CODED) {
570

    
571
                    /* fragment may or may not be coded; this is the case
572
                     * that cares about the fragment coding runs */
573
                    if (current_run-- == 0) {
574
                        bit ^= 1;
575
                        current_run = get_vlc2(gb,
576
                            s->fragment_run_length_vlc.table, 5, 2);
577
                    }
578
                    coded = bit;
579
                }
580

    
581
                    if (coded) {
582
                        /* default mode; actual mode will be decoded in
583
                         * the next phase */
584
                        s->all_fragments[current_fragment].coding_method =
585
                            MODE_INTER_NO_MV;
586
                        s->coded_fragment_list[plane][num_coded_frags++] =
587
                            current_fragment;
588
                    } else {
589
                        /* not coded; copy this fragment from the prior frame */
590
                        s->all_fragments[current_fragment].coding_method =
591
                            MODE_COPY;
592
                    }
593
            }
594
        }
595
    }
596
        s->total_num_coded_frags += num_coded_frags;
597
        for (i = 0; i < 64; i++)
598
            s->num_coded_frags[plane][i] = num_coded_frags;
599
        if (plane < 2)
600
            s->coded_fragment_list[plane+1] = s->coded_fragment_list[plane] + num_coded_frags;
601
    }
602
    return 0;
603
}
604

    
605
/*
606
 * This function unpacks all the coding mode data for individual macroblocks
607
 * from the bitstream.
608
 */
609
static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb)
610
{
611
    int i, j, k, sb_x, sb_y;
612
    int scheme;
613
    int current_macroblock;
614
    int current_fragment;
615
    int coding_mode;
616
    int custom_mode_alphabet[CODING_MODE_COUNT];
617
    const int *alphabet;
618

    
619
    if (s->keyframe) {
620
        for (i = 0; i < s->fragment_count; i++)
621
            s->all_fragments[i].coding_method = MODE_INTRA;
622

    
623
    } else {
624

    
625
        /* fetch the mode coding scheme for this frame */
626
        scheme = get_bits(gb, 3);
627

    
628
        /* is it a custom coding scheme? */
629
        if (scheme == 0) {
630
            for (i = 0; i < 8; i++)
631
                custom_mode_alphabet[i] = MODE_INTER_NO_MV;
632
            for (i = 0; i < 8; i++)
633
                custom_mode_alphabet[get_bits(gb, 3)] = i;
634
            alphabet = custom_mode_alphabet;
635
        } else
636
            alphabet = ModeAlphabet[scheme-1];
637

    
638
        /* iterate through all of the macroblocks that contain 1 or more
639
         * coded fragments */
640
        for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
641
            for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
642

    
643
            for (j = 0; j < 4; j++) {
644
                int mb_x = 2*sb_x +   (j>>1);
645
                int mb_y = 2*sb_y + (((j>>1)+j)&1);
646
                current_macroblock = mb_y * s->macroblock_width + mb_x;
647

    
648
                if (mb_x >= s->macroblock_width || mb_y >= s->macroblock_height)
649
                    continue;
650

    
651
#define BLOCK_X (2*mb_x + (k&1))
652
#define BLOCK_Y (2*mb_y + (k>>1))
653
                /* coding modes are only stored if the macroblock has at least one
654
                 * luma block coded, otherwise it must be INTER_NO_MV */
655
                for (k = 0; k < 4; k++) {
656
                    current_fragment = BLOCK_Y*s->fragment_width + BLOCK_X;
657
                    if (s->all_fragments[current_fragment].coding_method != MODE_COPY)
658
                        break;
659
                }
660
                if (k == 4) {
661
                    s->macroblock_coding[current_macroblock] = MODE_INTER_NO_MV;
662
                    continue;
663
                }
664

    
665
                /* mode 7 means get 3 bits for each coding mode */
666
                if (scheme == 7)
667
                    coding_mode = get_bits(gb, 3);
668
                else
669
                    coding_mode = alphabet
670
                        [get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
671

    
672
                s->macroblock_coding[current_macroblock] = coding_mode;
673
                for (k = 0; k < 4; k++) {
674
                    current_fragment =
675
                        BLOCK_Y*s->fragment_width + BLOCK_X;
676
                    if (s->all_fragments[current_fragment].coding_method !=
677
                        MODE_COPY)
678
                        s->all_fragments[current_fragment].coding_method =
679
                            coding_mode;
680
                }
681
                for (k = 0; k < 2; k++) {
682
                    current_fragment = s->fragment_start[k+1] +
683
                        mb_y*(s->fragment_width>>1) + mb_x;
684
                    if (s->all_fragments[current_fragment].coding_method !=
685
                        MODE_COPY)
686
                        s->all_fragments[current_fragment].coding_method =
687
                            coding_mode;
688
                }
689
            }
690
            }
691
        }
692
    }
693

    
694
    return 0;
695
}
696

    
697
/*
698
 * This function unpacks all the motion vectors for the individual
699
 * macroblocks from the bitstream.
700
 */
701
static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb)
702
{
703
    int j, k, sb_x, sb_y;
704
    int coding_mode;
705
    int motion_x[6];
706
    int motion_y[6];
707
    int last_motion_x = 0;
708
    int last_motion_y = 0;
709
    int prior_last_motion_x = 0;
710
    int prior_last_motion_y = 0;
711
    int current_macroblock;
712
    int current_fragment;
713

    
714
    if (s->keyframe)
715
        return 0;
716

    
717
    memset(motion_x, 0, 6 * sizeof(int));
718
    memset(motion_y, 0, 6 * sizeof(int));
719

    
720
    /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */
721
    coding_mode = get_bits1(gb);
722

    
723
    /* iterate through all of the macroblocks that contain 1 or more
724
     * coded fragments */
725
    for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
726
        for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
727

    
728
        for (j = 0; j < 4; j++) {
729
            int mb_x = 2*sb_x +   (j>>1);
730
            int mb_y = 2*sb_y + (((j>>1)+j)&1);
731
            current_macroblock = mb_y * s->macroblock_width + mb_x;
732

    
733
            if (mb_x >= s->macroblock_width || mb_y >= s->macroblock_height ||
734
                (s->macroblock_coding[current_macroblock] == MODE_COPY))
735
                continue;
736

    
737
            switch (s->macroblock_coding[current_macroblock]) {
738

    
739
            case MODE_INTER_PLUS_MV:
740
            case MODE_GOLDEN_MV:
741
                /* all 6 fragments use the same motion vector */
742
                if (coding_mode == 0) {
743
                    motion_x[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
744
                    motion_y[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
745
                } else {
746
                    motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)];
747
                    motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)];
748
                }
749

    
750
                /* vector maintenance, only on MODE_INTER_PLUS_MV */
751
                if (s->macroblock_coding[current_macroblock] ==
752
                    MODE_INTER_PLUS_MV) {
753
                    prior_last_motion_x = last_motion_x;
754
                    prior_last_motion_y = last_motion_y;
755
                    last_motion_x = motion_x[0];
756
                    last_motion_y = motion_y[0];
757
                }
758
                break;
759

    
760
            case MODE_INTER_FOURMV:
761
                /* vector maintenance */
762
                prior_last_motion_x = last_motion_x;
763
                prior_last_motion_y = last_motion_y;
764

    
765
                /* fetch 4 vectors from the bitstream, one for each
766
                 * Y fragment, then average for the C fragment vectors */
767
                motion_x[4] = motion_y[4] = 0;
768
                for (k = 0; k < 4; k++) {
769
                    current_fragment = BLOCK_Y*s->fragment_width + BLOCK_X;
770
                    if (s->all_fragments[current_fragment].coding_method != MODE_COPY) {
771
                        if (coding_mode == 0) {
772
                            motion_x[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
773
                            motion_y[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
774
                        } else {
775
                            motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)];
776
                            motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)];
777
                        }
778
                        last_motion_x = motion_x[k];
779
                        last_motion_y = motion_y[k];
780
                    } else {
781
                        motion_x[k] = 0;
782
                        motion_y[k] = 0;
783
                    }
784
                    motion_x[4] += motion_x[k];
785
                    motion_y[4] += motion_y[k];
786
                }
787

    
788
                motion_x[5]=
789
                motion_x[4]= RSHIFT(motion_x[4], 2);
790
                motion_y[5]=
791
                motion_y[4]= RSHIFT(motion_y[4], 2);
792
                break;
793

    
794
            case MODE_INTER_LAST_MV:
795
                /* all 6 fragments use the last motion vector */
796
                motion_x[0] = last_motion_x;
797
                motion_y[0] = last_motion_y;
798

    
799
                /* no vector maintenance (last vector remains the
800
                 * last vector) */
801
                break;
802

    
803
            case MODE_INTER_PRIOR_LAST:
804
                /* all 6 fragments use the motion vector prior to the
805
                 * last motion vector */
806
                motion_x[0] = prior_last_motion_x;
807
                motion_y[0] = prior_last_motion_y;
808

    
809
                /* vector maintenance */
810
                prior_last_motion_x = last_motion_x;
811
                prior_last_motion_y = last_motion_y;
812
                last_motion_x = motion_x[0];
813
                last_motion_y = motion_y[0];
814
                break;
815

    
816
            default:
817
                /* covers intra, inter without MV, golden without MV */
818
                motion_x[0] = 0;
819
                motion_y[0] = 0;
820

    
821
                /* no vector maintenance */
822
                break;
823
            }
824

    
825
            /* assign the motion vectors to the correct fragments */
826
            for (k = 0; k < 4; k++) {
827
                current_fragment =
828
                    BLOCK_Y*s->fragment_width + BLOCK_X;
829
                if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
830
                    s->all_fragments[current_fragment].motion_x = motion_x[k];
831
                    s->all_fragments[current_fragment].motion_y = motion_y[k];
832
                } else {
833
                    s->all_fragments[current_fragment].motion_x = motion_x[0];
834
                    s->all_fragments[current_fragment].motion_y = motion_y[0];
835
                }
836
            }
837
            for (k = 0; k < 2; k++) {
838
                current_fragment = s->fragment_start[k+1] +
839
                    mb_y*(s->fragment_width>>1) + mb_x;
840
                if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
841
                    s->all_fragments[current_fragment].motion_x = motion_x[k+4];
842
                    s->all_fragments[current_fragment].motion_y = motion_y[k+4];
843
                } else {
844
                    s->all_fragments[current_fragment].motion_x = motion_x[0];
845
                    s->all_fragments[current_fragment].motion_y = motion_y[0];
846
                }
847
            }
848
        }
849
        }
850
    }
851

    
852
    return 0;
853
}
854

    
855
static int unpack_block_qpis(Vp3DecodeContext *s, GetBitContext *gb)
856
{
857
    int qpi, i, j, bit, run_length, blocks_decoded, num_blocks_at_qpi;
858
    int num_blocks = s->total_num_coded_frags;
859

    
860
    for (qpi = 0; qpi < s->nqps-1 && num_blocks > 0; qpi++) {
861
        i = blocks_decoded = num_blocks_at_qpi = 0;
862

    
863
        bit = get_bits1(gb);
864

    
865
        do {
866
            run_length = get_vlc2(gb, s->superblock_run_length_vlc.table, 6, 2) + 1;
867
            if (run_length == 34)
868
                run_length += get_bits(gb, 12);
869
            blocks_decoded += run_length;
870

    
871
            if (!bit)
872
                num_blocks_at_qpi += run_length;
873

    
874
            for (j = 0; j < run_length; i++) {
875
                if (i >= s->total_num_coded_frags)
876
                    return -1;
877

    
878
                if (s->all_fragments[s->coded_fragment_list[0][i]].qpi == qpi) {
879
                    s->all_fragments[s->coded_fragment_list[0][i]].qpi += bit;
880
                    j++;
881
                }
882
            }
883

    
884
            if (run_length == MAXIMUM_LONG_BIT_RUN)
885
                bit = get_bits1(gb);
886
            else
887
                bit ^= 1;
888
        } while (blocks_decoded < num_blocks);
889

    
890
        num_blocks -= num_blocks_at_qpi;
891
    }
892

    
893
    return 0;
894
}
895

    
896
/*
897
 * This function is called by unpack_dct_coeffs() to extract the VLCs from
898
 * the bitstream. The VLCs encode tokens which are used to unpack DCT
899
 * data. This function unpacks all the VLCs for either the Y plane or both
900
 * C planes, and is called for DC coefficients or different AC coefficient
901
 * levels (since different coefficient types require different VLC tables.
902
 *
903
 * This function returns a residual eob run. E.g, if a particular token gave
904
 * instructions to EOB the next 5 fragments and there were only 2 fragments
905
 * left in the current fragment range, 3 would be returned so that it could
906
 * be passed into the next call to this same function.
907
 */
908
static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb,
909
                        VLC *table, int coeff_index,
910
                        int plane,
911
                        int eob_run)
912
{
913
    int i, j = 0;
914
    int token;
915
    int zero_run = 0;
916
    DCTELEM coeff = 0;
917
    int bits_to_get;
918
    int blocks_ended;
919
    int coeff_i = 0;
920
    int num_coeffs = s->num_coded_frags[plane][coeff_index];
921
    int16_t *dct_tokens = s->dct_tokens[plane][coeff_index];
922

    
923
    /* local references to structure members to avoid repeated deferences */
924
    int *coded_fragment_list = s->coded_fragment_list[plane];
925
    Vp3Fragment *all_fragments = s->all_fragments;
926
    VLC_TYPE (*vlc_table)[2] = table->table;
927

    
928
    if (num_coeffs < 0)
929
        av_log(s->avctx, AV_LOG_ERROR, "Invalid number of coefficents at level %d\n", coeff_index);
930

    
931
    if (eob_run > num_coeffs) {
932
        coeff_i = blocks_ended = num_coeffs;
933
        eob_run -= num_coeffs;
934
    } else {
935
        coeff_i = blocks_ended = eob_run;
936
        eob_run = 0;
937
    }
938

    
939
    // insert fake EOB token to cover the split between planes or zzi
940
    if (blocks_ended)
941
        dct_tokens[j++] = blocks_ended << 2;
942

    
943
    while (coeff_i < num_coeffs) {
944
            /* decode a VLC into a token */
945
            token = get_vlc2(gb, vlc_table, 5, 3);
946
            /* use the token to get a zero run, a coefficient, and an eob run */
947
            if (token <= 6) {
948
                eob_run = eob_run_base[token];
949
                if (eob_run_get_bits[token])
950
                    eob_run += get_bits(gb, eob_run_get_bits[token]);
951

    
952
                // record only the number of blocks ended in this plane,
953
                // any spill will be recorded in the next plane.
954
                if (eob_run > num_coeffs - coeff_i) {
955
                    dct_tokens[j++] = TOKEN_EOB(num_coeffs - coeff_i);
956
                    blocks_ended   += num_coeffs - coeff_i;
957
                    eob_run        -= num_coeffs - coeff_i;
958
                    coeff_i         = num_coeffs;
959
                } else {
960
                    dct_tokens[j++] = TOKEN_EOB(eob_run);
961
                    blocks_ended   += eob_run;
962
                    coeff_i        += eob_run;
963
                    eob_run = 0;
964
                }
965
            } else {
966
                bits_to_get = coeff_get_bits[token];
967
                if (bits_to_get)
968
                    bits_to_get = get_bits(gb, bits_to_get);
969
                coeff = coeff_tables[token][bits_to_get];
970

    
971
                zero_run = zero_run_base[token];
972
                if (zero_run_get_bits[token])
973
                    zero_run += get_bits(gb, zero_run_get_bits[token]);
974

    
975
                if (zero_run) {
976
                    dct_tokens[j++] = TOKEN_ZERO_RUN(coeff, zero_run);
977
                } else {
978
                    // Save DC into the fragment structure. DC prediction is
979
                    // done in raster order, so the actual DC can't be in with
980
                    // other tokens. We still need the token in dct_tokens[]
981
                    // however, or else the structure collapses on itself.
982
                    if (!coeff_index)
983
                        all_fragments[coded_fragment_list[coeff_i]].dc = coeff;
984

    
985
                    dct_tokens[j++] = TOKEN_COEFF(coeff);
986
                }
987

    
988
                if (coeff_index + zero_run > 64) {
989
                    av_log(s->avctx, AV_LOG_ERROR, "Invalid zero run of %d with"
990
                           " %d coeffs left\n", zero_run, 64-coeff_index);
991
                    zero_run = 64 - coeff_index;
992
                }
993

    
994
                // zero runs code multiple coefficients,
995
                // so don't try to decode coeffs for those higher levels
996
                for (i = coeff_index+1; i <= coeff_index+zero_run; i++)
997
                    s->num_coded_frags[plane][i]--;
998
                coeff_i++;
999
            }
1000
    }
1001

    
1002
    if (blocks_ended > s->num_coded_frags[plane][coeff_index])
1003
        av_log(s->avctx, AV_LOG_ERROR, "More blocks ended than coded!\n");
1004

    
1005
    // decrement the number of blocks that have higher coeffecients for each
1006
    // EOB run at this level
1007
    if (blocks_ended)
1008
        for (i = coeff_index+1; i < 64; i++)
1009
            s->num_coded_frags[plane][i] -= blocks_ended;
1010

    
1011
    // setup the next buffer
1012
    if (plane < 2)
1013
        s->dct_tokens[plane+1][coeff_index] = dct_tokens + j;
1014
    else if (coeff_index < 63)
1015
        s->dct_tokens[0][coeff_index+1] = dct_tokens + j;
1016

    
1017
    return eob_run;
1018
}
1019

    
1020
static void reverse_dc_prediction(Vp3DecodeContext *s,
1021
                                  int first_fragment,
1022
                                  int fragment_width,
1023
                                  int fragment_height);
1024
/*
1025
 * This function unpacks all of the DCT coefficient data from the
1026
 * bitstream.
1027
 */
1028
static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
1029
{
1030
    int i;
1031
    int dc_y_table;
1032
    int dc_c_table;
1033
    int ac_y_table;
1034
    int ac_c_table;
1035
    int residual_eob_run = 0;
1036
    VLC *y_tables[64];
1037
    VLC *c_tables[64];
1038

    
1039
    s->dct_tokens[0][0] = s->dct_tokens_base;
1040

    
1041
    /* fetch the DC table indexes */
1042
    dc_y_table = get_bits(gb, 4);
1043
    dc_c_table = get_bits(gb, 4);
1044

    
1045
    /* unpack the Y plane DC coefficients */
1046
    residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0,
1047
        0, residual_eob_run);
1048

    
1049
    /* reverse prediction of the Y-plane DC coefficients */
1050
    reverse_dc_prediction(s, 0, s->fragment_width, s->fragment_height);
1051

    
1052
    /* unpack the C plane DC coefficients */
1053
    residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
1054
        1, residual_eob_run);
1055
    residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
1056
        2, residual_eob_run);
1057

    
1058
    /* reverse prediction of the C-plane DC coefficients */
1059
    if (!(s->avctx->flags & CODEC_FLAG_GRAY))
1060
    {
1061
        reverse_dc_prediction(s, s->fragment_start[1],
1062
            s->fragment_width / 2, s->fragment_height / 2);
1063
        reverse_dc_prediction(s, s->fragment_start[2],
1064
            s->fragment_width / 2, s->fragment_height / 2);
1065
    }
1066

    
1067
    /* fetch the AC table indexes */
1068
    ac_y_table = get_bits(gb, 4);
1069
    ac_c_table = get_bits(gb, 4);
1070

    
1071
    /* build tables of AC VLC tables */
1072
    for (i = 1; i <= 5; i++) {
1073
        y_tables[i] = &s->ac_vlc_1[ac_y_table];
1074
        c_tables[i] = &s->ac_vlc_1[ac_c_table];
1075
    }
1076
    for (i = 6; i <= 14; i++) {
1077
        y_tables[i] = &s->ac_vlc_2[ac_y_table];
1078
        c_tables[i] = &s->ac_vlc_2[ac_c_table];
1079
    }
1080
    for (i = 15; i <= 27; i++) {
1081
        y_tables[i] = &s->ac_vlc_3[ac_y_table];
1082
        c_tables[i] = &s->ac_vlc_3[ac_c_table];
1083
    }
1084
    for (i = 28; i <= 63; i++) {
1085
        y_tables[i] = &s->ac_vlc_4[ac_y_table];
1086
        c_tables[i] = &s->ac_vlc_4[ac_c_table];
1087
    }
1088

    
1089
    /* decode all AC coefficents */
1090
    for (i = 1; i <= 63; i++) {
1091
            residual_eob_run = unpack_vlcs(s, gb, y_tables[i], i,
1092
                0, residual_eob_run);
1093

    
1094
            residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i,
1095
                1, residual_eob_run);
1096
            residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i,
1097
                2, residual_eob_run);
1098
    }
1099

    
1100
    return 0;
1101
}
1102

    
1103
/*
1104
 * This function reverses the DC prediction for each coded fragment in
1105
 * the frame. Much of this function is adapted directly from the original
1106
 * VP3 source code.
1107
 */
1108
#define COMPATIBLE_FRAME(x) \
1109
  (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type)
1110
#define DC_COEFF(u) s->all_fragments[u].dc
1111

    
1112
static void reverse_dc_prediction(Vp3DecodeContext *s,
1113
                                  int first_fragment,
1114
                                  int fragment_width,
1115
                                  int fragment_height)
1116
{
1117

    
1118
#define PUL 8
1119
#define PU 4
1120
#define PUR 2
1121
#define PL 1
1122

    
1123
    int x, y;
1124
    int i = first_fragment;
1125

    
1126
    int predicted_dc;
1127

    
1128
    /* DC values for the left, up-left, up, and up-right fragments */
1129
    int vl, vul, vu, vur;
1130

    
1131
    /* indexes for the left, up-left, up, and up-right fragments */
1132
    int l, ul, u, ur;
1133

    
1134
    /*
1135
     * The 6 fields mean:
1136
     *   0: up-left multiplier
1137
     *   1: up multiplier
1138
     *   2: up-right multiplier
1139
     *   3: left multiplier
1140
     */
1141
    static const int predictor_transform[16][4] = {
1142
        {  0,  0,  0,  0},
1143
        {  0,  0,  0,128},        // PL
1144
        {  0,  0,128,  0},        // PUR
1145
        {  0,  0, 53, 75},        // PUR|PL
1146
        {  0,128,  0,  0},        // PU
1147
        {  0, 64,  0, 64},        // PU|PL
1148
        {  0,128,  0,  0},        // PU|PUR
1149
        {  0,  0, 53, 75},        // PU|PUR|PL
1150
        {128,  0,  0,  0},        // PUL
1151
        {  0,  0,  0,128},        // PUL|PL
1152
        { 64,  0, 64,  0},        // PUL|PUR
1153
        {  0,  0, 53, 75},        // PUL|PUR|PL
1154
        {  0,128,  0,  0},        // PUL|PU
1155
       {-104,116,  0,116},        // PUL|PU|PL
1156
        { 24, 80, 24,  0},        // PUL|PU|PUR
1157
       {-104,116,  0,116}         // PUL|PU|PUR|PL
1158
    };
1159

    
1160
    /* This table shows which types of blocks can use other blocks for
1161
     * prediction. For example, INTRA is the only mode in this table to
1162
     * have a frame number of 0. That means INTRA blocks can only predict
1163
     * from other INTRA blocks. There are 2 golden frame coding types;
1164
     * blocks encoding in these modes can only predict from other blocks
1165
     * that were encoded with these 1 of these 2 modes. */
1166
    static const unsigned char compatible_frame[9] = {
1167
        1,    /* MODE_INTER_NO_MV */
1168
        0,    /* MODE_INTRA */
1169
        1,    /* MODE_INTER_PLUS_MV */
1170
        1,    /* MODE_INTER_LAST_MV */
1171
        1,    /* MODE_INTER_PRIOR_MV */
1172
        2,    /* MODE_USING_GOLDEN */
1173
        2,    /* MODE_GOLDEN_MV */
1174
        1,    /* MODE_INTER_FOUR_MV */
1175
        3     /* MODE_COPY */
1176
    };
1177
    int current_frame_type;
1178

    
1179
    /* there is a last DC predictor for each of the 3 frame types */
1180
    short last_dc[3];
1181

    
1182
    int transform = 0;
1183

    
1184
    vul = vu = vur = vl = 0;
1185
    last_dc[0] = last_dc[1] = last_dc[2] = 0;
1186

    
1187
    /* for each fragment row... */
1188
    for (y = 0; y < fragment_height; y++) {
1189

    
1190
        /* for each fragment in a row... */
1191
        for (x = 0; x < fragment_width; x++, i++) {
1192

    
1193
            /* reverse prediction if this block was coded */
1194
            if (s->all_fragments[i].coding_method != MODE_COPY) {
1195

    
1196
                current_frame_type =
1197
                    compatible_frame[s->all_fragments[i].coding_method];
1198

    
1199
                transform= 0;
1200
                if(x){
1201
                    l= i-1;
1202
                    vl = DC_COEFF(l);
1203
                    if(COMPATIBLE_FRAME(l))
1204
                        transform |= PL;
1205
                }
1206
                if(y){
1207
                    u= i-fragment_width;
1208
                    vu = DC_COEFF(u);
1209
                    if(COMPATIBLE_FRAME(u))
1210
                        transform |= PU;
1211
                    if(x){
1212
                        ul= i-fragment_width-1;
1213
                        vul = DC_COEFF(ul);
1214
                        if(COMPATIBLE_FRAME(ul))
1215
                            transform |= PUL;
1216
                    }
1217
                    if(x + 1 < fragment_width){
1218
                        ur= i-fragment_width+1;
1219
                        vur = DC_COEFF(ur);
1220
                        if(COMPATIBLE_FRAME(ur))
1221
                            transform |= PUR;
1222
                    }
1223
                }
1224

    
1225
                if (transform == 0) {
1226

    
1227
                    /* if there were no fragments to predict from, use last
1228
                     * DC saved */
1229
                    predicted_dc = last_dc[current_frame_type];
1230
                } else {
1231

    
1232
                    /* apply the appropriate predictor transform */
1233
                    predicted_dc =
1234
                        (predictor_transform[transform][0] * vul) +
1235
                        (predictor_transform[transform][1] * vu) +
1236
                        (predictor_transform[transform][2] * vur) +
1237
                        (predictor_transform[transform][3] * vl);
1238

    
1239
                    predicted_dc /= 128;
1240

    
1241
                    /* check for outranging on the [ul u l] and
1242
                     * [ul u ur l] predictors */
1243
                    if ((transform == 15) || (transform == 13)) {
1244
                        if (FFABS(predicted_dc - vu) > 128)
1245
                            predicted_dc = vu;
1246
                        else if (FFABS(predicted_dc - vl) > 128)
1247
                            predicted_dc = vl;
1248
                        else if (FFABS(predicted_dc - vul) > 128)
1249
                            predicted_dc = vul;
1250
                    }
1251
                }
1252

    
1253
                /* at long last, apply the predictor */
1254
                DC_COEFF(i) += predicted_dc;
1255
                /* save the DC */
1256
                last_dc[current_frame_type] = DC_COEFF(i);
1257
            }
1258
        }
1259
    }
1260
}
1261

    
1262
static void apply_loop_filter(Vp3DecodeContext *s, int plane, int ystart, int yend)
1263
{
1264
    int x, y;
1265
    int *bounding_values= s->bounding_values_array+127;
1266

    
1267
    int width           = s->fragment_width  >> !!plane;
1268
    int height          = s->fragment_height >> !!plane;
1269
    int fragment        = s->fragment_start        [plane] + ystart * width;
1270
    int stride          = s->current_frame.linesize[plane];
1271
    uint8_t *plane_data = s->current_frame.data    [plane];
1272
    if (!s->flipped_image) stride = -stride;
1273
    plane_data += s->data_offset[plane] + 8*ystart*stride;
1274

    
1275
    for (y = ystart; y < yend; y++) {
1276

    
1277
        for (x = 0; x < width; x++) {
1278
            /* This code basically just deblocks on the edges of coded blocks.
1279
             * However, it has to be much more complicated because of the
1280
             * braindamaged deblock ordering used in VP3/Theora. Order matters
1281
             * because some pixels get filtered twice. */
1282
            if( s->all_fragments[fragment].coding_method != MODE_COPY )
1283
            {
1284
                /* do not perform left edge filter for left columns frags */
1285
                if (x > 0) {
1286
                    s->dsp.vp3_h_loop_filter(
1287
                        plane_data + 8*x,
1288
                        stride, bounding_values);
1289
                }
1290

    
1291
                /* do not perform top edge filter for top row fragments */
1292
                if (y > 0) {
1293
                    s->dsp.vp3_v_loop_filter(
1294
                        plane_data + 8*x,
1295
                        stride, bounding_values);
1296
                }
1297

    
1298
                /* do not perform right edge filter for right column
1299
                 * fragments or if right fragment neighbor is also coded
1300
                 * in this frame (it will be filtered in next iteration) */
1301
                if ((x < width - 1) &&
1302
                    (s->all_fragments[fragment + 1].coding_method == MODE_COPY)) {
1303
                    s->dsp.vp3_h_loop_filter(
1304
                        plane_data + 8*x + 8,
1305
                        stride, bounding_values);
1306
                }
1307

    
1308
                /* do not perform bottom edge filter for bottom row
1309
                 * fragments or if bottom fragment neighbor is also coded
1310
                 * in this frame (it will be filtered in the next row) */
1311
                if ((y < height - 1) &&
1312
                    (s->all_fragments[fragment + width].coding_method == MODE_COPY)) {
1313
                    s->dsp.vp3_v_loop_filter(
1314
                        plane_data + 8*x + 8*stride,
1315
                        stride, bounding_values);
1316
                }
1317
            }
1318

    
1319
            fragment++;
1320
        }
1321
        plane_data += 8*stride;
1322
    }
1323
}
1324

    
1325
/**
1326
 * Pulls DCT tokens from the 64 levels to decode and dequant the coefficients
1327
 * for the next block in coding order
1328
 */
1329
static inline int vp3_dequant(Vp3DecodeContext *s, Vp3Fragment *frag,
1330
                              int plane, int inter, DCTELEM block[64])
1331
{
1332
    int16_t *dequantizer = s->qmat[frag->qpi][inter][plane];
1333
    uint8_t *perm = s->scantable.permutated;
1334
    int i = 0;
1335

    
1336
    do {
1337
        int token = *s->dct_tokens[plane][i];
1338
        switch (token & 3) {
1339
        case 0: // EOB
1340
            if (--token < 4) // 0-3 are token types, so the EOB run must now be 0
1341
                s->dct_tokens[plane][i]++;
1342
            else
1343
                *s->dct_tokens[plane][i] = token & ~3;
1344
            goto end;
1345
        case 1: // zero run
1346
            s->dct_tokens[plane][i]++;
1347
            i += (token >> 2) & 0x7f;
1348
            block[perm[i]] = (token >> 9) * dequantizer[perm[i]];
1349
            i++;
1350
            break;
1351
        case 2: // coeff
1352
            block[perm[i]] = (token >> 2) * dequantizer[perm[i]];
1353
            s->dct_tokens[plane][i++]++;
1354
            break;
1355
        default:
1356
            av_log(s->avctx, AV_LOG_ERROR, "internal: invalid token type\n");
1357
            return i;
1358
        }
1359
    } while (i < 64);
1360
end:
1361
    // the actual DC+prediction is in the fragment structure
1362
    block[0] = frag->dc * s->qmat[0][inter][plane][0];
1363
    return i;
1364
}
1365

    
1366
/**
1367
 * called when all pixels up to row y are complete
1368
 */
1369
static void vp3_draw_horiz_band(Vp3DecodeContext *s, int y)
1370
{
1371
    int h, cy;
1372
    int offset[4];
1373

    
1374
    if(s->avctx->draw_horiz_band==NULL)
1375
        return;
1376

    
1377
    h= y - s->last_slice_end;
1378
    y -= h;
1379

    
1380
    if (!s->flipped_image) {
1381
        if (y == 0)
1382
            h -= s->height - s->avctx->height;  // account for non-mod16
1383
        y = s->height - y - h;
1384
    }
1385

    
1386
    cy = y >> 1;
1387
    offset[0] = s->current_frame.linesize[0]*y;
1388
    offset[1] = s->current_frame.linesize[1]*cy;
1389
    offset[2] = s->current_frame.linesize[2]*cy;
1390
    offset[3] = 0;
1391

    
1392
    emms_c();
1393
    s->avctx->draw_horiz_band(s->avctx, &s->current_frame, offset, y, 3, h);
1394
    s->last_slice_end= y + h;
1395
}
1396

    
1397
/*
1398
 * Perform the final rendering for a particular slice of data.
1399
 * The slice number ranges from 0..(c_superblock_height - 1).
1400
 */
1401
static void render_slice(Vp3DecodeContext *s, int slice)
1402
{
1403
    int x, y, i, j;
1404
    LOCAL_ALIGNED_16(DCTELEM, block, [64]);
1405
    int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef;
1406
    int motion_halfpel_index;
1407
    uint8_t *motion_source;
1408
    int plane, first_pixel;
1409

    
1410
    if (slice >= s->c_superblock_height)
1411
        return;
1412

    
1413
    for (plane = 0; plane < 3; plane++) {
1414
        uint8_t *output_plane = s->current_frame.data    [plane] + s->data_offset[plane];
1415
        uint8_t *  last_plane = s->   last_frame.data    [plane] + s->data_offset[plane];
1416
        uint8_t *golden_plane = s-> golden_frame.data    [plane] + s->data_offset[plane];
1417
        int stride            = s->current_frame.linesize[plane];
1418
        int plane_width       = s->width  >> !!plane;
1419
        int plane_height      = s->height >> !!plane;
1420

    
1421
        int sb_x, sb_y        = slice << !plane;
1422
        int slice_height      = sb_y + (plane ? 1 : 2);
1423
        int slice_width       = plane ? s->c_superblock_width : s->y_superblock_width;
1424

    
1425
        int fragment_width    = s->fragment_width  >> !!plane;
1426
        int fragment_height   = s->fragment_height >> !!plane;
1427
        int fragment_start    = s->fragment_start[plane];
1428

    
1429
        if (!s->flipped_image) stride = -stride;
1430
        if (CONFIG_GRAY && plane && (s->avctx->flags & CODEC_FLAG_GRAY))
1431
            continue;
1432

    
1433

    
1434
        if(FFABS(stride) > 2048)
1435
            return; //various tables are fixed size
1436

    
1437
        /* for each superblock row in the slice (both of them)... */
1438
        for (; sb_y < slice_height; sb_y++) {
1439

    
1440
            /* for each superblock in a row... */
1441
            for (sb_x = 0; sb_x < slice_width; sb_x++) {
1442

    
1443
                /* for each block in a superblock... */
1444
                for (j = 0; j < 16; j++) {
1445
                    x = 4*sb_x + hilbert_offset[j][0];
1446
                    y = 4*sb_y + hilbert_offset[j][1];
1447

    
1448
                    i = fragment_start + y*fragment_width + x;
1449

    
1450
                    // bounds check
1451
                    if (x >= fragment_width || y >= fragment_height)
1452
                        continue;
1453

    
1454
                first_pixel = 8*y*stride + 8*x;
1455

    
1456
                /* transform if this block was coded */
1457
                if (s->all_fragments[i].coding_method != MODE_COPY) {
1458
                    int intra = s->all_fragments[i].coding_method == MODE_INTRA;
1459

    
1460
                    if ((s->all_fragments[i].coding_method == MODE_USING_GOLDEN) ||
1461
                        (s->all_fragments[i].coding_method == MODE_GOLDEN_MV))
1462
                        motion_source= golden_plane;
1463
                    else
1464
                        motion_source= last_plane;
1465

    
1466
                    motion_source += first_pixel;
1467
                    motion_halfpel_index = 0;
1468

    
1469
                    /* sort out the motion vector if this fragment is coded
1470
                     * using a motion vector method */
1471
                    if ((s->all_fragments[i].coding_method > MODE_INTRA) &&
1472
                        (s->all_fragments[i].coding_method != MODE_USING_GOLDEN)) {
1473
                        int src_x, src_y;
1474
                        motion_x = s->all_fragments[i].motion_x;
1475
                        motion_y = s->all_fragments[i].motion_y;
1476
                        if(plane){
1477
                            motion_x= (motion_x>>1) | (motion_x&1);
1478
                            motion_y= (motion_y>>1) | (motion_y&1);
1479
                        }
1480

    
1481
                        src_x= (motion_x>>1) + 8*x;
1482
                        src_y= (motion_y>>1) + 8*y;
1483
                        if ((motion_x == 127) || (motion_y == 127))
1484
                            av_log(s->avctx, AV_LOG_ERROR, " help! got invalid motion vector! (%X, %X)\n", motion_x, motion_y);
1485

    
1486
                        motion_halfpel_index = motion_x & 0x01;
1487
                        motion_source += (motion_x >> 1);
1488

    
1489
                        motion_halfpel_index |= (motion_y & 0x01) << 1;
1490
                        motion_source += ((motion_y >> 1) * stride);
1491

    
1492
                        if(src_x<0 || src_y<0 || src_x + 9 >= plane_width || src_y + 9 >= plane_height){
1493
                            uint8_t *temp= s->edge_emu_buffer;
1494
                            if(stride<0) temp -= 9*stride;
1495
                            else temp += 9*stride;
1496

    
1497
                            ff_emulated_edge_mc(temp, motion_source, stride, 9, 9, src_x, src_y, plane_width, plane_height);
1498
                            motion_source= temp;
1499
                        }
1500
                    }
1501

    
1502

    
1503
                    /* first, take care of copying a block from either the
1504
                     * previous or the golden frame */
1505
                    if (s->all_fragments[i].coding_method != MODE_INTRA) {
1506
                        /* Note, it is possible to implement all MC cases with
1507
                           put_no_rnd_pixels_l2 which would look more like the
1508
                           VP3 source but this would be slower as
1509
                           put_no_rnd_pixels_tab is better optimzed */
1510
                        if(motion_halfpel_index != 3){
1511
                            s->dsp.put_no_rnd_pixels_tab[1][motion_halfpel_index](
1512
                                output_plane + first_pixel,
1513
                                motion_source, stride, 8);
1514
                        }else{
1515
                            int d= (motion_x ^ motion_y)>>31; // d is 0 if motion_x and _y have the same sign, else -1
1516
                            s->dsp.put_no_rnd_pixels_l2[1](
1517
                                output_plane + first_pixel,
1518
                                motion_source - d,
1519
                                motion_source + stride + 1 + d,
1520
                                stride, 8);
1521
                        }
1522
                    }
1523

    
1524
                        s->dsp.clear_block(block);
1525
                        vp3_dequant(s, s->all_fragments + i, plane, !intra, block);
1526

    
1527
                    /* invert DCT and place (or add) in final output */
1528

    
1529
                    if (s->all_fragments[i].coding_method == MODE_INTRA) {
1530
                        if(s->avctx->idct_algo!=FF_IDCT_VP3)
1531
                            block[0] += 128<<3;
1532
                        s->dsp.idct_put(
1533
                            output_plane + first_pixel,
1534
                            stride,
1535
                            block);
1536
                    } else {
1537
                        s->dsp.idct_add(
1538
                            output_plane + first_pixel,
1539
                            stride,
1540
                            block);
1541
                    }
1542
                } else {
1543

    
1544
                    /* copy directly from the previous frame */
1545
                    s->dsp.put_pixels_tab[1][0](
1546
                        output_plane + first_pixel,
1547
                        last_plane + first_pixel,
1548
                        stride, 8);
1549

    
1550
                }
1551
                }
1552
            }
1553

    
1554
            // Filter up to the last row in the superblock row
1555
            apply_loop_filter(s, plane, 4*sb_y - !!sb_y, FFMIN(4*sb_y+3, fragment_height-1));
1556
        }
1557
    }
1558

    
1559
     /* this looks like a good place for slice dispatch... */
1560
     /* algorithm:
1561
      *   if (slice == s->macroblock_height - 1)
1562
      *     dispatch (both last slice & 2nd-to-last slice);
1563
      *   else if (slice > 0)
1564
      *     dispatch (slice - 1);
1565
      */
1566

    
1567
    vp3_draw_horiz_band(s, 64*slice + 64-16);
1568
}
1569

    
1570
/*
1571
 * This is the ffmpeg/libavcodec API init function.
1572
 */
1573
static av_cold int vp3_decode_init(AVCodecContext *avctx)
1574
{
1575
    Vp3DecodeContext *s = avctx->priv_data;
1576
    int i, inter, plane;
1577
    int c_width;
1578
    int c_height;
1579

    
1580
    if (avctx->codec_tag == MKTAG('V','P','3','0'))
1581
        s->version = 0;
1582
    else
1583
        s->version = 1;
1584

    
1585
    s->avctx = avctx;
1586
    s->width = FFALIGN(avctx->width, 16);
1587
    s->height = FFALIGN(avctx->height, 16);
1588
    avctx->pix_fmt = PIX_FMT_YUV420P;
1589
    avctx->chroma_sample_location = AVCHROMA_LOC_CENTER;
1590
    if(avctx->idct_algo==FF_IDCT_AUTO)
1591
        avctx->idct_algo=FF_IDCT_VP3;
1592
    dsputil_init(&s->dsp, avctx);
1593

    
1594
    ff_init_scantable(s->dsp.idct_permutation, &s->scantable, ff_zigzag_direct);
1595

    
1596
    /* initialize to an impossible value which will force a recalculation
1597
     * in the first frame decode */
1598
    for (i = 0; i < 3; i++)
1599
        s->qps[i] = -1;
1600

    
1601
    s->y_superblock_width = (s->width + 31) / 32;
1602
    s->y_superblock_height = (s->height + 31) / 32;
1603
    s->y_superblock_count = s->y_superblock_width * s->y_superblock_height;
1604

    
1605
    /* work out the dimensions for the C planes */
1606
    c_width = s->width / 2;
1607
    c_height = s->height / 2;
1608
    s->c_superblock_width = (c_width + 31) / 32;
1609
    s->c_superblock_height = (c_height + 31) / 32;
1610
    s->c_superblock_count = s->c_superblock_width * s->c_superblock_height;
1611

    
1612
    s->superblock_count = s->y_superblock_count + (s->c_superblock_count * 2);
1613
    s->u_superblock_start = s->y_superblock_count;
1614
    s->v_superblock_start = s->u_superblock_start + s->c_superblock_count;
1615
    s->superblock_coding = av_malloc(s->superblock_count);
1616

    
1617
    s->macroblock_width = (s->width + 15) / 16;
1618
    s->macroblock_height = (s->height + 15) / 16;
1619
    s->macroblock_count = s->macroblock_width * s->macroblock_height;
1620

    
1621
    s->fragment_width = s->width / FRAGMENT_PIXELS;
1622
    s->fragment_height = s->height / FRAGMENT_PIXELS;
1623

    
1624
    /* fragment count covers all 8x8 blocks for all 3 planes */
1625
    s->fragment_count = s->fragment_width * s->fragment_height * 3 / 2;
1626
    s->fragment_start[1] = s->fragment_width * s->fragment_height;
1627
    s->fragment_start[2] = s->fragment_width * s->fragment_height * 5 / 4;
1628

    
1629
    s->all_fragments = av_malloc(s->fragment_count * sizeof(Vp3Fragment));
1630
    s->coded_fragment_list[0] = av_malloc(s->fragment_count * sizeof(int));
1631
    s->dct_tokens_base = av_malloc(64*s->fragment_count * sizeof(*s->dct_tokens_base));
1632
    if (!s->superblock_coding || !s->all_fragments || !s->dct_tokens_base ||
1633
        !s->coded_fragment_list[0]) {
1634
        vp3_decode_end(avctx);
1635
        return -1;
1636
    }
1637

    
1638
    if (!s->theora_tables)
1639
    {
1640
        for (i = 0; i < 64; i++) {
1641
            s->coded_dc_scale_factor[i] = vp31_dc_scale_factor[i];
1642
            s->coded_ac_scale_factor[i] = vp31_ac_scale_factor[i];
1643
            s->base_matrix[0][i] = vp31_intra_y_dequant[i];
1644
            s->base_matrix[1][i] = vp31_intra_c_dequant[i];
1645
            s->base_matrix[2][i] = vp31_inter_dequant[i];
1646
            s->filter_limit_values[i] = vp31_filter_limit_values[i];
1647
        }
1648

    
1649
        for(inter=0; inter<2; inter++){
1650
            for(plane=0; plane<3; plane++){
1651
                s->qr_count[inter][plane]= 1;
1652
                s->qr_size [inter][plane][0]= 63;
1653
                s->qr_base [inter][plane][0]=
1654
                s->qr_base [inter][plane][1]= 2*inter + (!!plane)*!inter;
1655
            }
1656
        }
1657

    
1658
        /* init VLC tables */
1659
        for (i = 0; i < 16; i++) {
1660

    
1661
            /* DC histograms */
1662
            init_vlc(&s->dc_vlc[i], 5, 32,
1663
                &dc_bias[i][0][1], 4, 2,
1664
                &dc_bias[i][0][0], 4, 2, 0);
1665

    
1666
            /* group 1 AC histograms */
1667
            init_vlc(&s->ac_vlc_1[i], 5, 32,
1668
                &ac_bias_0[i][0][1], 4, 2,
1669
                &ac_bias_0[i][0][0], 4, 2, 0);
1670

    
1671
            /* group 2 AC histograms */
1672
            init_vlc(&s->ac_vlc_2[i], 5, 32,
1673
                &ac_bias_1[i][0][1], 4, 2,
1674
                &ac_bias_1[i][0][0], 4, 2, 0);
1675

    
1676
            /* group 3 AC histograms */
1677
            init_vlc(&s->ac_vlc_3[i], 5, 32,
1678
                &ac_bias_2[i][0][1], 4, 2,
1679
                &ac_bias_2[i][0][0], 4, 2, 0);
1680

    
1681
            /* group 4 AC histograms */
1682
            init_vlc(&s->ac_vlc_4[i], 5, 32,
1683
                &ac_bias_3[i][0][1], 4, 2,
1684
                &ac_bias_3[i][0][0], 4, 2, 0);
1685
        }
1686
    } else {
1687
        for (i = 0; i < 16; i++) {
1688

    
1689
            /* DC histograms */
1690
            if (init_vlc(&s->dc_vlc[i], 5, 32,
1691
                &s->huffman_table[i][0][1], 4, 2,
1692
                &s->huffman_table[i][0][0], 4, 2, 0) < 0)
1693
                goto vlc_fail;
1694

    
1695
            /* group 1 AC histograms */
1696
            if (init_vlc(&s->ac_vlc_1[i], 5, 32,
1697
                &s->huffman_table[i+16][0][1], 4, 2,
1698
                &s->huffman_table[i+16][0][0], 4, 2, 0) < 0)
1699
                goto vlc_fail;
1700

    
1701
            /* group 2 AC histograms */
1702
            if (init_vlc(&s->ac_vlc_2[i], 5, 32,
1703
                &s->huffman_table[i+16*2][0][1], 4, 2,
1704
                &s->huffman_table[i+16*2][0][0], 4, 2, 0) < 0)
1705
                goto vlc_fail;
1706

    
1707
            /* group 3 AC histograms */
1708
            if (init_vlc(&s->ac_vlc_3[i], 5, 32,
1709
                &s->huffman_table[i+16*3][0][1], 4, 2,
1710
                &s->huffman_table[i+16*3][0][0], 4, 2, 0) < 0)
1711
                goto vlc_fail;
1712

    
1713
            /* group 4 AC histograms */
1714
            if (init_vlc(&s->ac_vlc_4[i], 5, 32,
1715
                &s->huffman_table[i+16*4][0][1], 4, 2,
1716
                &s->huffman_table[i+16*4][0][0], 4, 2, 0) < 0)
1717
                goto vlc_fail;
1718
        }
1719
    }
1720

    
1721
    init_vlc(&s->superblock_run_length_vlc, 6, 34,
1722
        &superblock_run_length_vlc_table[0][1], 4, 2,
1723
        &superblock_run_length_vlc_table[0][0], 4, 2, 0);
1724

    
1725
    init_vlc(&s->fragment_run_length_vlc, 5, 30,
1726
        &fragment_run_length_vlc_table[0][1], 4, 2,
1727
        &fragment_run_length_vlc_table[0][0], 4, 2, 0);
1728

    
1729
    init_vlc(&s->mode_code_vlc, 3, 8,
1730
        &mode_code_vlc_table[0][1], 2, 1,
1731
        &mode_code_vlc_table[0][0], 2, 1, 0);
1732

    
1733
    init_vlc(&s->motion_vector_vlc, 6, 63,
1734
        &motion_vector_vlc_table[0][1], 2, 1,
1735
        &motion_vector_vlc_table[0][0], 2, 1, 0);
1736

    
1737
    /* work out the block mapping tables */
1738
    s->superblock_fragments = av_malloc(s->superblock_count * 16 * sizeof(int));
1739
    s->macroblock_coding = av_malloc(s->macroblock_count + 1);
1740
    if (!s->superblock_fragments || !s->macroblock_coding) {
1741
        vp3_decode_end(avctx);
1742
        return -1;
1743
    }
1744
    init_block_mapping(s);
1745

    
1746
    for (i = 0; i < 3; i++) {
1747
        s->current_frame.data[i] = NULL;
1748
        s->last_frame.data[i] = NULL;
1749
        s->golden_frame.data[i] = NULL;
1750
    }
1751

    
1752
    return 0;
1753

    
1754
vlc_fail:
1755
    av_log(avctx, AV_LOG_FATAL, "Invalid huffman table\n");
1756
    return -1;
1757
}
1758

    
1759
/*
1760
 * This is the ffmpeg/libavcodec API frame decode function.
1761
 */
1762
static int vp3_decode_frame(AVCodecContext *avctx,
1763
                            void *data, int *data_size,
1764
                            AVPacket *avpkt)
1765
{
1766
    const uint8_t *buf = avpkt->data;
1767
    int buf_size = avpkt->size;
1768
    Vp3DecodeContext *s = avctx->priv_data;
1769
    GetBitContext gb;
1770
    static int counter = 0;
1771
    int i;
1772

    
1773
    init_get_bits(&gb, buf, buf_size * 8);
1774

    
1775
    if (s->theora && get_bits1(&gb))
1776
    {
1777
        av_log(avctx, AV_LOG_ERROR, "Header packet passed to frame decoder, skipping\n");
1778
        return -1;
1779
    }
1780

    
1781
    s->keyframe = !get_bits1(&gb);
1782
    if (!s->theora)
1783
        skip_bits(&gb, 1);
1784
    for (i = 0; i < 3; i++)
1785
        s->last_qps[i] = s->qps[i];
1786

    
1787
    s->nqps=0;
1788
    do{
1789
        s->qps[s->nqps++]= get_bits(&gb, 6);
1790
    } while(s->theora >= 0x030200 && s->nqps<3 && get_bits1(&gb));
1791
    for (i = s->nqps; i < 3; i++)
1792
        s->qps[i] = -1;
1793

    
1794
    if (s->avctx->debug & FF_DEBUG_PICT_INFO)
1795
        av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%d: Q index = %d\n",
1796
            s->keyframe?"key":"", counter, s->qps[0]);
1797
    counter++;
1798

    
1799
    if (s->qps[0] != s->last_qps[0])
1800
        init_loop_filter(s);
1801

    
1802
    for (i = 0; i < s->nqps; i++)
1803
        // reinit all dequantizers if the first one changed, because
1804
        // the DC of the first quantizer must be used for all matrices
1805
        if (s->qps[i] != s->last_qps[i] || s->qps[0] != s->last_qps[0])
1806
            init_dequantizer(s, i);
1807

    
1808
    if (avctx->skip_frame >= AVDISCARD_NONKEY && !s->keyframe)
1809
        return buf_size;
1810

    
1811
    if (s->keyframe) {
1812
        if (!s->theora)
1813
        {
1814
            skip_bits(&gb, 4); /* width code */
1815
            skip_bits(&gb, 4); /* height code */
1816
            if (s->version)
1817
            {
1818
                s->version = get_bits(&gb, 5);
1819
                if (counter == 1)
1820
                    av_log(s->avctx, AV_LOG_DEBUG, "VP version: %d\n", s->version);
1821
            }
1822
        }
1823
        if (s->version || s->theora)
1824
        {
1825
                if (get_bits1(&gb))
1826
                    av_log(s->avctx, AV_LOG_ERROR, "Warning, unsupported keyframe coding type?!\n");
1827
            skip_bits(&gb, 2); /* reserved? */
1828
        }
1829

    
1830
        if (s->last_frame.data[0] == s->golden_frame.data[0]) {
1831
            if (s->golden_frame.data[0])
1832
                avctx->release_buffer(avctx, &s->golden_frame);
1833
            s->last_frame= s->golden_frame; /* ensure that we catch any access to this released frame */
1834
        } else {
1835
            if (s->golden_frame.data[0])
1836
                avctx->release_buffer(avctx, &s->golden_frame);
1837
            if (s->last_frame.data[0])
1838
                avctx->release_buffer(avctx, &s->last_frame);
1839
        }
1840

    
1841
        s->golden_frame.reference = 3;
1842
        if(avctx->get_buffer(avctx, &s->golden_frame) < 0) {
1843
            av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n");
1844
            return -1;
1845
        }
1846

    
1847
        /* golden frame is also the current frame */
1848
        s->current_frame= s->golden_frame;
1849
    } else {
1850
        /* allocate a new current frame */
1851
        s->current_frame.reference = 3;
1852
        if (!s->golden_frame.data[0]) {
1853
            av_log(s->avctx, AV_LOG_ERROR, "vp3: first frame not a keyframe\n");
1854
            return -1;
1855
        }
1856
        if(avctx->get_buffer(avctx, &s->current_frame) < 0) {
1857
            av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n");
1858
            return -1;
1859
        }
1860
    }
1861

    
1862
    s->current_frame.qscale_table= s->qscale_table; //FIXME allocate individual tables per AVFrame
1863
    s->current_frame.qstride= 0;
1864

    
1865
    init_frame(s, &gb);
1866

    
1867
    if (unpack_superblocks(s, &gb)){
1868
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n");
1869
        return -1;
1870
    }
1871
    if (unpack_modes(s, &gb)){
1872
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n");
1873
        return -1;
1874
    }
1875
    if (unpack_vectors(s, &gb)){
1876
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n");
1877
        return -1;
1878
    }
1879
    if (unpack_block_qpis(s, &gb)){
1880
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_block_qpis\n");
1881
        return -1;
1882
    }
1883
    if (unpack_dct_coeffs(s, &gb)){
1884
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n");
1885
        return -1;
1886
    }
1887

    
1888
    for (i = 0; i < 3; i++) {
1889
        if (s->flipped_image)
1890
            s->data_offset[i] = 0;
1891
        else
1892
            s->data_offset[i] = ((s->height>>!!i)-1) * s->current_frame.linesize[i];
1893
    }
1894

    
1895
    s->last_slice_end = 0;
1896
    for (i = 0; i < s->c_superblock_height; i++)
1897
        render_slice(s, i);
1898

    
1899
    // filter the last row
1900
    for (i = 0; i < 3; i++) {
1901
        int row = (s->height >> (3+!!i)) - 1;
1902
        apply_loop_filter(s, i, row, row+1);
1903
    }
1904
    vp3_draw_horiz_band(s, s->height);
1905

    
1906
    *data_size=sizeof(AVFrame);
1907
    *(AVFrame*)data= s->current_frame;
1908

    
1909
    /* release the last frame, if it is allocated and if it is not the
1910
     * golden frame */
1911
    if ((s->last_frame.data[0]) &&
1912
        (s->last_frame.data[0] != s->golden_frame.data[0]))
1913
        avctx->release_buffer(avctx, &s->last_frame);
1914

    
1915
    /* shuffle frames (last = current) */
1916
    s->last_frame= s->current_frame;
1917
    s->current_frame.data[0]= NULL; /* ensure that we catch any access to this released frame */
1918

    
1919
    return buf_size;
1920
}
1921

    
1922
/*
1923
 * This is the ffmpeg/libavcodec API module cleanup function.
1924
 */
1925
static av_cold int vp3_decode_end(AVCodecContext *avctx)
1926
{
1927
    Vp3DecodeContext *s = avctx->priv_data;
1928
    int i;
1929

    
1930
    av_free(s->superblock_coding);
1931
    av_free(s->all_fragments);
1932
    av_free(s->coded_fragment_list[0]);
1933
    av_free(s->dct_tokens_base);
1934
    av_free(s->superblock_fragments);
1935
    av_free(s->macroblock_coding);
1936

    
1937
    for (i = 0; i < 16; i++) {
1938
        free_vlc(&s->dc_vlc[i]);
1939
        free_vlc(&s->ac_vlc_1[i]);
1940
        free_vlc(&s->ac_vlc_2[i]);
1941
        free_vlc(&s->ac_vlc_3[i]);
1942
        free_vlc(&s->ac_vlc_4[i]);
1943
    }
1944

    
1945
    free_vlc(&s->superblock_run_length_vlc);
1946
    free_vlc(&s->fragment_run_length_vlc);
1947
    free_vlc(&s->mode_code_vlc);
1948
    free_vlc(&s->motion_vector_vlc);
1949

    
1950
    /* release all frames */
1951
    if (s->golden_frame.data[0] && s->golden_frame.data[0] != s->last_frame.data[0])
1952
        avctx->release_buffer(avctx, &s->golden_frame);
1953
    if (s->last_frame.data[0])
1954
        avctx->release_buffer(avctx, &s->last_frame);
1955
    /* no need to release the current_frame since it will always be pointing
1956
     * to the same frame as either the golden or last frame */
1957

    
1958
    return 0;
1959
}
1960

    
1961
static int read_huffman_tree(AVCodecContext *avctx, GetBitContext *gb)
1962
{
1963
    Vp3DecodeContext *s = avctx->priv_data;
1964

    
1965
    if (get_bits1(gb)) {
1966
        int token;
1967
        if (s->entries >= 32) { /* overflow */
1968
            av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
1969
            return -1;
1970
        }
1971
        token = get_bits(gb, 5);
1972
        //av_log(avctx, AV_LOG_DEBUG, "hti %d hbits %x token %d entry : %d size %d\n", s->hti, s->hbits, token, s->entries, s->huff_code_size);
1973
        s->huffman_table[s->hti][token][0] = s->hbits;
1974
        s->huffman_table[s->hti][token][1] = s->huff_code_size;
1975
        s->entries++;
1976
    }
1977
    else {
1978
        if (s->huff_code_size >= 32) {/* overflow */
1979
            av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
1980
            return -1;
1981
        }
1982
        s->huff_code_size++;
1983
        s->hbits <<= 1;
1984
        if (read_huffman_tree(avctx, gb))
1985
            return -1;
1986
        s->hbits |= 1;
1987
        if (read_huffman_tree(avctx, gb))
1988
            return -1;
1989
        s->hbits >>= 1;
1990
        s->huff_code_size--;
1991
    }
1992
    return 0;
1993
}
1994

    
1995
#if CONFIG_THEORA_DECODER
1996
static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb)
1997
{
1998
    Vp3DecodeContext *s = avctx->priv_data;
1999
    int visible_width, visible_height, colorspace;
2000

    
2001
    s->theora = get_bits_long(gb, 24);
2002
    av_log(avctx, AV_LOG_DEBUG, "Theora bitstream version %X\n", s->theora);
2003

    
2004
    /* 3.2.0 aka alpha3 has the same frame orientation as original vp3 */
2005
    /* but previous versions have the image flipped relative to vp3 */
2006
    if (s->theora < 0x030200)
2007
    {
2008
        s->flipped_image = 1;
2009
        av_log(avctx, AV_LOG_DEBUG, "Old (<alpha3) Theora bitstream, flipped image\n");
2010
    }
2011

    
2012
    visible_width  = s->width  = get_bits(gb, 16) << 4;
2013
    visible_height = s->height = get_bits(gb, 16) << 4;
2014

    
2015
    if(avcodec_check_dimensions(avctx, s->width, s->height)){
2016
        av_log(avctx, AV_LOG_ERROR, "Invalid dimensions (%dx%d)\n", s->width, s->height);
2017
        s->width= s->height= 0;
2018
        return -1;
2019
    }
2020

    
2021
    if (s->theora >= 0x030200) {
2022
        visible_width  = get_bits_long(gb, 24);
2023
        visible_height = get_bits_long(gb, 24);
2024

    
2025
        skip_bits(gb, 8); /* offset x */
2026
        skip_bits(gb, 8); /* offset y */
2027
    }
2028

    
2029
    skip_bits(gb, 32); /* fps numerator */
2030
    skip_bits(gb, 32); /* fps denumerator */
2031
    skip_bits(gb, 24); /* aspect numerator */
2032
    skip_bits(gb, 24); /* aspect denumerator */
2033

    
2034
    if (s->theora < 0x030200)
2035
        skip_bits(gb, 5); /* keyframe frequency force */
2036
    colorspace = get_bits(gb, 8);
2037
    skip_bits(gb, 24); /* bitrate */
2038

    
2039
    skip_bits(gb, 6); /* quality hint */
2040

    
2041
    if (s->theora >= 0x030200)
2042
    {
2043
        skip_bits(gb, 5); /* keyframe frequency force */
2044
        skip_bits(gb, 2); /* pixel format: 420,res,422,444 */
2045
        skip_bits(gb, 3); /* reserved */
2046
    }
2047

    
2048
//    align_get_bits(gb);
2049

    
2050
    if (   visible_width  <= s->width  && visible_width  > s->width-16
2051
        && visible_height <= s->height && visible_height > s->height-16)
2052
        avcodec_set_dimensions(avctx, visible_width, visible_height);
2053
    else
2054
        avcodec_set_dimensions(avctx, s->width, s->height);
2055

    
2056
    if (colorspace == 1) {
2057
        avctx->color_primaries = AVCOL_PRI_BT470M;
2058
    } else if (colorspace == 2) {
2059
        avctx->color_primaries = AVCOL_PRI_BT470BG;
2060
    }
2061
    if (colorspace == 1 || colorspace == 2) {
2062
        avctx->colorspace = AVCOL_SPC_BT470BG;
2063
        avctx->color_trc  = AVCOL_TRC_BT709;
2064
    }
2065

    
2066
    return 0;
2067
}
2068

    
2069
static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb)
2070
{
2071
    Vp3DecodeContext *s = avctx->priv_data;
2072
    int i, n, matrices, inter, plane;
2073

    
2074
    if (s->theora >= 0x030200) {
2075
        n = get_bits(gb, 3);
2076
        /* loop filter limit values table */
2077
        for (i = 0; i < 64; i++) {
2078
            s->filter_limit_values[i] = get_bits(gb, n);
2079
            if (s->filter_limit_values[i] > 127) {
2080
                av_log(avctx, AV_LOG_ERROR, "filter limit value too large (%i > 127), clamping\n", s->filter_limit_values[i]);
2081
                s->filter_limit_values[i] = 127;
2082
            }
2083
        }
2084
    }
2085

    
2086
    if (s->theora >= 0x030200)
2087
        n = get_bits(gb, 4) + 1;
2088
    else
2089
        n = 16;
2090
    /* quality threshold table */
2091
    for (i = 0; i < 64; i++)
2092
        s->coded_ac_scale_factor[i] = get_bits(gb, n);
2093

    
2094
    if (s->theora >= 0x030200)
2095
        n = get_bits(gb, 4) + 1;
2096
    else
2097
        n = 16;
2098
    /* dc scale factor table */
2099
    for (i = 0; i < 64; i++)
2100
        s->coded_dc_scale_factor[i] = get_bits(gb, n);
2101

    
2102
    if (s->theora >= 0x030200)
2103
        matrices = get_bits(gb, 9) + 1;
2104
    else
2105
        matrices = 3;
2106

    
2107
    if(matrices > 384){
2108
        av_log(avctx, AV_LOG_ERROR, "invalid number of base matrixes\n");
2109
        return -1;
2110
    }
2111

    
2112
    for(n=0; n<matrices; n++){
2113
        for (i = 0; i < 64; i++)
2114
            s->base_matrix[n][i]= get_bits(gb, 8);
2115
    }
2116

    
2117
    for (inter = 0; inter <= 1; inter++) {
2118
        for (plane = 0; plane <= 2; plane++) {
2119
            int newqr= 1;
2120
            if (inter || plane > 0)
2121
                newqr = get_bits1(gb);
2122
            if (!newqr) {
2123
                int qtj, plj;
2124
                if(inter && get_bits1(gb)){
2125
                    qtj = 0;
2126
                    plj = plane;
2127
                }else{
2128
                    qtj= (3*inter + plane - 1) / 3;
2129
                    plj= (plane + 2) % 3;
2130
                }
2131
                s->qr_count[inter][plane]= s->qr_count[qtj][plj];
2132
                memcpy(s->qr_size[inter][plane], s->qr_size[qtj][plj], sizeof(s->qr_size[0][0]));
2133
                memcpy(s->qr_base[inter][plane], s->qr_base[qtj][plj], sizeof(s->qr_base[0][0]));
2134
            } else {
2135
                int qri= 0;
2136
                int qi = 0;
2137

    
2138
                for(;;){
2139
                    i= get_bits(gb, av_log2(matrices-1)+1);
2140
                    if(i>= matrices){
2141
                        av_log(avctx, AV_LOG_ERROR, "invalid base matrix index\n");
2142
                        return -1;
2143
                    }
2144
                    s->qr_base[inter][plane][qri]= i;
2145
                    if(qi >= 63)
2146
                        break;
2147
                    i = get_bits(gb, av_log2(63-qi)+1) + 1;
2148
                    s->qr_size[inter][plane][qri++]= i;
2149
                    qi += i;
2150
                }
2151

    
2152
                if (qi > 63) {
2153
                    av_log(avctx, AV_LOG_ERROR, "invalid qi %d > 63\n", qi);
2154
                    return -1;
2155
                }
2156
                s->qr_count[inter][plane]= qri;
2157
            }
2158
        }
2159
    }
2160

    
2161
    /* Huffman tables */
2162
    for (s->hti = 0; s->hti < 80; s->hti++) {
2163
        s->entries = 0;
2164
        s->huff_code_size = 1;
2165
        if (!get_bits1(gb)) {
2166
            s->hbits = 0;
2167
            if(read_huffman_tree(avctx, gb))
2168
                return -1;
2169
            s->hbits = 1;
2170
            if(read_huffman_tree(avctx, gb))
2171
                return -1;
2172
        }
2173
    }
2174

    
2175
    s->theora_tables = 1;
2176

    
2177
    return 0;
2178
}
2179

    
2180
static av_cold int theora_decode_init(AVCodecContext *avctx)
2181
{
2182
    Vp3DecodeContext *s = avctx->priv_data;
2183
    GetBitContext gb;
2184
    int ptype;
2185
    uint8_t *header_start[3];
2186
    int header_len[3];
2187
    int i;
2188

    
2189
    s->theora = 1;
2190

    
2191
    if (!avctx->extradata_size)
2192
    {
2193
        av_log(avctx, AV_LOG_ERROR, "Missing extradata!\n");
2194
        return -1;
2195
    }
2196

    
2197
    if (ff_split_xiph_headers(avctx->extradata, avctx->extradata_size,
2198
                              42, header_start, header_len) < 0) {
2199
        av_log(avctx, AV_LOG_ERROR, "Corrupt extradata\n");
2200
        return -1;
2201
    }
2202

    
2203
  for(i=0;i<3;i++) {
2204
    init_get_bits(&gb, header_start[i], header_len[i] * 8);
2205

    
2206
    ptype = get_bits(&gb, 8);
2207

    
2208
     if (!(ptype & 0x80))
2209
     {
2210
        av_log(avctx, AV_LOG_ERROR, "Invalid extradata!\n");
2211
//        return -1;
2212
     }
2213

    
2214
    // FIXME: Check for this as well.
2215
    skip_bits_long(&gb, 6*8); /* "theora" */
2216

    
2217
    switch(ptype)
2218
    {
2219
        case 0x80:
2220
            theora_decode_header(avctx, &gb);
2221
                break;
2222
        case 0x81:
2223
// FIXME: is this needed? it breaks sometimes
2224
//            theora_decode_comments(avctx, gb);
2225
            break;
2226
        case 0x82:
2227
            if (theora_decode_tables(avctx, &gb))
2228
                return -1;
2229
            break;
2230
        default:
2231
            av_log(avctx, AV_LOG_ERROR, "Unknown Theora config packet: %d\n", ptype&~0x80);
2232
            break;
2233
    }
2234
    if(ptype != 0x81 && 8*header_len[i] != get_bits_count(&gb))
2235
        av_log(avctx, AV_LOG_WARNING, "%d bits left in packet %X\n", 8*header_len[i] - get_bits_count(&gb), ptype);
2236
    if (s->theora < 0x030200)
2237
        break;
2238
  }
2239

    
2240
    return vp3_decode_init(avctx);
2241
}
2242

    
2243
AVCodec theora_decoder = {
2244
    "theora",
2245
    CODEC_TYPE_VIDEO,
2246
    CODEC_ID_THEORA,
2247
    sizeof(Vp3DecodeContext),
2248
    theora_decode_init,
2249
    NULL,
2250
    vp3_decode_end,
2251
    vp3_decode_frame,
2252
    CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
2253
    NULL,
2254
    .long_name = NULL_IF_CONFIG_SMALL("Theora"),
2255
};
2256
#endif
2257

    
2258
AVCodec vp3_decoder = {
2259
    "vp3",
2260
    CODEC_TYPE_VIDEO,
2261
    CODEC_ID_VP3,
2262
    sizeof(Vp3DecodeContext),
2263
    vp3_decode_init,
2264
    NULL,
2265
    vp3_decode_end,
2266
    vp3_decode_frame,
2267
    CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
2268
    NULL,
2269
    .long_name = NULL_IF_CONFIG_SMALL("On2 VP3"),
2270
};