ffmpeg / libavcodec / adpcm.c @ 05adf49c
History | View | Annotate | Download (58.3 KB)
1 |
/*
|
---|---|
2 |
* ADPCM codecs
|
3 |
* Copyright (c) 2001-2003 The ffmpeg Project
|
4 |
*
|
5 |
* This file is part of FFmpeg.
|
6 |
*
|
7 |
* FFmpeg is free software; you can redistribute it and/or
|
8 |
* modify it under the terms of the GNU Lesser General Public
|
9 |
* License as published by the Free Software Foundation; either
|
10 |
* version 2.1 of the License, or (at your option) any later version.
|
11 |
*
|
12 |
* FFmpeg is distributed in the hope that it will be useful,
|
13 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
14 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
15 |
* Lesser General Public License for more details.
|
16 |
*
|
17 |
* You should have received a copy of the GNU Lesser General Public
|
18 |
* License along with FFmpeg; if not, write to the Free Software
|
19 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
20 |
*/
|
21 |
#include "avcodec.h" |
22 |
#include "bitstream.h" |
23 |
#include "bytestream.h" |
24 |
|
25 |
/**
|
26 |
* @file adpcm.c
|
27 |
* ADPCM codecs.
|
28 |
* First version by Francois Revol (revol@free.fr)
|
29 |
* Fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
|
30 |
* by Mike Melanson (melanson@pcisys.net)
|
31 |
* CD-ROM XA ADPCM codec by BERO
|
32 |
* EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
|
33 |
* EA ADPCM R1/R2/R3 decoder by Peter Ross (pross@xvid.org)
|
34 |
* EA IMA EACS decoder by Peter Ross (pross@xvid.org)
|
35 |
* EA IMA SEAD decoder by Peter Ross (pross@xvid.org)
|
36 |
* EA ADPCM XAS decoder by Peter Ross (pross@xvid.org)
|
37 |
* THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl)
|
38 |
*
|
39 |
* Features and limitations:
|
40 |
*
|
41 |
* Reference documents:
|
42 |
* http://www.pcisys.net/~melanson/codecs/simpleaudio.html
|
43 |
* http://www.geocities.com/SiliconValley/8682/aud3.txt
|
44 |
* http://openquicktime.sourceforge.net/plugins.htm
|
45 |
* XAnim sources (xa_codec.c) http://www.rasnaimaging.com/people/lapus/download.html
|
46 |
* http://www.cs.ucla.edu/~leec/mediabench/applications.html
|
47 |
* SoX source code http://home.sprynet.com/~cbagwell/sox.html
|
48 |
*
|
49 |
* CD-ROM XA:
|
50 |
* http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html
|
51 |
* vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html
|
52 |
* readstr http://www.geocities.co.jp/Playtown/2004/
|
53 |
*/
|
54 |
|
55 |
#define BLKSIZE 1024 |
56 |
|
57 |
/* step_table[] and index_table[] are from the ADPCM reference source */
|
58 |
/* This is the index table: */
|
59 |
static const int index_table[16] = { |
60 |
-1, -1, -1, -1, 2, 4, 6, 8, |
61 |
-1, -1, -1, -1, 2, 4, 6, 8, |
62 |
}; |
63 |
|
64 |
/**
|
65 |
* This is the step table. Note that many programs use slight deviations from
|
66 |
* this table, but such deviations are negligible:
|
67 |
*/
|
68 |
static const int step_table[89] = { |
69 |
7, 8, 9, 10, 11, 12, 13, 14, 16, 17, |
70 |
19, 21, 23, 25, 28, 31, 34, 37, 41, 45, |
71 |
50, 55, 60, 66, 73, 80, 88, 97, 107, 118, |
72 |
130, 143, 157, 173, 190, 209, 230, 253, 279, 307, |
73 |
337, 371, 408, 449, 494, 544, 598, 658, 724, 796, |
74 |
876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066, |
75 |
2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358, |
76 |
5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899, |
77 |
15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767 |
78 |
}; |
79 |
|
80 |
/* These are for MS-ADPCM */
|
81 |
/* AdaptationTable[], AdaptCoeff1[], and AdaptCoeff2[] are from libsndfile */
|
82 |
static const int AdaptationTable[] = { |
83 |
230, 230, 230, 230, 307, 409, 512, 614, |
84 |
768, 614, 512, 409, 307, 230, 230, 230 |
85 |
}; |
86 |
|
87 |
static const int AdaptCoeff1[] = { |
88 |
256, 512, 0, 192, 240, 460, 392 |
89 |
}; |
90 |
|
91 |
static const int AdaptCoeff2[] = { |
92 |
0, -256, 0, 64, 0, -208, -232 |
93 |
}; |
94 |
|
95 |
/* These are for CD-ROM XA ADPCM */
|
96 |
static const int xa_adpcm_table[5][2] = { |
97 |
{ 0, 0 }, |
98 |
{ 60, 0 }, |
99 |
{ 115, -52 }, |
100 |
{ 98, -55 }, |
101 |
{ 122, -60 } |
102 |
}; |
103 |
|
104 |
static const int ea_adpcm_table[] = { |
105 |
0, 240, 460, 392, 0, 0, -208, -220, 0, 1, |
106 |
3, 4, 7, 8, 10, 11, 0, -1, -3, -4 |
107 |
}; |
108 |
|
109 |
static const int ct_adpcm_table[8] = { |
110 |
0x00E6, 0x00E6, 0x00E6, 0x00E6, |
111 |
0x0133, 0x0199, 0x0200, 0x0266 |
112 |
}; |
113 |
|
114 |
// padded to zero where table size is less then 16
|
115 |
static const int swf_index_tables[4][16] = { |
116 |
/*2*/ { -1, 2 }, |
117 |
/*3*/ { -1, -1, 2, 4 }, |
118 |
/*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 }, |
119 |
/*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 } |
120 |
}; |
121 |
|
122 |
static const int yamaha_indexscale[] = { |
123 |
230, 230, 230, 230, 307, 409, 512, 614, |
124 |
230, 230, 230, 230, 307, 409, 512, 614 |
125 |
}; |
126 |
|
127 |
static const int yamaha_difflookup[] = { |
128 |
1, 3, 5, 7, 9, 11, 13, 15, |
129 |
-1, -3, -5, -7, -9, -11, -13, -15 |
130 |
}; |
131 |
|
132 |
/* end of tables */
|
133 |
|
134 |
typedef struct ADPCMChannelStatus { |
135 |
int predictor;
|
136 |
short int step_index; |
137 |
int step;
|
138 |
/* for encoding */
|
139 |
int prev_sample;
|
140 |
|
141 |
/* MS version */
|
142 |
short sample1;
|
143 |
short sample2;
|
144 |
int coeff1;
|
145 |
int coeff2;
|
146 |
int idelta;
|
147 |
} ADPCMChannelStatus; |
148 |
|
149 |
typedef struct ADPCMContext { |
150 |
int channel; /* for stereo MOVs, decode left, then decode right, then tell it's decoded */ |
151 |
ADPCMChannelStatus status[6];
|
152 |
} ADPCMContext; |
153 |
|
154 |
/* XXX: implement encoding */
|
155 |
|
156 |
#ifdef CONFIG_ENCODERS
|
157 |
static int adpcm_encode_init(AVCodecContext *avctx) |
158 |
{ |
159 |
if (avctx->channels > 2) |
160 |
return -1; /* only stereo or mono =) */ |
161 |
switch(avctx->codec->id) {
|
162 |
case CODEC_ID_ADPCM_IMA_WAV:
|
163 |
avctx->frame_size = (BLKSIZE - 4 * avctx->channels) * 8 / (4 * avctx->channels) + 1; /* each 16 bits sample gives one nibble */ |
164 |
/* and we have 4 bytes per channel overhead */
|
165 |
avctx->block_align = BLKSIZE; |
166 |
/* seems frame_size isn't taken into account... have to buffer the samples :-( */
|
167 |
break;
|
168 |
case CODEC_ID_ADPCM_IMA_QT:
|
169 |
avctx->frame_size = 64;
|
170 |
avctx->block_align = 34 * avctx->channels;
|
171 |
break;
|
172 |
case CODEC_ID_ADPCM_MS:
|
173 |
avctx->frame_size = (BLKSIZE - 7 * avctx->channels) * 2 / avctx->channels + 2; /* each 16 bits sample gives one nibble */ |
174 |
/* and we have 7 bytes per channel overhead */
|
175 |
avctx->block_align = BLKSIZE; |
176 |
break;
|
177 |
case CODEC_ID_ADPCM_YAMAHA:
|
178 |
avctx->frame_size = BLKSIZE * avctx->channels; |
179 |
avctx->block_align = BLKSIZE; |
180 |
break;
|
181 |
case CODEC_ID_ADPCM_SWF:
|
182 |
if (avctx->sample_rate != 11025 && |
183 |
avctx->sample_rate != 22050 &&
|
184 |
avctx->sample_rate != 44100) {
|
185 |
av_log(avctx, AV_LOG_ERROR, "Sample rate must be 11025, 22050 or 44100\n");
|
186 |
return -1; |
187 |
} |
188 |
avctx->frame_size = 512 * (avctx->sample_rate / 11025); |
189 |
break;
|
190 |
default:
|
191 |
return -1; |
192 |
break;
|
193 |
} |
194 |
|
195 |
avctx->coded_frame= avcodec_alloc_frame(); |
196 |
avctx->coded_frame->key_frame= 1;
|
197 |
|
198 |
return 0; |
199 |
} |
200 |
|
201 |
static int adpcm_encode_close(AVCodecContext *avctx) |
202 |
{ |
203 |
av_freep(&avctx->coded_frame); |
204 |
|
205 |
return 0; |
206 |
} |
207 |
|
208 |
|
209 |
static inline unsigned char adpcm_ima_compress_sample(ADPCMChannelStatus *c, short sample) |
210 |
{ |
211 |
int delta = sample - c->prev_sample;
|
212 |
int nibble = FFMIN(7, abs(delta)*4/step_table[c->step_index]) + (delta<0)*8; |
213 |
c->prev_sample += ((step_table[c->step_index] * yamaha_difflookup[nibble]) / 8);
|
214 |
c->prev_sample = av_clip_int16(c->prev_sample); |
215 |
c->step_index = av_clip(c->step_index + index_table[nibble], 0, 88); |
216 |
return nibble;
|
217 |
} |
218 |
|
219 |
static inline unsigned char adpcm_ms_compress_sample(ADPCMChannelStatus *c, short sample) |
220 |
{ |
221 |
int predictor, nibble, bias;
|
222 |
|
223 |
predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 256;
|
224 |
|
225 |
nibble= sample - predictor; |
226 |
if(nibble>=0) bias= c->idelta/2; |
227 |
else bias=-c->idelta/2; |
228 |
|
229 |
nibble= (nibble + bias) / c->idelta; |
230 |
nibble= av_clip(nibble, -8, 7)&0x0F; |
231 |
|
232 |
predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta; |
233 |
|
234 |
c->sample2 = c->sample1; |
235 |
c->sample1 = av_clip_int16(predictor); |
236 |
|
237 |
c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8; |
238 |
if (c->idelta < 16) c->idelta = 16; |
239 |
|
240 |
return nibble;
|
241 |
} |
242 |
|
243 |
static inline unsigned char adpcm_yamaha_compress_sample(ADPCMChannelStatus *c, short sample) |
244 |
{ |
245 |
int nibble, delta;
|
246 |
|
247 |
if(!c->step) {
|
248 |
c->predictor = 0;
|
249 |
c->step = 127;
|
250 |
} |
251 |
|
252 |
delta = sample - c->predictor; |
253 |
|
254 |
nibble = FFMIN(7, abs(delta)*4/c->step) + (delta<0)*8; |
255 |
|
256 |
c->predictor += ((c->step * yamaha_difflookup[nibble]) / 8);
|
257 |
c->predictor = av_clip_int16(c->predictor); |
258 |
c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
|
259 |
c->step = av_clip(c->step, 127, 24567); |
260 |
|
261 |
return nibble;
|
262 |
} |
263 |
|
264 |
typedef struct TrellisPath { |
265 |
int nibble;
|
266 |
int prev;
|
267 |
} TrellisPath; |
268 |
|
269 |
typedef struct TrellisNode { |
270 |
uint32_t ssd; |
271 |
int path;
|
272 |
int sample1;
|
273 |
int sample2;
|
274 |
int step;
|
275 |
} TrellisNode; |
276 |
|
277 |
static void adpcm_compress_trellis(AVCodecContext *avctx, const short *samples, |
278 |
uint8_t *dst, ADPCMChannelStatus *c, int n)
|
279 |
{ |
280 |
#define FREEZE_INTERVAL 128 |
281 |
//FIXME 6% faster if frontier is a compile-time constant
|
282 |
const int frontier = 1 << avctx->trellis; |
283 |
const int stride = avctx->channels; |
284 |
const int version = avctx->codec->id; |
285 |
const int max_paths = frontier*FREEZE_INTERVAL; |
286 |
TrellisPath paths[max_paths], *p; |
287 |
TrellisNode node_buf[2][frontier];
|
288 |
TrellisNode *nodep_buf[2][frontier];
|
289 |
TrellisNode **nodes = nodep_buf[0]; // nodes[] is always sorted by .ssd |
290 |
TrellisNode **nodes_next = nodep_buf[1];
|
291 |
int pathn = 0, froze = -1, i, j, k; |
292 |
|
293 |
assert(!(max_paths&(max_paths-1)));
|
294 |
|
295 |
memset(nodep_buf, 0, sizeof(nodep_buf)); |
296 |
nodes[0] = &node_buf[1][0]; |
297 |
nodes[0]->ssd = 0; |
298 |
nodes[0]->path = 0; |
299 |
nodes[0]->step = c->step_index;
|
300 |
nodes[0]->sample1 = c->sample1;
|
301 |
nodes[0]->sample2 = c->sample2;
|
302 |
if((version == CODEC_ID_ADPCM_IMA_WAV) || (version == CODEC_ID_ADPCM_IMA_QT) || (version == CODEC_ID_ADPCM_SWF))
|
303 |
nodes[0]->sample1 = c->prev_sample;
|
304 |
if(version == CODEC_ID_ADPCM_MS)
|
305 |
nodes[0]->step = c->idelta;
|
306 |
if(version == CODEC_ID_ADPCM_YAMAHA) {
|
307 |
if(c->step == 0) { |
308 |
nodes[0]->step = 127; |
309 |
nodes[0]->sample1 = 0; |
310 |
} else {
|
311 |
nodes[0]->step = c->step;
|
312 |
nodes[0]->sample1 = c->predictor;
|
313 |
} |
314 |
} |
315 |
|
316 |
for(i=0; i<n; i++) { |
317 |
TrellisNode *t = node_buf[i&1];
|
318 |
TrellisNode **u; |
319 |
int sample = samples[i*stride];
|
320 |
memset(nodes_next, 0, frontier*sizeof(TrellisNode*)); |
321 |
for(j=0; j<frontier && nodes[j]; j++) { |
322 |
// higher j have higher ssd already, so they're unlikely to use a suboptimal next sample too
|
323 |
const int range = (j < frontier/2) ? 1 : 0; |
324 |
const int step = nodes[j]->step; |
325 |
int nidx;
|
326 |
if(version == CODEC_ID_ADPCM_MS) {
|
327 |
const int predictor = ((nodes[j]->sample1 * c->coeff1) + (nodes[j]->sample2 * c->coeff2)) / 256; |
328 |
const int div = (sample - predictor) / step; |
329 |
const int nmin = av_clip(div-range, -8, 6); |
330 |
const int nmax = av_clip(div+range, -7, 7); |
331 |
for(nidx=nmin; nidx<=nmax; nidx++) {
|
332 |
const int nibble = nidx & 0xf; |
333 |
int dec_sample = predictor + nidx * step;
|
334 |
#define STORE_NODE(NAME, STEP_INDEX)\
|
335 |
int d;\
|
336 |
uint32_t ssd;\ |
337 |
dec_sample = av_clip_int16(dec_sample);\ |
338 |
d = sample - dec_sample;\ |
339 |
ssd = nodes[j]->ssd + d*d;\ |
340 |
if(nodes_next[frontier-1] && ssd >= nodes_next[frontier-1]->ssd)\ |
341 |
continue;\
|
342 |
/* Collapse any two states with the same previous sample value. \
|
343 |
* One could also distinguish states by step and by 2nd to last
|
344 |
* sample, but the effects of that are negligible. */\
|
345 |
for(k=0; k<frontier && nodes_next[k]; k++) {\ |
346 |
if(dec_sample == nodes_next[k]->sample1) {\
|
347 |
assert(ssd >= nodes_next[k]->ssd);\ |
348 |
goto next_##NAME;\ |
349 |
}\ |
350 |
}\ |
351 |
for(k=0; k<frontier; k++) {\ |
352 |
if(!nodes_next[k] || ssd < nodes_next[k]->ssd) {\
|
353 |
TrellisNode *u = nodes_next[frontier-1];\
|
354 |
if(!u) {\
|
355 |
assert(pathn < max_paths);\ |
356 |
u = t++;\ |
357 |
u->path = pathn++;\ |
358 |
}\ |
359 |
u->ssd = ssd;\ |
360 |
u->step = STEP_INDEX;\ |
361 |
u->sample2 = nodes[j]->sample1;\ |
362 |
u->sample1 = dec_sample;\ |
363 |
paths[u->path].nibble = nibble;\ |
364 |
paths[u->path].prev = nodes[j]->path;\ |
365 |
memmove(&nodes_next[k+1], &nodes_next[k], (frontier-k-1)*sizeof(TrellisNode*));\ |
366 |
nodes_next[k] = u;\ |
367 |
break;\
|
368 |
}\ |
369 |
}\ |
370 |
next_##NAME:; |
371 |
STORE_NODE(ms, FFMAX(16, (AdaptationTable[nibble] * step) >> 8)); |
372 |
} |
373 |
} else if((version == CODEC_ID_ADPCM_IMA_WAV)|| (version == CODEC_ID_ADPCM_IMA_QT)|| (version == CODEC_ID_ADPCM_SWF)) { |
374 |
#define LOOP_NODES(NAME, STEP_TABLE, STEP_INDEX)\
|
375 |
const int predictor = nodes[j]->sample1;\ |
376 |
const int div = (sample - predictor) * 4 / STEP_TABLE;\ |
377 |
int nmin = av_clip(div-range, -7, 6);\ |
378 |
int nmax = av_clip(div+range, -6, 7);\ |
379 |
if(nmin<=0) nmin--; /* distinguish -0 from +0 */\ |
380 |
if(nmax<0) nmax--;\ |
381 |
for(nidx=nmin; nidx<=nmax; nidx++) {\
|
382 |
const int nibble = nidx<0 ? 7-nidx : nidx;\ |
383 |
int dec_sample = predictor + (STEP_TABLE * yamaha_difflookup[nibble]) / 8;\ |
384 |
STORE_NODE(NAME, STEP_INDEX);\ |
385 |
} |
386 |
LOOP_NODES(ima, step_table[step], av_clip(step + index_table[nibble], 0, 88)); |
387 |
} else { //CODEC_ID_ADPCM_YAMAHA |
388 |
LOOP_NODES(yamaha, step, av_clip((step * yamaha_indexscale[nibble]) >> 8, 127, 24567)); |
389 |
#undef LOOP_NODES
|
390 |
#undef STORE_NODE
|
391 |
} |
392 |
} |
393 |
|
394 |
u = nodes; |
395 |
nodes = nodes_next; |
396 |
nodes_next = u; |
397 |
|
398 |
// prevent overflow
|
399 |
if(nodes[0]->ssd > (1<<28)) { |
400 |
for(j=1; j<frontier && nodes[j]; j++) |
401 |
nodes[j]->ssd -= nodes[0]->ssd;
|
402 |
nodes[0]->ssd = 0; |
403 |
} |
404 |
|
405 |
// merge old paths to save memory
|
406 |
if(i == froze + FREEZE_INTERVAL) {
|
407 |
p = &paths[nodes[0]->path];
|
408 |
for(k=i; k>froze; k--) {
|
409 |
dst[k] = p->nibble; |
410 |
p = &paths[p->prev]; |
411 |
} |
412 |
froze = i; |
413 |
pathn = 0;
|
414 |
// other nodes might use paths that don't coincide with the frozen one.
|
415 |
// checking which nodes do so is too slow, so just kill them all.
|
416 |
// this also slightly improves quality, but I don't know why.
|
417 |
memset(nodes+1, 0, (frontier-1)*sizeof(TrellisNode*)); |
418 |
} |
419 |
} |
420 |
|
421 |
p = &paths[nodes[0]->path];
|
422 |
for(i=n-1; i>froze; i--) { |
423 |
dst[i] = p->nibble; |
424 |
p = &paths[p->prev]; |
425 |
} |
426 |
|
427 |
c->predictor = nodes[0]->sample1;
|
428 |
c->sample1 = nodes[0]->sample1;
|
429 |
c->sample2 = nodes[0]->sample2;
|
430 |
c->step_index = nodes[0]->step;
|
431 |
c->step = nodes[0]->step;
|
432 |
c->idelta = nodes[0]->step;
|
433 |
} |
434 |
|
435 |
static int adpcm_encode_frame(AVCodecContext *avctx, |
436 |
unsigned char *frame, int buf_size, void *data) |
437 |
{ |
438 |
int n, i, st;
|
439 |
short *samples;
|
440 |
unsigned char *dst; |
441 |
ADPCMContext *c = avctx->priv_data; |
442 |
|
443 |
dst = frame; |
444 |
samples = (short *)data;
|
445 |
st= avctx->channels == 2;
|
446 |
/* n = (BLKSIZE - 4 * avctx->channels) / (2 * 8 * avctx->channels); */
|
447 |
|
448 |
switch(avctx->codec->id) {
|
449 |
case CODEC_ID_ADPCM_IMA_WAV:
|
450 |
n = avctx->frame_size / 8;
|
451 |
c->status[0].prev_sample = (signed short)samples[0]; /* XXX */ |
452 |
/* c->status[0].step_index = 0; *//* XXX: not sure how to init the state machine */ |
453 |
bytestream_put_le16(&dst, c->status[0].prev_sample);
|
454 |
*dst++ = (unsigned char)c->status[0].step_index; |
455 |
*dst++ = 0; /* unknown */ |
456 |
samples++; |
457 |
if (avctx->channels == 2) { |
458 |
c->status[1].prev_sample = (signed short)samples[0]; |
459 |
/* c->status[1].step_index = 0; */
|
460 |
bytestream_put_le16(&dst, c->status[1].prev_sample);
|
461 |
*dst++ = (unsigned char)c->status[1].step_index; |
462 |
*dst++ = 0;
|
463 |
samples++; |
464 |
} |
465 |
|
466 |
/* stereo: 4 bytes (8 samples) for left, 4 bytes for right, 4 bytes left, ... */
|
467 |
if(avctx->trellis > 0) { |
468 |
uint8_t buf[2][n*8]; |
469 |
adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n*8); |
470 |
if(avctx->channels == 2) |
471 |
adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n*8); |
472 |
for(i=0; i<n; i++) { |
473 |
*dst++ = buf[0][8*i+0] | (buf[0][8*i+1] << 4); |
474 |
*dst++ = buf[0][8*i+2] | (buf[0][8*i+3] << 4); |
475 |
*dst++ = buf[0][8*i+4] | (buf[0][8*i+5] << 4); |
476 |
*dst++ = buf[0][8*i+6] | (buf[0][8*i+7] << 4); |
477 |
if (avctx->channels == 2) { |
478 |
*dst++ = buf[1][8*i+0] | (buf[1][8*i+1] << 4); |
479 |
*dst++ = buf[1][8*i+2] | (buf[1][8*i+3] << 4); |
480 |
*dst++ = buf[1][8*i+4] | (buf[1][8*i+5] << 4); |
481 |
*dst++ = buf[1][8*i+6] | (buf[1][8*i+7] << 4); |
482 |
} |
483 |
} |
484 |
} else
|
485 |
for (; n>0; n--) { |
486 |
*dst = adpcm_ima_compress_sample(&c->status[0], samples[0]); |
487 |
*dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels]) << 4; |
488 |
dst++; |
489 |
*dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 2]); |
490 |
*dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 3]) << 4; |
491 |
dst++; |
492 |
*dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 4]); |
493 |
*dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 5]) << 4; |
494 |
dst++; |
495 |
*dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 6]); |
496 |
*dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 7]) << 4; |
497 |
dst++; |
498 |
/* right channel */
|
499 |
if (avctx->channels == 2) { |
500 |
*dst = adpcm_ima_compress_sample(&c->status[1], samples[1]); |
501 |
*dst |= adpcm_ima_compress_sample(&c->status[1], samples[3]) << 4; |
502 |
dst++; |
503 |
*dst = adpcm_ima_compress_sample(&c->status[1], samples[5]); |
504 |
*dst |= adpcm_ima_compress_sample(&c->status[1], samples[7]) << 4; |
505 |
dst++; |
506 |
*dst = adpcm_ima_compress_sample(&c->status[1], samples[9]); |
507 |
*dst |= adpcm_ima_compress_sample(&c->status[1], samples[11]) << 4; |
508 |
dst++; |
509 |
*dst = adpcm_ima_compress_sample(&c->status[1], samples[13]); |
510 |
*dst |= adpcm_ima_compress_sample(&c->status[1], samples[15]) << 4; |
511 |
dst++; |
512 |
} |
513 |
samples += 8 * avctx->channels;
|
514 |
} |
515 |
break;
|
516 |
case CODEC_ID_ADPCM_IMA_QT:
|
517 |
{ |
518 |
int ch, i;
|
519 |
PutBitContext pb; |
520 |
init_put_bits(&pb, dst, buf_size*8);
|
521 |
|
522 |
for(ch=0; ch<avctx->channels; ch++){ |
523 |
put_bits(&pb, 9, (c->status[ch].prev_sample + 0x10000) >> 7); |
524 |
put_bits(&pb, 7, c->status[ch].step_index);
|
525 |
if(avctx->trellis > 0) { |
526 |
uint8_t buf[64];
|
527 |
adpcm_compress_trellis(avctx, samples+ch, buf, &c->status[ch], 64);
|
528 |
for(i=0; i<64; i++) |
529 |
put_bits(&pb, 4, buf[i^1]); |
530 |
c->status[ch].prev_sample = c->status[ch].predictor & ~0x7F;
|
531 |
} else {
|
532 |
for (i=0; i<64; i+=2){ |
533 |
int t1, t2;
|
534 |
t1 = adpcm_ima_compress_sample(&c->status[ch], samples[avctx->channels*(i+0)+ch]);
|
535 |
t2 = adpcm_ima_compress_sample(&c->status[ch], samples[avctx->channels*(i+1)+ch]);
|
536 |
put_bits(&pb, 4, t2);
|
537 |
put_bits(&pb, 4, t1);
|
538 |
} |
539 |
c->status[ch].prev_sample &= ~0x7F;
|
540 |
} |
541 |
} |
542 |
|
543 |
dst += put_bits_count(&pb)>>3;
|
544 |
break;
|
545 |
} |
546 |
case CODEC_ID_ADPCM_SWF:
|
547 |
{ |
548 |
int i;
|
549 |
PutBitContext pb; |
550 |
init_put_bits(&pb, dst, buf_size*8);
|
551 |
|
552 |
n = avctx->frame_size-1;
|
553 |
|
554 |
//Store AdpcmCodeSize
|
555 |
put_bits(&pb, 2, 2); //Set 4bits flash adpcm format |
556 |
|
557 |
//Init the encoder state
|
558 |
for(i=0; i<avctx->channels; i++){ |
559 |
c->status[i].step_index = av_clip(c->status[i].step_index, 0, 63); // clip step so it fits 6 bits |
560 |
put_bits(&pb, 16, samples[i] & 0xFFFF); |
561 |
put_bits(&pb, 6, c->status[i].step_index);
|
562 |
c->status[i].prev_sample = (signed short)samples[i]; |
563 |
} |
564 |
|
565 |
if(avctx->trellis > 0) { |
566 |
uint8_t buf[2][n];
|
567 |
adpcm_compress_trellis(avctx, samples+2, buf[0], &c->status[0], n); |
568 |
if (avctx->channels == 2) |
569 |
adpcm_compress_trellis(avctx, samples+3, buf[1], &c->status[1], n); |
570 |
for(i=0; i<n; i++) { |
571 |
put_bits(&pb, 4, buf[0][i]); |
572 |
if (avctx->channels == 2) |
573 |
put_bits(&pb, 4, buf[1][i]); |
574 |
} |
575 |
} else {
|
576 |
for (i=1; i<avctx->frame_size; i++) { |
577 |
put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels*i])); |
578 |
if (avctx->channels == 2) |
579 |
put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[1], samples[2*i+1])); |
580 |
} |
581 |
} |
582 |
flush_put_bits(&pb); |
583 |
dst += put_bits_count(&pb)>>3;
|
584 |
break;
|
585 |
} |
586 |
case CODEC_ID_ADPCM_MS:
|
587 |
for(i=0; i<avctx->channels; i++){ |
588 |
int predictor=0; |
589 |
|
590 |
*dst++ = predictor; |
591 |
c->status[i].coeff1 = AdaptCoeff1[predictor]; |
592 |
c->status[i].coeff2 = AdaptCoeff2[predictor]; |
593 |
} |
594 |
for(i=0; i<avctx->channels; i++){ |
595 |
if (c->status[i].idelta < 16) |
596 |
c->status[i].idelta = 16;
|
597 |
|
598 |
bytestream_put_le16(&dst, c->status[i].idelta); |
599 |
} |
600 |
for(i=0; i<avctx->channels; i++){ |
601 |
c->status[i].sample1= *samples++; |
602 |
|
603 |
bytestream_put_le16(&dst, c->status[i].sample1); |
604 |
} |
605 |
for(i=0; i<avctx->channels; i++){ |
606 |
c->status[i].sample2= *samples++; |
607 |
|
608 |
bytestream_put_le16(&dst, c->status[i].sample2); |
609 |
} |
610 |
|
611 |
if(avctx->trellis > 0) { |
612 |
int n = avctx->block_align - 7*avctx->channels; |
613 |
uint8_t buf[2][n];
|
614 |
if(avctx->channels == 1) { |
615 |
n *= 2;
|
616 |
adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n); |
617 |
for(i=0; i<n; i+=2) |
618 |
*dst++ = (buf[0][i] << 4) | buf[0][i+1]; |
619 |
} else {
|
620 |
adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n); |
621 |
adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n); |
622 |
for(i=0; i<n; i++) |
623 |
*dst++ = (buf[0][i] << 4) | buf[1][i]; |
624 |
} |
625 |
} else
|
626 |
for(i=7*avctx->channels; i<avctx->block_align; i++) { |
627 |
int nibble;
|
628 |
nibble = adpcm_ms_compress_sample(&c->status[ 0], *samples++)<<4; |
629 |
nibble|= adpcm_ms_compress_sample(&c->status[st], *samples++); |
630 |
*dst++ = nibble; |
631 |
} |
632 |
break;
|
633 |
case CODEC_ID_ADPCM_YAMAHA:
|
634 |
n = avctx->frame_size / 2;
|
635 |
if(avctx->trellis > 0) { |
636 |
uint8_t buf[2][n*2]; |
637 |
n *= 2;
|
638 |
if(avctx->channels == 1) { |
639 |
adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n); |
640 |
for(i=0; i<n; i+=2) |
641 |
*dst++ = buf[0][i] | (buf[0][i+1] << 4); |
642 |
} else {
|
643 |
adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n); |
644 |
adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n); |
645 |
for(i=0; i<n; i++) |
646 |
*dst++ = buf[0][i] | (buf[1][i] << 4); |
647 |
} |
648 |
} else
|
649 |
for (; n>0; n--) { |
650 |
for(i = 0; i < avctx->channels; i++) { |
651 |
int nibble;
|
652 |
nibble = adpcm_yamaha_compress_sample(&c->status[i], samples[i]); |
653 |
nibble |= adpcm_yamaha_compress_sample(&c->status[i], samples[i+avctx->channels]) << 4;
|
654 |
*dst++ = nibble; |
655 |
} |
656 |
samples += 2 * avctx->channels;
|
657 |
} |
658 |
break;
|
659 |
default:
|
660 |
return -1; |
661 |
} |
662 |
return dst - frame;
|
663 |
} |
664 |
#endif //CONFIG_ENCODERS |
665 |
|
666 |
static av_cold int adpcm_decode_init(AVCodecContext * avctx) |
667 |
{ |
668 |
ADPCMContext *c = avctx->priv_data; |
669 |
unsigned int max_channels = 2; |
670 |
|
671 |
switch(avctx->codec->id) {
|
672 |
case CODEC_ID_ADPCM_EA_R1:
|
673 |
case CODEC_ID_ADPCM_EA_R2:
|
674 |
case CODEC_ID_ADPCM_EA_R3:
|
675 |
max_channels = 6;
|
676 |
break;
|
677 |
} |
678 |
if(avctx->channels > max_channels){
|
679 |
return -1; |
680 |
} |
681 |
|
682 |
switch(avctx->codec->id) {
|
683 |
case CODEC_ID_ADPCM_CT:
|
684 |
c->status[0].step = c->status[1].step = 511; |
685 |
break;
|
686 |
case CODEC_ID_ADPCM_IMA_WS:
|
687 |
if (avctx->extradata && avctx->extradata_size == 2 * 4) { |
688 |
c->status[0].predictor = AV_RL32(avctx->extradata);
|
689 |
c->status[1].predictor = AV_RL32(avctx->extradata + 4); |
690 |
} |
691 |
break;
|
692 |
default:
|
693 |
break;
|
694 |
} |
695 |
return 0; |
696 |
} |
697 |
|
698 |
static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift) |
699 |
{ |
700 |
int step_index;
|
701 |
int predictor;
|
702 |
int sign, delta, diff, step;
|
703 |
|
704 |
step = step_table[c->step_index]; |
705 |
step_index = c->step_index + index_table[(unsigned)nibble];
|
706 |
if (step_index < 0) step_index = 0; |
707 |
else if (step_index > 88) step_index = 88; |
708 |
|
709 |
sign = nibble & 8;
|
710 |
delta = nibble & 7;
|
711 |
/* perform direct multiplication instead of series of jumps proposed by
|
712 |
* the reference ADPCM implementation since modern CPUs can do the mults
|
713 |
* quickly enough */
|
714 |
diff = ((2 * delta + 1) * step) >> shift; |
715 |
predictor = c->predictor; |
716 |
if (sign) predictor -= diff;
|
717 |
else predictor += diff;
|
718 |
|
719 |
c->predictor = av_clip_int16(predictor); |
720 |
c->step_index = step_index; |
721 |
|
722 |
return (short)c->predictor; |
723 |
} |
724 |
|
725 |
static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, char nibble) |
726 |
{ |
727 |
int predictor;
|
728 |
|
729 |
predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 256;
|
730 |
predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta; |
731 |
|
732 |
c->sample2 = c->sample1; |
733 |
c->sample1 = av_clip_int16(predictor); |
734 |
c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8; |
735 |
if (c->idelta < 16) c->idelta = 16; |
736 |
|
737 |
return c->sample1;
|
738 |
} |
739 |
|
740 |
static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble) |
741 |
{ |
742 |
int sign, delta, diff;
|
743 |
int new_step;
|
744 |
|
745 |
sign = nibble & 8;
|
746 |
delta = nibble & 7;
|
747 |
/* perform direct multiplication instead of series of jumps proposed by
|
748 |
* the reference ADPCM implementation since modern CPUs can do the mults
|
749 |
* quickly enough */
|
750 |
diff = ((2 * delta + 1) * c->step) >> 3; |
751 |
/* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
|
752 |
c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff); |
753 |
c->predictor = av_clip_int16(c->predictor); |
754 |
/* calculate new step and clamp it to range 511..32767 */
|
755 |
new_step = (ct_adpcm_table[nibble & 7] * c->step) >> 8; |
756 |
c->step = av_clip(new_step, 511, 32767); |
757 |
|
758 |
return (short)c->predictor; |
759 |
} |
760 |
|
761 |
static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift) |
762 |
{ |
763 |
int sign, delta, diff;
|
764 |
|
765 |
sign = nibble & (1<<(size-1)); |
766 |
delta = nibble & ((1<<(size-1))-1); |
767 |
diff = delta << (7 + c->step + shift);
|
768 |
|
769 |
/* clamp result */
|
770 |
c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256); |
771 |
|
772 |
/* calculate new step */
|
773 |
if (delta >= (2*size - 3) && c->step < 3) |
774 |
c->step++; |
775 |
else if (delta == 0 && c->step > 0) |
776 |
c->step--; |
777 |
|
778 |
return (short) c->predictor; |
779 |
} |
780 |
|
781 |
static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble) |
782 |
{ |
783 |
if(!c->step) {
|
784 |
c->predictor = 0;
|
785 |
c->step = 127;
|
786 |
} |
787 |
|
788 |
c->predictor += (c->step * yamaha_difflookup[nibble]) / 8;
|
789 |
c->predictor = av_clip_int16(c->predictor); |
790 |
c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
|
791 |
c->step = av_clip(c->step, 127, 24567); |
792 |
return c->predictor;
|
793 |
} |
794 |
|
795 |
static void xa_decode(short *out, const unsigned char *in, |
796 |
ADPCMChannelStatus *left, ADPCMChannelStatus *right, int inc)
|
797 |
{ |
798 |
int i, j;
|
799 |
int shift,filter,f0,f1;
|
800 |
int s_1,s_2;
|
801 |
int d,s,t;
|
802 |
|
803 |
for(i=0;i<4;i++) { |
804 |
|
805 |
shift = 12 - (in[4+i*2] & 15); |
806 |
filter = in[4+i*2] >> 4; |
807 |
f0 = xa_adpcm_table[filter][0];
|
808 |
f1 = xa_adpcm_table[filter][1];
|
809 |
|
810 |
s_1 = left->sample1; |
811 |
s_2 = left->sample2; |
812 |
|
813 |
for(j=0;j<28;j++) { |
814 |
d = in[16+i+j*4]; |
815 |
|
816 |
t = (signed char)(d<<4)>>4; |
817 |
s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6); |
818 |
s_2 = s_1; |
819 |
s_1 = av_clip_int16(s); |
820 |
*out = s_1; |
821 |
out += inc; |
822 |
} |
823 |
|
824 |
if (inc==2) { /* stereo */ |
825 |
left->sample1 = s_1; |
826 |
left->sample2 = s_2; |
827 |
s_1 = right->sample1; |
828 |
s_2 = right->sample2; |
829 |
out = out + 1 - 28*2; |
830 |
} |
831 |
|
832 |
shift = 12 - (in[5+i*2] & 15); |
833 |
filter = in[5+i*2] >> 4; |
834 |
|
835 |
f0 = xa_adpcm_table[filter][0];
|
836 |
f1 = xa_adpcm_table[filter][1];
|
837 |
|
838 |
for(j=0;j<28;j++) { |
839 |
d = in[16+i+j*4]; |
840 |
|
841 |
t = (signed char)d >> 4; |
842 |
s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6); |
843 |
s_2 = s_1; |
844 |
s_1 = av_clip_int16(s); |
845 |
*out = s_1; |
846 |
out += inc; |
847 |
} |
848 |
|
849 |
if (inc==2) { /* stereo */ |
850 |
right->sample1 = s_1; |
851 |
right->sample2 = s_2; |
852 |
out -= 1;
|
853 |
} else {
|
854 |
left->sample1 = s_1; |
855 |
left->sample2 = s_2; |
856 |
} |
857 |
} |
858 |
} |
859 |
|
860 |
|
861 |
/* DK3 ADPCM support macro */
|
862 |
#define DK3_GET_NEXT_NIBBLE() \
|
863 |
if (decode_top_nibble_next) \
|
864 |
{ \ |
865 |
nibble = last_byte >> 4; \
|
866 |
decode_top_nibble_next = 0; \
|
867 |
} \ |
868 |
else \
|
869 |
{ \ |
870 |
last_byte = *src++; \ |
871 |
if (src >= buf + buf_size) break; \ |
872 |
nibble = last_byte & 0x0F; \
|
873 |
decode_top_nibble_next = 1; \
|
874 |
} |
875 |
|
876 |
static int adpcm_decode_frame(AVCodecContext *avctx, |
877 |
void *data, int *data_size, |
878 |
const uint8_t *buf, int buf_size) |
879 |
{ |
880 |
ADPCMContext *c = avctx->priv_data; |
881 |
ADPCMChannelStatus *cs; |
882 |
int n, m, channel, i;
|
883 |
int block_predictor[2]; |
884 |
short *samples;
|
885 |
short *samples_end;
|
886 |
const uint8_t *src;
|
887 |
int st; /* stereo */ |
888 |
|
889 |
/* DK3 ADPCM accounting variables */
|
890 |
unsigned char last_byte = 0; |
891 |
unsigned char nibble; |
892 |
int decode_top_nibble_next = 0; |
893 |
int diff_channel;
|
894 |
|
895 |
/* EA ADPCM state variables */
|
896 |
uint32_t samples_in_chunk; |
897 |
int32_t previous_left_sample, previous_right_sample; |
898 |
int32_t current_left_sample, current_right_sample; |
899 |
int32_t next_left_sample, next_right_sample; |
900 |
int32_t coeff1l, coeff2l, coeff1r, coeff2r; |
901 |
uint8_t shift_left, shift_right; |
902 |
int count1, count2;
|
903 |
|
904 |
if (!buf_size)
|
905 |
return 0; |
906 |
|
907 |
//should protect all 4bit ADPCM variants
|
908 |
//8 is needed for CODEC_ID_ADPCM_IMA_WAV with 2 channels
|
909 |
//
|
910 |
if(*data_size/4 < buf_size + 8) |
911 |
return -1; |
912 |
|
913 |
samples = data; |
914 |
samples_end= samples + *data_size/2;
|
915 |
*data_size= 0;
|
916 |
src = buf; |
917 |
|
918 |
st = avctx->channels == 2 ? 1 : 0; |
919 |
|
920 |
switch(avctx->codec->id) {
|
921 |
case CODEC_ID_ADPCM_IMA_QT:
|
922 |
n = (buf_size - 2);/* >> 2*avctx->channels;*/ |
923 |
channel = c->channel; |
924 |
cs = &(c->status[channel]); |
925 |
/* (pppppp) (piiiiiii) */
|
926 |
|
927 |
/* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
|
928 |
cs->predictor = (*src++) << 8;
|
929 |
cs->predictor |= (*src & 0x80);
|
930 |
cs->predictor &= 0xFF80;
|
931 |
|
932 |
/* sign extension */
|
933 |
if(cs->predictor & 0x8000) |
934 |
cs->predictor -= 0x10000;
|
935 |
|
936 |
cs->predictor = av_clip_int16(cs->predictor); |
937 |
|
938 |
cs->step_index = (*src++) & 0x7F;
|
939 |
|
940 |
if (cs->step_index > 88){ |
941 |
av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
|
942 |
cs->step_index = 88;
|
943 |
} |
944 |
|
945 |
cs->step = step_table[cs->step_index]; |
946 |
|
947 |
if (st && channel)
|
948 |
samples++; |
949 |
|
950 |
for(m=32; n>0 && m>0; n--, m--) { /* in QuickTime, IMA is encoded by chuncks of 34 bytes (=64 samples) */ |
951 |
*samples = adpcm_ima_expand_nibble(cs, src[0] & 0x0F, 3); |
952 |
samples += avctx->channels; |
953 |
*samples = adpcm_ima_expand_nibble(cs, src[0] >> 4 , 3); |
954 |
samples += avctx->channels; |
955 |
src ++; |
956 |
} |
957 |
|
958 |
if(st) { /* handle stereo interlacing */ |
959 |
c->channel = (channel + 1) % 2; /* we get one packet for left, then one for right data */ |
960 |
if(channel == 1) { /* wait for the other packet before outputing anything */ |
961 |
return src - buf;
|
962 |
} |
963 |
} |
964 |
break;
|
965 |
case CODEC_ID_ADPCM_IMA_WAV:
|
966 |
if (avctx->block_align != 0 && buf_size > avctx->block_align) |
967 |
buf_size = avctx->block_align; |
968 |
|
969 |
// samples_per_block= (block_align-4*chanels)*8 / (bits_per_sample * chanels) + 1;
|
970 |
|
971 |
for(i=0; i<avctx->channels; i++){ |
972 |
cs = &(c->status[i]); |
973 |
cs->predictor = *samples++ = (int16_t)(src[0] + (src[1]<<8)); |
974 |
src+=2;
|
975 |
|
976 |
cs->step_index = *src++; |
977 |
if (cs->step_index > 88){ |
978 |
av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
|
979 |
cs->step_index = 88;
|
980 |
} |
981 |
if (*src++) av_log(avctx, AV_LOG_ERROR, "unused byte should be null but is %d!!\n", src[-1]); /* unused */ |
982 |
} |
983 |
|
984 |
while(src < buf + buf_size){
|
985 |
for(m=0; m<4; m++){ |
986 |
for(i=0; i<=st; i++) |
987 |
*samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] & 0x0F, 3); |
988 |
for(i=0; i<=st; i++) |
989 |
*samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] >> 4 , 3); |
990 |
src++; |
991 |
} |
992 |
src += 4*st;
|
993 |
} |
994 |
break;
|
995 |
case CODEC_ID_ADPCM_4XM:
|
996 |
cs = &(c->status[0]);
|
997 |
c->status[0].predictor= (int16_t)(src[0] + (src[1]<<8)); src+=2; |
998 |
if(st){
|
999 |
c->status[1].predictor= (int16_t)(src[0] + (src[1]<<8)); src+=2; |
1000 |
} |
1001 |
c->status[0].step_index= (int16_t)(src[0] + (src[1]<<8)); src+=2; |
1002 |
if(st){
|
1003 |
c->status[1].step_index= (int16_t)(src[0] + (src[1]<<8)); src+=2; |
1004 |
} |
1005 |
if (cs->step_index < 0) cs->step_index = 0; |
1006 |
if (cs->step_index > 88) cs->step_index = 88; |
1007 |
|
1008 |
m= (buf_size - (src - buf))>>st; |
1009 |
for(i=0; i<m; i++) { |
1010 |
*samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] & 0x0F, 4); |
1011 |
if (st)
|
1012 |
*samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] & 0x0F, 4); |
1013 |
*samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] >> 4, 4); |
1014 |
if (st)
|
1015 |
*samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] >> 4, 4); |
1016 |
} |
1017 |
|
1018 |
src += m<<st; |
1019 |
|
1020 |
break;
|
1021 |
case CODEC_ID_ADPCM_MS:
|
1022 |
if (avctx->block_align != 0 && buf_size > avctx->block_align) |
1023 |
buf_size = avctx->block_align; |
1024 |
n = buf_size - 7 * avctx->channels;
|
1025 |
if (n < 0) |
1026 |
return -1; |
1027 |
block_predictor[0] = av_clip(*src++, 0, 7); |
1028 |
block_predictor[1] = 0; |
1029 |
if (st)
|
1030 |
block_predictor[1] = av_clip(*src++, 0, 7); |
1031 |
c->status[0].idelta = (int16_t)((*src & 0xFF) | ((src[1] << 8) & 0xFF00)); |
1032 |
src+=2;
|
1033 |
if (st){
|
1034 |
c->status[1].idelta = (int16_t)((*src & 0xFF) | ((src[1] << 8) & 0xFF00)); |
1035 |
src+=2;
|
1036 |
} |
1037 |
c->status[0].coeff1 = AdaptCoeff1[block_predictor[0]]; |
1038 |
c->status[0].coeff2 = AdaptCoeff2[block_predictor[0]]; |
1039 |
c->status[1].coeff1 = AdaptCoeff1[block_predictor[1]]; |
1040 |
c->status[1].coeff2 = AdaptCoeff2[block_predictor[1]]; |
1041 |
|
1042 |
c->status[0].sample1 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00)); |
1043 |
src+=2;
|
1044 |
if (st) c->status[1].sample1 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00)); |
1045 |
if (st) src+=2; |
1046 |
c->status[0].sample2 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00)); |
1047 |
src+=2;
|
1048 |
if (st) c->status[1].sample2 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00)); |
1049 |
if (st) src+=2; |
1050 |
|
1051 |
*samples++ = c->status[0].sample1;
|
1052 |
if (st) *samples++ = c->status[1].sample1; |
1053 |
*samples++ = c->status[0].sample2;
|
1054 |
if (st) *samples++ = c->status[1].sample2; |
1055 |
for(;n>0;n--) { |
1056 |
*samples++ = adpcm_ms_expand_nibble(&c->status[0 ], src[0] >> 4 ); |
1057 |
*samples++ = adpcm_ms_expand_nibble(&c->status[st], src[0] & 0x0F); |
1058 |
src ++; |
1059 |
} |
1060 |
break;
|
1061 |
case CODEC_ID_ADPCM_IMA_DK4:
|
1062 |
if (avctx->block_align != 0 && buf_size > avctx->block_align) |
1063 |
buf_size = avctx->block_align; |
1064 |
|
1065 |
c->status[0].predictor = (int16_t)(src[0] | (src[1] << 8)); |
1066 |
c->status[0].step_index = src[2]; |
1067 |
src += 4;
|
1068 |
*samples++ = c->status[0].predictor;
|
1069 |
if (st) {
|
1070 |
c->status[1].predictor = (int16_t)(src[0] | (src[1] << 8)); |
1071 |
c->status[1].step_index = src[2]; |
1072 |
src += 4;
|
1073 |
*samples++ = c->status[1].predictor;
|
1074 |
} |
1075 |
while (src < buf + buf_size) {
|
1076 |
|
1077 |
/* take care of the top nibble (always left or mono channel) */
|
1078 |
*samples++ = adpcm_ima_expand_nibble(&c->status[0],
|
1079 |
src[0] >> 4, 3); |
1080 |
|
1081 |
/* take care of the bottom nibble, which is right sample for
|
1082 |
* stereo, or another mono sample */
|
1083 |
if (st)
|
1084 |
*samples++ = adpcm_ima_expand_nibble(&c->status[1],
|
1085 |
src[0] & 0x0F, 3); |
1086 |
else
|
1087 |
*samples++ = adpcm_ima_expand_nibble(&c->status[0],
|
1088 |
src[0] & 0x0F, 3); |
1089 |
|
1090 |
src++; |
1091 |
} |
1092 |
break;
|
1093 |
case CODEC_ID_ADPCM_IMA_DK3:
|
1094 |
if (avctx->block_align != 0 && buf_size > avctx->block_align) |
1095 |
buf_size = avctx->block_align; |
1096 |
|
1097 |
if(buf_size + 16 > (samples_end - samples)*3/8) |
1098 |
return -1; |
1099 |
|
1100 |
c->status[0].predictor = (int16_t)(src[10] | (src[11] << 8)); |
1101 |
c->status[1].predictor = (int16_t)(src[12] | (src[13] << 8)); |
1102 |
c->status[0].step_index = src[14]; |
1103 |
c->status[1].step_index = src[15]; |
1104 |
/* sign extend the predictors */
|
1105 |
src += 16;
|
1106 |
diff_channel = c->status[1].predictor;
|
1107 |
|
1108 |
/* the DK3_GET_NEXT_NIBBLE macro issues the break statement when
|
1109 |
* the buffer is consumed */
|
1110 |
while (1) { |
1111 |
|
1112 |
/* for this algorithm, c->status[0] is the sum channel and
|
1113 |
* c->status[1] is the diff channel */
|
1114 |
|
1115 |
/* process the first predictor of the sum channel */
|
1116 |
DK3_GET_NEXT_NIBBLE(); |
1117 |
adpcm_ima_expand_nibble(&c->status[0], nibble, 3); |
1118 |
|
1119 |
/* process the diff channel predictor */
|
1120 |
DK3_GET_NEXT_NIBBLE(); |
1121 |
adpcm_ima_expand_nibble(&c->status[1], nibble, 3); |
1122 |
|
1123 |
/* process the first pair of stereo PCM samples */
|
1124 |
diff_channel = (diff_channel + c->status[1].predictor) / 2; |
1125 |
*samples++ = c->status[0].predictor + c->status[1].predictor; |
1126 |
*samples++ = c->status[0].predictor - c->status[1].predictor; |
1127 |
|
1128 |
/* process the second predictor of the sum channel */
|
1129 |
DK3_GET_NEXT_NIBBLE(); |
1130 |
adpcm_ima_expand_nibble(&c->status[0], nibble, 3); |
1131 |
|
1132 |
/* process the second pair of stereo PCM samples */
|
1133 |
diff_channel = (diff_channel + c->status[1].predictor) / 2; |
1134 |
*samples++ = c->status[0].predictor + c->status[1].predictor; |
1135 |
*samples++ = c->status[0].predictor - c->status[1].predictor; |
1136 |
} |
1137 |
break;
|
1138 |
case CODEC_ID_ADPCM_IMA_WS:
|
1139 |
/* no per-block initialization; just start decoding the data */
|
1140 |
while (src < buf + buf_size) {
|
1141 |
|
1142 |
if (st) {
|
1143 |
*samples++ = adpcm_ima_expand_nibble(&c->status[0],
|
1144 |
src[0] >> 4 , 3); |
1145 |
*samples++ = adpcm_ima_expand_nibble(&c->status[1],
|
1146 |
src[0] & 0x0F, 3); |
1147 |
} else {
|
1148 |
*samples++ = adpcm_ima_expand_nibble(&c->status[0],
|
1149 |
src[0] >> 4 , 3); |
1150 |
*samples++ = adpcm_ima_expand_nibble(&c->status[0],
|
1151 |
src[0] & 0x0F, 3); |
1152 |
} |
1153 |
|
1154 |
src++; |
1155 |
} |
1156 |
break;
|
1157 |
case CODEC_ID_ADPCM_XA:
|
1158 |
while (buf_size >= 128) { |
1159 |
xa_decode(samples, src, &c->status[0], &c->status[1], |
1160 |
avctx->channels); |
1161 |
src += 128;
|
1162 |
samples += 28 * 8; |
1163 |
buf_size -= 128;
|
1164 |
} |
1165 |
break;
|
1166 |
case CODEC_ID_ADPCM_IMA_EA_EACS:
|
1167 |
samples_in_chunk = bytestream_get_le32(&src) >> (1-st);
|
1168 |
|
1169 |
if (samples_in_chunk > buf_size-4-(8<<st)) { |
1170 |
src += buf_size - 4;
|
1171 |
break;
|
1172 |
} |
1173 |
|
1174 |
for (i=0; i<=st; i++) |
1175 |
c->status[i].step_index = bytestream_get_le32(&src); |
1176 |
for (i=0; i<=st; i++) |
1177 |
c->status[i].predictor = bytestream_get_le32(&src); |
1178 |
|
1179 |
for (; samples_in_chunk; samples_in_chunk--, src++) {
|
1180 |
*samples++ = adpcm_ima_expand_nibble(&c->status[0], *src>>4, 3); |
1181 |
*samples++ = adpcm_ima_expand_nibble(&c->status[st], *src&0x0F, 3); |
1182 |
} |
1183 |
break;
|
1184 |
case CODEC_ID_ADPCM_IMA_EA_SEAD:
|
1185 |
for (; src < buf+buf_size; src++) {
|
1186 |
*samples++ = adpcm_ima_expand_nibble(&c->status[0], src[0] >> 4, 6); |
1187 |
*samples++ = adpcm_ima_expand_nibble(&c->status[st],src[0]&0x0F, 6); |
1188 |
} |
1189 |
break;
|
1190 |
case CODEC_ID_ADPCM_EA:
|
1191 |
samples_in_chunk = AV_RL32(src); |
1192 |
if (samples_in_chunk >= ((buf_size - 12) * 2)) { |
1193 |
src += buf_size; |
1194 |
break;
|
1195 |
} |
1196 |
src += 4;
|
1197 |
current_left_sample = (int16_t)AV_RL16(src); |
1198 |
src += 2;
|
1199 |
previous_left_sample = (int16_t)AV_RL16(src); |
1200 |
src += 2;
|
1201 |
current_right_sample = (int16_t)AV_RL16(src); |
1202 |
src += 2;
|
1203 |
previous_right_sample = (int16_t)AV_RL16(src); |
1204 |
src += 2;
|
1205 |
|
1206 |
for (count1 = 0; count1 < samples_in_chunk/28;count1++) { |
1207 |
coeff1l = ea_adpcm_table[ *src >> 4 ];
|
1208 |
coeff2l = ea_adpcm_table[(*src >> 4 ) + 4]; |
1209 |
coeff1r = ea_adpcm_table[*src & 0x0F];
|
1210 |
coeff2r = ea_adpcm_table[(*src & 0x0F) + 4]; |
1211 |
src++; |
1212 |
|
1213 |
shift_left = (*src >> 4 ) + 8; |
1214 |
shift_right = (*src & 0x0F) + 8; |
1215 |
src++; |
1216 |
|
1217 |
for (count2 = 0; count2 < 28; count2++) { |
1218 |
next_left_sample = (((*src & 0xF0) << 24) >> shift_left); |
1219 |
next_right_sample = (((*src & 0x0F) << 28) >> shift_right); |
1220 |
src++; |
1221 |
|
1222 |
next_left_sample = (next_left_sample + |
1223 |
(current_left_sample * coeff1l) + |
1224 |
(previous_left_sample * coeff2l) + 0x80) >> 8; |
1225 |
next_right_sample = (next_right_sample + |
1226 |
(current_right_sample * coeff1r) + |
1227 |
(previous_right_sample * coeff2r) + 0x80) >> 8; |
1228 |
|
1229 |
previous_left_sample = current_left_sample; |
1230 |
current_left_sample = av_clip_int16(next_left_sample); |
1231 |
previous_right_sample = current_right_sample; |
1232 |
current_right_sample = av_clip_int16(next_right_sample); |
1233 |
*samples++ = (unsigned short)current_left_sample; |
1234 |
*samples++ = (unsigned short)current_right_sample; |
1235 |
} |
1236 |
} |
1237 |
break;
|
1238 |
case CODEC_ID_ADPCM_EA_R1:
|
1239 |
case CODEC_ID_ADPCM_EA_R2:
|
1240 |
case CODEC_ID_ADPCM_EA_R3: {
|
1241 |
/* channel numbering
|
1242 |
2chan: 0=fl, 1=fr
|
1243 |
4chan: 0=fl, 1=rl, 2=fr, 3=rr
|
1244 |
6chan: 0=fl, 1=c, 2=fr, 3=rl, 4=rr, 5=sub */
|
1245 |
const int big_endian = avctx->codec->id == CODEC_ID_ADPCM_EA_R3; |
1246 |
int32_t previous_sample, current_sample, next_sample; |
1247 |
int32_t coeff1, coeff2; |
1248 |
uint8_t shift; |
1249 |
unsigned int channel; |
1250 |
uint16_t *samplesC; |
1251 |
const uint8_t *srcC;
|
1252 |
|
1253 |
samples_in_chunk = (big_endian ? bytestream_get_be32(&src) |
1254 |
: bytestream_get_le32(&src)) / 28;
|
1255 |
if (samples_in_chunk > UINT32_MAX/(28*avctx->channels) || |
1256 |
28*samples_in_chunk*avctx->channels > samples_end-samples) {
|
1257 |
src += buf_size - 4;
|
1258 |
break;
|
1259 |
} |
1260 |
|
1261 |
for (channel=0; channel<avctx->channels; channel++) { |
1262 |
srcC = src + (big_endian ? bytestream_get_be32(&src) |
1263 |
: bytestream_get_le32(&src)) |
1264 |
+ (avctx->channels-channel-1) * 4; |
1265 |
samplesC = samples + channel; |
1266 |
|
1267 |
if (avctx->codec->id == CODEC_ID_ADPCM_EA_R1) {
|
1268 |
current_sample = (int16_t)bytestream_get_le16(&srcC); |
1269 |
previous_sample = (int16_t)bytestream_get_le16(&srcC); |
1270 |
} else {
|
1271 |
current_sample = c->status[channel].predictor; |
1272 |
previous_sample = c->status[channel].prev_sample; |
1273 |
} |
1274 |
|
1275 |
for (count1=0; count1<samples_in_chunk; count1++) { |
1276 |
if (*srcC == 0xEE) { /* only seen in R2 and R3 */ |
1277 |
srcC++; |
1278 |
current_sample = (int16_t)bytestream_get_be16(&srcC); |
1279 |
previous_sample = (int16_t)bytestream_get_be16(&srcC); |
1280 |
|
1281 |
for (count2=0; count2<28; count2++) { |
1282 |
*samplesC = (int16_t)bytestream_get_be16(&srcC); |
1283 |
samplesC += avctx->channels; |
1284 |
} |
1285 |
} else {
|
1286 |
coeff1 = ea_adpcm_table[ *srcC>>4 ];
|
1287 |
coeff2 = ea_adpcm_table[(*srcC>>4) + 4]; |
1288 |
shift = (*srcC++ & 0x0F) + 8; |
1289 |
|
1290 |
for (count2=0; count2<28; count2++) { |
1291 |
if (count2 & 1) |
1292 |
next_sample = ((*srcC++ & 0x0F) << 28) >> shift; |
1293 |
else
|
1294 |
next_sample = ((*srcC & 0xF0) << 24) >> shift; |
1295 |
|
1296 |
next_sample += (current_sample * coeff1) + |
1297 |
(previous_sample * coeff2); |
1298 |
next_sample = av_clip_int16(next_sample >> 8);
|
1299 |
|
1300 |
previous_sample = current_sample; |
1301 |
current_sample = next_sample; |
1302 |
*samplesC = current_sample; |
1303 |
samplesC += avctx->channels; |
1304 |
} |
1305 |
} |
1306 |
} |
1307 |
|
1308 |
if (avctx->codec->id != CODEC_ID_ADPCM_EA_R1) {
|
1309 |
c->status[channel].predictor = current_sample; |
1310 |
c->status[channel].prev_sample = previous_sample; |
1311 |
} |
1312 |
} |
1313 |
|
1314 |
src = src + buf_size - (4 + 4*avctx->channels); |
1315 |
samples += 28 * samples_in_chunk * avctx->channels;
|
1316 |
break;
|
1317 |
} |
1318 |
case CODEC_ID_ADPCM_EA_XAS:
|
1319 |
if (samples_end-samples < 32*4*avctx->channels |
1320 |
|| buf_size < (4+15)*4*avctx->channels) { |
1321 |
src += buf_size; |
1322 |
break;
|
1323 |
} |
1324 |
for (channel=0; channel<avctx->channels; channel++) { |
1325 |
int coeff[2][4], shift[4]; |
1326 |
short *s2, *s = &samples[channel];
|
1327 |
for (n=0; n<4; n++, s+=32*avctx->channels) { |
1328 |
for (i=0; i<2; i++) |
1329 |
coeff[i][n] = ea_adpcm_table[(src[0]&0x0F)+4*i]; |
1330 |
shift[n] = (src[2]&0x0F) + 8; |
1331 |
for (s2=s, i=0; i<2; i++, src+=2, s2+=avctx->channels) |
1332 |
s2[0] = (src[0]&0xF0) + (src[1]<<8); |
1333 |
} |
1334 |
|
1335 |
for (m=2; m<32; m+=2) { |
1336 |
s = &samples[m*avctx->channels + channel]; |
1337 |
for (n=0; n<4; n++, src++, s+=32*avctx->channels) { |
1338 |
for (s2=s, i=0; i<8; i+=4, s2+=avctx->channels) { |
1339 |
int level = ((*src & (0xF0>>i)) << (24+i)) >> shift[n]; |
1340 |
int pred = s2[-1*avctx->channels] * coeff[0][n] |
1341 |
+ s2[-2*avctx->channels] * coeff[1][n]; |
1342 |
s2[0] = av_clip_int16((level + pred + 0x80) >> 8); |
1343 |
} |
1344 |
} |
1345 |
} |
1346 |
} |
1347 |
samples += 32*4*avctx->channels; |
1348 |
break;
|
1349 |
case CODEC_ID_ADPCM_IMA_AMV:
|
1350 |
case CODEC_ID_ADPCM_IMA_SMJPEG:
|
1351 |
c->status[0].predictor = (int16_t)bytestream_get_le16(&src);
|
1352 |
c->status[0].step_index = bytestream_get_le16(&src);
|
1353 |
|
1354 |
if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
|
1355 |
src+=4;
|
1356 |
|
1357 |
while (src < buf + buf_size) {
|
1358 |
char hi, lo;
|
1359 |
lo = *src & 0x0F;
|
1360 |
hi = *src >> 4;
|
1361 |
|
1362 |
if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
|
1363 |
FFSWAP(char, hi, lo);
|
1364 |
|
1365 |
*samples++ = adpcm_ima_expand_nibble(&c->status[0],
|
1366 |
lo, 3);
|
1367 |
*samples++ = adpcm_ima_expand_nibble(&c->status[0],
|
1368 |
hi, 3);
|
1369 |
src++; |
1370 |
} |
1371 |
break;
|
1372 |
case CODEC_ID_ADPCM_CT:
|
1373 |
while (src < buf + buf_size) {
|
1374 |
if (st) {
|
1375 |
*samples++ = adpcm_ct_expand_nibble(&c->status[0],
|
1376 |
src[0] >> 4); |
1377 |
*samples++ = adpcm_ct_expand_nibble(&c->status[1],
|
1378 |
src[0] & 0x0F); |
1379 |
} else {
|
1380 |
*samples++ = adpcm_ct_expand_nibble(&c->status[0],
|
1381 |
src[0] >> 4); |
1382 |
*samples++ = adpcm_ct_expand_nibble(&c->status[0],
|
1383 |
src[0] & 0x0F); |
1384 |
} |
1385 |
src++; |
1386 |
} |
1387 |
break;
|
1388 |
case CODEC_ID_ADPCM_SBPRO_4:
|
1389 |
case CODEC_ID_ADPCM_SBPRO_3:
|
1390 |
case CODEC_ID_ADPCM_SBPRO_2:
|
1391 |
if (!c->status[0].step_index) { |
1392 |
/* the first byte is a raw sample */
|
1393 |
*samples++ = 128 * (*src++ - 0x80); |
1394 |
if (st)
|
1395 |
*samples++ = 128 * (*src++ - 0x80); |
1396 |
c->status[0].step_index = 1; |
1397 |
} |
1398 |
if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_4) {
|
1399 |
while (src < buf + buf_size) {
|
1400 |
*samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
|
1401 |
src[0] >> 4, 4, 0); |
1402 |
*samples++ = adpcm_sbpro_expand_nibble(&c->status[st], |
1403 |
src[0] & 0x0F, 4, 0); |
1404 |
src++; |
1405 |
} |
1406 |
} else if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_3) { |
1407 |
while (src < buf + buf_size && samples + 2 < samples_end) { |
1408 |
*samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
|
1409 |
src[0] >> 5 , 3, 0); |
1410 |
*samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
|
1411 |
(src[0] >> 2) & 0x07, 3, 0); |
1412 |
*samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
|
1413 |
src[0] & 0x03, 2, 0); |
1414 |
src++; |
1415 |
} |
1416 |
} else {
|
1417 |
while (src < buf + buf_size && samples + 3 < samples_end) { |
1418 |
*samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
|
1419 |
src[0] >> 6 , 2, 2); |
1420 |
*samples++ = adpcm_sbpro_expand_nibble(&c->status[st], |
1421 |
(src[0] >> 4) & 0x03, 2, 2); |
1422 |
*samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
|
1423 |
(src[0] >> 2) & 0x03, 2, 2); |
1424 |
*samples++ = adpcm_sbpro_expand_nibble(&c->status[st], |
1425 |
src[0] & 0x03, 2, 2); |
1426 |
src++; |
1427 |
} |
1428 |
} |
1429 |
break;
|
1430 |
case CODEC_ID_ADPCM_SWF:
|
1431 |
{ |
1432 |
GetBitContext gb; |
1433 |
const int *table; |
1434 |
int k0, signmask, nb_bits, count;
|
1435 |
int size = buf_size*8; |
1436 |
|
1437 |
init_get_bits(&gb, buf, size); |
1438 |
|
1439 |
//read bits & initial values
|
1440 |
nb_bits = get_bits(&gb, 2)+2; |
1441 |
//av_log(NULL,AV_LOG_INFO,"nb_bits: %d\n", nb_bits);
|
1442 |
table = swf_index_tables[nb_bits-2];
|
1443 |
k0 = 1 << (nb_bits-2); |
1444 |
signmask = 1 << (nb_bits-1); |
1445 |
|
1446 |
while (get_bits_count(&gb) <= size - 22*avctx->channels) { |
1447 |
for (i = 0; i < avctx->channels; i++) { |
1448 |
*samples++ = c->status[i].predictor = get_sbits(&gb, 16);
|
1449 |
c->status[i].step_index = get_bits(&gb, 6);
|
1450 |
} |
1451 |
|
1452 |
for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) { |
1453 |
int i;
|
1454 |
|
1455 |
for (i = 0; i < avctx->channels; i++) { |
1456 |
// similar to IMA adpcm
|
1457 |
int delta = get_bits(&gb, nb_bits);
|
1458 |
int step = step_table[c->status[i].step_index];
|
1459 |
long vpdiff = 0; // vpdiff = (delta+0.5)*step/4 |
1460 |
int k = k0;
|
1461 |
|
1462 |
do {
|
1463 |
if (delta & k)
|
1464 |
vpdiff += step; |
1465 |
step >>= 1;
|
1466 |
k >>= 1;
|
1467 |
} while(k);
|
1468 |
vpdiff += step; |
1469 |
|
1470 |
if (delta & signmask)
|
1471 |
c->status[i].predictor -= vpdiff; |
1472 |
else
|
1473 |
c->status[i].predictor += vpdiff; |
1474 |
|
1475 |
c->status[i].step_index += table[delta & (~signmask)]; |
1476 |
|
1477 |
c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88); |
1478 |
c->status[i].predictor = av_clip_int16(c->status[i].predictor); |
1479 |
|
1480 |
*samples++ = c->status[i].predictor; |
1481 |
if (samples >= samples_end) {
|
1482 |
av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n");
|
1483 |
return -1; |
1484 |
} |
1485 |
} |
1486 |
} |
1487 |
} |
1488 |
src += buf_size; |
1489 |
break;
|
1490 |
} |
1491 |
case CODEC_ID_ADPCM_YAMAHA:
|
1492 |
while (src < buf + buf_size) {
|
1493 |
if (st) {
|
1494 |
*samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
|
1495 |
src[0] & 0x0F); |
1496 |
*samples++ = adpcm_yamaha_expand_nibble(&c->status[1],
|
1497 |
src[0] >> 4 ); |
1498 |
} else {
|
1499 |
*samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
|
1500 |
src[0] & 0x0F); |
1501 |
*samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
|
1502 |
src[0] >> 4 ); |
1503 |
} |
1504 |
src++; |
1505 |
} |
1506 |
break;
|
1507 |
case CODEC_ID_ADPCM_THP:
|
1508 |
{ |
1509 |
int table[2][16]; |
1510 |
unsigned int samplecnt; |
1511 |
int prev[2][2]; |
1512 |
int ch;
|
1513 |
|
1514 |
if (buf_size < 80) { |
1515 |
av_log(avctx, AV_LOG_ERROR, "frame too small\n");
|
1516 |
return -1; |
1517 |
} |
1518 |
|
1519 |
src+=4;
|
1520 |
samplecnt = bytestream_get_be32(&src); |
1521 |
|
1522 |
for (i = 0; i < 32; i++) |
1523 |
table[0][i] = (int16_t)bytestream_get_be16(&src);
|
1524 |
|
1525 |
/* Initialize the previous sample. */
|
1526 |
for (i = 0; i < 4; i++) |
1527 |
prev[0][i] = (int16_t)bytestream_get_be16(&src);
|
1528 |
|
1529 |
if (samplecnt >= (samples_end - samples) / (st + 1)) { |
1530 |
av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n");
|
1531 |
return -1; |
1532 |
} |
1533 |
|
1534 |
for (ch = 0; ch <= st; ch++) { |
1535 |
samples = (unsigned short *) data + ch; |
1536 |
|
1537 |
/* Read in every sample for this channel. */
|
1538 |
for (i = 0; i < samplecnt / 14; i++) { |
1539 |
int index = (*src >> 4) & 7; |
1540 |
unsigned int exp = 28 - (*src++ & 15); |
1541 |
int factor1 = table[ch][index * 2]; |
1542 |
int factor2 = table[ch][index * 2 + 1]; |
1543 |
|
1544 |
/* Decode 14 samples. */
|
1545 |
for (n = 0; n < 14; n++) { |
1546 |
int32_t sampledat; |
1547 |
if(n&1) sampledat= *src++ <<28; |
1548 |
else sampledat= (*src&0xF0)<<24; |
1549 |
|
1550 |
sampledat = ((prev[ch][0]*factor1
|
1551 |
+ prev[ch][1]*factor2) >> 11) + (sampledat>>exp); |
1552 |
*samples = av_clip_int16(sampledat); |
1553 |
prev[ch][1] = prev[ch][0]; |
1554 |
prev[ch][0] = *samples++;
|
1555 |
|
1556 |
/* In case of stereo, skip one sample, this sample
|
1557 |
is for the other channel. */
|
1558 |
samples += st; |
1559 |
} |
1560 |
} |
1561 |
} |
1562 |
|
1563 |
/* In the previous loop, in case stereo is used, samples is
|
1564 |
increased exactly one time too often. */
|
1565 |
samples -= st; |
1566 |
break;
|
1567 |
} |
1568 |
|
1569 |
default:
|
1570 |
return -1; |
1571 |
} |
1572 |
*data_size = (uint8_t *)samples - (uint8_t *)data; |
1573 |
return src - buf;
|
1574 |
} |
1575 |
|
1576 |
|
1577 |
|
1578 |
#ifdef CONFIG_ENCODERS
|
1579 |
#define ADPCM_ENCODER(id,name) \
|
1580 |
AVCodec name ## _encoder = { \ |
1581 |
#name, \
|
1582 |
CODEC_TYPE_AUDIO, \ |
1583 |
id, \ |
1584 |
sizeof(ADPCMContext), \
|
1585 |
adpcm_encode_init, \ |
1586 |
adpcm_encode_frame, \ |
1587 |
adpcm_encode_close, \ |
1588 |
NULL, \
|
1589 |
}; |
1590 |
#else
|
1591 |
#define ADPCM_ENCODER(id,name)
|
1592 |
#endif
|
1593 |
|
1594 |
#ifdef CONFIG_DECODERS
|
1595 |
#define ADPCM_DECODER(id,name) \
|
1596 |
AVCodec name ## _decoder = { \ |
1597 |
#name, \
|
1598 |
CODEC_TYPE_AUDIO, \ |
1599 |
id, \ |
1600 |
sizeof(ADPCMContext), \
|
1601 |
adpcm_decode_init, \ |
1602 |
NULL, \
|
1603 |
NULL, \
|
1604 |
adpcm_decode_frame, \ |
1605 |
}; |
1606 |
#else
|
1607 |
#define ADPCM_DECODER(id,name)
|
1608 |
#endif
|
1609 |
|
1610 |
#define ADPCM_CODEC(id, name) \
|
1611 |
ADPCM_ENCODER(id,name) ADPCM_DECODER(id,name) |
1612 |
|
1613 |
ADPCM_DECODER(CODEC_ID_ADPCM_4XM, adpcm_4xm); |
1614 |
ADPCM_DECODER(CODEC_ID_ADPCM_CT, adpcm_ct); |
1615 |
ADPCM_DECODER(CODEC_ID_ADPCM_EA, adpcm_ea); |
1616 |
ADPCM_DECODER(CODEC_ID_ADPCM_EA_R1, adpcm_ea_r1); |
1617 |
ADPCM_DECODER(CODEC_ID_ADPCM_EA_R2, adpcm_ea_r2); |
1618 |
ADPCM_DECODER(CODEC_ID_ADPCM_EA_R3, adpcm_ea_r3); |
1619 |
ADPCM_DECODER(CODEC_ID_ADPCM_EA_XAS, adpcm_ea_xas); |
1620 |
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_AMV, adpcm_ima_amv); |
1621 |
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK3, adpcm_ima_dk3); |
1622 |
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK4, adpcm_ima_dk4); |
1623 |
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_EACS, adpcm_ima_ea_eacs); |
1624 |
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_SEAD, adpcm_ima_ea_sead); |
1625 |
ADPCM_CODEC (CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt); |
1626 |
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_SMJPEG, adpcm_ima_smjpeg); |
1627 |
ADPCM_CODEC (CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav); |
1628 |
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_WS, adpcm_ima_ws); |
1629 |
ADPCM_CODEC (CODEC_ID_ADPCM_MS, adpcm_ms); |
1630 |
ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_4, adpcm_sbpro_4); |
1631 |
ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_3, adpcm_sbpro_3); |
1632 |
ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_2, adpcm_sbpro_2); |
1633 |
ADPCM_CODEC (CODEC_ID_ADPCM_SWF, adpcm_swf); |
1634 |
ADPCM_DECODER(CODEC_ID_ADPCM_THP, adpcm_thp); |
1635 |
ADPCM_DECODER(CODEC_ID_ADPCM_XA, adpcm_xa); |
1636 |
ADPCM_CODEC (CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha); |