Statistics
| Branch: | Revision:

ffmpeg / libavcodec / vp3.c @ 0cfcbf21

History | View | Annotate | Download (81.1 KB)

1
/*
2
 * Copyright (C) 2003-2004 the ffmpeg project
3
 *
4
 * This file is part of FFmpeg.
5
 *
6
 * FFmpeg is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2.1 of the License, or (at your option) any later version.
10
 *
11
 * FFmpeg is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with FFmpeg; if not, write to the Free Software
18
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19
 */
20

    
21
/**
22
 * @file
23
 * On2 VP3 Video Decoder
24
 *
25
 * VP3 Video Decoder by Mike Melanson (mike at multimedia.cx)
26
 * For more information about the VP3 coding process, visit:
27
 *   http://wiki.multimedia.cx/index.php?title=On2_VP3
28
 *
29
 * Theora decoder by Alex Beregszaszi
30
 */
31

    
32
#include <stdio.h>
33
#include <stdlib.h>
34
#include <string.h>
35

    
36
#include "libavutil/imgutils.h"
37
#include "avcodec.h"
38
#include "dsputil.h"
39
#include "get_bits.h"
40

    
41
#include "vp3data.h"
42
#include "xiph.h"
43
#include "thread.h"
44

    
45
#define FRAGMENT_PIXELS 8
46

    
47
static av_cold int vp3_decode_end(AVCodecContext *avctx);
48

    
49
//FIXME split things out into their own arrays
50
typedef struct Vp3Fragment {
51
    int16_t dc;
52
    uint8_t coding_method;
53
    uint8_t qpi;
54
} Vp3Fragment;
55

    
56
#define SB_NOT_CODED        0
57
#define SB_PARTIALLY_CODED  1
58
#define SB_FULLY_CODED      2
59

    
60
// This is the maximum length of a single long bit run that can be encoded
61
// for superblock coding or block qps. Theora special-cases this to read a
62
// bit instead of flipping the current bit to allow for runs longer than 4129.
63
#define MAXIMUM_LONG_BIT_RUN 4129
64

    
65
#define MODE_INTER_NO_MV      0
66
#define MODE_INTRA            1
67
#define MODE_INTER_PLUS_MV    2
68
#define MODE_INTER_LAST_MV    3
69
#define MODE_INTER_PRIOR_LAST 4
70
#define MODE_USING_GOLDEN     5
71
#define MODE_GOLDEN_MV        6
72
#define MODE_INTER_FOURMV     7
73
#define CODING_MODE_COUNT     8
74

    
75
/* special internal mode */
76
#define MODE_COPY             8
77

    
78
/* There are 6 preset schemes, plus a free-form scheme */
79
static const int ModeAlphabet[6][CODING_MODE_COUNT] =
80
{
81
    /* scheme 1: Last motion vector dominates */
82
    {    MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
83
         MODE_INTER_PLUS_MV,    MODE_INTER_NO_MV,
84
         MODE_INTRA,            MODE_USING_GOLDEN,
85
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
86

    
87
    /* scheme 2 */
88
    {    MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
89
         MODE_INTER_NO_MV,      MODE_INTER_PLUS_MV,
90
         MODE_INTRA,            MODE_USING_GOLDEN,
91
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
92

    
93
    /* scheme 3 */
94
    {    MODE_INTER_LAST_MV,    MODE_INTER_PLUS_MV,
95
         MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV,
96
         MODE_INTRA,            MODE_USING_GOLDEN,
97
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
98

    
99
    /* scheme 4 */
100
    {    MODE_INTER_LAST_MV,    MODE_INTER_PLUS_MV,
101
         MODE_INTER_NO_MV,      MODE_INTER_PRIOR_LAST,
102
         MODE_INTRA,            MODE_USING_GOLDEN,
103
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
104

    
105
    /* scheme 5: No motion vector dominates */
106
    {    MODE_INTER_NO_MV,      MODE_INTER_LAST_MV,
107
         MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV,
108
         MODE_INTRA,            MODE_USING_GOLDEN,
109
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
110

    
111
    /* scheme 6 */
112
    {    MODE_INTER_NO_MV,      MODE_USING_GOLDEN,
113
         MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
114
         MODE_INTER_PLUS_MV,    MODE_INTRA,
115
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
116

    
117
};
118

    
119
static const uint8_t hilbert_offset[16][2] = {
120
    {0,0}, {1,0}, {1,1}, {0,1},
121
    {0,2}, {0,3}, {1,3}, {1,2},
122
    {2,2}, {2,3}, {3,3}, {3,2},
123
    {3,1}, {2,1}, {2,0}, {3,0}
124
};
125

    
126
#define MIN_DEQUANT_VAL 2
127

    
128
typedef struct Vp3DecodeContext {
129
    AVCodecContext *avctx;
130
    int theora, theora_tables;
131
    int version;
132
    int width, height;
133
    int chroma_x_shift, chroma_y_shift;
134
    AVFrame golden_frame;
135
    AVFrame last_frame;
136
    AVFrame current_frame;
137
    int keyframe;
138
    DSPContext dsp;
139
    int flipped_image;
140
    int last_slice_end;
141
    int skip_loop_filter;
142

    
143
    int qps[3];
144
    int nqps;
145
    int last_qps[3];
146

    
147
    int superblock_count;
148
    int y_superblock_width;
149
    int y_superblock_height;
150
    int y_superblock_count;
151
    int c_superblock_width;
152
    int c_superblock_height;
153
    int c_superblock_count;
154
    int u_superblock_start;
155
    int v_superblock_start;
156
    unsigned char *superblock_coding;
157

    
158
    int macroblock_count;
159
    int macroblock_width;
160
    int macroblock_height;
161

    
162
    int fragment_count;
163
    int fragment_width[2];
164
    int fragment_height[2];
165

    
166
    Vp3Fragment *all_fragments;
167
    int fragment_start[3];
168
    int data_offset[3];
169

    
170
    int8_t (*motion_val[2])[2];
171

    
172
    ScanTable scantable;
173

    
174
    /* tables */
175
    uint16_t coded_dc_scale_factor[64];
176
    uint32_t coded_ac_scale_factor[64];
177
    uint8_t base_matrix[384][64];
178
    uint8_t qr_count[2][3];
179
    uint8_t qr_size [2][3][64];
180
    uint16_t qr_base[2][3][64];
181

    
182
    /**
183
     * This is a list of all tokens in bitstream order. Reordering takes place
184
     * by pulling from each level during IDCT. As a consequence, IDCT must be
185
     * in Hilbert order, making the minimum slice height 64 for 4:2:0 and 32
186
     * otherwise. The 32 different tokens with up to 12 bits of extradata are
187
     * collapsed into 3 types, packed as follows:
188
     *   (from the low to high bits)
189
     *
190
     * 2 bits: type (0,1,2)
191
     *   0: EOB run, 14 bits for run length (12 needed)
192
     *   1: zero run, 7 bits for run length
193
     *                7 bits for the next coefficient (3 needed)
194
     *   2: coefficient, 14 bits (11 needed)
195
     *
196
     * Coefficients are signed, so are packed in the highest bits for automatic
197
     * sign extension.
198
     */
199
    int16_t *dct_tokens[3][64];
200
    int16_t *dct_tokens_base;
201
#define TOKEN_EOB(eob_run)              ((eob_run) << 2)
202
#define TOKEN_ZERO_RUN(coeff, zero_run) (((coeff) << 9) + ((zero_run) << 2) + 1)
203
#define TOKEN_COEFF(coeff)              (((coeff) << 2) + 2)
204

    
205
    /**
206
     * number of blocks that contain DCT coefficients at the given level or higher
207
     */
208
    int num_coded_frags[3][64];
209
    int total_num_coded_frags;
210

    
211
    /* this is a list of indexes into the all_fragments array indicating
212
     * which of the fragments are coded */
213
    int *coded_fragment_list[3];
214

    
215
    VLC dc_vlc[16];
216
    VLC ac_vlc_1[16];
217
    VLC ac_vlc_2[16];
218
    VLC ac_vlc_3[16];
219
    VLC ac_vlc_4[16];
220

    
221
    VLC superblock_run_length_vlc;
222
    VLC fragment_run_length_vlc;
223
    VLC mode_code_vlc;
224
    VLC motion_vector_vlc;
225

    
226
    /* these arrays need to be on 16-byte boundaries since SSE2 operations
227
     * index into them */
228
    DECLARE_ALIGNED(16, int16_t, qmat)[3][2][3][64];     //<qmat[qpi][is_inter][plane]
229

    
230
    /* This table contains superblock_count * 16 entries. Each set of 16
231
     * numbers corresponds to the fragment indexes 0..15 of the superblock.
232
     * An entry will be -1 to indicate that no entry corresponds to that
233
     * index. */
234
    int *superblock_fragments;
235

    
236
    /* This is an array that indicates how a particular macroblock
237
     * is coded. */
238
    unsigned char *macroblock_coding;
239

    
240
    uint8_t *edge_emu_buffer;
241

    
242
    /* Huffman decode */
243
    int hti;
244
    unsigned int hbits;
245
    int entries;
246
    int huff_code_size;
247
    uint32_t huffman_table[80][32][2];
248

    
249
    uint8_t filter_limit_values[64];
250
    DECLARE_ALIGNED(8, int, bounding_values_array)[256+2];
251
} Vp3DecodeContext;
252

    
253
/************************************************************************
254
 * VP3 specific functions
255
 ************************************************************************/
256

    
257
/*
258
 * This function sets up all of the various blocks mappings:
259
 * superblocks <-> fragments, macroblocks <-> fragments,
260
 * superblocks <-> macroblocks
261
 *
262
 * @return 0 is successful; returns 1 if *anything* went wrong.
263
 */
264
static int init_block_mapping(Vp3DecodeContext *s)
265
{
266
    int sb_x, sb_y, plane;
267
    int x, y, i, j = 0;
268

    
269
    for (plane = 0; plane < 3; plane++) {
270
        int sb_width    = plane ? s->c_superblock_width  : s->y_superblock_width;
271
        int sb_height   = plane ? s->c_superblock_height : s->y_superblock_height;
272
        int frag_width  = s->fragment_width[!!plane];
273
        int frag_height = s->fragment_height[!!plane];
274

    
275
        for (sb_y = 0; sb_y < sb_height; sb_y++)
276
            for (sb_x = 0; sb_x < sb_width; sb_x++)
277
                for (i = 0; i < 16; i++) {
278
                    x = 4*sb_x + hilbert_offset[i][0];
279
                    y = 4*sb_y + hilbert_offset[i][1];
280

    
281
                    if (x < frag_width && y < frag_height)
282
                        s->superblock_fragments[j++] = s->fragment_start[plane] + y*frag_width + x;
283
                    else
284
                        s->superblock_fragments[j++] = -1;
285
                }
286
    }
287

    
288
    return 0;  /* successful path out */
289
}
290

    
291
/*
292
 * This function sets up the dequantization tables used for a particular
293
 * frame.
294
 */
295
static void init_dequantizer(Vp3DecodeContext *s, int qpi)
296
{
297
    int ac_scale_factor = s->coded_ac_scale_factor[s->qps[qpi]];
298
    int dc_scale_factor = s->coded_dc_scale_factor[s->qps[qpi]];
299
    int i, plane, inter, qri, bmi, bmj, qistart;
300

    
301
    for(inter=0; inter<2; inter++){
302
        for(plane=0; plane<3; plane++){
303
            int sum=0;
304
            for(qri=0; qri<s->qr_count[inter][plane]; qri++){
305
                sum+= s->qr_size[inter][plane][qri];
306
                if(s->qps[qpi] <= sum)
307
                    break;
308
            }
309
            qistart= sum - s->qr_size[inter][plane][qri];
310
            bmi= s->qr_base[inter][plane][qri  ];
311
            bmj= s->qr_base[inter][plane][qri+1];
312
            for(i=0; i<64; i++){
313
                int coeff= (  2*(sum    -s->qps[qpi])*s->base_matrix[bmi][i]
314
                            - 2*(qistart-s->qps[qpi])*s->base_matrix[bmj][i]
315
                            + s->qr_size[inter][plane][qri])
316
                           / (2*s->qr_size[inter][plane][qri]);
317

    
318
                int qmin= 8<<(inter + !i);
319
                int qscale= i ? ac_scale_factor : dc_scale_factor;
320

    
321
                s->qmat[qpi][inter][plane][s->dsp.idct_permutation[i]]= av_clip((qscale * coeff)/100 * 4, qmin, 4096);
322
            }
323
            // all DC coefficients use the same quant so as not to interfere with DC prediction
324
            s->qmat[qpi][inter][plane][0] = s->qmat[0][inter][plane][0];
325
        }
326
    }
327
}
328

    
329
/*
330
 * This function initializes the loop filter boundary limits if the frame's
331
 * quality index is different from the previous frame's.
332
 *
333
 * The filter_limit_values may not be larger than 127.
334
 */
335
static void init_loop_filter(Vp3DecodeContext *s)
336
{
337
    int *bounding_values= s->bounding_values_array+127;
338
    int filter_limit;
339
    int x;
340
    int value;
341

    
342
    filter_limit = s->filter_limit_values[s->qps[0]];
343

    
344
    /* set up the bounding values */
345
    memset(s->bounding_values_array, 0, 256 * sizeof(int));
346
    for (x = 0; x < filter_limit; x++) {
347
        bounding_values[-x] = -x;
348
        bounding_values[x] = x;
349
    }
350
    for (x = value = filter_limit; x < 128 && value; x++, value--) {
351
        bounding_values[ x] =  value;
352
        bounding_values[-x] = -value;
353
    }
354
    if (value)
355
        bounding_values[128] = value;
356
    bounding_values[129] = bounding_values[130] = filter_limit * 0x02020202;
357
}
358

    
359
/*
360
 * This function unpacks all of the superblock/macroblock/fragment coding
361
 * information from the bitstream.
362
 */
363
static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb)
364
{
365
    int superblock_starts[3] = { 0, s->u_superblock_start, s->v_superblock_start };
366
    int bit = 0;
367
    int current_superblock = 0;
368
    int current_run = 0;
369
    int num_partial_superblocks = 0;
370

    
371
    int i, j;
372
    int current_fragment;
373
    int plane;
374

    
375
    if (s->keyframe) {
376
        memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count);
377

    
378
    } else {
379

    
380
        /* unpack the list of partially-coded superblocks */
381
        bit = get_bits1(gb) ^ 1;
382
        current_run = 0;
383

    
384
        while (current_superblock < s->superblock_count && get_bits_left(gb) > 0) {
385
            if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN)
386
                bit = get_bits1(gb);
387
            else
388
                bit ^= 1;
389

    
390
                current_run = get_vlc2(gb,
391
                    s->superblock_run_length_vlc.table, 6, 2) + 1;
392
                if (current_run == 34)
393
                    current_run += get_bits(gb, 12);
394

    
395
            if (current_superblock + current_run > s->superblock_count) {
396
                av_log(s->avctx, AV_LOG_ERROR, "Invalid partially coded superblock run length\n");
397
                return -1;
398
            }
399

    
400
            memset(s->superblock_coding + current_superblock, bit, current_run);
401

    
402
            current_superblock += current_run;
403
            if (bit)
404
                num_partial_superblocks += current_run;
405
        }
406

    
407
        /* unpack the list of fully coded superblocks if any of the blocks were
408
         * not marked as partially coded in the previous step */
409
        if (num_partial_superblocks < s->superblock_count) {
410
            int superblocks_decoded = 0;
411

    
412
            current_superblock = 0;
413
            bit = get_bits1(gb) ^ 1;
414
            current_run = 0;
415

    
416
            while (superblocks_decoded < s->superblock_count - num_partial_superblocks
417
                   && get_bits_left(gb) > 0) {
418

    
419
                if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN)
420
                    bit = get_bits1(gb);
421
                else
422
                    bit ^= 1;
423

    
424
                        current_run = get_vlc2(gb,
425
                            s->superblock_run_length_vlc.table, 6, 2) + 1;
426
                        if (current_run == 34)
427
                            current_run += get_bits(gb, 12);
428

    
429
                for (j = 0; j < current_run; current_superblock++) {
430
                    if (current_superblock >= s->superblock_count) {
431
                        av_log(s->avctx, AV_LOG_ERROR, "Invalid fully coded superblock run length\n");
432
                        return -1;
433
                    }
434

    
435
                /* skip any superblocks already marked as partially coded */
436
                if (s->superblock_coding[current_superblock] == SB_NOT_CODED) {
437
                    s->superblock_coding[current_superblock] = 2*bit;
438
                    j++;
439
                }
440
                }
441
                superblocks_decoded += current_run;
442
            }
443
        }
444

    
445
        /* if there were partial blocks, initialize bitstream for
446
         * unpacking fragment codings */
447
        if (num_partial_superblocks) {
448

    
449
            current_run = 0;
450
            bit = get_bits1(gb);
451
            /* toggle the bit because as soon as the first run length is
452
             * fetched the bit will be toggled again */
453
            bit ^= 1;
454
        }
455
    }
456

    
457
    /* figure out which fragments are coded; iterate through each
458
     * superblock (all planes) */
459
    s->total_num_coded_frags = 0;
460
    memset(s->macroblock_coding, MODE_COPY, s->macroblock_count);
461

    
462
    for (plane = 0; plane < 3; plane++) {
463
        int sb_start = superblock_starts[plane];
464
        int sb_end = sb_start + (plane ? s->c_superblock_count : s->y_superblock_count);
465
        int num_coded_frags = 0;
466

    
467
    for (i = sb_start; i < sb_end && get_bits_left(gb) > 0; i++) {
468

    
469
        /* iterate through all 16 fragments in a superblock */
470
        for (j = 0; j < 16; j++) {
471

    
472
            /* if the fragment is in bounds, check its coding status */
473
            current_fragment = s->superblock_fragments[i * 16 + j];
474
            if (current_fragment != -1) {
475
                int coded = s->superblock_coding[i];
476

    
477
                if (s->superblock_coding[i] == SB_PARTIALLY_CODED) {
478

    
479
                    /* fragment may or may not be coded; this is the case
480
                     * that cares about the fragment coding runs */
481
                    if (current_run-- == 0) {
482
                        bit ^= 1;
483
                        current_run = get_vlc2(gb,
484
                            s->fragment_run_length_vlc.table, 5, 2);
485
                    }
486
                    coded = bit;
487
                }
488

    
489
                    if (coded) {
490
                        /* default mode; actual mode will be decoded in
491
                         * the next phase */
492
                        s->all_fragments[current_fragment].coding_method =
493
                            MODE_INTER_NO_MV;
494
                        s->coded_fragment_list[plane][num_coded_frags++] =
495
                            current_fragment;
496
                    } else {
497
                        /* not coded; copy this fragment from the prior frame */
498
                        s->all_fragments[current_fragment].coding_method =
499
                            MODE_COPY;
500
                    }
501
            }
502
        }
503
    }
504
        s->total_num_coded_frags += num_coded_frags;
505
        for (i = 0; i < 64; i++)
506
            s->num_coded_frags[plane][i] = num_coded_frags;
507
        if (plane < 2)
508
            s->coded_fragment_list[plane+1] = s->coded_fragment_list[plane] + num_coded_frags;
509
    }
510
    return 0;
511
}
512

    
513
/*
514
 * This function unpacks all the coding mode data for individual macroblocks
515
 * from the bitstream.
516
 */
517
static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb)
518
{
519
    int i, j, k, sb_x, sb_y;
520
    int scheme;
521
    int current_macroblock;
522
    int current_fragment;
523
    int coding_mode;
524
    int custom_mode_alphabet[CODING_MODE_COUNT];
525
    const int *alphabet;
526
    Vp3Fragment *frag;
527

    
528
    if (s->keyframe) {
529
        for (i = 0; i < s->fragment_count; i++)
530
            s->all_fragments[i].coding_method = MODE_INTRA;
531

    
532
    } else {
533

    
534
        /* fetch the mode coding scheme for this frame */
535
        scheme = get_bits(gb, 3);
536

    
537
        /* is it a custom coding scheme? */
538
        if (scheme == 0) {
539
            for (i = 0; i < 8; i++)
540
                custom_mode_alphabet[i] = MODE_INTER_NO_MV;
541
            for (i = 0; i < 8; i++)
542
                custom_mode_alphabet[get_bits(gb, 3)] = i;
543
            alphabet = custom_mode_alphabet;
544
        } else
545
            alphabet = ModeAlphabet[scheme-1];
546

    
547
        /* iterate through all of the macroblocks that contain 1 or more
548
         * coded fragments */
549
        for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
550
            for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
551
                if (get_bits_left(gb) <= 0)
552
                    return -1;
553

    
554
            for (j = 0; j < 4; j++) {
555
                int mb_x = 2*sb_x +   (j>>1);
556
                int mb_y = 2*sb_y + (((j>>1)+j)&1);
557
                current_macroblock = mb_y * s->macroblock_width + mb_x;
558

    
559
                if (mb_x >= s->macroblock_width || mb_y >= s->macroblock_height)
560
                    continue;
561

    
562
#define BLOCK_X (2*mb_x + (k&1))
563
#define BLOCK_Y (2*mb_y + (k>>1))
564
                /* coding modes are only stored if the macroblock has at least one
565
                 * luma block coded, otherwise it must be INTER_NO_MV */
566
                for (k = 0; k < 4; k++) {
567
                    current_fragment = BLOCK_Y*s->fragment_width[0] + BLOCK_X;
568
                    if (s->all_fragments[current_fragment].coding_method != MODE_COPY)
569
                        break;
570
                }
571
                if (k == 4) {
572
                    s->macroblock_coding[current_macroblock] = MODE_INTER_NO_MV;
573
                    continue;
574
                }
575

    
576
                /* mode 7 means get 3 bits for each coding mode */
577
                if (scheme == 7)
578
                    coding_mode = get_bits(gb, 3);
579
                else
580
                    coding_mode = alphabet
581
                        [get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
582

    
583
                s->macroblock_coding[current_macroblock] = coding_mode;
584
                for (k = 0; k < 4; k++) {
585
                    frag = s->all_fragments + BLOCK_Y*s->fragment_width[0] + BLOCK_X;
586
                    if (frag->coding_method != MODE_COPY)
587
                        frag->coding_method = coding_mode;
588
                }
589

    
590
#define SET_CHROMA_MODES \
591
    if (frag[s->fragment_start[1]].coding_method != MODE_COPY) \
592
        frag[s->fragment_start[1]].coding_method = coding_mode;\
593
    if (frag[s->fragment_start[2]].coding_method != MODE_COPY) \
594
        frag[s->fragment_start[2]].coding_method = coding_mode;
595

    
596
                if (s->chroma_y_shift) {
597
                    frag = s->all_fragments + mb_y*s->fragment_width[1] + mb_x;
598
                    SET_CHROMA_MODES
599
                } else if (s->chroma_x_shift) {
600
                    frag = s->all_fragments + 2*mb_y*s->fragment_width[1] + mb_x;
601
                    for (k = 0; k < 2; k++) {
602
                        SET_CHROMA_MODES
603
                        frag += s->fragment_width[1];
604
                    }
605
                } else {
606
                    for (k = 0; k < 4; k++) {
607
                        frag = s->all_fragments + BLOCK_Y*s->fragment_width[1] + BLOCK_X;
608
                        SET_CHROMA_MODES
609
                    }
610
                }
611
            }
612
            }
613
        }
614
    }
615

    
616
    return 0;
617
}
618

    
619
/*
620
 * This function unpacks all the motion vectors for the individual
621
 * macroblocks from the bitstream.
622
 */
623
static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb)
624
{
625
    int j, k, sb_x, sb_y;
626
    int coding_mode;
627
    int motion_x[4];
628
    int motion_y[4];
629
    int last_motion_x = 0;
630
    int last_motion_y = 0;
631
    int prior_last_motion_x = 0;
632
    int prior_last_motion_y = 0;
633
    int current_macroblock;
634
    int current_fragment;
635
    int frag;
636

    
637
    if (s->keyframe)
638
        return 0;
639

    
640
    /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */
641
    coding_mode = get_bits1(gb);
642

    
643
    /* iterate through all of the macroblocks that contain 1 or more
644
     * coded fragments */
645
    for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
646
        for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
647
            if (get_bits_left(gb) <= 0)
648
                return -1;
649

    
650
        for (j = 0; j < 4; j++) {
651
            int mb_x = 2*sb_x +   (j>>1);
652
            int mb_y = 2*sb_y + (((j>>1)+j)&1);
653
            current_macroblock = mb_y * s->macroblock_width + mb_x;
654

    
655
            if (mb_x >= s->macroblock_width || mb_y >= s->macroblock_height ||
656
                (s->macroblock_coding[current_macroblock] == MODE_COPY))
657
                continue;
658

    
659
            switch (s->macroblock_coding[current_macroblock]) {
660

    
661
            case MODE_INTER_PLUS_MV:
662
            case MODE_GOLDEN_MV:
663
                /* all 6 fragments use the same motion vector */
664
                if (coding_mode == 0) {
665
                    motion_x[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
666
                    motion_y[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
667
                } else {
668
                    motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)];
669
                    motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)];
670
                }
671

    
672
                /* vector maintenance, only on MODE_INTER_PLUS_MV */
673
                if (s->macroblock_coding[current_macroblock] ==
674
                    MODE_INTER_PLUS_MV) {
675
                    prior_last_motion_x = last_motion_x;
676
                    prior_last_motion_y = last_motion_y;
677
                    last_motion_x = motion_x[0];
678
                    last_motion_y = motion_y[0];
679
                }
680
                break;
681

    
682
            case MODE_INTER_FOURMV:
683
                /* vector maintenance */
684
                prior_last_motion_x = last_motion_x;
685
                prior_last_motion_y = last_motion_y;
686

    
687
                /* fetch 4 vectors from the bitstream, one for each
688
                 * Y fragment, then average for the C fragment vectors */
689
                for (k = 0; k < 4; k++) {
690
                    current_fragment = BLOCK_Y*s->fragment_width[0] + BLOCK_X;
691
                    if (s->all_fragments[current_fragment].coding_method != MODE_COPY) {
692
                        if (coding_mode == 0) {
693
                            motion_x[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
694
                            motion_y[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
695
                        } else {
696
                            motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)];
697
                            motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)];
698
                        }
699
                        last_motion_x = motion_x[k];
700
                        last_motion_y = motion_y[k];
701
                    } else {
702
                        motion_x[k] = 0;
703
                        motion_y[k] = 0;
704
                    }
705
                }
706
                break;
707

    
708
            case MODE_INTER_LAST_MV:
709
                /* all 6 fragments use the last motion vector */
710
                motion_x[0] = last_motion_x;
711
                motion_y[0] = last_motion_y;
712

    
713
                /* no vector maintenance (last vector remains the
714
                 * last vector) */
715
                break;
716

    
717
            case MODE_INTER_PRIOR_LAST:
718
                /* all 6 fragments use the motion vector prior to the
719
                 * last motion vector */
720
                motion_x[0] = prior_last_motion_x;
721
                motion_y[0] = prior_last_motion_y;
722

    
723
                /* vector maintenance */
724
                prior_last_motion_x = last_motion_x;
725
                prior_last_motion_y = last_motion_y;
726
                last_motion_x = motion_x[0];
727
                last_motion_y = motion_y[0];
728
                break;
729

    
730
            default:
731
                /* covers intra, inter without MV, golden without MV */
732
                motion_x[0] = 0;
733
                motion_y[0] = 0;
734

    
735
                /* no vector maintenance */
736
                break;
737
            }
738

    
739
            /* assign the motion vectors to the correct fragments */
740
            for (k = 0; k < 4; k++) {
741
                current_fragment =
742
                    BLOCK_Y*s->fragment_width[0] + BLOCK_X;
743
                if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
744
                    s->motion_val[0][current_fragment][0] = motion_x[k];
745
                    s->motion_val[0][current_fragment][1] = motion_y[k];
746
                } else {
747
                    s->motion_val[0][current_fragment][0] = motion_x[0];
748
                    s->motion_val[0][current_fragment][1] = motion_y[0];
749
                }
750
            }
751

    
752
            if (s->chroma_y_shift) {
753
                if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
754
                    motion_x[0] = RSHIFT(motion_x[0] + motion_x[1] + motion_x[2] + motion_x[3], 2);
755
                    motion_y[0] = RSHIFT(motion_y[0] + motion_y[1] + motion_y[2] + motion_y[3], 2);
756
                }
757
                motion_x[0] = (motion_x[0]>>1) | (motion_x[0]&1);
758
                motion_y[0] = (motion_y[0]>>1) | (motion_y[0]&1);
759
                frag = mb_y*s->fragment_width[1] + mb_x;
760
                s->motion_val[1][frag][0] = motion_x[0];
761
                s->motion_val[1][frag][1] = motion_y[0];
762
            } else if (s->chroma_x_shift) {
763
                if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
764
                    motion_x[0] = RSHIFT(motion_x[0] + motion_x[1], 1);
765
                    motion_y[0] = RSHIFT(motion_y[0] + motion_y[1], 1);
766
                    motion_x[1] = RSHIFT(motion_x[2] + motion_x[3], 1);
767
                    motion_y[1] = RSHIFT(motion_y[2] + motion_y[3], 1);
768
                } else {
769
                    motion_x[1] = motion_x[0];
770
                    motion_y[1] = motion_y[0];
771
                }
772
                motion_x[0] = (motion_x[0]>>1) | (motion_x[0]&1);
773
                motion_x[1] = (motion_x[1]>>1) | (motion_x[1]&1);
774

    
775
                frag = 2*mb_y*s->fragment_width[1] + mb_x;
776
                for (k = 0; k < 2; k++) {
777
                    s->motion_val[1][frag][0] = motion_x[k];
778
                    s->motion_val[1][frag][1] = motion_y[k];
779
                    frag += s->fragment_width[1];
780
                }
781
            } else {
782
                for (k = 0; k < 4; k++) {
783
                    frag = BLOCK_Y*s->fragment_width[1] + BLOCK_X;
784
                    if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
785
                        s->motion_val[1][frag][0] = motion_x[k];
786
                        s->motion_val[1][frag][1] = motion_y[k];
787
                    } else {
788
                        s->motion_val[1][frag][0] = motion_x[0];
789
                        s->motion_val[1][frag][1] = motion_y[0];
790
                    }
791
                }
792
            }
793
        }
794
        }
795
    }
796

    
797
    return 0;
798
}
799

    
800
static int unpack_block_qpis(Vp3DecodeContext *s, GetBitContext *gb)
801
{
802
    int qpi, i, j, bit, run_length, blocks_decoded, num_blocks_at_qpi;
803
    int num_blocks = s->total_num_coded_frags;
804

    
805
    for (qpi = 0; qpi < s->nqps-1 && num_blocks > 0; qpi++) {
806
        i = blocks_decoded = num_blocks_at_qpi = 0;
807

    
808
        bit = get_bits1(gb) ^ 1;
809
        run_length = 0;
810

    
811
        do {
812
            if (run_length == MAXIMUM_LONG_BIT_RUN)
813
                bit = get_bits1(gb);
814
            else
815
                bit ^= 1;
816

    
817
            run_length = get_vlc2(gb, s->superblock_run_length_vlc.table, 6, 2) + 1;
818
            if (run_length == 34)
819
                run_length += get_bits(gb, 12);
820
            blocks_decoded += run_length;
821

    
822
            if (!bit)
823
                num_blocks_at_qpi += run_length;
824

    
825
            for (j = 0; j < run_length; i++) {
826
                if (i >= s->total_num_coded_frags)
827
                    return -1;
828

    
829
                if (s->all_fragments[s->coded_fragment_list[0][i]].qpi == qpi) {
830
                    s->all_fragments[s->coded_fragment_list[0][i]].qpi += bit;
831
                    j++;
832
                }
833
            }
834
        } while (blocks_decoded < num_blocks && get_bits_left(gb) > 0);
835

    
836
        num_blocks -= num_blocks_at_qpi;
837
    }
838

    
839
    return 0;
840
}
841

    
842
/*
843
 * This function is called by unpack_dct_coeffs() to extract the VLCs from
844
 * the bitstream. The VLCs encode tokens which are used to unpack DCT
845
 * data. This function unpacks all the VLCs for either the Y plane or both
846
 * C planes, and is called for DC coefficients or different AC coefficient
847
 * levels (since different coefficient types require different VLC tables.
848
 *
849
 * This function returns a residual eob run. E.g, if a particular token gave
850
 * instructions to EOB the next 5 fragments and there were only 2 fragments
851
 * left in the current fragment range, 3 would be returned so that it could
852
 * be passed into the next call to this same function.
853
 */
854
static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb,
855
                        VLC *table, int coeff_index,
856
                        int plane,
857
                        int eob_run)
858
{
859
    int i, j = 0;
860
    int token;
861
    int zero_run = 0;
862
    DCTELEM coeff = 0;
863
    int bits_to_get;
864
    int blocks_ended;
865
    int coeff_i = 0;
866
    int num_coeffs = s->num_coded_frags[plane][coeff_index];
867
    int16_t *dct_tokens = s->dct_tokens[plane][coeff_index];
868

    
869
    /* local references to structure members to avoid repeated deferences */
870
    int *coded_fragment_list = s->coded_fragment_list[plane];
871
    Vp3Fragment *all_fragments = s->all_fragments;
872
    VLC_TYPE (*vlc_table)[2] = table->table;
873

    
874
    if (num_coeffs < 0)
875
        av_log(s->avctx, AV_LOG_ERROR, "Invalid number of coefficents at level %d\n", coeff_index);
876

    
877
    if (eob_run > num_coeffs) {
878
        coeff_i = blocks_ended = num_coeffs;
879
        eob_run -= num_coeffs;
880
    } else {
881
        coeff_i = blocks_ended = eob_run;
882
        eob_run = 0;
883
    }
884

    
885
    // insert fake EOB token to cover the split between planes or zzi
886
    if (blocks_ended)
887
        dct_tokens[j++] = blocks_ended << 2;
888

    
889
    while (coeff_i < num_coeffs && get_bits_left(gb) > 0) {
890
            /* decode a VLC into a token */
891
            token = get_vlc2(gb, vlc_table, 11, 3);
892
            /* use the token to get a zero run, a coefficient, and an eob run */
893
            if (token <= 6) {
894
                eob_run = eob_run_base[token];
895
                if (eob_run_get_bits[token])
896
                    eob_run += get_bits(gb, eob_run_get_bits[token]);
897

    
898
                // record only the number of blocks ended in this plane,
899
                // any spill will be recorded in the next plane.
900
                if (eob_run > num_coeffs - coeff_i) {
901
                    dct_tokens[j++] = TOKEN_EOB(num_coeffs - coeff_i);
902
                    blocks_ended   += num_coeffs - coeff_i;
903
                    eob_run        -= num_coeffs - coeff_i;
904
                    coeff_i         = num_coeffs;
905
                } else {
906
                    dct_tokens[j++] = TOKEN_EOB(eob_run);
907
                    blocks_ended   += eob_run;
908
                    coeff_i        += eob_run;
909
                    eob_run = 0;
910
                }
911
            } else {
912
                bits_to_get = coeff_get_bits[token];
913
                if (bits_to_get)
914
                    bits_to_get = get_bits(gb, bits_to_get);
915
                coeff = coeff_tables[token][bits_to_get];
916

    
917
                zero_run = zero_run_base[token];
918
                if (zero_run_get_bits[token])
919
                    zero_run += get_bits(gb, zero_run_get_bits[token]);
920

    
921
                if (zero_run) {
922
                    dct_tokens[j++] = TOKEN_ZERO_RUN(coeff, zero_run);
923
                } else {
924
                    // Save DC into the fragment structure. DC prediction is
925
                    // done in raster order, so the actual DC can't be in with
926
                    // other tokens. We still need the token in dct_tokens[]
927
                    // however, or else the structure collapses on itself.
928
                    if (!coeff_index)
929
                        all_fragments[coded_fragment_list[coeff_i]].dc = coeff;
930

    
931
                    dct_tokens[j++] = TOKEN_COEFF(coeff);
932
                }
933

    
934
                if (coeff_index + zero_run > 64) {
935
                    av_log(s->avctx, AV_LOG_DEBUG, "Invalid zero run of %d with"
936
                           " %d coeffs left\n", zero_run, 64-coeff_index);
937
                    zero_run = 64 - coeff_index;
938
                }
939

    
940
                // zero runs code multiple coefficients,
941
                // so don't try to decode coeffs for those higher levels
942
                for (i = coeff_index+1; i <= coeff_index+zero_run; i++)
943
                    s->num_coded_frags[plane][i]--;
944
                coeff_i++;
945
            }
946
    }
947

    
948
    if (blocks_ended > s->num_coded_frags[plane][coeff_index])
949
        av_log(s->avctx, AV_LOG_ERROR, "More blocks ended than coded!\n");
950

    
951
    // decrement the number of blocks that have higher coeffecients for each
952
    // EOB run at this level
953
    if (blocks_ended)
954
        for (i = coeff_index+1; i < 64; i++)
955
            s->num_coded_frags[plane][i] -= blocks_ended;
956

    
957
    // setup the next buffer
958
    if (plane < 2)
959
        s->dct_tokens[plane+1][coeff_index] = dct_tokens + j;
960
    else if (coeff_index < 63)
961
        s->dct_tokens[0][coeff_index+1] = dct_tokens + j;
962

    
963
    return eob_run;
964
}
965

    
966
static void reverse_dc_prediction(Vp3DecodeContext *s,
967
                                  int first_fragment,
968
                                  int fragment_width,
969
                                  int fragment_height);
970
/*
971
 * This function unpacks all of the DCT coefficient data from the
972
 * bitstream.
973
 */
974
static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
975
{
976
    int i;
977
    int dc_y_table;
978
    int dc_c_table;
979
    int ac_y_table;
980
    int ac_c_table;
981
    int residual_eob_run = 0;
982
    VLC *y_tables[64];
983
    VLC *c_tables[64];
984

    
985
    s->dct_tokens[0][0] = s->dct_tokens_base;
986

    
987
    /* fetch the DC table indexes */
988
    dc_y_table = get_bits(gb, 4);
989
    dc_c_table = get_bits(gb, 4);
990

    
991
    /* unpack the Y plane DC coefficients */
992
    residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0,
993
        0, residual_eob_run);
994

    
995
    /* reverse prediction of the Y-plane DC coefficients */
996
    reverse_dc_prediction(s, 0, s->fragment_width[0], s->fragment_height[0]);
997

    
998
    /* unpack the C plane DC coefficients */
999
    residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
1000
        1, residual_eob_run);
1001
    residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
1002
        2, residual_eob_run);
1003

    
1004
    /* reverse prediction of the C-plane DC coefficients */
1005
    if (!(s->avctx->flags & CODEC_FLAG_GRAY))
1006
    {
1007
        reverse_dc_prediction(s, s->fragment_start[1],
1008
            s->fragment_width[1], s->fragment_height[1]);
1009
        reverse_dc_prediction(s, s->fragment_start[2],
1010
            s->fragment_width[1], s->fragment_height[1]);
1011
    }
1012

    
1013
    /* fetch the AC table indexes */
1014
    ac_y_table = get_bits(gb, 4);
1015
    ac_c_table = get_bits(gb, 4);
1016

    
1017
    /* build tables of AC VLC tables */
1018
    for (i = 1; i <= 5; i++) {
1019
        y_tables[i] = &s->ac_vlc_1[ac_y_table];
1020
        c_tables[i] = &s->ac_vlc_1[ac_c_table];
1021
    }
1022
    for (i = 6; i <= 14; i++) {
1023
        y_tables[i] = &s->ac_vlc_2[ac_y_table];
1024
        c_tables[i] = &s->ac_vlc_2[ac_c_table];
1025
    }
1026
    for (i = 15; i <= 27; i++) {
1027
        y_tables[i] = &s->ac_vlc_3[ac_y_table];
1028
        c_tables[i] = &s->ac_vlc_3[ac_c_table];
1029
    }
1030
    for (i = 28; i <= 63; i++) {
1031
        y_tables[i] = &s->ac_vlc_4[ac_y_table];
1032
        c_tables[i] = &s->ac_vlc_4[ac_c_table];
1033
    }
1034

    
1035
    /* decode all AC coefficents */
1036
    for (i = 1; i <= 63; i++) {
1037
            residual_eob_run = unpack_vlcs(s, gb, y_tables[i], i,
1038
                0, residual_eob_run);
1039

    
1040
            residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i,
1041
                1, residual_eob_run);
1042
            residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i,
1043
                2, residual_eob_run);
1044
    }
1045

    
1046
    return 0;
1047
}
1048

    
1049
/*
1050
 * This function reverses the DC prediction for each coded fragment in
1051
 * the frame. Much of this function is adapted directly from the original
1052
 * VP3 source code.
1053
 */
1054
#define COMPATIBLE_FRAME(x) \
1055
  (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type)
1056
#define DC_COEFF(u) s->all_fragments[u].dc
1057

    
1058
static void reverse_dc_prediction(Vp3DecodeContext *s,
1059
                                  int first_fragment,
1060
                                  int fragment_width,
1061
                                  int fragment_height)
1062
{
1063

    
1064
#define PUL 8
1065
#define PU 4
1066
#define PUR 2
1067
#define PL 1
1068

    
1069
    int x, y;
1070
    int i = first_fragment;
1071

    
1072
    int predicted_dc;
1073

    
1074
    /* DC values for the left, up-left, up, and up-right fragments */
1075
    int vl, vul, vu, vur;
1076

    
1077
    /* indexes for the left, up-left, up, and up-right fragments */
1078
    int l, ul, u, ur;
1079

    
1080
    /*
1081
     * The 6 fields mean:
1082
     *   0: up-left multiplier
1083
     *   1: up multiplier
1084
     *   2: up-right multiplier
1085
     *   3: left multiplier
1086
     */
1087
    static const int predictor_transform[16][4] = {
1088
        {  0,  0,  0,  0},
1089
        {  0,  0,  0,128},        // PL
1090
        {  0,  0,128,  0},        // PUR
1091
        {  0,  0, 53, 75},        // PUR|PL
1092
        {  0,128,  0,  0},        // PU
1093
        {  0, 64,  0, 64},        // PU|PL
1094
        {  0,128,  0,  0},        // PU|PUR
1095
        {  0,  0, 53, 75},        // PU|PUR|PL
1096
        {128,  0,  0,  0},        // PUL
1097
        {  0,  0,  0,128},        // PUL|PL
1098
        { 64,  0, 64,  0},        // PUL|PUR
1099
        {  0,  0, 53, 75},        // PUL|PUR|PL
1100
        {  0,128,  0,  0},        // PUL|PU
1101
       {-104,116,  0,116},        // PUL|PU|PL
1102
        { 24, 80, 24,  0},        // PUL|PU|PUR
1103
       {-104,116,  0,116}         // PUL|PU|PUR|PL
1104
    };
1105

    
1106
    /* This table shows which types of blocks can use other blocks for
1107
     * prediction. For example, INTRA is the only mode in this table to
1108
     * have a frame number of 0. That means INTRA blocks can only predict
1109
     * from other INTRA blocks. There are 2 golden frame coding types;
1110
     * blocks encoding in these modes can only predict from other blocks
1111
     * that were encoded with these 1 of these 2 modes. */
1112
    static const unsigned char compatible_frame[9] = {
1113
        1,    /* MODE_INTER_NO_MV */
1114
        0,    /* MODE_INTRA */
1115
        1,    /* MODE_INTER_PLUS_MV */
1116
        1,    /* MODE_INTER_LAST_MV */
1117
        1,    /* MODE_INTER_PRIOR_MV */
1118
        2,    /* MODE_USING_GOLDEN */
1119
        2,    /* MODE_GOLDEN_MV */
1120
        1,    /* MODE_INTER_FOUR_MV */
1121
        3     /* MODE_COPY */
1122
    };
1123
    int current_frame_type;
1124

    
1125
    /* there is a last DC predictor for each of the 3 frame types */
1126
    short last_dc[3];
1127

    
1128
    int transform = 0;
1129

    
1130
    vul = vu = vur = vl = 0;
1131
    last_dc[0] = last_dc[1] = last_dc[2] = 0;
1132

    
1133
    /* for each fragment row... */
1134
    for (y = 0; y < fragment_height; y++) {
1135

    
1136
        /* for each fragment in a row... */
1137
        for (x = 0; x < fragment_width; x++, i++) {
1138

    
1139
            /* reverse prediction if this block was coded */
1140
            if (s->all_fragments[i].coding_method != MODE_COPY) {
1141

    
1142
                current_frame_type =
1143
                    compatible_frame[s->all_fragments[i].coding_method];
1144

    
1145
                transform= 0;
1146
                if(x){
1147
                    l= i-1;
1148
                    vl = DC_COEFF(l);
1149
                    if(COMPATIBLE_FRAME(l))
1150
                        transform |= PL;
1151
                }
1152
                if(y){
1153
                    u= i-fragment_width;
1154
                    vu = DC_COEFF(u);
1155
                    if(COMPATIBLE_FRAME(u))
1156
                        transform |= PU;
1157
                    if(x){
1158
                        ul= i-fragment_width-1;
1159
                        vul = DC_COEFF(ul);
1160
                        if(COMPATIBLE_FRAME(ul))
1161
                            transform |= PUL;
1162
                    }
1163
                    if(x + 1 < fragment_width){
1164
                        ur= i-fragment_width+1;
1165
                        vur = DC_COEFF(ur);
1166
                        if(COMPATIBLE_FRAME(ur))
1167
                            transform |= PUR;
1168
                    }
1169
                }
1170

    
1171
                if (transform == 0) {
1172

    
1173
                    /* if there were no fragments to predict from, use last
1174
                     * DC saved */
1175
                    predicted_dc = last_dc[current_frame_type];
1176
                } else {
1177

    
1178
                    /* apply the appropriate predictor transform */
1179
                    predicted_dc =
1180
                        (predictor_transform[transform][0] * vul) +
1181
                        (predictor_transform[transform][1] * vu) +
1182
                        (predictor_transform[transform][2] * vur) +
1183
                        (predictor_transform[transform][3] * vl);
1184

    
1185
                    predicted_dc /= 128;
1186

    
1187
                    /* check for outranging on the [ul u l] and
1188
                     * [ul u ur l] predictors */
1189
                    if ((transform == 15) || (transform == 13)) {
1190
                        if (FFABS(predicted_dc - vu) > 128)
1191
                            predicted_dc = vu;
1192
                        else if (FFABS(predicted_dc - vl) > 128)
1193
                            predicted_dc = vl;
1194
                        else if (FFABS(predicted_dc - vul) > 128)
1195
                            predicted_dc = vul;
1196
                    }
1197
                }
1198

    
1199
                /* at long last, apply the predictor */
1200
                DC_COEFF(i) += predicted_dc;
1201
                /* save the DC */
1202
                last_dc[current_frame_type] = DC_COEFF(i);
1203
            }
1204
        }
1205
    }
1206
}
1207

    
1208
static void apply_loop_filter(Vp3DecodeContext *s, int plane, int ystart, int yend)
1209
{
1210
    int x, y;
1211
    int *bounding_values= s->bounding_values_array+127;
1212

    
1213
    int width           = s->fragment_width[!!plane];
1214
    int height          = s->fragment_height[!!plane];
1215
    int fragment        = s->fragment_start        [plane] + ystart * width;
1216
    int stride          = s->current_frame.linesize[plane];
1217
    uint8_t *plane_data = s->current_frame.data    [plane];
1218
    if (!s->flipped_image) stride = -stride;
1219
    plane_data += s->data_offset[plane] + 8*ystart*stride;
1220

    
1221
    for (y = ystart; y < yend; y++) {
1222

    
1223
        for (x = 0; x < width; x++) {
1224
            /* This code basically just deblocks on the edges of coded blocks.
1225
             * However, it has to be much more complicated because of the
1226
             * braindamaged deblock ordering used in VP3/Theora. Order matters
1227
             * because some pixels get filtered twice. */
1228
            if( s->all_fragments[fragment].coding_method != MODE_COPY )
1229
            {
1230
                /* do not perform left edge filter for left columns frags */
1231
                if (x > 0) {
1232
                    s->dsp.vp3_h_loop_filter(
1233
                        plane_data + 8*x,
1234
                        stride, bounding_values);
1235
                }
1236

    
1237
                /* do not perform top edge filter for top row fragments */
1238
                if (y > 0) {
1239
                    s->dsp.vp3_v_loop_filter(
1240
                        plane_data + 8*x,
1241
                        stride, bounding_values);
1242
                }
1243

    
1244
                /* do not perform right edge filter for right column
1245
                 * fragments or if right fragment neighbor is also coded
1246
                 * in this frame (it will be filtered in next iteration) */
1247
                if ((x < width - 1) &&
1248
                    (s->all_fragments[fragment + 1].coding_method == MODE_COPY)) {
1249
                    s->dsp.vp3_h_loop_filter(
1250
                        plane_data + 8*x + 8,
1251
                        stride, bounding_values);
1252
                }
1253

    
1254
                /* do not perform bottom edge filter for bottom row
1255
                 * fragments or if bottom fragment neighbor is also coded
1256
                 * in this frame (it will be filtered in the next row) */
1257
                if ((y < height - 1) &&
1258
                    (s->all_fragments[fragment + width].coding_method == MODE_COPY)) {
1259
                    s->dsp.vp3_v_loop_filter(
1260
                        plane_data + 8*x + 8*stride,
1261
                        stride, bounding_values);
1262
                }
1263
            }
1264

    
1265
            fragment++;
1266
        }
1267
        plane_data += 8*stride;
1268
    }
1269
}
1270

    
1271
/**
1272
 * Pull DCT tokens from the 64 levels to decode and dequant the coefficients
1273
 * for the next block in coding order
1274
 */
1275
static inline int vp3_dequant(Vp3DecodeContext *s, Vp3Fragment *frag,
1276
                              int plane, int inter, DCTELEM block[64])
1277
{
1278
    int16_t *dequantizer = s->qmat[frag->qpi][inter][plane];
1279
    uint8_t *perm = s->scantable.permutated;
1280
    int i = 0;
1281

    
1282
    do {
1283
        int token = *s->dct_tokens[plane][i];
1284
        switch (token & 3) {
1285
        case 0: // EOB
1286
            if (--token < 4) // 0-3 are token types, so the EOB run must now be 0
1287
                s->dct_tokens[plane][i]++;
1288
            else
1289
                *s->dct_tokens[plane][i] = token & ~3;
1290
            goto end;
1291
        case 1: // zero run
1292
            s->dct_tokens[plane][i]++;
1293
            i += (token >> 2) & 0x7f;
1294
            block[perm[i]] = (token >> 9) * dequantizer[perm[i]];
1295
            i++;
1296
            break;
1297
        case 2: // coeff
1298
            block[perm[i]] = (token >> 2) * dequantizer[perm[i]];
1299
            s->dct_tokens[plane][i++]++;
1300
            break;
1301
        default: // shouldn't happen
1302
            return i;
1303
        }
1304
    } while (i < 64);
1305
end:
1306
    // the actual DC+prediction is in the fragment structure
1307
    block[0] = frag->dc * s->qmat[0][inter][plane][0];
1308
    return i;
1309
}
1310

    
1311
/**
1312
 * called when all pixels up to row y are complete
1313
 */
1314
static void vp3_draw_horiz_band(Vp3DecodeContext *s, int y)
1315
{
1316
    int h, cy;
1317
    int offset[4];
1318

    
1319
    if (HAVE_PTHREADS && s->avctx->active_thread_type&FF_THREAD_FRAME) {
1320
        int y_flipped = s->flipped_image ? s->avctx->height-y : y;
1321

    
1322
        // At the end of the frame, report INT_MAX instead of the height of the frame.
1323
        // This makes the other threads' ff_thread_await_progress() calls cheaper, because
1324
        // they don't have to clip their values.
1325
        ff_thread_report_progress(&s->current_frame, y_flipped==s->avctx->height ? INT_MAX : y_flipped-1, 0);
1326
    }
1327

    
1328
    if(s->avctx->draw_horiz_band==NULL)
1329
        return;
1330

    
1331
    h= y - s->last_slice_end;
1332
    s->last_slice_end= y;
1333
    y -= h;
1334

    
1335
    if (!s->flipped_image) {
1336
        y = s->avctx->height - y - h;
1337
    }
1338

    
1339
    cy = y >> s->chroma_y_shift;
1340
    offset[0] = s->current_frame.linesize[0]*y;
1341
    offset[1] = s->current_frame.linesize[1]*cy;
1342
    offset[2] = s->current_frame.linesize[2]*cy;
1343
    offset[3] = 0;
1344

    
1345
    emms_c();
1346
    s->avctx->draw_horiz_band(s->avctx, &s->current_frame, offset, y, 3, h);
1347
}
1348

    
1349
/**
1350
 * Wait for the reference frame of the current fragment.
1351
 * The progress value is in luma pixel rows.
1352
 */
1353
static void await_reference_row(Vp3DecodeContext *s, Vp3Fragment *fragment, int motion_y, int y)
1354
{
1355
    AVFrame *ref_frame;
1356
    int ref_row;
1357
    int border = motion_y&1;
1358

    
1359
    if (fragment->coding_method == MODE_USING_GOLDEN ||
1360
        fragment->coding_method == MODE_GOLDEN_MV)
1361
        ref_frame = &s->golden_frame;
1362
    else
1363
        ref_frame = &s->last_frame;
1364

    
1365
    ref_row = y + (motion_y>>1);
1366
    ref_row = FFMAX(FFABS(ref_row), ref_row + 8 + border);
1367

    
1368
    ff_thread_await_progress(ref_frame, ref_row, 0);
1369
}
1370

    
1371
/*
1372
 * Perform the final rendering for a particular slice of data.
1373
 * The slice number ranges from 0..(c_superblock_height - 1).
1374
 */
1375
static void render_slice(Vp3DecodeContext *s, int slice)
1376
{
1377
    int x, y, i, j, fragment;
1378
    LOCAL_ALIGNED_16(DCTELEM, block, [64]);
1379
    int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef;
1380
    int motion_halfpel_index;
1381
    uint8_t *motion_source;
1382
    int plane, first_pixel;
1383

    
1384
    if (slice >= s->c_superblock_height)
1385
        return;
1386

    
1387
    for (plane = 0; plane < 3; plane++) {
1388
        uint8_t *output_plane = s->current_frame.data    [plane] + s->data_offset[plane];
1389
        uint8_t *  last_plane = s->   last_frame.data    [plane] + s->data_offset[plane];
1390
        uint8_t *golden_plane = s-> golden_frame.data    [plane] + s->data_offset[plane];
1391
        int stride            = s->current_frame.linesize[plane];
1392
        int plane_width       = s->width  >> (plane && s->chroma_x_shift);
1393
        int plane_height      = s->height >> (plane && s->chroma_y_shift);
1394
        int8_t (*motion_val)[2] = s->motion_val[!!plane];
1395

    
1396
        int sb_x, sb_y        = slice << (!plane && s->chroma_y_shift);
1397
        int slice_height      = sb_y + 1 + (!plane && s->chroma_y_shift);
1398
        int slice_width       = plane ? s->c_superblock_width : s->y_superblock_width;
1399

    
1400
        int fragment_width    = s->fragment_width[!!plane];
1401
        int fragment_height   = s->fragment_height[!!plane];
1402
        int fragment_start    = s->fragment_start[plane];
1403
        int do_await          = !plane && HAVE_PTHREADS && (s->avctx->active_thread_type&FF_THREAD_FRAME);
1404

    
1405
        if (!s->flipped_image) stride = -stride;
1406
        if (CONFIG_GRAY && plane && (s->avctx->flags & CODEC_FLAG_GRAY))
1407
            continue;
1408

    
1409
        /* for each superblock row in the slice (both of them)... */
1410
        for (; sb_y < slice_height; sb_y++) {
1411

    
1412
            /* for each superblock in a row... */
1413
            for (sb_x = 0; sb_x < slice_width; sb_x++) {
1414

    
1415
                /* for each block in a superblock... */
1416
                for (j = 0; j < 16; j++) {
1417
                    x = 4*sb_x + hilbert_offset[j][0];
1418
                    y = 4*sb_y + hilbert_offset[j][1];
1419
                    fragment = y*fragment_width + x;
1420

    
1421
                    i = fragment_start + fragment;
1422

    
1423
                    // bounds check
1424
                    if (x >= fragment_width || y >= fragment_height)
1425
                        continue;
1426

    
1427
                first_pixel = 8*y*stride + 8*x;
1428

    
1429
                if (do_await && s->all_fragments[i].coding_method != MODE_INTRA)
1430
                    await_reference_row(s, &s->all_fragments[i], motion_val[fragment][1], (16*y) >> s->chroma_y_shift);
1431

    
1432
                /* transform if this block was coded */
1433
                if (s->all_fragments[i].coding_method != MODE_COPY) {
1434
                    if ((s->all_fragments[i].coding_method == MODE_USING_GOLDEN) ||
1435
                        (s->all_fragments[i].coding_method == MODE_GOLDEN_MV))
1436
                        motion_source= golden_plane;
1437
                    else
1438
                        motion_source= last_plane;
1439

    
1440
                    motion_source += first_pixel;
1441
                    motion_halfpel_index = 0;
1442

    
1443
                    /* sort out the motion vector if this fragment is coded
1444
                     * using a motion vector method */
1445
                    if ((s->all_fragments[i].coding_method > MODE_INTRA) &&
1446
                        (s->all_fragments[i].coding_method != MODE_USING_GOLDEN)) {
1447
                        int src_x, src_y;
1448
                        motion_x = motion_val[fragment][0];
1449
                        motion_y = motion_val[fragment][1];
1450

    
1451
                        src_x= (motion_x>>1) + 8*x;
1452
                        src_y= (motion_y>>1) + 8*y;
1453

    
1454
                        motion_halfpel_index = motion_x & 0x01;
1455
                        motion_source += (motion_x >> 1);
1456

    
1457
                        motion_halfpel_index |= (motion_y & 0x01) << 1;
1458
                        motion_source += ((motion_y >> 1) * stride);
1459

    
1460
                        if(src_x<0 || src_y<0 || src_x + 9 >= plane_width || src_y + 9 >= plane_height){
1461
                            uint8_t *temp= s->edge_emu_buffer;
1462
                            if(stride<0) temp -= 8*stride;
1463

    
1464
                            s->dsp.emulated_edge_mc(temp, motion_source, stride, 9, 9, src_x, src_y, plane_width, plane_height);
1465
                            motion_source= temp;
1466
                        }
1467
                    }
1468

    
1469

    
1470
                    /* first, take care of copying a block from either the
1471
                     * previous or the golden frame */
1472
                    if (s->all_fragments[i].coding_method != MODE_INTRA) {
1473
                        /* Note, it is possible to implement all MC cases with
1474
                           put_no_rnd_pixels_l2 which would look more like the
1475
                           VP3 source but this would be slower as
1476
                           put_no_rnd_pixels_tab is better optimzed */
1477
                        if(motion_halfpel_index != 3){
1478
                            s->dsp.put_no_rnd_pixels_tab[1][motion_halfpel_index](
1479
                                output_plane + first_pixel,
1480
                                motion_source, stride, 8);
1481
                        }else{
1482
                            int d= (motion_x ^ motion_y)>>31; // d is 0 if motion_x and _y have the same sign, else -1
1483
                            s->dsp.put_no_rnd_pixels_l2[1](
1484
                                output_plane + first_pixel,
1485
                                motion_source - d,
1486
                                motion_source + stride + 1 + d,
1487
                                stride, 8);
1488
                        }
1489
                    }
1490

    
1491
                        s->dsp.clear_block(block);
1492

    
1493
                    /* invert DCT and place (or add) in final output */
1494

    
1495
                    if (s->all_fragments[i].coding_method == MODE_INTRA) {
1496
                        vp3_dequant(s, s->all_fragments + i, plane, 0, block);
1497
                        if(s->avctx->idct_algo!=FF_IDCT_VP3)
1498
                            block[0] += 128<<3;
1499
                        s->dsp.idct_put(
1500
                            output_plane + first_pixel,
1501
                            stride,
1502
                            block);
1503
                    } else {
1504
                        if (vp3_dequant(s, s->all_fragments + i, plane, 1, block)) {
1505
                        s->dsp.idct_add(
1506
                            output_plane + first_pixel,
1507
                            stride,
1508
                            block);
1509
                        } else {
1510
                            s->dsp.vp3_idct_dc_add(output_plane + first_pixel, stride, block);
1511
                        }
1512
                    }
1513
                } else {
1514

    
1515
                    /* copy directly from the previous frame */
1516
                    s->dsp.put_pixels_tab[1][0](
1517
                        output_plane + first_pixel,
1518
                        last_plane + first_pixel,
1519
                        stride, 8);
1520

    
1521
                }
1522
                }
1523
            }
1524

    
1525
            // Filter up to the last row in the superblock row
1526
            if (!s->skip_loop_filter)
1527
                apply_loop_filter(s, plane, 4*sb_y - !!sb_y, FFMIN(4*sb_y+3, fragment_height-1));
1528
        }
1529
    }
1530

    
1531
     /* this looks like a good place for slice dispatch... */
1532
     /* algorithm:
1533
      *   if (slice == s->macroblock_height - 1)
1534
      *     dispatch (both last slice & 2nd-to-last slice);
1535
      *   else if (slice > 0)
1536
      *     dispatch (slice - 1);
1537
      */
1538

    
1539
    vp3_draw_horiz_band(s, FFMIN((32 << s->chroma_y_shift) * (slice + 1) -16, s->height-16));
1540
}
1541

    
1542
/// Allocate tables for per-frame data in Vp3DecodeContext
1543
static av_cold int allocate_tables(AVCodecContext *avctx)
1544
{
1545
    Vp3DecodeContext *s = avctx->priv_data;
1546
    int y_fragment_count, c_fragment_count;
1547

    
1548
    y_fragment_count = s->fragment_width[0] * s->fragment_height[0];
1549
    c_fragment_count = s->fragment_width[1] * s->fragment_height[1];
1550

    
1551
    s->superblock_coding = av_malloc(s->superblock_count);
1552
    s->all_fragments = av_malloc(s->fragment_count * sizeof(Vp3Fragment));
1553
    s->coded_fragment_list[0] = av_malloc(s->fragment_count * sizeof(int));
1554
    s->dct_tokens_base = av_malloc(64*s->fragment_count * sizeof(*s->dct_tokens_base));
1555
    s->motion_val[0] = av_malloc(y_fragment_count * sizeof(*s->motion_val[0]));
1556
    s->motion_val[1] = av_malloc(c_fragment_count * sizeof(*s->motion_val[1]));
1557

    
1558
    /* work out the block mapping tables */
1559
    s->superblock_fragments = av_malloc(s->superblock_count * 16 * sizeof(int));
1560
    s->macroblock_coding = av_malloc(s->macroblock_count + 1);
1561

    
1562
    if (!s->superblock_coding || !s->all_fragments || !s->dct_tokens_base ||
1563
        !s->coded_fragment_list[0] || !s->superblock_fragments || !s->macroblock_coding ||
1564
        !s->motion_val[0] || !s->motion_val[1]) {
1565
        vp3_decode_end(avctx);
1566
        return -1;
1567
    }
1568

    
1569
    init_block_mapping(s);
1570

    
1571
    return 0;
1572
}
1573

    
1574
/*
1575
 * This is the ffmpeg/libavcodec API init function.
1576
 */
1577
static av_cold int vp3_decode_init(AVCodecContext *avctx)
1578
{
1579
    Vp3DecodeContext *s = avctx->priv_data;
1580
    int i, inter, plane;
1581
    int c_width;
1582
    int c_height;
1583
    int y_fragment_count, c_fragment_count;
1584

    
1585
    if (avctx->codec_tag == MKTAG('V','P','3','0'))
1586
        s->version = 0;
1587
    else
1588
        s->version = 1;
1589

    
1590
    s->avctx = avctx;
1591
    s->width = FFALIGN(avctx->width, 16);
1592
    s->height = FFALIGN(avctx->height, 16);
1593
    if (avctx->pix_fmt == PIX_FMT_NONE)
1594
        avctx->pix_fmt = PIX_FMT_YUV420P;
1595
    avctx->chroma_sample_location = AVCHROMA_LOC_CENTER;
1596
    if(avctx->idct_algo==FF_IDCT_AUTO)
1597
        avctx->idct_algo=FF_IDCT_VP3;
1598
    dsputil_init(&s->dsp, avctx);
1599

    
1600
    ff_init_scantable(s->dsp.idct_permutation, &s->scantable, ff_zigzag_direct);
1601

    
1602
    /* initialize to an impossible value which will force a recalculation
1603
     * in the first frame decode */
1604
    for (i = 0; i < 3; i++)
1605
        s->qps[i] = -1;
1606

    
1607
    avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_x_shift, &s->chroma_y_shift);
1608

    
1609
    s->y_superblock_width = (s->width + 31) / 32;
1610
    s->y_superblock_height = (s->height + 31) / 32;
1611
    s->y_superblock_count = s->y_superblock_width * s->y_superblock_height;
1612

    
1613
    /* work out the dimensions for the C planes */
1614
    c_width = s->width >> s->chroma_x_shift;
1615
    c_height = s->height >> s->chroma_y_shift;
1616
    s->c_superblock_width = (c_width + 31) / 32;
1617
    s->c_superblock_height = (c_height + 31) / 32;
1618
    s->c_superblock_count = s->c_superblock_width * s->c_superblock_height;
1619

    
1620
    s->superblock_count = s->y_superblock_count + (s->c_superblock_count * 2);
1621
    s->u_superblock_start = s->y_superblock_count;
1622
    s->v_superblock_start = s->u_superblock_start + s->c_superblock_count;
1623

    
1624
    s->macroblock_width = (s->width + 15) / 16;
1625
    s->macroblock_height = (s->height + 15) / 16;
1626
    s->macroblock_count = s->macroblock_width * s->macroblock_height;
1627

    
1628
    s->fragment_width[0] = s->width / FRAGMENT_PIXELS;
1629
    s->fragment_height[0] = s->height / FRAGMENT_PIXELS;
1630
    s->fragment_width[1]  = s->fragment_width[0]  >> s->chroma_x_shift;
1631
    s->fragment_height[1] = s->fragment_height[0] >> s->chroma_y_shift;
1632

    
1633
    /* fragment count covers all 8x8 blocks for all 3 planes */
1634
    y_fragment_count     = s->fragment_width[0] * s->fragment_height[0];
1635
    c_fragment_count     = s->fragment_width[1] * s->fragment_height[1];
1636
    s->fragment_count    = y_fragment_count + 2*c_fragment_count;
1637
    s->fragment_start[1] = y_fragment_count;
1638
    s->fragment_start[2] = y_fragment_count + c_fragment_count;
1639

    
1640
    if (!s->theora_tables)
1641
    {
1642
        for (i = 0; i < 64; i++) {
1643
            s->coded_dc_scale_factor[i] = vp31_dc_scale_factor[i];
1644
            s->coded_ac_scale_factor[i] = vp31_ac_scale_factor[i];
1645
            s->base_matrix[0][i] = vp31_intra_y_dequant[i];
1646
            s->base_matrix[1][i] = vp31_intra_c_dequant[i];
1647
            s->base_matrix[2][i] = vp31_inter_dequant[i];
1648
            s->filter_limit_values[i] = vp31_filter_limit_values[i];
1649
        }
1650

    
1651
        for(inter=0; inter<2; inter++){
1652
            for(plane=0; plane<3; plane++){
1653
                s->qr_count[inter][plane]= 1;
1654
                s->qr_size [inter][plane][0]= 63;
1655
                s->qr_base [inter][plane][0]=
1656
                s->qr_base [inter][plane][1]= 2*inter + (!!plane)*!inter;
1657
            }
1658
        }
1659

    
1660
        /* init VLC tables */
1661
        for (i = 0; i < 16; i++) {
1662

    
1663
            /* DC histograms */
1664
            init_vlc(&s->dc_vlc[i], 11, 32,
1665
                &dc_bias[i][0][1], 4, 2,
1666
                &dc_bias[i][0][0], 4, 2, 0);
1667

    
1668
            /* group 1 AC histograms */
1669
            init_vlc(&s->ac_vlc_1[i], 11, 32,
1670
                &ac_bias_0[i][0][1], 4, 2,
1671
                &ac_bias_0[i][0][0], 4, 2, 0);
1672

    
1673
            /* group 2 AC histograms */
1674
            init_vlc(&s->ac_vlc_2[i], 11, 32,
1675
                &ac_bias_1[i][0][1], 4, 2,
1676
                &ac_bias_1[i][0][0], 4, 2, 0);
1677

    
1678
            /* group 3 AC histograms */
1679
            init_vlc(&s->ac_vlc_3[i], 11, 32,
1680
                &ac_bias_2[i][0][1], 4, 2,
1681
                &ac_bias_2[i][0][0], 4, 2, 0);
1682

    
1683
            /* group 4 AC histograms */
1684
            init_vlc(&s->ac_vlc_4[i], 11, 32,
1685
                &ac_bias_3[i][0][1], 4, 2,
1686
                &ac_bias_3[i][0][0], 4, 2, 0);
1687
        }
1688
    } else {
1689

    
1690
        for (i = 0; i < 16; i++) {
1691
            /* DC histograms */
1692
            if (init_vlc(&s->dc_vlc[i], 11, 32,
1693
                &s->huffman_table[i][0][1], 8, 4,
1694
                &s->huffman_table[i][0][0], 8, 4, 0) < 0)
1695
                goto vlc_fail;
1696

    
1697
            /* group 1 AC histograms */
1698
            if (init_vlc(&s->ac_vlc_1[i], 11, 32,
1699
                &s->huffman_table[i+16][0][1], 8, 4,
1700
                &s->huffman_table[i+16][0][0], 8, 4, 0) < 0)
1701
                goto vlc_fail;
1702

    
1703
            /* group 2 AC histograms */
1704
            if (init_vlc(&s->ac_vlc_2[i], 11, 32,
1705
                &s->huffman_table[i+16*2][0][1], 8, 4,
1706
                &s->huffman_table[i+16*2][0][0], 8, 4, 0) < 0)
1707
                goto vlc_fail;
1708

    
1709
            /* group 3 AC histograms */
1710
            if (init_vlc(&s->ac_vlc_3[i], 11, 32,
1711
                &s->huffman_table[i+16*3][0][1], 8, 4,
1712
                &s->huffman_table[i+16*3][0][0], 8, 4, 0) < 0)
1713
                goto vlc_fail;
1714

    
1715
            /* group 4 AC histograms */
1716
            if (init_vlc(&s->ac_vlc_4[i], 11, 32,
1717
                &s->huffman_table[i+16*4][0][1], 8, 4,
1718
                &s->huffman_table[i+16*4][0][0], 8, 4, 0) < 0)
1719
                goto vlc_fail;
1720
        }
1721
    }
1722

    
1723
    init_vlc(&s->superblock_run_length_vlc, 6, 34,
1724
        &superblock_run_length_vlc_table[0][1], 4, 2,
1725
        &superblock_run_length_vlc_table[0][0], 4, 2, 0);
1726

    
1727
    init_vlc(&s->fragment_run_length_vlc, 5, 30,
1728
        &fragment_run_length_vlc_table[0][1], 4, 2,
1729
        &fragment_run_length_vlc_table[0][0], 4, 2, 0);
1730

    
1731
    init_vlc(&s->mode_code_vlc, 3, 8,
1732
        &mode_code_vlc_table[0][1], 2, 1,
1733
        &mode_code_vlc_table[0][0], 2, 1, 0);
1734

    
1735
    init_vlc(&s->motion_vector_vlc, 6, 63,
1736
        &motion_vector_vlc_table[0][1], 2, 1,
1737
        &motion_vector_vlc_table[0][0], 2, 1, 0);
1738

    
1739
    for (i = 0; i < 3; i++) {
1740
        s->current_frame.data[i] = NULL;
1741
        s->last_frame.data[i] = NULL;
1742
        s->golden_frame.data[i] = NULL;
1743
    }
1744

    
1745
    return allocate_tables(avctx);
1746

    
1747
vlc_fail:
1748
    av_log(avctx, AV_LOG_FATAL, "Invalid huffman table\n");
1749
    return -1;
1750
}
1751

    
1752
/// Release and shuffle frames after decode finishes
1753
static void update_frames(AVCodecContext *avctx)
1754
{
1755
    Vp3DecodeContext *s = avctx->priv_data;
1756

    
1757
    /* release the last frame, if it is allocated and if it is not the
1758
     * golden frame */
1759
    if (s->last_frame.data[0] && s->last_frame.type != FF_BUFFER_TYPE_COPY)
1760
        ff_thread_release_buffer(avctx, &s->last_frame);
1761

    
1762
    /* shuffle frames (last = current) */
1763
    s->last_frame= s->current_frame;
1764

    
1765
    if (s->keyframe) {
1766
        if (s->golden_frame.data[0])
1767
            ff_thread_release_buffer(avctx, &s->golden_frame);
1768
        s->golden_frame = s->current_frame;
1769
        s->last_frame.type = FF_BUFFER_TYPE_COPY;
1770
    }
1771

    
1772
    s->current_frame.data[0]= NULL; /* ensure that we catch any access to this released frame */
1773
}
1774

    
1775
static int vp3_update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
1776
{
1777
    Vp3DecodeContext *s = dst->priv_data, *s1 = src->priv_data;
1778
    int qps_changed = 0, i, err;
1779

    
1780
    if (!s1->current_frame.data[0]
1781
        ||s->width != s1->width
1782
        ||s->height!= s1->height)
1783
        return -1;
1784

    
1785
    if (s != s1) {
1786
        // init tables if the first frame hasn't been decoded
1787
        if (!s->current_frame.data[0]) {
1788
            int y_fragment_count, c_fragment_count;
1789
            s->avctx = dst;
1790
            err = allocate_tables(dst);
1791
            if (err)
1792
                return err;
1793
            y_fragment_count = s->fragment_width[0] * s->fragment_height[0];
1794
            c_fragment_count = s->fragment_width[1] * s->fragment_height[1];
1795
            memcpy(s->motion_val[0], s1->motion_val[0], y_fragment_count * sizeof(*s->motion_val[0]));
1796
            memcpy(s->motion_val[1], s1->motion_val[1], c_fragment_count * sizeof(*s->motion_val[1]));
1797
        }
1798

    
1799
#define copy_fields(to, from, start_field, end_field) memcpy(&to->start_field, &from->start_field, (char*)&to->end_field - (char*)&to->start_field)
1800

    
1801
        // copy previous frame data
1802
        copy_fields(s, s1, golden_frame, dsp);
1803

    
1804
        // copy qscale data if necessary
1805
        for (i = 0; i < 3; i++) {
1806
            if (s->qps[i] != s1->qps[1]) {
1807
                qps_changed = 1;
1808
                memcpy(&s->qmat[i], &s1->qmat[i], sizeof(s->qmat[i]));
1809
            }
1810
        }
1811

    
1812
        if (s->qps[0] != s1->qps[0])
1813
            memcpy(&s->bounding_values_array, &s1->bounding_values_array, sizeof(s->bounding_values_array));
1814

    
1815
        if (qps_changed)
1816
            copy_fields(s, s1, qps, superblock_count);
1817
#undef copy_fields
1818
    }
1819

    
1820
    update_frames(dst);
1821

    
1822
    return 0;
1823
}
1824

    
1825
/*
1826
 * This is the ffmpeg/libavcodec API frame decode function.
1827
 */
1828
static int vp3_decode_frame(AVCodecContext *avctx,
1829
                            void *data, int *data_size,
1830
                            AVPacket *avpkt)
1831
{
1832
    const uint8_t *buf = avpkt->data;
1833
    int buf_size = avpkt->size;
1834
    Vp3DecodeContext *s = avctx->priv_data;
1835
    GetBitContext gb;
1836
    int i;
1837

    
1838
    init_get_bits(&gb, buf, buf_size * 8);
1839

    
1840
    if (s->theora && get_bits1(&gb))
1841
    {
1842
        av_log(avctx, AV_LOG_ERROR, "Header packet passed to frame decoder, skipping\n");
1843
        return -1;
1844
    }
1845

    
1846
    s->keyframe = !get_bits1(&gb);
1847
    if (!s->theora)
1848
        skip_bits(&gb, 1);
1849
    for (i = 0; i < 3; i++)
1850
        s->last_qps[i] = s->qps[i];
1851

    
1852
    s->nqps=0;
1853
    do{
1854
        s->qps[s->nqps++]= get_bits(&gb, 6);
1855
    } while(s->theora >= 0x030200 && s->nqps<3 && get_bits1(&gb));
1856
    for (i = s->nqps; i < 3; i++)
1857
        s->qps[i] = -1;
1858

    
1859
    if (s->avctx->debug & FF_DEBUG_PICT_INFO)
1860
        av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%d: Q index = %d\n",
1861
            s->keyframe?"key":"", avctx->frame_number+1, s->qps[0]);
1862

    
1863
    s->skip_loop_filter = !s->filter_limit_values[s->qps[0]] ||
1864
        avctx->skip_loop_filter >= (s->keyframe ? AVDISCARD_ALL : AVDISCARD_NONKEY);
1865

    
1866
    if (s->qps[0] != s->last_qps[0])
1867
        init_loop_filter(s);
1868

    
1869
    for (i = 0; i < s->nqps; i++)
1870
        // reinit all dequantizers if the first one changed, because
1871
        // the DC of the first quantizer must be used for all matrices
1872
        if (s->qps[i] != s->last_qps[i] || s->qps[0] != s->last_qps[0])
1873
            init_dequantizer(s, i);
1874

    
1875
    if (avctx->skip_frame >= AVDISCARD_NONKEY && !s->keyframe)
1876
        return buf_size;
1877

    
1878
    s->current_frame.reference = 3;
1879
    s->current_frame.pict_type = s->keyframe ? FF_I_TYPE : FF_P_TYPE;
1880
    if (ff_thread_get_buffer(avctx, &s->current_frame) < 0) {
1881
        av_log(s->avctx, AV_LOG_ERROR, "get_buffer() failed\n");
1882
        goto error;
1883
    }
1884

    
1885
    if (!s->edge_emu_buffer)
1886
        s->edge_emu_buffer = av_malloc(9*FFABS(s->current_frame.linesize[0]));
1887

    
1888
    if (s->keyframe) {
1889
        if (!s->theora)
1890
        {
1891
            skip_bits(&gb, 4); /* width code */
1892
            skip_bits(&gb, 4); /* height code */
1893
            if (s->version)
1894
            {
1895
                s->version = get_bits(&gb, 5);
1896
                if (avctx->frame_number == 0)
1897
                    av_log(s->avctx, AV_LOG_DEBUG, "VP version: %d\n", s->version);
1898
            }
1899
        }
1900
        if (s->version || s->theora)
1901
        {
1902
                if (get_bits1(&gb))
1903
                    av_log(s->avctx, AV_LOG_ERROR, "Warning, unsupported keyframe coding type?!\n");
1904
            skip_bits(&gb, 2); /* reserved? */
1905
        }
1906
    } else {
1907
        if (!s->golden_frame.data[0]) {
1908
            av_log(s->avctx, AV_LOG_WARNING, "vp3: first frame not a keyframe\n");
1909

    
1910
            s->golden_frame.reference = 3;
1911
            s->golden_frame.pict_type = FF_I_TYPE;
1912
            if (ff_thread_get_buffer(avctx, &s->golden_frame) < 0) {
1913
                av_log(s->avctx, AV_LOG_ERROR, "get_buffer() failed\n");
1914
                goto error;
1915
            }
1916
            s->last_frame = s->golden_frame;
1917
            s->last_frame.type = FF_BUFFER_TYPE_COPY;
1918
        }
1919
    }
1920

    
1921
    memset(s->all_fragments, 0, s->fragment_count * sizeof(Vp3Fragment));
1922
    ff_thread_finish_setup(avctx);
1923

    
1924
    if (unpack_superblocks(s, &gb)){
1925
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n");
1926
        goto error;
1927
    }
1928
    if (unpack_modes(s, &gb)){
1929
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n");
1930
        goto error;
1931
    }
1932
    if (unpack_vectors(s, &gb)){
1933
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n");
1934
        goto error;
1935
    }
1936
    if (unpack_block_qpis(s, &gb)){
1937
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_block_qpis\n");
1938
        goto error;
1939
    }
1940
    if (unpack_dct_coeffs(s, &gb)){
1941
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n");
1942
        goto error;
1943
    }
1944

    
1945
    for (i = 0; i < 3; i++) {
1946
        int height = s->height >> (i && s->chroma_y_shift);
1947
        if (s->flipped_image)
1948
            s->data_offset[i] = 0;
1949
        else
1950
            s->data_offset[i] = (height-1) * s->current_frame.linesize[i];
1951
    }
1952

    
1953
    s->last_slice_end = 0;
1954
    for (i = 0; i < s->c_superblock_height; i++)
1955
        render_slice(s, i);
1956

    
1957
    // filter the last row
1958
    for (i = 0; i < 3; i++) {
1959
        int row = (s->height >> (3+(i && s->chroma_y_shift))) - 1;
1960
        apply_loop_filter(s, i, row, row+1);
1961
    }
1962
    vp3_draw_horiz_band(s, s->avctx->height);
1963

    
1964
    *data_size=sizeof(AVFrame);
1965
    *(AVFrame*)data= s->current_frame;
1966

    
1967
    if (!HAVE_PTHREADS || !(s->avctx->active_thread_type&FF_THREAD_FRAME))
1968
        update_frames(avctx);
1969

    
1970
    return buf_size;
1971

    
1972
error:
1973
    ff_thread_report_progress(&s->current_frame, INT_MAX, 0);
1974

    
1975
    if (!HAVE_PTHREADS || !(s->avctx->active_thread_type&FF_THREAD_FRAME))
1976
        avctx->release_buffer(avctx, &s->current_frame);
1977

    
1978
    return -1;
1979
}
1980

    
1981
/*
1982
 * This is the ffmpeg/libavcodec API module cleanup function.
1983
 */
1984
static av_cold int vp3_decode_end(AVCodecContext *avctx)
1985
{
1986
    Vp3DecodeContext *s = avctx->priv_data;
1987
    int i;
1988

    
1989
    if (avctx->is_copy && !s->current_frame.data[0])
1990
        return 0;
1991

    
1992
    av_free(s->superblock_coding);
1993
    av_free(s->all_fragments);
1994
    av_free(s->coded_fragment_list[0]);
1995
    av_free(s->dct_tokens_base);
1996
    av_free(s->superblock_fragments);
1997
    av_free(s->macroblock_coding);
1998
    av_free(s->motion_val[0]);
1999
    av_free(s->motion_val[1]);
2000
    av_free(s->edge_emu_buffer);
2001

    
2002
    if (avctx->is_copy) return 0;
2003

    
2004
    for (i = 0; i < 16; i++) {
2005
        free_vlc(&s->dc_vlc[i]);
2006
        free_vlc(&s->ac_vlc_1[i]);
2007
        free_vlc(&s->ac_vlc_2[i]);
2008
        free_vlc(&s->ac_vlc_3[i]);
2009
        free_vlc(&s->ac_vlc_4[i]);
2010
    }
2011

    
2012
    free_vlc(&s->superblock_run_length_vlc);
2013
    free_vlc(&s->fragment_run_length_vlc);
2014
    free_vlc(&s->mode_code_vlc);
2015
    free_vlc(&s->motion_vector_vlc);
2016

    
2017
    /* release all frames */
2018
    if (s->golden_frame.data[0])
2019
        ff_thread_release_buffer(avctx, &s->golden_frame);
2020
    if (s->last_frame.data[0] && s->last_frame.type != FF_BUFFER_TYPE_COPY)
2021
        ff_thread_release_buffer(avctx, &s->last_frame);
2022
    /* no need to release the current_frame since it will always be pointing
2023
     * to the same frame as either the golden or last frame */
2024

    
2025
    return 0;
2026
}
2027

    
2028
static int read_huffman_tree(AVCodecContext *avctx, GetBitContext *gb)
2029
{
2030
    Vp3DecodeContext *s = avctx->priv_data;
2031

    
2032
    if (get_bits1(gb)) {
2033
        int token;
2034
        if (s->entries >= 32) { /* overflow */
2035
            av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
2036
            return -1;
2037
        }
2038
        token = get_bits(gb, 5);
2039
        //av_log(avctx, AV_LOG_DEBUG, "hti %d hbits %x token %d entry : %d size %d\n", s->hti, s->hbits, token, s->entries, s->huff_code_size);
2040
        s->huffman_table[s->hti][token][0] = s->hbits;
2041
        s->huffman_table[s->hti][token][1] = s->huff_code_size;
2042
        s->entries++;
2043
    }
2044
    else {
2045
        if (s->huff_code_size >= 32) {/* overflow */
2046
            av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
2047
            return -1;
2048
        }
2049
        s->huff_code_size++;
2050
        s->hbits <<= 1;
2051
        if (read_huffman_tree(avctx, gb))
2052
            return -1;
2053
        s->hbits |= 1;
2054
        if (read_huffman_tree(avctx, gb))
2055
            return -1;
2056
        s->hbits >>= 1;
2057
        s->huff_code_size--;
2058
    }
2059
    return 0;
2060
}
2061

    
2062
#if CONFIG_THEORA_DECODER
2063
static const enum PixelFormat theora_pix_fmts[4] = {
2064
    PIX_FMT_YUV420P, PIX_FMT_NONE, PIX_FMT_YUV422P, PIX_FMT_YUV444P
2065
};
2066

    
2067
static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb)
2068
{
2069
    Vp3DecodeContext *s = avctx->priv_data;
2070
    int visible_width, visible_height, colorspace;
2071
    int offset_x = 0, offset_y = 0;
2072
    AVRational fps, aspect;
2073

    
2074
    s->theora = get_bits_long(gb, 24);
2075
    av_log(avctx, AV_LOG_DEBUG, "Theora bitstream version %X\n", s->theora);
2076

    
2077
    /* 3.2.0 aka alpha3 has the same frame orientation as original vp3 */
2078
    /* but previous versions have the image flipped relative to vp3 */
2079
    if (s->theora < 0x030200)
2080
    {
2081
        s->flipped_image = 1;
2082
        av_log(avctx, AV_LOG_DEBUG, "Old (<alpha3) Theora bitstream, flipped image\n");
2083
    }
2084

    
2085
    visible_width  = s->width  = get_bits(gb, 16) << 4;
2086
    visible_height = s->height = get_bits(gb, 16) << 4;
2087

    
2088
    if(av_image_check_size(s->width, s->height, 0, avctx)){
2089
        av_log(avctx, AV_LOG_ERROR, "Invalid dimensions (%dx%d)\n", s->width, s->height);
2090
        s->width= s->height= 0;
2091
        return -1;
2092
    }
2093

    
2094
    if (s->theora >= 0x030200) {
2095
        visible_width  = get_bits_long(gb, 24);
2096
        visible_height = get_bits_long(gb, 24);
2097

    
2098
        offset_x = get_bits(gb, 8); /* offset x */
2099
        offset_y = get_bits(gb, 8); /* offset y, from bottom */
2100
    }
2101

    
2102
    fps.num = get_bits_long(gb, 32);
2103
    fps.den = get_bits_long(gb, 32);
2104
    if (fps.num && fps.den) {
2105
        av_reduce(&avctx->time_base.num, &avctx->time_base.den,
2106
                  fps.den, fps.num, 1<<30);
2107
    }
2108

    
2109
    aspect.num = get_bits_long(gb, 24);
2110
    aspect.den = get_bits_long(gb, 24);
2111
    if (aspect.num && aspect.den) {
2112
        av_reduce(&avctx->sample_aspect_ratio.num,
2113
                  &avctx->sample_aspect_ratio.den,
2114
                  aspect.num, aspect.den, 1<<30);
2115
    }
2116

    
2117
    if (s->theora < 0x030200)
2118
        skip_bits(gb, 5); /* keyframe frequency force */
2119
    colorspace = get_bits(gb, 8);
2120
    skip_bits(gb, 24); /* bitrate */
2121

    
2122
    skip_bits(gb, 6); /* quality hint */
2123

    
2124
    if (s->theora >= 0x030200)
2125
    {
2126
        skip_bits(gb, 5); /* keyframe frequency force */
2127
        avctx->pix_fmt = theora_pix_fmts[get_bits(gb, 2)];
2128
        skip_bits(gb, 3); /* reserved */
2129
    }
2130

    
2131
//    align_get_bits(gb);
2132

    
2133
    if (   visible_width  <= s->width  && visible_width  > s->width-16
2134
        && visible_height <= s->height && visible_height > s->height-16
2135
        && !offset_x && (offset_y == s->height - visible_height))
2136
        avcodec_set_dimensions(avctx, visible_width, visible_height);
2137
    else
2138
        avcodec_set_dimensions(avctx, s->width, s->height);
2139

    
2140
    if (colorspace == 1) {
2141
        avctx->color_primaries = AVCOL_PRI_BT470M;
2142
    } else if (colorspace == 2) {
2143
        avctx->color_primaries = AVCOL_PRI_BT470BG;
2144
    }
2145
    if (colorspace == 1 || colorspace == 2) {
2146
        avctx->colorspace = AVCOL_SPC_BT470BG;
2147
        avctx->color_trc  = AVCOL_TRC_BT709;
2148
    }
2149

    
2150
    return 0;
2151
}
2152

    
2153
static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb)
2154
{
2155
    Vp3DecodeContext *s = avctx->priv_data;
2156
    int i, n, matrices, inter, plane;
2157

    
2158
    if (s->theora >= 0x030200) {
2159
        n = get_bits(gb, 3);
2160
        /* loop filter limit values table */
2161
        if (n)
2162
            for (i = 0; i < 64; i++)
2163
                s->filter_limit_values[i] = get_bits(gb, n);
2164
    }
2165

    
2166
    if (s->theora >= 0x030200)
2167
        n = get_bits(gb, 4) + 1;
2168
    else
2169
        n = 16;
2170
    /* quality threshold table */
2171
    for (i = 0; i < 64; i++)
2172
        s->coded_ac_scale_factor[i] = get_bits(gb, n);
2173

    
2174
    if (s->theora >= 0x030200)
2175
        n = get_bits(gb, 4) + 1;
2176
    else
2177
        n = 16;
2178
    /* dc scale factor table */
2179
    for (i = 0; i < 64; i++)
2180
        s->coded_dc_scale_factor[i] = get_bits(gb, n);
2181

    
2182
    if (s->theora >= 0x030200)
2183
        matrices = get_bits(gb, 9) + 1;
2184
    else
2185
        matrices = 3;
2186

    
2187
    if(matrices > 384){
2188
        av_log(avctx, AV_LOG_ERROR, "invalid number of base matrixes\n");
2189
        return -1;
2190
    }
2191

    
2192
    for(n=0; n<matrices; n++){
2193
        for (i = 0; i < 64; i++)
2194
            s->base_matrix[n][i]= get_bits(gb, 8);
2195
    }
2196

    
2197
    for (inter = 0; inter <= 1; inter++) {
2198
        for (plane = 0; plane <= 2; plane++) {
2199
            int newqr= 1;
2200
            if (inter || plane > 0)
2201
                newqr = get_bits1(gb);
2202
            if (!newqr) {
2203
                int qtj, plj;
2204
                if(inter && get_bits1(gb)){
2205
                    qtj = 0;
2206
                    plj = plane;
2207
                }else{
2208
                    qtj= (3*inter + plane - 1) / 3;
2209
                    plj= (plane + 2) % 3;
2210
                }
2211
                s->qr_count[inter][plane]= s->qr_count[qtj][plj];
2212
                memcpy(s->qr_size[inter][plane], s->qr_size[qtj][plj], sizeof(s->qr_size[0][0]));
2213
                memcpy(s->qr_base[inter][plane], s->qr_base[qtj][plj], sizeof(s->qr_base[0][0]));
2214
            } else {
2215
                int qri= 0;
2216
                int qi = 0;
2217

    
2218
                for(;;){
2219
                    i= get_bits(gb, av_log2(matrices-1)+1);
2220
                    if(i>= matrices){
2221
                        av_log(avctx, AV_LOG_ERROR, "invalid base matrix index\n");
2222
                        return -1;
2223
                    }
2224
                    s->qr_base[inter][plane][qri]= i;
2225
                    if(qi >= 63)
2226
                        break;
2227
                    i = get_bits(gb, av_log2(63-qi)+1) + 1;
2228
                    s->qr_size[inter][plane][qri++]= i;
2229
                    qi += i;
2230
                }
2231

    
2232
                if (qi > 63) {
2233
                    av_log(avctx, AV_LOG_ERROR, "invalid qi %d > 63\n", qi);
2234
                    return -1;
2235
                }
2236
                s->qr_count[inter][plane]= qri;
2237
            }
2238
        }
2239
    }
2240

    
2241
    /* Huffman tables */
2242
    for (s->hti = 0; s->hti < 80; s->hti++) {
2243
        s->entries = 0;
2244
        s->huff_code_size = 1;
2245
        if (!get_bits1(gb)) {
2246
            s->hbits = 0;
2247
            if(read_huffman_tree(avctx, gb))
2248
                return -1;
2249
            s->hbits = 1;
2250
            if(read_huffman_tree(avctx, gb))
2251
                return -1;
2252
        }
2253
    }
2254

    
2255
    s->theora_tables = 1;
2256

    
2257
    return 0;
2258
}
2259

    
2260
static av_cold int theora_decode_init(AVCodecContext *avctx)
2261
{
2262
    Vp3DecodeContext *s = avctx->priv_data;
2263
    GetBitContext gb;
2264
    int ptype;
2265
    uint8_t *header_start[3];
2266
    int header_len[3];
2267
    int i;
2268

    
2269
    s->theora = 1;
2270

    
2271
    if (!avctx->extradata_size)
2272
    {
2273
        av_log(avctx, AV_LOG_ERROR, "Missing extradata!\n");
2274
        return -1;
2275
    }
2276

    
2277
    if (ff_split_xiph_headers(avctx->extradata, avctx->extradata_size,
2278
                              42, header_start, header_len) < 0) {
2279
        av_log(avctx, AV_LOG_ERROR, "Corrupt extradata\n");
2280
        return -1;
2281
    }
2282

    
2283
  for(i=0;i<3;i++) {
2284
    init_get_bits(&gb, header_start[i], header_len[i] * 8);
2285

    
2286
    ptype = get_bits(&gb, 8);
2287

    
2288
     if (!(ptype & 0x80))
2289
     {
2290
        av_log(avctx, AV_LOG_ERROR, "Invalid extradata!\n");
2291
//        return -1;
2292
     }
2293

    
2294
    // FIXME: Check for this as well.
2295
    skip_bits_long(&gb, 6*8); /* "theora" */
2296

    
2297
    switch(ptype)
2298
    {
2299
        case 0x80:
2300
            theora_decode_header(avctx, &gb);
2301
                break;
2302
        case 0x81:
2303
// FIXME: is this needed? it breaks sometimes
2304
//            theora_decode_comments(avctx, gb);
2305
            break;
2306
        case 0x82:
2307
            if (theora_decode_tables(avctx, &gb))
2308
                return -1;
2309
            break;
2310
        default:
2311
            av_log(avctx, AV_LOG_ERROR, "Unknown Theora config packet: %d\n", ptype&~0x80);
2312
            break;
2313
    }
2314
    if(ptype != 0x81 && 8*header_len[i] != get_bits_count(&gb))
2315
        av_log(avctx, AV_LOG_WARNING, "%d bits left in packet %X\n", 8*header_len[i] - get_bits_count(&gb), ptype);
2316
    if (s->theora < 0x030200)
2317
        break;
2318
  }
2319

    
2320
    return vp3_decode_init(avctx);
2321
}
2322

    
2323
AVCodec ff_theora_decoder = {
2324
    "theora",
2325
    AVMEDIA_TYPE_VIDEO,
2326
    CODEC_ID_THEORA,
2327
    sizeof(Vp3DecodeContext),
2328
    theora_decode_init,
2329
    NULL,
2330
    vp3_decode_end,
2331
    vp3_decode_frame,
2332
    CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND | CODEC_CAP_FRAME_THREADS,
2333
    NULL,
2334
    .long_name = NULL_IF_CONFIG_SMALL("Theora"),
2335
    .update_thread_context = ONLY_IF_THREADS_ENABLED(vp3_update_thread_context)
2336
};
2337
#endif
2338

    
2339
AVCodec ff_vp3_decoder = {
2340
    "vp3",
2341
    AVMEDIA_TYPE_VIDEO,
2342
    CODEC_ID_VP3,
2343
    sizeof(Vp3DecodeContext),
2344
    vp3_decode_init,
2345
    NULL,
2346
    vp3_decode_end,
2347
    vp3_decode_frame,
2348
    CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND | CODEC_CAP_FRAME_THREADS,
2349
    NULL,
2350
    .long_name = NULL_IF_CONFIG_SMALL("On2 VP3"),
2351
    .update_thread_context = ONLY_IF_THREADS_ENABLED(vp3_update_thread_context)
2352
};