Statistics
| Branch: | Revision:

ffmpeg / libavcodec / h264.h @ 1052b76f

History | View | Annotate | Download (55.8 KB)

1
/*
2
 * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
3
 * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21

    
22
/**
23
 * @file libavcodec/h264.h
24
 * H.264 / AVC / MPEG4 part10 codec.
25
 * @author Michael Niedermayer <michaelni@gmx.at>
26
 */
27

    
28
#ifndef AVCODEC_H264_H
29
#define AVCODEC_H264_H
30

    
31
#include "libavutil/intreadwrite.h"
32
#include "dsputil.h"
33
#include "cabac.h"
34
#include "mpegvideo.h"
35
#include "h264dsp.h"
36
#include "h264pred.h"
37
#include "rectangle.h"
38

    
39
#define interlaced_dct interlaced_dct_is_a_bad_name
40
#define mb_intra mb_intra_is_not_initialized_see_mb_type
41

    
42
#define LUMA_DC_BLOCK_INDEX   25
43
#define CHROMA_DC_BLOCK_INDEX 26
44

    
45
#define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8
46
#define COEFF_TOKEN_VLC_BITS           8
47
#define TOTAL_ZEROS_VLC_BITS           9
48
#define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3
49
#define RUN_VLC_BITS                   3
50
#define RUN7_VLC_BITS                  6
51

    
52
#define MAX_SPS_COUNT 32
53
#define MAX_PPS_COUNT 256
54

    
55
#define MAX_MMCO_COUNT 66
56

    
57
#define MAX_DELAYED_PIC_COUNT 16
58

    
59
/* Compiling in interlaced support reduces the speed
60
 * of progressive decoding by about 2%. */
61
#define ALLOW_INTERLACE
62

    
63
#define ALLOW_NOCHROMA
64

    
65
#define FMO 0
66

    
67
/**
68
 * The maximum number of slices supported by the decoder.
69
 * must be a power of 2
70
 */
71
#define MAX_SLICES 16
72

    
73
#ifdef ALLOW_INTERLACE
74
#define MB_MBAFF h->mb_mbaff
75
#define MB_FIELD h->mb_field_decoding_flag
76
#define FRAME_MBAFF h->mb_aff_frame
77
#define FIELD_PICTURE (s->picture_structure != PICT_FRAME)
78
#else
79
#define MB_MBAFF 0
80
#define MB_FIELD 0
81
#define FRAME_MBAFF 0
82
#define FIELD_PICTURE 0
83
#undef  IS_INTERLACED
84
#define IS_INTERLACED(mb_type) 0
85
#endif
86
#define FIELD_OR_MBAFF_PICTURE (FRAME_MBAFF || FIELD_PICTURE)
87

    
88
#ifdef ALLOW_NOCHROMA
89
#define CHROMA h->sps.chroma_format_idc
90
#else
91
#define CHROMA 1
92
#endif
93

    
94
#ifndef CABAC
95
#define CABAC h->pps.cabac
96
#endif
97

    
98
#define EXTENDED_SAR          255
99

    
100
#define MB_TYPE_REF0       MB_TYPE_ACPRED //dirty but it fits in 16 bit
101
#define MB_TYPE_8x8DCT     0x01000000
102
#define IS_REF0(a)         ((a) & MB_TYPE_REF0)
103
#define IS_8x8DCT(a)       ((a) & MB_TYPE_8x8DCT)
104

    
105
/**
106
 * Value of Picture.reference when Picture is not a reference picture, but
107
 * is held for delayed output.
108
 */
109
#define DELAYED_PIC_REF 4
110

    
111

    
112
/* NAL unit types */
113
enum {
114
    NAL_SLICE=1,
115
    NAL_DPA,
116
    NAL_DPB,
117
    NAL_DPC,
118
    NAL_IDR_SLICE,
119
    NAL_SEI,
120
    NAL_SPS,
121
    NAL_PPS,
122
    NAL_AUD,
123
    NAL_END_SEQUENCE,
124
    NAL_END_STREAM,
125
    NAL_FILLER_DATA,
126
    NAL_SPS_EXT,
127
    NAL_AUXILIARY_SLICE=19
128
};
129

    
130
/**
131
 * SEI message types
132
 */
133
typedef enum {
134
    SEI_BUFFERING_PERIOD             =  0, ///< buffering period (H.264, D.1.1)
135
    SEI_TYPE_PIC_TIMING              =  1, ///< picture timing
136
    SEI_TYPE_USER_DATA_UNREGISTERED  =  5, ///< unregistered user data
137
    SEI_TYPE_RECOVERY_POINT          =  6  ///< recovery point (frame # to decoder sync)
138
} SEI_Type;
139

    
140
/**
141
 * pic_struct in picture timing SEI message
142
 */
143
typedef enum {
144
    SEI_PIC_STRUCT_FRAME             = 0, ///<  0: %frame
145
    SEI_PIC_STRUCT_TOP_FIELD         = 1, ///<  1: top field
146
    SEI_PIC_STRUCT_BOTTOM_FIELD      = 2, ///<  2: bottom field
147
    SEI_PIC_STRUCT_TOP_BOTTOM        = 3, ///<  3: top field, bottom field, in that order
148
    SEI_PIC_STRUCT_BOTTOM_TOP        = 4, ///<  4: bottom field, top field, in that order
149
    SEI_PIC_STRUCT_TOP_BOTTOM_TOP    = 5, ///<  5: top field, bottom field, top field repeated, in that order
150
    SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM = 6, ///<  6: bottom field, top field, bottom field repeated, in that order
151
    SEI_PIC_STRUCT_FRAME_DOUBLING    = 7, ///<  7: %frame doubling
152
    SEI_PIC_STRUCT_FRAME_TRIPLING    = 8  ///<  8: %frame tripling
153
} SEI_PicStructType;
154

    
155
/**
156
 * Sequence parameter set
157
 */
158
typedef struct SPS{
159

    
160
    int profile_idc;
161
    int level_idc;
162
    int chroma_format_idc;
163
    int transform_bypass;              ///< qpprime_y_zero_transform_bypass_flag
164
    int log2_max_frame_num;            ///< log2_max_frame_num_minus4 + 4
165
    int poc_type;                      ///< pic_order_cnt_type
166
    int log2_max_poc_lsb;              ///< log2_max_pic_order_cnt_lsb_minus4
167
    int delta_pic_order_always_zero_flag;
168
    int offset_for_non_ref_pic;
169
    int offset_for_top_to_bottom_field;
170
    int poc_cycle_length;              ///< num_ref_frames_in_pic_order_cnt_cycle
171
    int ref_frame_count;               ///< num_ref_frames
172
    int gaps_in_frame_num_allowed_flag;
173
    int mb_width;                      ///< pic_width_in_mbs_minus1 + 1
174
    int mb_height;                     ///< pic_height_in_map_units_minus1 + 1
175
    int frame_mbs_only_flag;
176
    int mb_aff;                        ///<mb_adaptive_frame_field_flag
177
    int direct_8x8_inference_flag;
178
    int crop;                   ///< frame_cropping_flag
179
    unsigned int crop_left;            ///< frame_cropping_rect_left_offset
180
    unsigned int crop_right;           ///< frame_cropping_rect_right_offset
181
    unsigned int crop_top;             ///< frame_cropping_rect_top_offset
182
    unsigned int crop_bottom;          ///< frame_cropping_rect_bottom_offset
183
    int vui_parameters_present_flag;
184
    AVRational sar;
185
    int video_signal_type_present_flag;
186
    int full_range;
187
    int colour_description_present_flag;
188
    enum AVColorPrimaries color_primaries;
189
    enum AVColorTransferCharacteristic color_trc;
190
    enum AVColorSpace colorspace;
191
    int timing_info_present_flag;
192
    uint32_t num_units_in_tick;
193
    uint32_t time_scale;
194
    int fixed_frame_rate_flag;
195
    short offset_for_ref_frame[256]; //FIXME dyn aloc?
196
    int bitstream_restriction_flag;
197
    int num_reorder_frames;
198
    int scaling_matrix_present;
199
    uint8_t scaling_matrix4[6][16];
200
    uint8_t scaling_matrix8[2][64];
201
    int nal_hrd_parameters_present_flag;
202
    int vcl_hrd_parameters_present_flag;
203
    int pic_struct_present_flag;
204
    int time_offset_length;
205
    int cpb_cnt;                       ///< See H.264 E.1.2
206
    int initial_cpb_removal_delay_length; ///< initial_cpb_removal_delay_length_minus1 +1
207
    int cpb_removal_delay_length;      ///< cpb_removal_delay_length_minus1 + 1
208
    int dpb_output_delay_length;       ///< dpb_output_delay_length_minus1 + 1
209
    int bit_depth_luma;                ///< bit_depth_luma_minus8 + 8
210
    int bit_depth_chroma;              ///< bit_depth_chroma_minus8 + 8
211
    int residual_color_transform_flag; ///< residual_colour_transform_flag
212
}SPS;
213

    
214
/**
215
 * Picture parameter set
216
 */
217
typedef struct PPS{
218
    unsigned int sps_id;
219
    int cabac;                  ///< entropy_coding_mode_flag
220
    int pic_order_present;      ///< pic_order_present_flag
221
    int slice_group_count;      ///< num_slice_groups_minus1 + 1
222
    int mb_slice_group_map_type;
223
    unsigned int ref_count[2];  ///< num_ref_idx_l0/1_active_minus1 + 1
224
    int weighted_pred;          ///< weighted_pred_flag
225
    int weighted_bipred_idc;
226
    int init_qp;                ///< pic_init_qp_minus26 + 26
227
    int init_qs;                ///< pic_init_qs_minus26 + 26
228
    int chroma_qp_index_offset[2];
229
    int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
230
    int constrained_intra_pred; ///< constrained_intra_pred_flag
231
    int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag
232
    int transform_8x8_mode;     ///< transform_8x8_mode_flag
233
    uint8_t scaling_matrix4[6][16];
234
    uint8_t scaling_matrix8[2][64];
235
    uint8_t chroma_qp_table[2][64];  ///< pre-scaled (with chroma_qp_index_offset) version of qp_table
236
    int chroma_qp_diff;
237
}PPS;
238

    
239
/**
240
 * Memory management control operation opcode.
241
 */
242
typedef enum MMCOOpcode{
243
    MMCO_END=0,
244
    MMCO_SHORT2UNUSED,
245
    MMCO_LONG2UNUSED,
246
    MMCO_SHORT2LONG,
247
    MMCO_SET_MAX_LONG,
248
    MMCO_RESET,
249
    MMCO_LONG,
250
} MMCOOpcode;
251

    
252
/**
253
 * Memory management control operation.
254
 */
255
typedef struct MMCO{
256
    MMCOOpcode opcode;
257
    int short_pic_num;  ///< pic_num without wrapping (pic_num & max_pic_num)
258
    int long_arg;       ///< index, pic_num, or num long refs depending on opcode
259
} MMCO;
260

    
261
/**
262
 * H264Context
263
 */
264
typedef struct H264Context{
265
    MpegEncContext s;
266
    H264DSPContext h264dsp;
267
    int chroma_qp[2]; //QPc
268

    
269
    int qp_thresh;      ///< QP threshold to skip loopfilter
270

    
271
    int prev_mb_skipped;
272
    int next_mb_skipped;
273

    
274
    //prediction stuff
275
    int chroma_pred_mode;
276
    int intra16x16_pred_mode;
277

    
278
    int topleft_mb_xy;
279
    int top_mb_xy;
280
    int topright_mb_xy;
281
    int left_mb_xy[2];
282

    
283
    int topleft_type;
284
    int top_type;
285
    int topright_type;
286
    int left_type[2];
287

    
288
    const uint8_t * left_block;
289
    int topleft_partition;
290

    
291
    int8_t intra4x4_pred_mode_cache[5*8];
292
    int8_t (*intra4x4_pred_mode);
293
    H264PredContext hpc;
294
    unsigned int topleft_samples_available;
295
    unsigned int top_samples_available;
296
    unsigned int topright_samples_available;
297
    unsigned int left_samples_available;
298
    uint8_t (*top_borders[2])[16+2*8];
299

    
300
    /**
301
     * non zero coeff count cache.
302
     * is 64 if not available.
303
     */
304
    DECLARE_ALIGNED(8, uint8_t, non_zero_count_cache)[6*8];
305

    
306
    /*
307
    .UU.YYYY
308
    .UU.YYYY
309
    .vv.YYYY
310
    .VV.YYYY
311
    */
312
    uint8_t (*non_zero_count)[32];
313

    
314
    /**
315
     * Motion vector cache.
316
     */
317
    DECLARE_ALIGNED(16, int16_t, mv_cache)[2][5*8][2];
318
    DECLARE_ALIGNED(8, int8_t, ref_cache)[2][5*8];
319
#define LIST_NOT_USED -1 //FIXME rename?
320
#define PART_NOT_AVAILABLE -2
321

    
322
    /**
323
     * is 1 if the specific list MV&references are set to 0,0,-2.
324
     */
325
    int mv_cache_clean[2];
326

    
327
    /**
328
     * number of neighbors (top and/or left) that used 8x8 dct
329
     */
330
    int neighbor_transform_size;
331

    
332
    /**
333
     * block_offset[ 0..23] for frame macroblocks
334
     * block_offset[24..47] for field macroblocks
335
     */
336
    int block_offset[2*(16+8)];
337

    
338
    uint32_t *mb2b_xy; //FIXME are these 4 a good idea?
339
    uint32_t *mb2br_xy;
340
    int b_stride; //FIXME use s->b4_stride
341

    
342
    int mb_linesize;   ///< may be equal to s->linesize or s->linesize*2, for mbaff
343
    int mb_uvlinesize;
344

    
345
    int emu_edge_width;
346
    int emu_edge_height;
347

    
348
    SPS sps; ///< current sps
349

    
350
    /**
351
     * current pps
352
     */
353
    PPS pps; //FIXME move to Picture perhaps? (->no) do we need that?
354

    
355
    uint32_t dequant4_buffer[6][52][16]; //FIXME should these be moved down?
356
    uint32_t dequant8_buffer[2][52][64];
357
    uint32_t (*dequant4_coeff[6])[16];
358
    uint32_t (*dequant8_coeff[2])[64];
359

    
360
    int slice_num;
361
    uint16_t *slice_table;     ///< slice_table_base + 2*mb_stride + 1
362
    int slice_type;
363
    int slice_type_nos;        ///< S free slice type (SI/SP are remapped to I/P)
364
    int slice_type_fixed;
365

    
366
    //interlacing specific flags
367
    int mb_aff_frame;
368
    int mb_field_decoding_flag;
369
    int mb_mbaff;              ///< mb_aff_frame && mb_field_decoding_flag
370

    
371
    DECLARE_ALIGNED(8, uint16_t, sub_mb_type)[4];
372

    
373
    //Weighted pred stuff
374
    int use_weight;
375
    int use_weight_chroma;
376
    int luma_log2_weight_denom;
377
    int chroma_log2_weight_denom;
378
    //The following 2 can be changed to int8_t but that causes 10cpu cycles speedloss
379
    int luma_weight[48][2][2];
380
    int chroma_weight[48][2][2][2];
381
    int implicit_weight[48][48][2];
382

    
383
    int direct_spatial_mv_pred;
384
    int col_parity;
385
    int col_fieldoff;
386
    int dist_scale_factor[16];
387
    int dist_scale_factor_field[2][32];
388
    int map_col_to_list0[2][16+32];
389
    int map_col_to_list0_field[2][2][16+32];
390

    
391
    /**
392
     * num_ref_idx_l0/1_active_minus1 + 1
393
     */
394
    unsigned int ref_count[2];   ///< counts frames or fields, depending on current mb mode
395
    unsigned int list_count;
396
    uint8_t *list_counts;            ///< Array of list_count per MB specifying the slice type
397
    Picture ref_list[2][48];         /**< 0..15: frame refs, 16..47: mbaff field refs.
398
                                          Reordered version of default_ref_list
399
                                          according to picture reordering in slice header */
400
    int ref2frm[MAX_SLICES][2][64];  ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
401

    
402
    //data partitioning
403
    GetBitContext intra_gb;
404
    GetBitContext inter_gb;
405
    GetBitContext *intra_gb_ptr;
406
    GetBitContext *inter_gb_ptr;
407

    
408
    DECLARE_ALIGNED(16, DCTELEM, mb)[16*24];
409
    DCTELEM mb_padding[256];        ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either check that i is not too large or ensure that there is some unused stuff after mb
410

    
411
    /**
412
     * Cabac
413
     */
414
    CABACContext cabac;
415
    uint8_t      cabac_state[460];
416

    
417
    /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0,1,2), 0x0? luma_cbp */
418
    uint16_t     *cbp_table;
419
    int cbp;
420
    int top_cbp;
421
    int left_cbp;
422
    /* chroma_pred_mode for i4x4 or i16x16, else 0 */
423
    uint8_t     *chroma_pred_mode_table;
424
    int         last_qscale_diff;
425
    uint8_t     (*mvd_table[2])[2];
426
    DECLARE_ALIGNED(16, uint8_t, mvd_cache)[2][5*8][2];
427
    uint8_t     *direct_table;
428
    uint8_t     direct_cache[5*8];
429

    
430
    uint8_t zigzag_scan[16];
431
    uint8_t zigzag_scan8x8[64];
432
    uint8_t zigzag_scan8x8_cavlc[64];
433
    uint8_t field_scan[16];
434
    uint8_t field_scan8x8[64];
435
    uint8_t field_scan8x8_cavlc[64];
436
    const uint8_t *zigzag_scan_q0;
437
    const uint8_t *zigzag_scan8x8_q0;
438
    const uint8_t *zigzag_scan8x8_cavlc_q0;
439
    const uint8_t *field_scan_q0;
440
    const uint8_t *field_scan8x8_q0;
441
    const uint8_t *field_scan8x8_cavlc_q0;
442

    
443
    int x264_build;
444

    
445
    int mb_xy;
446

    
447
    int is_complex;
448

    
449
    //deblock
450
    int deblocking_filter;         ///< disable_deblocking_filter_idc with 1<->0
451
    int slice_alpha_c0_offset;
452
    int slice_beta_offset;
453

    
454
//=============================================================
455
    //Things below are not used in the MB or more inner code
456

    
457
    int nal_ref_idc;
458
    int nal_unit_type;
459
    uint8_t *rbsp_buffer[2];
460
    unsigned int rbsp_buffer_size[2];
461

    
462
    /**
463
     * Used to parse AVC variant of h264
464
     */
465
    int is_avc; ///< this flag is != 0 if codec is avc1
466
    int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
467

    
468
    SPS *sps_buffers[MAX_SPS_COUNT];
469
    PPS *pps_buffers[MAX_PPS_COUNT];
470

    
471
    int dequant_coeff_pps;     ///< reinit tables when pps changes
472

    
473
    uint16_t *slice_table_base;
474

    
475

    
476
    //POC stuff
477
    int poc_lsb;
478
    int poc_msb;
479
    int delta_poc_bottom;
480
    int delta_poc[2];
481
    int frame_num;
482
    int prev_poc_msb;             ///< poc_msb of the last reference pic for POC type 0
483
    int prev_poc_lsb;             ///< poc_lsb of the last reference pic for POC type 0
484
    int frame_num_offset;         ///< for POC type 2
485
    int prev_frame_num_offset;    ///< for POC type 2
486
    int prev_frame_num;           ///< frame_num of the last pic for POC type 1/2
487

    
488
    /**
489
     * frame_num for frames or 2*frame_num+1 for field pics.
490
     */
491
    int curr_pic_num;
492

    
493
    /**
494
     * max_frame_num or 2*max_frame_num for field pics.
495
     */
496
    int max_pic_num;
497

    
498
    int redundant_pic_count;
499

    
500
    Picture *short_ref[32];
501
    Picture *long_ref[32];
502
    Picture default_ref_list[2][32]; ///< base reference list for all slices of a coded picture
503
    Picture *delayed_pic[MAX_DELAYED_PIC_COUNT+2]; //FIXME size?
504
    int outputed_poc;
505

    
506
    /**
507
     * memory management control operations buffer.
508
     */
509
    MMCO mmco[MAX_MMCO_COUNT];
510
    int mmco_index;
511

    
512
    int long_ref_count;  ///< number of actual long term references
513
    int short_ref_count; ///< number of actual short term references
514

    
515
    int          cabac_init_idc;
516

    
517
    /**
518
     * @defgroup multithreading Members for slice based multithreading
519
     * @{
520
     */
521
    struct H264Context *thread_context[MAX_THREADS];
522

    
523
    /**
524
     * current slice number, used to initalize slice_num of each thread/context
525
     */
526
    int current_slice;
527

    
528
    /**
529
     * Max number of threads / contexts.
530
     * This is equal to AVCodecContext.thread_count unless
531
     * multithreaded decoding is impossible, in which case it is
532
     * reduced to 1.
533
     */
534
    int max_contexts;
535

    
536
    /**
537
     *  1 if the single thread fallback warning has already been
538
     *  displayed, 0 otherwise.
539
     */
540
    int single_decode_warning;
541

    
542
    int last_slice_type;
543
    /** @} */
544

    
545
    /**
546
     * pic_struct in picture timing SEI message
547
     */
548
    SEI_PicStructType sei_pic_struct;
549

    
550
    /**
551
     * Complement sei_pic_struct
552
     * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
553
     * However, soft telecined frames may have these values.
554
     * This is used in an attempt to flag soft telecine progressive.
555
     */
556
    int prev_interlaced_frame;
557

    
558
    /**
559
     * Bit set of clock types for fields/frames in picture timing SEI message.
560
     * For each found ct_type, appropriate bit is set (e.g., bit 1 for
561
     * interlaced).
562
     */
563
    int sei_ct_type;
564

    
565
    /**
566
     * dpb_output_delay in picture timing SEI message, see H.264 C.2.2
567
     */
568
    int sei_dpb_output_delay;
569

    
570
    /**
571
     * cpb_removal_delay in picture timing SEI message, see H.264 C.1.2
572
     */
573
    int sei_cpb_removal_delay;
574

    
575
    /**
576
     * recovery_frame_cnt from SEI message
577
     *
578
     * Set to -1 if no recovery point SEI message found or to number of frames
579
     * before playback synchronizes. Frames having recovery point are key
580
     * frames.
581
     */
582
    int sei_recovery_frame_cnt;
583

    
584
    int luma_weight_flag[2];   ///< 7.4.3.2 luma_weight_lX_flag
585
    int chroma_weight_flag[2]; ///< 7.4.3.2 chroma_weight_lX_flag
586

    
587
    // Timestamp stuff
588
    int sei_buffering_period_present;  ///< Buffering period SEI flag
589
    int initial_cpb_removal_delay[32]; ///< Initial timestamps for CPBs
590

    
591
    //SVQ3 specific fields
592
    int halfpel_flag;
593
    int thirdpel_flag;
594
    int unknown_svq3_flag;
595
    int next_slice_index;
596
    uint32_t svq3_watermark_key;
597
}H264Context;
598

    
599

    
600
extern const uint8_t ff_h264_chroma_qp[52];
601

    
602
void ff_svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp);
603

    
604
void ff_svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp, int dc);
605

    
606
/**
607
 * Decode SEI
608
 */
609
int ff_h264_decode_sei(H264Context *h);
610

    
611
/**
612
 * Decode SPS
613
 */
614
int ff_h264_decode_seq_parameter_set(H264Context *h);
615

    
616
/**
617
 * Decode PPS
618
 */
619
int ff_h264_decode_picture_parameter_set(H264Context *h, int bit_length);
620

    
621
/**
622
 * Decodes a network abstraction layer unit.
623
 * @param consumed is the number of bytes used as input
624
 * @param length is the length of the array
625
 * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing?
626
 * @return decoded bytes, might be src+1 if no escapes
627
 */
628
const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length);
629

    
630
/**
631
 * identifies the exact end of the bitstream
632
 * @return the length of the trailing, or 0 if damaged
633
 */
634
int ff_h264_decode_rbsp_trailing(H264Context *h, const uint8_t *src);
635

    
636
/**
637
 * frees any data that may have been allocated in the H264 context like SPS, PPS etc.
638
 */
639
av_cold void ff_h264_free_context(H264Context *h);
640

    
641
/**
642
 * reconstructs bitstream slice_type.
643
 */
644
int ff_h264_get_slice_type(const H264Context *h);
645

    
646
/**
647
 * allocates tables.
648
 * needs width/height
649
 */
650
int ff_h264_alloc_tables(H264Context *h);
651

    
652
/**
653
 * fills the default_ref_list.
654
 */
655
int ff_h264_fill_default_ref_list(H264Context *h);
656

    
657
int ff_h264_decode_ref_pic_list_reordering(H264Context *h);
658
void ff_h264_fill_mbaff_ref_list(H264Context *h);
659
void ff_h264_remove_all_refs(H264Context *h);
660

    
661
/**
662
 * Executes the reference picture marking (memory management control operations).
663
 */
664
int ff_h264_execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count);
665

    
666
int ff_h264_decode_ref_pic_marking(H264Context *h, GetBitContext *gb);
667

    
668

    
669
/**
670
 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
671
 */
672
int ff_h264_check_intra4x4_pred_mode(H264Context *h);
673

    
674
/**
675
 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
676
 */
677
int ff_h264_check_intra_pred_mode(H264Context *h, int mode);
678

    
679
void ff_h264_write_back_intra_pred_mode(H264Context *h);
680
void ff_h264_hl_decode_mb(H264Context *h);
681
int ff_h264_frame_start(H264Context *h);
682
av_cold int ff_h264_decode_init(AVCodecContext *avctx);
683
av_cold int ff_h264_decode_end(AVCodecContext *avctx);
684
av_cold void ff_h264_decode_init_vlc(void);
685

    
686
/**
687
 * decodes a macroblock
688
 * @return 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
689
 */
690
int ff_h264_decode_mb_cavlc(H264Context *h);
691

    
692
/**
693
 * decodes a CABAC coded macroblock
694
 * @return 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
695
 */
696
int ff_h264_decode_mb_cabac(H264Context *h);
697

    
698
void ff_h264_init_cabac_states(H264Context *h);
699

    
700
void ff_h264_direct_dist_scale_factor(H264Context * const h);
701
void ff_h264_direct_ref_list_init(H264Context * const h);
702
void ff_h264_pred_direct_motion(H264Context * const h, int *mb_type);
703

    
704
void ff_h264_filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
705
void ff_h264_filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
706

    
707
/**
708
 * Reset SEI values at the beginning of the frame.
709
 *
710
 * @param h H.264 context.
711
 */
712
void ff_h264_reset_sei(H264Context *h);
713

    
714

    
715
/*
716
o-o o-o
717
 / / /
718
o-o o-o
719
 ,---'
720
o-o o-o
721
 / / /
722
o-o o-o
723
*/
724
//This table must be here because scan8[constant] must be known at compiletime
725
static const uint8_t scan8[16 + 2*4]={
726
 4+1*8, 5+1*8, 4+2*8, 5+2*8,
727
 6+1*8, 7+1*8, 6+2*8, 7+2*8,
728
 4+3*8, 5+3*8, 4+4*8, 5+4*8,
729
 6+3*8, 7+3*8, 6+4*8, 7+4*8,
730
 1+1*8, 2+1*8,
731
 1+2*8, 2+2*8,
732
 1+4*8, 2+4*8,
733
 1+5*8, 2+5*8,
734
};
735

    
736
static av_always_inline uint32_t pack16to32(int a, int b){
737
#if HAVE_BIGENDIAN
738
   return (b&0xFFFF) + (a<<16);
739
#else
740
   return (a&0xFFFF) + (b<<16);
741
#endif
742
}
743

    
744
static av_always_inline uint16_t pack8to16(int a, int b){
745
#if HAVE_BIGENDIAN
746
   return (b&0xFF) + (a<<8);
747
#else
748
   return (a&0xFF) + (b<<8);
749
#endif
750
}
751

    
752
/**
753
 * gets the chroma qp.
754
 */
755
static inline int get_chroma_qp(H264Context *h, int t, int qscale){
756
    return h->pps.chroma_qp_table[t][qscale];
757
}
758

    
759
static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my);
760

    
761
static void fill_decode_neighbors(H264Context *h, int mb_type){
762
    MpegEncContext * const s = &h->s;
763
    const int mb_xy= h->mb_xy;
764
    int topleft_xy, top_xy, topright_xy, left_xy[2];
765
    static const uint8_t left_block_options[4][16]={
766
        {0,1,2,3,7,10,8,11,7+0*8, 7+1*8, 7+2*8, 7+3*8, 2+0*8, 2+3*8, 2+1*8, 2+2*8},
767
        {2,2,3,3,8,11,8,11,7+2*8, 7+2*8, 7+3*8, 7+3*8, 2+1*8, 2+2*8, 2+1*8, 2+2*8},
768
        {0,0,1,1,7,10,7,10,7+0*8, 7+0*8, 7+1*8, 7+1*8, 2+0*8, 2+3*8, 2+0*8, 2+3*8},
769
        {0,2,0,2,7,10,7,10,7+0*8, 7+2*8, 7+0*8, 7+2*8, 2+0*8, 2+3*8, 2+0*8, 2+3*8}
770
    };
771

    
772
    h->topleft_partition= -1;
773

    
774
    top_xy     = mb_xy  - (s->mb_stride << MB_FIELD);
775

    
776
    /* Wow, what a mess, why didn't they simplify the interlacing & intra
777
     * stuff, I can't imagine that these complex rules are worth it. */
778

    
779
    topleft_xy = top_xy - 1;
780
    topright_xy= top_xy + 1;
781
    left_xy[1] = left_xy[0] = mb_xy-1;
782
    h->left_block = left_block_options[0];
783
    if(FRAME_MBAFF){
784
        const int left_mb_field_flag     = IS_INTERLACED(s->current_picture.mb_type[mb_xy-1]);
785
        const int curr_mb_field_flag     = IS_INTERLACED(mb_type);
786
        if(s->mb_y&1){
787
            if (left_mb_field_flag != curr_mb_field_flag) {
788
                left_xy[1] = left_xy[0] = mb_xy - s->mb_stride - 1;
789
                if (curr_mb_field_flag) {
790
                    left_xy[1] += s->mb_stride;
791
                    h->left_block = left_block_options[3];
792
                } else {
793
                    topleft_xy += s->mb_stride;
794
                    // take top left mv from the middle of the mb, as opposed to all other modes which use the bottom right partition
795
                    h->topleft_partition = 0;
796
                    h->left_block = left_block_options[1];
797
                }
798
            }
799
        }else{
800
            if(curr_mb_field_flag){
801
                topleft_xy  += s->mb_stride & (((s->current_picture.mb_type[top_xy - 1]>>7)&1)-1);
802
                topright_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy + 1]>>7)&1)-1);
803
                top_xy      += s->mb_stride & (((s->current_picture.mb_type[top_xy    ]>>7)&1)-1);
804
            }
805
            if (left_mb_field_flag != curr_mb_field_flag) {
806
                if (curr_mb_field_flag) {
807
                    left_xy[1] += s->mb_stride;
808
                    h->left_block = left_block_options[3];
809
                } else {
810
                    h->left_block = left_block_options[2];
811
                }
812
            }
813
        }
814
    }
815

    
816
    h->topleft_mb_xy = topleft_xy;
817
    h->top_mb_xy     = top_xy;
818
    h->topright_mb_xy= topright_xy;
819
    h->left_mb_xy[0] = left_xy[0];
820
    h->left_mb_xy[1] = left_xy[1];
821
    //FIXME do we need all in the context?
822

    
823
    h->topleft_type = s->current_picture.mb_type[topleft_xy] ;
824
    h->top_type     = s->current_picture.mb_type[top_xy]     ;
825
    h->topright_type= s->current_picture.mb_type[topright_xy];
826
    h->left_type[0] = s->current_picture.mb_type[left_xy[0]] ;
827
    h->left_type[1] = s->current_picture.mb_type[left_xy[1]] ;
828

    
829
    if(FMO){
830
    if(h->slice_table[topleft_xy ] != h->slice_num) h->topleft_type = 0;
831
    if(h->slice_table[top_xy     ] != h->slice_num) h->top_type     = 0;
832
    if(h->slice_table[left_xy[0] ] != h->slice_num) h->left_type[0] = h->left_type[1] = 0;
833
    }else{
834
        if(h->slice_table[topleft_xy ] != h->slice_num){
835
            h->topleft_type = 0;
836
            if(h->slice_table[top_xy     ] != h->slice_num) h->top_type     = 0;
837
            if(h->slice_table[left_xy[0] ] != h->slice_num) h->left_type[0] = h->left_type[1] = 0;
838
        }
839
    }
840
    if(h->slice_table[topright_xy] != h->slice_num) h->topright_type= 0;
841
}
842

    
843
static void fill_decode_caches(H264Context *h, int mb_type){
844
    MpegEncContext * const s = &h->s;
845
    int topleft_xy, top_xy, topright_xy, left_xy[2];
846
    int topleft_type, top_type, topright_type, left_type[2];
847
    const uint8_t * left_block= h->left_block;
848
    int i;
849

    
850
    topleft_xy   = h->topleft_mb_xy ;
851
    top_xy       = h->top_mb_xy     ;
852
    topright_xy  = h->topright_mb_xy;
853
    left_xy[0]   = h->left_mb_xy[0] ;
854
    left_xy[1]   = h->left_mb_xy[1] ;
855
    topleft_type = h->topleft_type  ;
856
    top_type     = h->top_type      ;
857
    topright_type= h->topright_type ;
858
    left_type[0] = h->left_type[0]  ;
859
    left_type[1] = h->left_type[1]  ;
860

    
861
    if(!IS_SKIP(mb_type)){
862
        if(IS_INTRA(mb_type)){
863
            int type_mask= h->pps.constrained_intra_pred ? IS_INTRA(-1) : -1;
864
            h->topleft_samples_available=
865
            h->top_samples_available=
866
            h->left_samples_available= 0xFFFF;
867
            h->topright_samples_available= 0xEEEA;
868

    
869
            if(!(top_type & type_mask)){
870
                h->topleft_samples_available= 0xB3FF;
871
                h->top_samples_available= 0x33FF;
872
                h->topright_samples_available= 0x26EA;
873
            }
874
            if(IS_INTERLACED(mb_type) != IS_INTERLACED(left_type[0])){
875
                if(IS_INTERLACED(mb_type)){
876
                    if(!(left_type[0] & type_mask)){
877
                        h->topleft_samples_available&= 0xDFFF;
878
                        h->left_samples_available&= 0x5FFF;
879
                    }
880
                    if(!(left_type[1] & type_mask)){
881
                        h->topleft_samples_available&= 0xFF5F;
882
                        h->left_samples_available&= 0xFF5F;
883
                    }
884
                }else{
885
                    int left_typei = s->current_picture.mb_type[left_xy[0] + s->mb_stride];
886

    
887
                    assert(left_xy[0] == left_xy[1]);
888
                    if(!((left_typei & type_mask) && (left_type[0] & type_mask))){
889
                        h->topleft_samples_available&= 0xDF5F;
890
                        h->left_samples_available&= 0x5F5F;
891
                    }
892
                }
893
            }else{
894
                if(!(left_type[0] & type_mask)){
895
                    h->topleft_samples_available&= 0xDF5F;
896
                    h->left_samples_available&= 0x5F5F;
897
                }
898
            }
899

    
900
            if(!(topleft_type & type_mask))
901
                h->topleft_samples_available&= 0x7FFF;
902

    
903
            if(!(topright_type & type_mask))
904
                h->topright_samples_available&= 0xFBFF;
905

    
906
            if(IS_INTRA4x4(mb_type)){
907
                if(IS_INTRA4x4(top_type)){
908
                    AV_COPY32(h->intra4x4_pred_mode_cache+4+8*0, h->intra4x4_pred_mode + h->mb2br_xy[top_xy]);
909
                }else{
910
                    h->intra4x4_pred_mode_cache[4+8*0]=
911
                    h->intra4x4_pred_mode_cache[5+8*0]=
912
                    h->intra4x4_pred_mode_cache[6+8*0]=
913
                    h->intra4x4_pred_mode_cache[7+8*0]= 2 - 3*!(top_type & type_mask);
914
                }
915
                for(i=0; i<2; i++){
916
                    if(IS_INTRA4x4(left_type[i])){
917
                        int8_t *mode= h->intra4x4_pred_mode + h->mb2br_xy[left_xy[i]];
918
                        h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= mode[6-left_block[0+2*i]];
919
                        h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= mode[6-left_block[1+2*i]];
920
                    }else{
921
                        h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
922
                        h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= 2 - 3*!(left_type[i] & type_mask);
923
                    }
924
                }
925
            }
926
        }
927

    
928

    
929
/*
930
0 . T T. T T T T
931
1 L . .L . . . .
932
2 L . .L . . . .
933
3 . T TL . . . .
934
4 L . .L . . . .
935
5 L . .. . . . .
936
*/
937
//FIXME constraint_intra_pred & partitioning & nnz (let us hope this is just a typo in the spec)
938
    if(top_type){
939
        AV_COPY32(&h->non_zero_count_cache[4+8*0], &h->non_zero_count[top_xy][4+3*8]);
940
            h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][1+1*8];
941
            h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][2+1*8];
942

    
943
            h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][1+2*8];
944
            h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][2+2*8];
945
    }else {
946
            h->non_zero_count_cache[1+8*0]=
947
            h->non_zero_count_cache[2+8*0]=
948

    
949
            h->non_zero_count_cache[1+8*3]=
950
            h->non_zero_count_cache[2+8*3]=
951
            AV_WN32A(&h->non_zero_count_cache[4+8*0], CABAC && !IS_INTRA(mb_type) ? 0 : 0x40404040);
952
    }
953

    
954
    for (i=0; i<2; i++) {
955
        if(left_type[i]){
956
            h->non_zero_count_cache[3+8*1 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+0+2*i]];
957
            h->non_zero_count_cache[3+8*2 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+1+2*i]];
958
                h->non_zero_count_cache[0+8*1 +   8*i]= h->non_zero_count[left_xy[i]][left_block[8+4+2*i]];
959
                h->non_zero_count_cache[0+8*4 +   8*i]= h->non_zero_count[left_xy[i]][left_block[8+5+2*i]];
960
        }else{
961
                h->non_zero_count_cache[3+8*1 + 2*8*i]=
962
                h->non_zero_count_cache[3+8*2 + 2*8*i]=
963
                h->non_zero_count_cache[0+8*1 +   8*i]=
964
                h->non_zero_count_cache[0+8*4 +   8*i]= CABAC && !IS_INTRA(mb_type) ? 0 : 64;
965
        }
966
    }
967

    
968
    if( CABAC ) {
969
        // top_cbp
970
        if(top_type) {
971
            h->top_cbp = h->cbp_table[top_xy];
972
        } else {
973
            h->top_cbp = IS_INTRA(mb_type) ? 0x1CF : 0x00F;
974
        }
975
        // left_cbp
976
        if (left_type[0]) {
977
            h->left_cbp = (h->cbp_table[left_xy[0]] & 0x1f0)
978
                        |  ((h->cbp_table[left_xy[0]]>>(left_block[0]&(~1)))&2)
979
                        | (((h->cbp_table[left_xy[1]]>>(left_block[2]&(~1)))&2) << 2);
980
        } else {
981
            h->left_cbp = IS_INTRA(mb_type) ? 0x1CF : 0x00F;
982
        }
983
    }
984
    }
985

    
986
#if 1
987
    if(IS_INTER(mb_type) || (IS_DIRECT(mb_type) && h->direct_spatial_mv_pred)){
988
        int list;
989
        for(list=0; list<h->list_count; list++){
990
            if(!USES_LIST(mb_type, list)){
991
                /*if(!h->mv_cache_clean[list]){
992
                    memset(h->mv_cache [list],  0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
993
                    memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
994
                    h->mv_cache_clean[list]= 1;
995
                }*/
996
                continue;
997
            }
998
            assert(!(IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred));
999

    
1000
            h->mv_cache_clean[list]= 0;
1001

    
1002
            if(USES_LIST(top_type, list)){
1003
                const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
1004
                AV_COPY128(h->mv_cache[list][scan8[0] + 0 - 1*8], s->current_picture.motion_val[list][b_xy + 0]);
1005
                    h->ref_cache[list][scan8[0] + 0 - 1*8]=
1006
                    h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][4*top_xy + 2];
1007
                    h->ref_cache[list][scan8[0] + 2 - 1*8]=
1008
                    h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][4*top_xy + 3];
1009
            }else{
1010
                AV_ZERO128(h->mv_cache[list][scan8[0] + 0 - 1*8]);
1011
                AV_WN32A(&h->ref_cache[list][scan8[0] + 0 - 1*8], ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101);
1012
            }
1013

    
1014
            if(mb_type & (MB_TYPE_16x8|MB_TYPE_8x8)){
1015
            for(i=0; i<2; i++){
1016
                int cache_idx = scan8[0] - 1 + i*2*8;
1017
                if(USES_LIST(left_type[i], list)){
1018
                    const int b_xy= h->mb2b_xy[left_xy[i]] + 3;
1019
                    const int b8_xy= 4*left_xy[i] + 1;
1020
                    AV_COPY32(h->mv_cache[list][cache_idx  ], s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0+i*2]]);
1021
                    AV_COPY32(h->mv_cache[list][cache_idx+8], s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1+i*2]]);
1022
                        h->ref_cache[list][cache_idx  ]= s->current_picture.ref_index[list][b8_xy + (left_block[0+i*2]&~1)];
1023
                        h->ref_cache[list][cache_idx+8]= s->current_picture.ref_index[list][b8_xy + (left_block[1+i*2]&~1)];
1024
                }else{
1025
                    AV_ZERO32(h->mv_cache [list][cache_idx  ]);
1026
                    AV_ZERO32(h->mv_cache [list][cache_idx+8]);
1027
                    h->ref_cache[list][cache_idx  ]=
1028
                    h->ref_cache[list][cache_idx+8]= (left_type[i]) ? LIST_NOT_USED : PART_NOT_AVAILABLE;
1029
                }
1030
            }
1031
            }else{
1032
                if(USES_LIST(left_type[0], list)){
1033
                    const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
1034
                    const int b8_xy= 4*left_xy[0] + 1;
1035
                    AV_COPY32(h->mv_cache[list][scan8[0] - 1], s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0]]);
1036
                    h->ref_cache[list][scan8[0] - 1]= s->current_picture.ref_index[list][b8_xy + (left_block[0]&~1)];
1037
                }else{
1038
                    AV_ZERO32(h->mv_cache [list][scan8[0] - 1]);
1039
                    h->ref_cache[list][scan8[0] - 1]= left_type[0] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
1040
                }
1041
            }
1042

    
1043
            if(USES_LIST(topright_type, list)){
1044
                const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride;
1045
                AV_COPY32(h->mv_cache[list][scan8[0] + 4 - 1*8], s->current_picture.motion_val[list][b_xy]);
1046
                h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][4*topright_xy + 2];
1047
            }else{
1048
                AV_ZERO32(h->mv_cache [list][scan8[0] + 4 - 1*8]);
1049
                h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
1050
            }
1051
            if(h->ref_cache[list][scan8[0] + 4 - 1*8] < 0){
1052
                if(USES_LIST(topleft_type, list)){
1053
                    const int b_xy = h->mb2b_xy [topleft_xy] + 3 + h->b_stride + (h->topleft_partition & 2*h->b_stride);
1054
                    const int b8_xy= 4*topleft_xy + 1 + (h->topleft_partition & 2);
1055
                    AV_COPY32(h->mv_cache[list][scan8[0] - 1 - 1*8], s->current_picture.motion_val[list][b_xy]);
1056
                    h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy];
1057
                }else{
1058
                    AV_ZERO32(h->mv_cache[list][scan8[0] - 1 - 1*8]);
1059
                    h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
1060
                }
1061
            }
1062

    
1063
            if((mb_type&(MB_TYPE_SKIP|MB_TYPE_DIRECT2)) && !FRAME_MBAFF)
1064
                continue;
1065

    
1066
            if(!(mb_type&(MB_TYPE_SKIP|MB_TYPE_DIRECT2))) {
1067
            h->ref_cache[list][scan8[4 ]] =
1068
            h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
1069
            AV_ZERO32(h->mv_cache [list][scan8[4 ]]);
1070
            AV_ZERO32(h->mv_cache [list][scan8[12]]);
1071

    
1072
            if( CABAC ) {
1073
                /* XXX beurk, Load mvd */
1074
                if(USES_LIST(top_type, list)){
1075
                    const int b_xy= h->mb2br_xy[top_xy];
1076
                    AV_COPY64(h->mvd_cache[list][scan8[0] + 0 - 1*8], h->mvd_table[list][b_xy + 0]);
1077
                }else{
1078
                    AV_ZERO64(h->mvd_cache[list][scan8[0] + 0 - 1*8]);
1079
                }
1080
                if(USES_LIST(left_type[0], list)){
1081
                    const int b_xy= h->mb2br_xy[left_xy[0]] + 6;
1082
                    AV_COPY16(h->mvd_cache[list][scan8[0] - 1 + 0*8], h->mvd_table[list][b_xy - left_block[0]]);
1083
                    AV_COPY16(h->mvd_cache[list][scan8[0] - 1 + 1*8], h->mvd_table[list][b_xy - left_block[1]]);
1084
                }else{
1085
                    AV_ZERO16(h->mvd_cache [list][scan8[0] - 1 + 0*8]);
1086
                    AV_ZERO16(h->mvd_cache [list][scan8[0] - 1 + 1*8]);
1087
                }
1088
                if(USES_LIST(left_type[1], list)){
1089
                    const int b_xy= h->mb2br_xy[left_xy[1]] + 6;
1090
                    AV_COPY16(h->mvd_cache[list][scan8[0] - 1 + 2*8], h->mvd_table[list][b_xy - left_block[2]]);
1091
                    AV_COPY16(h->mvd_cache[list][scan8[0] - 1 + 3*8], h->mvd_table[list][b_xy - left_block[3]]);
1092
                }else{
1093
                    AV_ZERO16(h->mvd_cache [list][scan8[0] - 1 + 2*8]);
1094
                    AV_ZERO16(h->mvd_cache [list][scan8[0] - 1 + 3*8]);
1095
                }
1096
                AV_ZERO16(h->mvd_cache [list][scan8[4 ]]);
1097
                AV_ZERO16(h->mvd_cache [list][scan8[12]]);
1098
                if(h->slice_type_nos == FF_B_TYPE){
1099
                    fill_rectangle(&h->direct_cache[scan8[0]], 4, 4, 8, MB_TYPE_16x16>>1, 1);
1100

    
1101
                    if(IS_DIRECT(top_type)){
1102
                        AV_WN32A(&h->direct_cache[scan8[0] - 1*8], 0x01010101u*(MB_TYPE_DIRECT2>>1));
1103
                    }else if(IS_8X8(top_type)){
1104
                        int b8_xy = 4*top_xy;
1105
                        h->direct_cache[scan8[0] + 0 - 1*8]= h->direct_table[b8_xy + 2];
1106
                        h->direct_cache[scan8[0] + 2 - 1*8]= h->direct_table[b8_xy + 3];
1107
                    }else{
1108
                        AV_WN32A(&h->direct_cache[scan8[0] - 1*8], 0x01010101*(MB_TYPE_16x16>>1));
1109
                    }
1110

    
1111
                    if(IS_DIRECT(left_type[0]))
1112
                        h->direct_cache[scan8[0] - 1 + 0*8]= MB_TYPE_DIRECT2>>1;
1113
                    else if(IS_8X8(left_type[0]))
1114
                        h->direct_cache[scan8[0] - 1 + 0*8]= h->direct_table[4*left_xy[0] + 1 + (left_block[0]&~1)];
1115
                    else
1116
                        h->direct_cache[scan8[0] - 1 + 0*8]= MB_TYPE_16x16>>1;
1117

    
1118
                    if(IS_DIRECT(left_type[1]))
1119
                        h->direct_cache[scan8[0] - 1 + 2*8]= MB_TYPE_DIRECT2>>1;
1120
                    else if(IS_8X8(left_type[1]))
1121
                        h->direct_cache[scan8[0] - 1 + 2*8]= h->direct_table[4*left_xy[1] + 1 + (left_block[2]&~1)];
1122
                    else
1123
                        h->direct_cache[scan8[0] - 1 + 2*8]= MB_TYPE_16x16>>1;
1124
                }
1125
            }
1126
            }
1127
            if(FRAME_MBAFF){
1128
#define MAP_MVS\
1129
                    MAP_F2F(scan8[0] - 1 - 1*8, topleft_type)\
1130
                    MAP_F2F(scan8[0] + 0 - 1*8, top_type)\
1131
                    MAP_F2F(scan8[0] + 1 - 1*8, top_type)\
1132
                    MAP_F2F(scan8[0] + 2 - 1*8, top_type)\
1133
                    MAP_F2F(scan8[0] + 3 - 1*8, top_type)\
1134
                    MAP_F2F(scan8[0] + 4 - 1*8, topright_type)\
1135
                    MAP_F2F(scan8[0] - 1 + 0*8, left_type[0])\
1136
                    MAP_F2F(scan8[0] - 1 + 1*8, left_type[0])\
1137
                    MAP_F2F(scan8[0] - 1 + 2*8, left_type[1])\
1138
                    MAP_F2F(scan8[0] - 1 + 3*8, left_type[1])
1139
                if(MB_FIELD){
1140
#define MAP_F2F(idx, mb_type)\
1141
                    if(!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
1142
                        h->ref_cache[list][idx] <<= 1;\
1143
                        h->mv_cache[list][idx][1] /= 2;\
1144
                        h->mvd_cache[list][idx][1] >>=1;\
1145
                    }
1146
                    MAP_MVS
1147
#undef MAP_F2F
1148
                }else{
1149
#define MAP_F2F(idx, mb_type)\
1150
                    if(IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
1151
                        h->ref_cache[list][idx] >>= 1;\
1152
                        h->mv_cache[list][idx][1] <<= 1;\
1153
                        h->mvd_cache[list][idx][1] <<= 1;\
1154
                    }
1155
                    MAP_MVS
1156
#undef MAP_F2F
1157
                }
1158
            }
1159
        }
1160
    }
1161
#endif
1162

    
1163
        h->neighbor_transform_size= !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[0]);
1164
}
1165

    
1166
/**
1167
 *
1168
 * @return non zero if the loop filter can be skiped
1169
 */
1170
static int fill_filter_caches(H264Context *h, int mb_type){
1171
    MpegEncContext * const s = &h->s;
1172
    const int mb_xy= h->mb_xy;
1173
    int top_xy, left_xy[2];
1174
    int top_type, left_type[2];
1175

    
1176
    top_xy     = mb_xy  - (s->mb_stride << MB_FIELD);
1177

    
1178
    //FIXME deblocking could skip the intra and nnz parts.
1179

    
1180
    /* Wow, what a mess, why didn't they simplify the interlacing & intra
1181
     * stuff, I can't imagine that these complex rules are worth it. */
1182

    
1183
    left_xy[1] = left_xy[0] = mb_xy-1;
1184
    if(FRAME_MBAFF){
1185
        const int left_mb_field_flag     = IS_INTERLACED(s->current_picture.mb_type[mb_xy-1]);
1186
        const int curr_mb_field_flag     = IS_INTERLACED(mb_type);
1187
        if(s->mb_y&1){
1188
            if (left_mb_field_flag != curr_mb_field_flag) {
1189
                left_xy[0] -= s->mb_stride;
1190
            }
1191
        }else{
1192
            if(curr_mb_field_flag){
1193
                top_xy      += s->mb_stride & (((s->current_picture.mb_type[top_xy    ]>>7)&1)-1);
1194
            }
1195
            if (left_mb_field_flag != curr_mb_field_flag) {
1196
                left_xy[1] += s->mb_stride;
1197
            }
1198
        }
1199
    }
1200

    
1201
    h->top_mb_xy = top_xy;
1202
    h->left_mb_xy[0] = left_xy[0];
1203
    h->left_mb_xy[1] = left_xy[1];
1204
    {
1205
        //for sufficiently low qp, filtering wouldn't do anything
1206
        //this is a conservative estimate: could also check beta_offset and more accurate chroma_qp
1207
        int qp_thresh = h->qp_thresh; //FIXME strictly we should store qp_thresh for each mb of a slice
1208
        int qp = s->current_picture.qscale_table[mb_xy];
1209
        if(qp <= qp_thresh
1210
           && (left_xy[0]<0 || ((qp + s->current_picture.qscale_table[left_xy[0]] + 1)>>1) <= qp_thresh)
1211
           && (top_xy   < 0 || ((qp + s->current_picture.qscale_table[top_xy    ] + 1)>>1) <= qp_thresh)){
1212
            if(!FRAME_MBAFF)
1213
                return 1;
1214
            if(   (left_xy[0]< 0            || ((qp + s->current_picture.qscale_table[left_xy[1]             ] + 1)>>1) <= qp_thresh)
1215
               && (top_xy    < s->mb_stride || ((qp + s->current_picture.qscale_table[top_xy    -s->mb_stride] + 1)>>1) <= qp_thresh))
1216
                return 1;
1217
        }
1218
    }
1219

    
1220
    top_type     = s->current_picture.mb_type[top_xy]    ;
1221
    left_type[0] = s->current_picture.mb_type[left_xy[0]];
1222
    left_type[1] = s->current_picture.mb_type[left_xy[1]];
1223
    if(h->deblocking_filter == 2){
1224
        if(h->slice_table[top_xy     ] != h->slice_num) top_type= 0;
1225
        if(h->slice_table[left_xy[0] ] != h->slice_num) left_type[0]= left_type[1]= 0;
1226
    }else{
1227
        if(h->slice_table[top_xy     ] == 0xFFFF) top_type= 0;
1228
        if(h->slice_table[left_xy[0] ] == 0xFFFF) left_type[0]= left_type[1] =0;
1229
    }
1230
    h->top_type    = top_type    ;
1231
    h->left_type[0]= left_type[0];
1232
    h->left_type[1]= left_type[1];
1233

    
1234
    if(IS_INTRA(mb_type))
1235
        return 0;
1236

    
1237
    AV_COPY64(&h->non_zero_count_cache[0+8*1], &h->non_zero_count[mb_xy][ 0]);
1238
    AV_COPY64(&h->non_zero_count_cache[0+8*2], &h->non_zero_count[mb_xy][ 8]);
1239
    AV_COPY32(&h->non_zero_count_cache[0+8*5], &h->non_zero_count[mb_xy][16]);
1240
    AV_COPY32(&h->non_zero_count_cache[4+8*3], &h->non_zero_count[mb_xy][20]);
1241
    AV_COPY64(&h->non_zero_count_cache[0+8*4], &h->non_zero_count[mb_xy][24]);
1242

    
1243
    h->cbp= h->cbp_table[mb_xy];
1244

    
1245
    {
1246
        int list;
1247
        for(list=0; list<h->list_count; list++){
1248
            int8_t *ref;
1249
            int y, b_stride;
1250
            int16_t (*mv_dst)[2];
1251
            int16_t (*mv_src)[2];
1252

    
1253
            if(!USES_LIST(mb_type, list)){
1254
                fill_rectangle(  h->mv_cache[list][scan8[0]], 4, 4, 8, pack16to32(0,0), 4);
1255
                AV_WN32A(&h->ref_cache[list][scan8[ 0]], ((LIST_NOT_USED)&0xFF)*0x01010101u);
1256
                AV_WN32A(&h->ref_cache[list][scan8[ 2]], ((LIST_NOT_USED)&0xFF)*0x01010101u);
1257
                AV_WN32A(&h->ref_cache[list][scan8[ 8]], ((LIST_NOT_USED)&0xFF)*0x01010101u);
1258
                AV_WN32A(&h->ref_cache[list][scan8[10]], ((LIST_NOT_USED)&0xFF)*0x01010101u);
1259
                continue;
1260
            }
1261

    
1262
            ref = &s->current_picture.ref_index[list][4*mb_xy];
1263
            {
1264
                int (*ref2frm)[64] = h->ref2frm[ h->slice_num&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
1265
                AV_WN32A(&h->ref_cache[list][scan8[ 0]], (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101);
1266
                AV_WN32A(&h->ref_cache[list][scan8[ 2]], (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101);
1267
                ref += 2;
1268
                AV_WN32A(&h->ref_cache[list][scan8[ 8]], (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101);
1269
                AV_WN32A(&h->ref_cache[list][scan8[10]], (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101);
1270
            }
1271

    
1272
            b_stride = h->b_stride;
1273
            mv_dst   = &h->mv_cache[list][scan8[0]];
1274
            mv_src   = &s->current_picture.motion_val[list][4*s->mb_x + 4*s->mb_y*b_stride];
1275
            for(y=0; y<4; y++){
1276
                AV_COPY128(mv_dst + 8*y, mv_src + y*b_stride);
1277
            }
1278

    
1279
        }
1280
    }
1281

    
1282

    
1283
/*
1284
0 . T T. T T T T
1285
1 L . .L . . . .
1286
2 L . .L . . . .
1287
3 . T TL . . . .
1288
4 L . .L . . . .
1289
5 L . .. . . . .
1290
*/
1291
//FIXME constraint_intra_pred & partitioning & nnz (let us hope this is just a typo in the spec)
1292
    if(top_type){
1293
        AV_COPY32(&h->non_zero_count_cache[4+8*0], &h->non_zero_count[top_xy][4+3*8]);
1294
    }
1295

    
1296
    if(left_type[0]){
1297
        h->non_zero_count_cache[3+8*1]= h->non_zero_count[left_xy[0]][7+0*8];
1298
        h->non_zero_count_cache[3+8*2]= h->non_zero_count[left_xy[0]][7+1*8];
1299
        h->non_zero_count_cache[3+8*3]= h->non_zero_count[left_xy[0]][7+2*8];
1300
        h->non_zero_count_cache[3+8*4]= h->non_zero_count[left_xy[0]][7+3*8];
1301
    }
1302

    
1303
    // CAVLC 8x8dct requires NNZ values for residual decoding that differ from what the loop filter needs
1304
    if(!CABAC && h->pps.transform_8x8_mode){
1305
        if(IS_8x8DCT(top_type)){
1306
            h->non_zero_count_cache[4+8*0]=
1307
            h->non_zero_count_cache[5+8*0]= h->cbp_table[top_xy] & 4;
1308
            h->non_zero_count_cache[6+8*0]=
1309
            h->non_zero_count_cache[7+8*0]= h->cbp_table[top_xy] & 8;
1310
        }
1311
        if(IS_8x8DCT(left_type[0])){
1312
            h->non_zero_count_cache[3+8*1]=
1313
            h->non_zero_count_cache[3+8*2]= h->cbp_table[left_xy[0]]&2; //FIXME check MBAFF
1314
        }
1315
        if(IS_8x8DCT(left_type[1])){
1316
            h->non_zero_count_cache[3+8*3]=
1317
            h->non_zero_count_cache[3+8*4]= h->cbp_table[left_xy[1]]&8; //FIXME check MBAFF
1318
        }
1319

    
1320
        if(IS_8x8DCT(mb_type)){
1321
            h->non_zero_count_cache[scan8[0   ]]= h->non_zero_count_cache[scan8[1   ]]=
1322
            h->non_zero_count_cache[scan8[2   ]]= h->non_zero_count_cache[scan8[3   ]]= h->cbp & 1;
1323

    
1324
            h->non_zero_count_cache[scan8[0+ 4]]= h->non_zero_count_cache[scan8[1+ 4]]=
1325
            h->non_zero_count_cache[scan8[2+ 4]]= h->non_zero_count_cache[scan8[3+ 4]]= h->cbp & 2;
1326

    
1327
            h->non_zero_count_cache[scan8[0+ 8]]= h->non_zero_count_cache[scan8[1+ 8]]=
1328
            h->non_zero_count_cache[scan8[2+ 8]]= h->non_zero_count_cache[scan8[3+ 8]]= h->cbp & 4;
1329

    
1330
            h->non_zero_count_cache[scan8[0+12]]= h->non_zero_count_cache[scan8[1+12]]=
1331
            h->non_zero_count_cache[scan8[2+12]]= h->non_zero_count_cache[scan8[3+12]]= h->cbp & 8;
1332
        }
1333
    }
1334

    
1335
    if(IS_INTER(mb_type) || IS_DIRECT(mb_type)){
1336
        int list;
1337
        for(list=0; list<h->list_count; list++){
1338
            if(USES_LIST(top_type, list)){
1339
                const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
1340
                const int b8_xy= 4*top_xy + 2;
1341
                int (*ref2frm)[64] = h->ref2frm[ h->slice_table[top_xy]&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
1342
                AV_COPY128(h->mv_cache[list][scan8[0] + 0 - 1*8], s->current_picture.motion_val[list][b_xy + 0]);
1343
                h->ref_cache[list][scan8[0] + 0 - 1*8]=
1344
                h->ref_cache[list][scan8[0] + 1 - 1*8]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + 0]];
1345
                h->ref_cache[list][scan8[0] + 2 - 1*8]=
1346
                h->ref_cache[list][scan8[0] + 3 - 1*8]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + 1]];
1347
            }else{
1348
                AV_ZERO128(h->mv_cache[list][scan8[0] + 0 - 1*8]);
1349
                AV_WN32A(&h->ref_cache[list][scan8[0] + 0 - 1*8], ((LIST_NOT_USED)&0xFF)*0x01010101u);
1350
            }
1351

    
1352
            if(!IS_INTERLACED(mb_type^left_type[0])){
1353
                if(USES_LIST(left_type[0], list)){
1354
                    const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
1355
                    const int b8_xy= 4*left_xy[0] + 1;
1356
                    int (*ref2frm)[64] = h->ref2frm[ h->slice_table[left_xy[0]]&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
1357
                    AV_COPY32(h->mv_cache[list][scan8[0] - 1 + 0 ], s->current_picture.motion_val[list][b_xy + h->b_stride*0]);
1358
                    AV_COPY32(h->mv_cache[list][scan8[0] - 1 + 8 ], s->current_picture.motion_val[list][b_xy + h->b_stride*1]);
1359
                    AV_COPY32(h->mv_cache[list][scan8[0] - 1 +16 ], s->current_picture.motion_val[list][b_xy + h->b_stride*2]);
1360
                    AV_COPY32(h->mv_cache[list][scan8[0] - 1 +24 ], s->current_picture.motion_val[list][b_xy + h->b_stride*3]);
1361
                    h->ref_cache[list][scan8[0] - 1 + 0 ]=
1362
                    h->ref_cache[list][scan8[0] - 1 + 8 ]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + 2*0]];
1363
                    h->ref_cache[list][scan8[0] - 1 +16 ]=
1364
                    h->ref_cache[list][scan8[0] - 1 +24 ]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + 2*1]];
1365
                }else{
1366
                    AV_ZERO32(h->mv_cache [list][scan8[0] - 1 + 0 ]);
1367
                    AV_ZERO32(h->mv_cache [list][scan8[0] - 1 + 8 ]);
1368
                    AV_ZERO32(h->mv_cache [list][scan8[0] - 1 +16 ]);
1369
                    AV_ZERO32(h->mv_cache [list][scan8[0] - 1 +24 ]);
1370
                    h->ref_cache[list][scan8[0] - 1 + 0  ]=
1371
                    h->ref_cache[list][scan8[0] - 1 + 8  ]=
1372
                    h->ref_cache[list][scan8[0] - 1 + 16 ]=
1373
                    h->ref_cache[list][scan8[0] - 1 + 24 ]= LIST_NOT_USED;
1374
                }
1375
            }
1376
        }
1377
    }
1378

    
1379
    return 0;
1380
}
1381

    
1382
/**
1383
 * gets the predicted intra4x4 prediction mode.
1384
 */
1385
static inline int pred_intra_mode(H264Context *h, int n){
1386
    const int index8= scan8[n];
1387
    const int left= h->intra4x4_pred_mode_cache[index8 - 1];
1388
    const int top = h->intra4x4_pred_mode_cache[index8 - 8];
1389
    const int min= FFMIN(left, top);
1390

    
1391
    tprintf(h->s.avctx, "mode:%d %d min:%d\n", left ,top, min);
1392

    
1393
    if(min<0) return DC_PRED;
1394
    else      return min;
1395
}
1396

    
1397
static inline void write_back_non_zero_count(H264Context *h){
1398
    const int mb_xy= h->mb_xy;
1399

    
1400
    AV_COPY64(&h->non_zero_count[mb_xy][ 0], &h->non_zero_count_cache[0+8*1]);
1401
    AV_COPY64(&h->non_zero_count[mb_xy][ 8], &h->non_zero_count_cache[0+8*2]);
1402
    AV_COPY32(&h->non_zero_count[mb_xy][16], &h->non_zero_count_cache[0+8*5]);
1403
    AV_COPY32(&h->non_zero_count[mb_xy][20], &h->non_zero_count_cache[4+8*3]);
1404
    AV_COPY64(&h->non_zero_count[mb_xy][24], &h->non_zero_count_cache[0+8*4]);
1405
}
1406

    
1407
static inline void write_back_motion(H264Context *h, int mb_type){
1408
    MpegEncContext * const s = &h->s;
1409
    const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride; //try mb2b(8)_xy
1410
    const int b8_xy= 4*h->mb_xy;
1411
    int list;
1412

    
1413
    if(!USES_LIST(mb_type, 0))
1414
        fill_rectangle(&s->current_picture.ref_index[0][b8_xy], 2, 2, 2, (uint8_t)LIST_NOT_USED, 1);
1415

    
1416
    for(list=0; list<h->list_count; list++){
1417
        int y, b_stride;
1418
        int16_t (*mv_dst)[2];
1419
        int16_t (*mv_src)[2];
1420

    
1421
        if(!USES_LIST(mb_type, list))
1422
            continue;
1423

    
1424
        b_stride = h->b_stride;
1425
        mv_dst   = &s->current_picture.motion_val[list][b_xy];
1426
        mv_src   = &h->mv_cache[list][scan8[0]];
1427
        for(y=0; y<4; y++){
1428
            AV_COPY128(mv_dst + y*b_stride, mv_src + 8*y);
1429
        }
1430
        if( CABAC ) {
1431
            uint8_t (*mvd_dst)[2] = &h->mvd_table[list][FMO ? 8*h->mb_xy : h->mb2br_xy[h->mb_xy]];
1432
            uint8_t (*mvd_src)[2] = &h->mvd_cache[list][scan8[0]];
1433
            if(IS_SKIP(mb_type))
1434
                AV_ZERO128(mvd_dst);
1435
            else{
1436
            AV_COPY64(mvd_dst, mvd_src + 8*3);
1437
                AV_COPY16(mvd_dst + 3 + 3, mvd_src + 3 + 8*0);
1438
                AV_COPY16(mvd_dst + 3 + 2, mvd_src + 3 + 8*1);
1439
                AV_COPY16(mvd_dst + 3 + 1, mvd_src + 3 + 8*2);
1440
            }
1441
        }
1442

    
1443
        {
1444
            int8_t *ref_index = &s->current_picture.ref_index[list][b8_xy];
1445
            ref_index[0+0*2]= h->ref_cache[list][scan8[0]];
1446
            ref_index[1+0*2]= h->ref_cache[list][scan8[4]];
1447
            ref_index[0+1*2]= h->ref_cache[list][scan8[8]];
1448
            ref_index[1+1*2]= h->ref_cache[list][scan8[12]];
1449
        }
1450
    }
1451

    
1452
    if(h->slice_type_nos == FF_B_TYPE && CABAC){
1453
        if(IS_8X8(mb_type)){
1454
            uint8_t *direct_table = &h->direct_table[4*h->mb_xy];
1455
            direct_table[1] = h->sub_mb_type[1]>>1;
1456
            direct_table[2] = h->sub_mb_type[2]>>1;
1457
            direct_table[3] = h->sub_mb_type[3]>>1;
1458
        }
1459
    }
1460
}
1461

    
1462
static inline int get_dct8x8_allowed(H264Context *h){
1463
    if(h->sps.direct_8x8_inference_flag)
1464
        return !(AV_RN64A(h->sub_mb_type) & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8                )*0x0001000100010001ULL));
1465
    else
1466
        return !(AV_RN64A(h->sub_mb_type) & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8|MB_TYPE_DIRECT2)*0x0001000100010001ULL));
1467
}
1468

    
1469
/**
1470
 * decodes a P_SKIP or B_SKIP macroblock
1471
 */
1472
static void decode_mb_skip(H264Context *h){
1473
    MpegEncContext * const s = &h->s;
1474
    const int mb_xy= h->mb_xy;
1475
    int mb_type=0;
1476

    
1477
    memset(h->non_zero_count[mb_xy], 0, 32);
1478
    memset(h->non_zero_count_cache + 8, 0, 8*5); //FIXME ugly, remove pfui
1479

    
1480
    if(MB_FIELD)
1481
        mb_type|= MB_TYPE_INTERLACED;
1482

    
1483
    if( h->slice_type_nos == FF_B_TYPE )
1484
    {
1485
        // just for fill_caches. pred_direct_motion will set the real mb_type
1486
        mb_type|= MB_TYPE_L0L1|MB_TYPE_DIRECT2|MB_TYPE_SKIP;
1487
        if(h->direct_spatial_mv_pred){
1488
            fill_decode_neighbors(h, mb_type);
1489
        fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
1490
        }
1491
        ff_h264_pred_direct_motion(h, &mb_type);
1492
        mb_type|= MB_TYPE_SKIP;
1493
    }
1494
    else
1495
    {
1496
        int mx, my;
1497
        mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P1L0|MB_TYPE_SKIP;
1498

    
1499
        fill_decode_neighbors(h, mb_type);
1500
        fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
1501
        pred_pskip_motion(h, &mx, &my);
1502
        fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
1503
        fill_rectangle(  h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx,my), 4);
1504
    }
1505

    
1506
    write_back_motion(h, mb_type);
1507
    s->current_picture.mb_type[mb_xy]= mb_type;
1508
    s->current_picture.qscale_table[mb_xy]= s->qscale;
1509
    h->slice_table[ mb_xy ]= h->slice_num;
1510
    h->prev_mb_skipped= 1;
1511
}
1512

    
1513
#include "h264_mvpred.h" //For pred_pskip_motion()
1514

    
1515
#endif /* AVCODEC_H264_H */