Statistics
| Branch: | Revision:

ffmpeg / libavcodec / atrac1.c @ 10634c03

History | View | Annotate | Download (13.1 KB)

1
/*
2
 * Atrac 1 compatible decoder
3
 * Copyright (c) 2009 Maxim Poliakovski
4
 * Copyright (c) 2009 Benjamin Larsson
5
 *
6
 * This file is part of FFmpeg.
7
 *
8
 * FFmpeg is free software; you can redistribute it and/or
9
 * modify it under the terms of the GNU Lesser General Public
10
 * License as published by the Free Software Foundation; either
11
 * version 2.1 of the License, or (at your option) any later version.
12
 *
13
 * FFmpeg is distributed in the hope that it will be useful,
14
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16
 * Lesser General Public License for more details.
17
 *
18
 * You should have received a copy of the GNU Lesser General Public
19
 * License along with FFmpeg; if not, write to the Free Software
20
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21
 */
22

    
23
/**
24
 * @file libavcodec/atrac1.c
25
 * Atrac 1 compatible decoder.
26
 * This decoder handles raw ATRAC1 data.
27
 */
28

    
29
/* Many thanks to Tim Craig for all the help! */
30

    
31
#include <math.h>
32
#include <stddef.h>
33
#include <stdio.h>
34

    
35
#include "avcodec.h"
36
#include "get_bits.h"
37
#include "dsputil.h"
38

    
39
#include "atrac.h"
40
#include "atrac1data.h"
41

    
42
#define AT1_MAX_BFU      52                 ///< max number of block floating units in a sound unit
43
#define AT1_SU_SIZE      212                ///< number of bytes in a sound unit
44
#define AT1_SU_SAMPLES   512                ///< number of samples in a sound unit
45
#define AT1_FRAME_SIZE   AT1_SU_SIZE * 2
46
#define AT1_SU_MAX_BITS  AT1_SU_SIZE * 8
47
#define AT1_MAX_CHANNELS 2
48

    
49
#define AT1_QMF_BANDS    3
50
#define IDX_LOW_BAND     0
51
#define IDX_MID_BAND     1
52
#define IDX_HIGH_BAND    2
53

    
54
/**
55
 * Sound unit struct, one unit is used per channel
56
 */
57
typedef struct {
58
    int                 log2_block_count[AT1_QMF_BANDS];    ///< log2 number of blocks in a band
59
    int                 num_bfus;                           ///< number of Block Floating Units
60
    int                 idwls[AT1_MAX_BFU];                 ///< the word length indexes for each BFU
61
    int                 idsfs[AT1_MAX_BFU];                 ///< the scalefactor indexes for each BFU
62
    float*              spectrum[2];
63
    DECLARE_ALIGNED_16(float,spec1[AT1_SU_SAMPLES]);        ///< mdct buffer
64
    DECLARE_ALIGNED_16(float,spec2[AT1_SU_SAMPLES]);        ///< mdct buffer
65
    DECLARE_ALIGNED_16(float,fst_qmf_delay[46]);            ///< delay line for the 1st stacked QMF filter
66
    DECLARE_ALIGNED_16(float,snd_qmf_delay[46]);            ///< delay line for the 2nd stacked QMF filter
67
    DECLARE_ALIGNED_16(float,last_qmf_delay[256+23]);       ///< delay line for the last stacked QMF filter
68
} AT1SUCtx;
69

    
70
/**
71
 * The atrac1 context, holds all needed parameters for decoding
72
 */
73
typedef struct {
74
    AT1SUCtx            SUs[AT1_MAX_CHANNELS];              ///< channel sound unit
75
    DECLARE_ALIGNED_16(float,spec[AT1_SU_SAMPLES]);         ///< the mdct spectrum buffer
76
    DECLARE_ALIGNED_16(float,short_buf[512]);               ///< buffer for the short mode
77

    
78
    DECLARE_ALIGNED_16(float, low[256]);
79
    DECLARE_ALIGNED_16(float, mid[256]);
80
    DECLARE_ALIGNED_16(float,high[512]);
81
    float*              bands[3];
82
    float               out_samples[AT1_MAX_CHANNELS][AT1_SU_SAMPLES];
83
    MDCTContext         mdct_ctx[3];
84
    int                 channels;
85
    DSPContext          dsp;
86
} AT1Ctx;
87

    
88
DECLARE_ALIGNED_16(static float, short_window[32]);
89

    
90
/** size of the transform in samples in the long mode for each QMF band */
91
static const uint16_t samples_per_band[3] = {128, 128, 256};
92
static const uint8_t   mdct_long_nbits[3] = {7, 7, 8};
93

    
94

    
95
static void at1_imdct(AT1Ctx *q, float *spec, float *out, int nbits,
96
                      int rev_spec)
97
{
98
    MDCTContext* mdct_context;
99
    int transf_size = 1 << nbits;
100

    
101
    mdct_context = &q->mdct_ctx[nbits - 5 - (nbits>6)];
102

    
103
    if (rev_spec) {
104
        int i;
105
        for (i=0 ; i<transf_size/2 ; i++)
106
            FFSWAP(float, spec[i], spec[transf_size - 1 - i]);
107
    }
108
    ff_imdct_half(mdct_context, out, spec);
109
}
110

    
111

    
112
static int at1_imdct_block(AT1SUCtx* su, AT1Ctx *q)
113
{
114
    int             band_num, band_samples, log2_block_count, nbits, num_blocks, block_size;
115
    unsigned int    start_pos, ref_pos=0, pos = 0;
116

    
117
    for (band_num=0 ; band_num<AT1_QMF_BANDS ; band_num++) {
118
        band_samples = samples_per_band[band_num];
119
        log2_block_count = su->log2_block_count[band_num];
120

    
121
        /* number of mdct blocks in the current QMF band: 1 - for long mode */
122
        /* 4 for short mode(low/middle bands) and 8 for short mode(high band)*/
123
        num_blocks = 1 << log2_block_count;
124

    
125
        /* mdct block size in samples: 128 (long mode, low & mid bands), */
126
        /* 256 (long mode, high band) and 32 (short mode, all bands) */
127
        block_size = band_samples >> log2_block_count;
128

    
129
        /* calc transform size in bits according to the block_size_mode */
130
        nbits = mdct_long_nbits[band_num] - log2_block_count;
131

    
132
        if (nbits!=5 && nbits!=7 && nbits!=8)
133
            return -1;
134

    
135
        if (num_blocks == 1) {
136
            at1_imdct(q, &q->spec[pos], &su->spectrum[0][ref_pos], nbits, band_num);
137
            pos += block_size; // move to the next mdct block in the spectrum
138

    
139
            /* overlap and window long blocks */
140
            q->dsp.vector_fmul_window(q->bands[band_num], &su->spectrum[1][ref_pos+band_samples-16],
141
                &su->spectrum[0][ref_pos], short_window, 0, 16);
142
            memcpy(q->bands[band_num]+32, &su->spectrum[0][ref_pos+16], 240 * sizeof(float));
143

    
144
        } else {
145
            /* calc start position for the 1st short block: 96(128) or 112(256) */
146
            int short_pos = 32;
147
            float *prev_buf;
148
            start_pos = (band_samples * (num_blocks - 1)) >> (log2_block_count + 1);
149
            memset(&su->spectrum[0][ref_pos], 0, sizeof(float) * (band_samples * 2));
150

    
151
            prev_buf = &su->spectrum[1][ref_pos+band_samples-16];
152
            for (; num_blocks!=0 ; num_blocks--) {
153
                /* use hardcoded nbits for the short mode */
154
                at1_imdct(q, &q->spec[pos], &q->short_buf[short_pos], 5, band_num);
155

    
156
                /* overlap and window between short blocks */
157
                q->dsp.vector_fmul_window(&su->spectrum[0][ref_pos+start_pos],
158
                                          &q->short_buf[short_pos-16],
159
                                          &q->short_buf[short_pos],short_window, 0, 16);
160

    
161
                prev_buf = &q->short_buf[short_pos+16];
162

    
163
                start_pos += 32; // use hardcoded block_size
164
                pos += 32;
165
                short_pos +=32;
166
            }
167
            memcpy(q->bands[band_num], &su->spectrum[0][ref_pos], band_samples*sizeof(float));
168
        }
169
        ref_pos += band_samples;
170
    }
171

    
172
    /* Swap buffers so the mdct overlap works */
173
    FFSWAP(float*, su->spectrum[0], su->spectrum[1]);
174

    
175
    return 0;
176
}
177

    
178
/**
179
 * Parse the block size mode byte
180
 */
181

    
182
static int at1_parse_bsm(GetBitContext* gb, int log2_block_cnt[AT1_QMF_BANDS])
183
{
184
    int log2_block_count_tmp, i;
185

    
186
    for(i=0 ; i<2 ; i++) {
187
        /* low and mid band */
188
        log2_block_count_tmp = get_bits(gb, 2);
189
        if (log2_block_count_tmp & 1)
190
            return -1;
191
        log2_block_cnt[i] = 2 - log2_block_count_tmp;
192
    }
193

    
194
    /* high band */
195
    log2_block_count_tmp = get_bits(gb, 2);
196
    if (log2_block_count_tmp != 0 && log2_block_count_tmp != 3)
197
        return -1;
198
    log2_block_cnt[IDX_HIGH_BAND] = 3 - log2_block_count_tmp;
199

    
200
    skip_bits(gb, 2);
201
    return 0;
202
}
203

    
204

    
205
static int at1_unpack_dequant(GetBitContext* gb, AT1SUCtx* su,
206
                              float spec[AT1_SU_SAMPLES])
207
{
208
    int bits_used, band_num, bfu_num, i;
209

    
210
    /* parse the info byte (2nd byte) telling how much BFUs were coded */
211
    su->num_bfus = bfu_amount_tab1[get_bits(gb, 3)];
212

    
213
    /* calc number of consumed bits:
214
        num_BFUs * (idwl(4bits) + idsf(6bits)) + log2_block_count(8bits) + info_byte(8bits)
215
        + info_byte_copy(8bits) + log2_block_count_copy(8bits) */
216
    bits_used = su->num_bfus * 10 + 32 +
217
                bfu_amount_tab2[get_bits(gb, 2)] +
218
                (bfu_amount_tab3[get_bits(gb, 3)] << 1);
219

    
220
    /* get word length index (idwl) for each BFU */
221
    for (i=0 ; i<su->num_bfus ; i++)
222
        su->idwls[i] = get_bits(gb, 4);
223

    
224
    /* get scalefactor index (idsf) for each BFU */
225
    for (i=0 ; i<su->num_bfus ; i++)
226
        su->idsfs[i] = get_bits(gb, 6);
227

    
228
    /* zero idwl/idsf for empty BFUs */
229
    for (i = su->num_bfus; i < AT1_MAX_BFU; i++)
230
        su->idwls[i] = su->idsfs[i] = 0;
231

    
232
    /* read in the spectral data and reconstruct MDCT spectrum of this channel */
233
    for (band_num=0 ; band_num<AT1_QMF_BANDS ; band_num++) {
234
        for (bfu_num=bfu_bands_t[band_num] ; bfu_num<bfu_bands_t[band_num+1] ; bfu_num++) {
235
            int pos;
236

    
237
            int num_specs = specs_per_bfu[bfu_num];
238
            int word_len  = !!su->idwls[bfu_num] + su->idwls[bfu_num];
239
            float scale_factor = sf_table[su->idsfs[bfu_num]];
240
            bits_used    += word_len * num_specs; /* add number of bits consumed by current BFU */
241

    
242
            /* check for bitstream overflow */
243
            if (bits_used > AT1_SU_MAX_BITS)
244
                return -1;
245

    
246
            /* get the position of the 1st spec according to the block size mode */
247
            pos = su->log2_block_count[band_num] ? bfu_start_short[bfu_num] : bfu_start_long[bfu_num];
248

    
249
            if (word_len) {
250
                float   max_quant = 1.0 / (float)((1 << (word_len - 1)) - 1);
251

    
252
                for (i=0 ; i<num_specs ; i++) {
253
                    /* read in a quantized spec and convert it to
254
                     * signed int and then inverse quantization
255
                     */
256
                    spec[pos+i] = get_sbits(gb, word_len) * scale_factor * max_quant;
257
                }
258
            } else { /* word_len = 0 -> empty BFU, zero all specs in the emty BFU */
259
                memset(&spec[pos], 0, num_specs*sizeof(float));
260
            }
261
        }
262
    }
263

    
264
    return 0;
265
}
266

    
267

    
268
void at1_subband_synthesis(AT1Ctx *q, AT1SUCtx* su, float *pOut)
269
{
270
    float   temp[256];
271
    float   iqmf_temp[512 + 46];
272

    
273
    /* combine low and middle bands */
274
    atrac_iqmf(q->bands[0], q->bands[1], 128, temp, su->fst_qmf_delay, iqmf_temp);
275

    
276
    /* delay the signal of the high band by 23 samples */
277
    memcpy( su->last_qmf_delay,    &su->last_qmf_delay[256], sizeof(float)*23);
278
    memcpy(&su->last_qmf_delay[23], q->bands[2],             sizeof(float)*256);
279

    
280
    /* combine (low + middle) and high bands */
281
    atrac_iqmf(temp, su->last_qmf_delay, 256, pOut, su->snd_qmf_delay, iqmf_temp);
282
}
283

    
284

    
285
static int atrac1_decode_frame(AVCodecContext *avctx, void *data,
286
                               int *data_size, AVPacket *avpkt)
287
{
288
    const uint8_t *buf = avpkt->data;
289
    int buf_size       = avpkt->size;
290
    AT1Ctx *q          = avctx->priv_data;
291
    int ch, ret, i;
292
    GetBitContext gb;
293
    float* samples = data;
294

    
295

    
296
    if (buf_size < 212 * q->channels) {
297
        av_log(q,AV_LOG_ERROR,"Not enought data to decode!\n");
298
        return -1;
299
    }
300

    
301
    for (ch=0 ; ch<q->channels ; ch++) {
302
        AT1SUCtx* su = &q->SUs[ch];
303

    
304
        init_get_bits(&gb, &buf[212*ch], 212*8);
305

    
306
        /* parse block_size_mode, 1st byte */
307
        ret = at1_parse_bsm(&gb, su->log2_block_count);
308
        if (ret < 0)
309
            return ret;
310

    
311
        ret = at1_unpack_dequant(&gb, su, q->spec);
312
        if (ret < 0)
313
            return ret;
314

    
315
        ret = at1_imdct_block(su, q);
316
        if (ret < 0)
317
            return ret;
318
        at1_subband_synthesis(q, su, q->out_samples[ch]);
319
    }
320

    
321
    /* round, convert to 16bit and interleave */
322
    if (q->channels == 1) {
323
        /* mono */
324
        q->dsp.vector_clipf(samples, q->out_samples[0], -32700.0 / (1<<15),
325
                            32700.0 / (1<<15), AT1_SU_SAMPLES);
326
    } else {
327
        /* stereo */
328
        for (i = 0; i < AT1_SU_SAMPLES; i++) {
329
            samples[i*2]   = av_clipf(q->out_samples[0][i], -32700.0 / (1<<15),
330
                                      32700.0 / (1<<15));
331
            samples[i*2+1] = av_clipf(q->out_samples[1][i], -32700.0 / (1<<15),
332
                                      32700.0 / (1<<15));
333
        }
334
    }
335

    
336
    *data_size = q->channels * AT1_SU_SAMPLES * sizeof(*samples);
337
    return avctx->block_align;
338
}
339

    
340

    
341
static av_cold int atrac1_decode_init(AVCodecContext *avctx)
342
{
343
    AT1Ctx *q = avctx->priv_data;
344

    
345
    avctx->sample_fmt = SAMPLE_FMT_FLT;
346

    
347
    q->channels = avctx->channels;
348

    
349
    /* Init the mdct transforms */
350
    ff_mdct_init(&q->mdct_ctx[0], 6, 1, -1.0/ (1<<15));
351
    ff_mdct_init(&q->mdct_ctx[1], 8, 1, -1.0/ (1<<15));
352
    ff_mdct_init(&q->mdct_ctx[2], 9, 1, -1.0/ (1<<15));
353

    
354
    ff_sine_window_init(short_window, 32);
355

    
356
    atrac_generate_tables();
357

    
358
    dsputil_init(&q->dsp, avctx);
359

    
360
    q->bands[0] = q->low;
361
    q->bands[1] = q->mid;
362
    q->bands[2] = q->high;
363

    
364
    /* Prepare the mdct overlap buffers */
365
    q->SUs[0].spectrum[0] = q->SUs[0].spec1;
366
    q->SUs[0].spectrum[1] = q->SUs[0].spec2;
367
    q->SUs[1].spectrum[0] = q->SUs[1].spec1;
368
    q->SUs[1].spectrum[1] = q->SUs[1].spec2;
369

    
370
    return 0;
371
}
372

    
373
AVCodec atrac1_decoder = {
374
    .name = "atrac1",
375
    .type = CODEC_TYPE_AUDIO,
376
    .id = CODEC_ID_ATRAC1,
377
    .priv_data_size = sizeof(AT1Ctx),
378
    .init = atrac1_decode_init,
379
    .close = NULL,
380
    .decode = atrac1_decode_frame,
381
    .long_name = NULL_IF_CONFIG_SMALL("Atrac 1 (Adaptive TRansform Acoustic Coding)"),
382
};