Statistics
| Branch: | Revision:

ffmpeg / libavcodec / aacsbr.c @ 134b8cbb

History | View | Annotate | Download (65.1 KB)

1
/*
2
 * AAC Spectral Band Replication decoding functions
3
 * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
4
 * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
5
 *
6
 * This file is part of FFmpeg.
7
 *
8
 * FFmpeg is free software; you can redistribute it and/or
9
 * modify it under the terms of the GNU Lesser General Public
10
 * License as published by the Free Software Foundation; either
11
 * version 2.1 of the License, or (at your option) any later version.
12
 *
13
 * FFmpeg is distributed in the hope that it will be useful,
14
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16
 * Lesser General Public License for more details.
17
 *
18
 * You should have received a copy of the GNU Lesser General Public
19
 * License along with FFmpeg; if not, write to the Free Software
20
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21
 */
22

    
23
/**
24
 * @file libavcodec/aacsbr.c
25
 * AAC Spectral Band Replication decoding functions
26
 * @author Robert Swain ( rob opendot cl )
27
 */
28

    
29
#include "aac.h"
30
#include "sbr.h"
31
#include "aacsbr.h"
32
#include "aacsbrdata.h"
33
#include "fft.h"
34

    
35
#include <stdint.h>
36
#include <float.h>
37

    
38
#define ENVELOPE_ADJUSTMENT_OFFSET 2
39
#define NOISE_FLOOR_OFFSET 6.0f
40

    
41
/**
42
 * SBR VLC tables
43
 */
44
enum {
45
    T_HUFFMAN_ENV_1_5DB,
46
    F_HUFFMAN_ENV_1_5DB,
47
    T_HUFFMAN_ENV_BAL_1_5DB,
48
    F_HUFFMAN_ENV_BAL_1_5DB,
49
    T_HUFFMAN_ENV_3_0DB,
50
    F_HUFFMAN_ENV_3_0DB,
51
    T_HUFFMAN_ENV_BAL_3_0DB,
52
    F_HUFFMAN_ENV_BAL_3_0DB,
53
    T_HUFFMAN_NOISE_3_0DB,
54
    T_HUFFMAN_NOISE_BAL_3_0DB,
55
};
56

    
57
/**
58
 * bs_frame_class - frame class of current SBR frame (14496-3 sp04 p98)
59
 */
60
enum {
61
    FIXFIX,
62
    FIXVAR,
63
    VARFIX,
64
    VARVAR,
65
};
66

    
67
enum {
68
    EXTENSION_ID_PS = 2,
69
};
70

    
71
static VLC vlc_sbr[10];
72
static const int8_t vlc_sbr_lav[10] =
73
    { 60, 60, 24, 24, 31, 31, 12, 12, 31, 12 };
74
static DECLARE_ALIGNED(16, float, analysis_cos_pre)[64];
75
static DECLARE_ALIGNED(16, float, analysis_sin_pre)[64];
76
static DECLARE_ALIGNED(16, float, analysis_cossin_post)[32][2];
77
static const DECLARE_ALIGNED(16, float, zero64)[64];
78

    
79
#define SBR_INIT_VLC_STATIC(num, size) \
80
    INIT_VLC_STATIC(&vlc_sbr[num], 9, sbr_tmp[num].table_size / sbr_tmp[num].elem_size,     \
81
                    sbr_tmp[num].sbr_bits ,                      1,                      1, \
82
                    sbr_tmp[num].sbr_codes, sbr_tmp[num].elem_size, sbr_tmp[num].elem_size, \
83
                    size)
84

    
85
#define SBR_VLC_ROW(name) \
86
    { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) }
87

    
88
av_cold void ff_aac_sbr_init(void)
89
{
90
    int n, k;
91
    static const struct {
92
        const void *sbr_codes, *sbr_bits;
93
        const unsigned int table_size, elem_size;
94
    } sbr_tmp[] = {
95
        SBR_VLC_ROW(t_huffman_env_1_5dB),
96
        SBR_VLC_ROW(f_huffman_env_1_5dB),
97
        SBR_VLC_ROW(t_huffman_env_bal_1_5dB),
98
        SBR_VLC_ROW(f_huffman_env_bal_1_5dB),
99
        SBR_VLC_ROW(t_huffman_env_3_0dB),
100
        SBR_VLC_ROW(f_huffman_env_3_0dB),
101
        SBR_VLC_ROW(t_huffman_env_bal_3_0dB),
102
        SBR_VLC_ROW(f_huffman_env_bal_3_0dB),
103
        SBR_VLC_ROW(t_huffman_noise_3_0dB),
104
        SBR_VLC_ROW(t_huffman_noise_bal_3_0dB),
105
    };
106

    
107
    // SBR VLC table initialization
108
    SBR_INIT_VLC_STATIC(0, 1098);
109
    SBR_INIT_VLC_STATIC(1, 1092);
110
    SBR_INIT_VLC_STATIC(2, 768);
111
    SBR_INIT_VLC_STATIC(3, 1026);
112
    SBR_INIT_VLC_STATIC(4, 1058);
113
    SBR_INIT_VLC_STATIC(5, 1052);
114
    SBR_INIT_VLC_STATIC(6, 544);
115
    SBR_INIT_VLC_STATIC(7, 544);
116
    SBR_INIT_VLC_STATIC(8, 592);
117
    SBR_INIT_VLC_STATIC(9, 512);
118

    
119
    for (n = 0; n < 64; n++) {
120
        float pre = M_PI * n / 64;
121
        analysis_cos_pre[n] = cosf(pre);
122
        analysis_sin_pre[n] = sinf(pre);
123
    }
124
    for (k = 0; k < 32; k++) {
125
        float post = M_PI * (k + 0.5) / 128;
126
        analysis_cossin_post[k][0] =  4.0 * cosf(post);
127
        analysis_cossin_post[k][1] = -4.0 * sinf(post);
128
    }
129
    for (n = 1; n < 320; n++)
130
        sbr_qmf_window_us[320 + n] = sbr_qmf_window_us[320 - n];
131
    sbr_qmf_window_us[384] = -sbr_qmf_window_us[384];
132
    sbr_qmf_window_us[512] = -sbr_qmf_window_us[512];
133

    
134
    for (n = 0; n < 320; n++)
135
        sbr_qmf_window_ds[n] = sbr_qmf_window_us[2*n];
136
}
137

    
138
av_cold void ff_aac_sbr_ctx_init(SpectralBandReplication *sbr)
139
{
140
    sbr->kx[0] = sbr->kx[1] = 32; //Typo in spec, kx' inits to 32
141
    sbr->data[0].e_a[1] = sbr->data[1].e_a[1] = -1;
142
    sbr->data[0].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
143
    sbr->data[1].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
144
    ff_mdct_init(&sbr->mdct, 7, 1, 1.0/64);
145
    ff_rdft_init(&sbr->rdft, 6, IDFT_R2C);
146
}
147

    
148
av_cold void ff_aac_sbr_ctx_close(SpectralBandReplication *sbr)
149
{
150
    ff_mdct_end(&sbr->mdct);
151
    ff_rdft_end(&sbr->rdft);
152
}
153

    
154
static int qsort_comparison_function_int16(const void *a, const void *b)
155
{
156
    return *(const int16_t *)a - *(const int16_t *)b;
157
}
158

    
159
static inline int in_table_int16(const int16_t *table, int last_el, int16_t needle)
160
{
161
    int i;
162
    for (i = 0; i <= last_el; i++)
163
        if (table[i] == needle)
164
            return 1;
165
    return 0;
166
}
167

    
168
/// Limiter Frequency Band Table (14496-3 sp04 p198)
169
static void sbr_make_f_tablelim(SpectralBandReplication *sbr)
170
{
171
    int k;
172
    if (sbr->bs_limiter_bands > 0) {
173
        static const float bands_warped[3] = { 1.32715174233856803909f,   //2^(0.49/1.2)
174
                                               1.18509277094158210129f,   //2^(0.49/2)
175
                                               1.11987160404675912501f }; //2^(0.49/3)
176
        const float lim_bands_per_octave_warped = bands_warped[sbr->bs_limiter_bands - 1];
177
        int16_t patch_borders[5];
178
        uint16_t *in = sbr->f_tablelim + 1, *out = sbr->f_tablelim;
179

    
180
        patch_borders[0] = sbr->kx[1];
181
        for (k = 1; k <= sbr->num_patches; k++)
182
            patch_borders[k] = patch_borders[k-1] + sbr->patch_num_subbands[k-1];
183

    
184
        memcpy(sbr->f_tablelim, sbr->f_tablelow,
185
               (sbr->n[0] + 1) * sizeof(sbr->f_tablelow[0]));
186
        if (sbr->num_patches > 1)
187
            memcpy(sbr->f_tablelim + sbr->n[0] + 1, patch_borders + 1,
188
                   (sbr->num_patches - 1) * sizeof(patch_borders[0]));
189

    
190
        qsort(sbr->f_tablelim, sbr->num_patches + sbr->n[0],
191
              sizeof(sbr->f_tablelim[0]),
192
              qsort_comparison_function_int16);
193

    
194
        sbr->n_lim = sbr->n[0] + sbr->num_patches - 1;
195
        while (out < sbr->f_tablelim + sbr->n_lim) {
196
            if (*in >= *out * lim_bands_per_octave_warped) {
197
                *++out = *in++;
198
            } else if (*in == *out ||
199
                !in_table_int16(patch_borders, sbr->num_patches, *in)) {
200
                in++;
201
                sbr->n_lim--;
202
            } else if (!in_table_int16(patch_borders, sbr->num_patches, *out)) {
203
                *out = *in++;
204
                sbr->n_lim--;
205
            } else {
206
                *++out = *in++;
207
            }
208
        }
209
    } else {
210
        sbr->f_tablelim[0] = sbr->f_tablelow[0];
211
        sbr->f_tablelim[1] = sbr->f_tablelow[sbr->n[0]];
212
        sbr->n_lim = 1;
213
    }
214
}
215

    
216
static unsigned int read_sbr_header(SpectralBandReplication *sbr, GetBitContext *gb)
217
{
218
    unsigned int cnt = get_bits_count(gb);
219
    uint8_t bs_header_extra_1;
220
    uint8_t bs_header_extra_2;
221
    int old_bs_limiter_bands = sbr->bs_limiter_bands;
222
    SpectrumParameters old_spectrum_params;
223

    
224
    sbr->start = 1;
225

    
226
    // Save last spectrum parameters variables to compare to new ones
227
    memcpy(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters));
228

    
229
    sbr->bs_amp_res_header              = get_bits1(gb);
230
    sbr->spectrum_params.bs_start_freq  = get_bits(gb, 4);
231
    sbr->spectrum_params.bs_stop_freq   = get_bits(gb, 4);
232
    sbr->spectrum_params.bs_xover_band  = get_bits(gb, 3);
233
                                          skip_bits(gb, 2); // bs_reserved
234

    
235
    bs_header_extra_1 = get_bits1(gb);
236
    bs_header_extra_2 = get_bits1(gb);
237

    
238
    if (bs_header_extra_1) {
239
        sbr->spectrum_params.bs_freq_scale  = get_bits(gb, 2);
240
        sbr->spectrum_params.bs_alter_scale = get_bits1(gb);
241
        sbr->spectrum_params.bs_noise_bands = get_bits(gb, 2);
242
    } else {
243
        sbr->spectrum_params.bs_freq_scale  = 2;
244
        sbr->spectrum_params.bs_alter_scale = 1;
245
        sbr->spectrum_params.bs_noise_bands = 2;
246
    }
247

    
248
    // Check if spectrum parameters changed
249
    if (memcmp(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters)))
250
        sbr->reset = 1;
251

    
252
    if (bs_header_extra_2) {
253
        sbr->bs_limiter_bands  = get_bits(gb, 2);
254
        sbr->bs_limiter_gains  = get_bits(gb, 2);
255
        sbr->bs_interpol_freq  = get_bits1(gb);
256
        sbr->bs_smoothing_mode = get_bits1(gb);
257
    } else {
258
        sbr->bs_limiter_bands  = 2;
259
        sbr->bs_limiter_gains  = 2;
260
        sbr->bs_interpol_freq  = 1;
261
        sbr->bs_smoothing_mode = 1;
262
    }
263

    
264
    if (sbr->bs_limiter_bands != old_bs_limiter_bands && !sbr->reset)
265
        sbr_make_f_tablelim(sbr);
266

    
267
    return get_bits_count(gb) - cnt;
268
}
269

    
270
static int array_min_int16(const int16_t *array, int nel)
271
{
272
    int i, min = array[0];
273
    for (i = 1; i < nel; i++)
274
        min = FFMIN(array[i], min);
275
    return min;
276
}
277

    
278
static void make_bands(int16_t* bands, int start, int stop, int num_bands)
279
{
280
    int k, previous, present;
281
    float base, prod;
282

    
283
    base = powf((float)stop / start, 1.0f / num_bands);
284
    prod = start;
285
    previous = start;
286

    
287
    for (k = 0; k < num_bands-1; k++) {
288
        prod *= base;
289
        present  = lrintf(prod);
290
        bands[k] = present - previous;
291
        previous = present;
292
    }
293
    bands[num_bands-1] = stop - previous;
294
}
295

    
296
static int check_n_master(AVCodecContext *avccontext, int n_master, int bs_xover_band)
297
{
298
    // Requirements (14496-3 sp04 p205)
299
    if (n_master <= 0) {
300
        av_log(avccontext, AV_LOG_ERROR, "Invalid n_master: %d\n", n_master);
301
        return -1;
302
    }
303
    if (bs_xover_band >= n_master) {
304
        av_log(avccontext, AV_LOG_ERROR,
305
               "Invalid bitstream, crossover band index beyond array bounds: %d\n",
306
               bs_xover_band);
307
        return -1;
308
    }
309
    return 0;
310
}
311

    
312
/// Master Frequency Band Table (14496-3 sp04 p194)
313
static int sbr_make_f_master(AACContext *ac, SpectralBandReplication *sbr,
314
                             SpectrumParameters *spectrum)
315
{
316
    unsigned int temp, max_qmf_subbands;
317
    unsigned int start_min, stop_min;
318
    int k;
319
    const int8_t *sbr_offset_ptr;
320
    int16_t stop_dk[13];
321

    
322
    if (sbr->sample_rate < 32000) {
323
        temp = 3000;
324
    } else if (sbr->sample_rate < 64000) {
325
        temp = 4000;
326
    } else
327
        temp = 5000;
328

    
329
    start_min = ((temp << 7) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
330
    stop_min  = ((temp << 8) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
331

    
332
    switch (sbr->sample_rate) {
333
    case 16000:
334
        sbr_offset_ptr = sbr_offset[0];
335
        break;
336
    case 22050:
337
        sbr_offset_ptr = sbr_offset[1];
338
        break;
339
    case 24000:
340
        sbr_offset_ptr = sbr_offset[2];
341
        break;
342
    case 32000:
343
        sbr_offset_ptr = sbr_offset[3];
344
        break;
345
    case 44100: case 48000: case 64000:
346
        sbr_offset_ptr = sbr_offset[4];
347
        break;
348
    case 88200: case 96000: case 128000: case 176400: case 192000:
349
        sbr_offset_ptr = sbr_offset[5];
350
        break;
351
    default:
352
        av_log(ac->avccontext, AV_LOG_ERROR,
353
               "Unsupported sample rate for SBR: %d\n", sbr->sample_rate);
354
        return -1;
355
    }
356

    
357
    sbr->k[0] = start_min + sbr_offset_ptr[spectrum->bs_start_freq];
358

    
359
    if (spectrum->bs_stop_freq < 14) {
360
        sbr->k[2] = stop_min;
361
        make_bands(stop_dk, stop_min, 64, 13);
362
        qsort(stop_dk, 13, sizeof(stop_dk[0]), qsort_comparison_function_int16);
363
        for (k = 0; k < spectrum->bs_stop_freq; k++)
364
            sbr->k[2] += stop_dk[k];
365
    } else if (spectrum->bs_stop_freq == 14) {
366
        sbr->k[2] = 2*sbr->k[0];
367
    } else if (spectrum->bs_stop_freq == 15) {
368
        sbr->k[2] = 3*sbr->k[0];
369
    } else {
370
        av_log(ac->avccontext, AV_LOG_ERROR,
371
               "Invalid bs_stop_freq: %d\n", spectrum->bs_stop_freq);
372
        return -1;
373
    }
374
    sbr->k[2] = FFMIN(64, sbr->k[2]);
375

    
376
    // Requirements (14496-3 sp04 p205)
377
    if (sbr->sample_rate <= 32000) {
378
        max_qmf_subbands = 48;
379
    } else if (sbr->sample_rate == 44100) {
380
        max_qmf_subbands = 35;
381
    } else if (sbr->sample_rate >= 48000)
382
        max_qmf_subbands = 32;
383

    
384
    if (sbr->k[2] - sbr->k[0] > max_qmf_subbands) {
385
        av_log(ac->avccontext, AV_LOG_ERROR,
386
               "Invalid bitstream, too many QMF subbands: %d\n", sbr->k[2] - sbr->k[0]);
387
        return -1;
388
    }
389

    
390
    if (!spectrum->bs_freq_scale) {
391
        unsigned int dk;
392
        int k2diff;
393

    
394
        dk = spectrum->bs_alter_scale + 1;
395
        sbr->n_master = ((sbr->k[2] - sbr->k[0] + (dk&2)) >> dk) << 1;
396
        if (check_n_master(ac->avccontext, sbr->n_master, sbr->spectrum_params.bs_xover_band))
397
            return -1;
398

    
399
        for (k = 1; k <= sbr->n_master; k++)
400
            sbr->f_master[k] = dk;
401

    
402
        k2diff = sbr->k[2] - sbr->k[0] - sbr->n_master * dk;
403
        if (k2diff < 0) {
404
            sbr->f_master[1]--;
405
            sbr->f_master[2]-= (k2diff < 1);
406
        } else if (k2diff) {
407
            sbr->f_master[sbr->n_master]++;
408
        }
409

    
410
        sbr->f_master[0] = sbr->k[0];
411
        for (k = 1; k <= sbr->n_master; k++)
412
            sbr->f_master[k] += sbr->f_master[k - 1];
413

    
414
    } else {
415
        int half_bands = 7 - spectrum->bs_freq_scale;      // bs_freq_scale  = {1,2,3}
416
        int two_regions, num_bands_0;
417
        int vdk0_max, vdk1_min;
418
        int16_t vk0[49];
419

    
420
        if (49 * sbr->k[2] > 110 * sbr->k[0]) {
421
            two_regions = 1;
422
            sbr->k[1] = 2 * sbr->k[0];
423
        } else {
424
            two_regions = 0;
425
            sbr->k[1] = sbr->k[2];
426
        }
427

    
428
        num_bands_0 = lrintf(half_bands * log2f(sbr->k[1] / (float)sbr->k[0])) * 2;
429

    
430
        if (num_bands_0 <= 0) { // Requirements (14496-3 sp04 p205)
431
            av_log(ac->avccontext, AV_LOG_ERROR, "Invalid num_bands_0: %d\n", num_bands_0);
432
            return -1;
433
        }
434

    
435
        vk0[0] = 0;
436

    
437
        make_bands(vk0+1, sbr->k[0], sbr->k[1], num_bands_0);
438

    
439
        qsort(vk0 + 1, num_bands_0, sizeof(vk0[1]), qsort_comparison_function_int16);
440
        vdk0_max = vk0[num_bands_0];
441

    
442
        vk0[0] = sbr->k[0];
443
        for (k = 1; k <= num_bands_0; k++) {
444
            if (vk0[k] <= 0) { // Requirements (14496-3 sp04 p205)
445
                av_log(ac->avccontext, AV_LOG_ERROR, "Invalid vDk0[%d]: %d\n", k, vk0[k]);
446
                return -1;
447
            }
448
            vk0[k] += vk0[k-1];
449
        }
450

    
451
        if (two_regions) {
452
            int16_t vk1[49];
453
            float invwarp = spectrum->bs_alter_scale ? 0.76923076923076923077f
454
                                                     : 1.0f; // bs_alter_scale = {0,1}
455
            int num_bands_1 = lrintf(half_bands * invwarp *
456
                                     log2f(sbr->k[2] / (float)sbr->k[1])) * 2;
457

    
458
            make_bands(vk1+1, sbr->k[1], sbr->k[2], num_bands_1);
459

    
460
            vdk1_min = array_min_int16(vk1 + 1, num_bands_1);
461

    
462
            if (vdk1_min < vdk0_max) {
463
                int change;
464
                qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
465
                change = FFMIN(vdk0_max - vk1[1], (vk1[num_bands_1] - vk1[1]) >> 1);
466
                vk1[1]           += change;
467
                vk1[num_bands_1] -= change;
468
            }
469

    
470
            qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
471

    
472
            vk1[0] = sbr->k[1];
473
            for (k = 1; k <= num_bands_1; k++) {
474
                if (vk1[k] <= 0) { // Requirements (14496-3 sp04 p205)
475
                    av_log(ac->avccontext, AV_LOG_ERROR, "Invalid vDk1[%d]: %d\n", k, vk1[k]);
476
                    return -1;
477
                }
478
                vk1[k] += vk1[k-1];
479
            }
480

    
481
            sbr->n_master = num_bands_0 + num_bands_1;
482
            if (check_n_master(ac->avccontext, sbr->n_master, sbr->spectrum_params.bs_xover_band))
483
                return -1;
484
            memcpy(&sbr->f_master[0],               vk0,
485
                   (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
486
            memcpy(&sbr->f_master[num_bands_0 + 1], vk1 + 1,
487
                    num_bands_1      * sizeof(sbr->f_master[0]));
488

    
489
        } else {
490
            sbr->n_master = num_bands_0;
491
            if (check_n_master(ac->avccontext, sbr->n_master, sbr->spectrum_params.bs_xover_band))
492
                return -1;
493
            memcpy(sbr->f_master, vk0, (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
494
        }
495
    }
496

    
497
    return 0;
498
}
499

    
500
/// High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
501
static int sbr_hf_calc_npatches(AACContext *ac, SpectralBandReplication *sbr)
502
{
503
    int i, k, sb = 0;
504
    int msb = sbr->k[0];
505
    int usb = sbr->kx[1];
506
    int goal_sb = ((1000 << 11) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
507

    
508
    sbr->num_patches = 0;
509

    
510
    if (goal_sb < sbr->kx[1] + sbr->m[1]) {
511
        for (k = 0; sbr->f_master[k] < goal_sb; k++) ;
512
    } else
513
        k = sbr->n_master;
514

    
515
    do {
516
        int odd = 0;
517
        for (i = k; i == k || sb > (sbr->k[0] - 1 + msb - odd); i--) {
518
            sb = sbr->f_master[i];
519
            odd = (sb + sbr->k[0]) & 1;
520
        }
521

    
522
        sbr->patch_num_subbands[sbr->num_patches]  = FFMAX(sb - usb, 0);
523
        sbr->patch_start_subband[sbr->num_patches] = sbr->k[0] - odd - sbr->patch_num_subbands[sbr->num_patches];
524

    
525
        if (sbr->patch_num_subbands[sbr->num_patches] > 0) {
526
            usb = sb;
527
            msb = sb;
528
            sbr->num_patches++;
529
        } else
530
            msb = sbr->kx[1];
531

    
532
        if (sbr->f_master[k] - sb < 3)
533
            k = sbr->n_master;
534
    } while (sb != sbr->kx[1] + sbr->m[1]);
535

    
536
    if (sbr->patch_num_subbands[sbr->num_patches-1] < 3 && sbr->num_patches > 1)
537
        sbr->num_patches--;
538

    
539
    // Requirements (14496-3 sp04 p205) sets the maximum number of patches to 5
540
    // However the Coding Technologies decoder check uses 6 patches
541
    if (sbr->num_patches > 6) {
542
        av_log(ac->avccontext, AV_LOG_ERROR, "Too many patches: %d\n", sbr->num_patches);
543
        return -1;
544
    }
545

    
546
    return 0;
547
}
548

    
549
/// Derived Frequency Band Tables (14496-3 sp04 p197)
550
static int sbr_make_f_derived(AACContext *ac, SpectralBandReplication *sbr)
551
{
552
    int k, temp;
553

    
554
    sbr->n[1] = sbr->n_master - sbr->spectrum_params.bs_xover_band;
555
    sbr->n[0] = (sbr->n[1] + 1) >> 1;
556

    
557
    memcpy(sbr->f_tablehigh, &sbr->f_master[sbr->spectrum_params.bs_xover_band],
558
           (sbr->n[1] + 1) * sizeof(sbr->f_master[0]));
559
    sbr->m[1] = sbr->f_tablehigh[sbr->n[1]] - sbr->f_tablehigh[0];
560
    sbr->kx[1] = sbr->f_tablehigh[0];
561

    
562
    // Requirements (14496-3 sp04 p205)
563
    if (sbr->kx[1] + sbr->m[1] > 64) {
564
        av_log(ac->avccontext, AV_LOG_ERROR,
565
               "Stop frequency border too high: %d\n", sbr->kx[1] + sbr->m[1]);
566
        return -1;
567
    }
568
    if (sbr->kx[1] > 32) {
569
        av_log(ac->avccontext, AV_LOG_ERROR, "Start frequency border too high: %d\n", sbr->kx[1]);
570
        return -1;
571
    }
572

    
573
    sbr->f_tablelow[0] = sbr->f_tablehigh[0];
574
    temp = sbr->n[1] & 1;
575
    for (k = 1; k <= sbr->n[0]; k++)
576
        sbr->f_tablelow[k] = sbr->f_tablehigh[2 * k - temp];
577

    
578
    sbr->n_q = FFMAX(1, lrintf(sbr->spectrum_params.bs_noise_bands *
579
                               log2f(sbr->k[2] / (float)sbr->kx[1]))); // 0 <= bs_noise_bands <= 3
580
    if (sbr->n_q > 5) {
581
        av_log(ac->avccontext, AV_LOG_ERROR, "Too many noise floor scale factors: %d\n", sbr->n_q);
582
        return -1;
583
    }
584

    
585
    sbr->f_tablenoise[0] = sbr->f_tablelow[0];
586
    temp = 0;
587
    for (k = 1; k <= sbr->n_q; k++) {
588
        temp += (sbr->n[0] - temp) / (sbr->n_q + 1 - k);
589
        sbr->f_tablenoise[k] = sbr->f_tablelow[temp];
590
    }
591

    
592
    if (sbr_hf_calc_npatches(ac, sbr) < 0)
593
        return -1;
594

    
595
    sbr_make_f_tablelim(sbr);
596

    
597
    sbr->data[0].f_indexnoise = 0;
598
    sbr->data[1].f_indexnoise = 0;
599

    
600
    return 0;
601
}
602

    
603
static av_always_inline void get_bits1_vector(GetBitContext *gb, uint8_t *vec,
604
                                              int elements)
605
{
606
    int i;
607
    for (i = 0; i < elements; i++) {
608
        vec[i] = get_bits1(gb);
609
    }
610
}
611

    
612
/** ceil(log2(index+1)) */
613
static const int8_t ceil_log2[] = {
614
    0, 1, 2, 2, 3, 3,
615
};
616

    
617
static int read_sbr_grid(AACContext *ac, SpectralBandReplication *sbr,
618
                         GetBitContext *gb, SBRData *ch_data)
619
{
620
    int i;
621
    unsigned bs_pointer = 0;
622
    // frameLengthFlag ? 15 : 16; 960 sample length frames unsupported; this value is numTimeSlots
623
    int abs_bord_trail = 16;
624
    int num_rel_lead, num_rel_trail;
625
    unsigned bs_num_env_old = ch_data->bs_num_env;
626

    
627
    ch_data->bs_freq_res[0] = ch_data->bs_freq_res[ch_data->bs_num_env];
628
    ch_data->bs_amp_res = sbr->bs_amp_res_header;
629
    ch_data->t_env_num_env_old = ch_data->t_env[bs_num_env_old];
630

    
631
    switch (ch_data->bs_frame_class = get_bits(gb, 2)) {
632
    case FIXFIX:
633
        ch_data->bs_num_env                 = 1 << get_bits(gb, 2);
634
        num_rel_lead                        = ch_data->bs_num_env - 1;
635
        if (ch_data->bs_num_env == 1)
636
            ch_data->bs_amp_res = 0;
637

    
638
        if (ch_data->bs_num_env > 4) {
639
            av_log(ac->avccontext, AV_LOG_ERROR,
640
                   "Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n",
641
                   ch_data->bs_num_env);
642
            return -1;
643
        }
644

    
645
        ch_data->t_env[0]                   = 0;
646
        ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
647

    
648
        abs_bord_trail = (abs_bord_trail + (ch_data->bs_num_env >> 1)) /
649
                   ch_data->bs_num_env;
650
        for (i = 0; i < num_rel_lead; i++)
651
            ch_data->t_env[i + 1] = ch_data->t_env[i] + abs_bord_trail;
652

    
653
        ch_data->bs_freq_res[1] = get_bits1(gb);
654
        for (i = 1; i < ch_data->bs_num_env; i++)
655
            ch_data->bs_freq_res[i + 1] = ch_data->bs_freq_res[1];
656
        break;
657
    case FIXVAR:
658
        abs_bord_trail                     += get_bits(gb, 2);
659
        num_rel_trail                       = get_bits(gb, 2);
660
        ch_data->bs_num_env                 = num_rel_trail + 1;
661
        ch_data->t_env[0]                   = 0;
662
        ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
663

    
664
        for (i = 0; i < num_rel_trail; i++)
665
            ch_data->t_env[ch_data->bs_num_env - 1 - i] =
666
                ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
667

    
668
        bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
669

    
670
        for (i = 0; i < ch_data->bs_num_env; i++)
671
            ch_data->bs_freq_res[ch_data->bs_num_env - i] = get_bits1(gb);
672
        break;
673
    case VARFIX:
674
        ch_data->t_env[0]                   = get_bits(gb, 2);
675
        num_rel_lead                        = get_bits(gb, 2);
676
        ch_data->bs_num_env                 = num_rel_lead + 1;
677
        ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
678

    
679
        for (i = 0; i < num_rel_lead; i++)
680
            ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
681

    
682
        bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
683

    
684
        get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
685
        break;
686
    case VARVAR:
687
        ch_data->t_env[0]                   = get_bits(gb, 2);
688
        abs_bord_trail                     += get_bits(gb, 2);
689
        num_rel_lead                        = get_bits(gb, 2);
690
        num_rel_trail                       = get_bits(gb, 2);
691
        ch_data->bs_num_env                 = num_rel_lead + num_rel_trail + 1;
692
        ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
693

    
694
        if (ch_data->bs_num_env > 5) {
695
            av_log(ac->avccontext, AV_LOG_ERROR,
696
                   "Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n",
697
                   ch_data->bs_num_env);
698
            return -1;
699
        }
700

    
701
        for (i = 0; i < num_rel_lead; i++)
702
            ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
703
        for (i = 0; i < num_rel_trail; i++)
704
            ch_data->t_env[ch_data->bs_num_env - 1 - i] =
705
                ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
706

    
707
        bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
708

    
709
        get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
710
        break;
711
    }
712

    
713
    if (bs_pointer > ch_data->bs_num_env + 1) {
714
        av_log(ac->avccontext, AV_LOG_ERROR,
715
               "Invalid bitstream, bs_pointer points to a middle noise border outside the time borders table: %d\n",
716
               bs_pointer);
717
        return -1;
718
    }
719

    
720
    ch_data->bs_num_noise = (ch_data->bs_num_env > 1) + 1;
721

    
722
    ch_data->t_q[0]                     = ch_data->t_env[0];
723
    ch_data->t_q[ch_data->bs_num_noise] = ch_data->t_env[ch_data->bs_num_env];
724
    if (ch_data->bs_num_noise > 1) {
725
        unsigned int idx;
726
        if (ch_data->bs_frame_class == FIXFIX) {
727
            idx = ch_data->bs_num_env >> 1;
728
        } else if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR
729
            idx = ch_data->bs_num_env - FFMAX(bs_pointer - 1, 1);
730
        } else { // VARFIX
731
            if (!bs_pointer)
732
                idx = 1;
733
            else if (bs_pointer == 1)
734
                idx = ch_data->bs_num_env - 1;
735
            else // bs_pointer > 1
736
                idx = bs_pointer - 1;
737
        }
738
        ch_data->t_q[1] = ch_data->t_env[idx];
739
    }
740

    
741
    ch_data->e_a[0] = -(ch_data->e_a[1] != bs_num_env_old); // l_APrev
742
    ch_data->e_a[1] = -1;
743
    if ((ch_data->bs_frame_class & 1) && bs_pointer) { // FIXVAR or VARVAR and bs_pointer != 0
744
        ch_data->e_a[1] = ch_data->bs_num_env + 1 - bs_pointer;
745
    } else if ((ch_data->bs_frame_class == 2) && (bs_pointer > 1)) // VARFIX and bs_pointer > 1
746
        ch_data->e_a[1] = bs_pointer - 1;
747

    
748
    return 0;
749
}
750

    
751
static void copy_sbr_grid(SBRData *dst, const SBRData *src) {
752
    //These variables are saved from the previous frame rather than copied
753
    dst->bs_freq_res[0]    = dst->bs_freq_res[dst->bs_num_env];
754
    dst->t_env_num_env_old = dst->t_env[dst->bs_num_env];
755
    dst->e_a[0]            = -(dst->e_a[1] != dst->bs_num_env);
756

    
757
    //These variables are read from the bitstream and therefore copied
758
    memcpy(dst->bs_freq_res+1, src->bs_freq_res+1, sizeof(dst->bs_freq_res)-sizeof(*dst->bs_freq_res));
759
    memcpy(dst->t_env,         src->t_env,         sizeof(dst->t_env));
760
    memcpy(dst->t_q,           src->t_q,           sizeof(dst->t_q));
761
    dst->bs_num_env        = src->bs_num_env;
762
    dst->bs_amp_res        = src->bs_amp_res;
763
    dst->bs_num_noise      = src->bs_num_noise;
764
    dst->bs_frame_class    = src->bs_frame_class;
765
    dst->e_a[1]            = src->e_a[1];
766
}
767

    
768
/// Read how the envelope and noise floor data is delta coded
769
static void read_sbr_dtdf(SpectralBandReplication *sbr, GetBitContext *gb,
770
                          SBRData *ch_data)
771
{
772
    get_bits1_vector(gb, ch_data->bs_df_env,   ch_data->bs_num_env);
773
    get_bits1_vector(gb, ch_data->bs_df_noise, ch_data->bs_num_noise);
774
}
775

    
776
/// Read inverse filtering data
777
static void read_sbr_invf(SpectralBandReplication *sbr, GetBitContext *gb,
778
                          SBRData *ch_data)
779
{
780
    int i;
781

    
782
    memcpy(ch_data->bs_invf_mode[1], ch_data->bs_invf_mode[0], 5 * sizeof(uint8_t));
783
    for (i = 0; i < sbr->n_q; i++)
784
        ch_data->bs_invf_mode[0][i] = get_bits(gb, 2);
785
}
786

    
787
static void read_sbr_envelope(SpectralBandReplication *sbr, GetBitContext *gb,
788
                              SBRData *ch_data, int ch)
789
{
790
    int bits;
791
    int i, j, k;
792
    VLC_TYPE (*t_huff)[2], (*f_huff)[2];
793
    int t_lav, f_lav;
794
    const int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
795
    const int odd = sbr->n[1] & 1;
796

    
797
    if (sbr->bs_coupling && ch) {
798
        if (ch_data->bs_amp_res) {
799
            bits   = 5;
800
            t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_3_0DB].table;
801
            t_lav  = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_3_0DB];
802
            f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
803
            f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
804
        } else {
805
            bits   = 6;
806
            t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_1_5DB].table;
807
            t_lav  = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_1_5DB];
808
            f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_1_5DB].table;
809
            f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_1_5DB];
810
        }
811
    } else {
812
        if (ch_data->bs_amp_res) {
813
            bits   = 6;
814
            t_huff = vlc_sbr[T_HUFFMAN_ENV_3_0DB].table;
815
            t_lav  = vlc_sbr_lav[T_HUFFMAN_ENV_3_0DB];
816
            f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
817
            f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
818
        } else {
819
            bits   = 7;
820
            t_huff = vlc_sbr[T_HUFFMAN_ENV_1_5DB].table;
821
            t_lav  = vlc_sbr_lav[T_HUFFMAN_ENV_1_5DB];
822
            f_huff = vlc_sbr[F_HUFFMAN_ENV_1_5DB].table;
823
            f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_1_5DB];
824
        }
825
    }
826

    
827
    for (i = 0; i < ch_data->bs_num_env; i++) {
828
        if (ch_data->bs_df_env[i]) {
829
            // bs_freq_res[0] == bs_freq_res[bs_num_env] from prev frame
830
            if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) {
831
                for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
832
                    ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
833
            } else if (ch_data->bs_freq_res[i + 1]) {
834
                for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
835
                    k = (j + odd) >> 1; // find k such that f_tablelow[k] <= f_tablehigh[j] < f_tablelow[k + 1]
836
                    ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
837
                }
838
            } else {
839
                for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
840
                    k = j ? 2*j - odd : 0; // find k such that f_tablehigh[k] == f_tablelow[j]
841
                    ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
842
                }
843
            }
844
        } else {
845
            ch_data->env_facs[i + 1][0] = delta * get_bits(gb, bits); // bs_env_start_value_balance
846
            for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
847
                ch_data->env_facs[i + 1][j] = ch_data->env_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
848
        }
849
    }
850

    
851
    //assign 0th elements of env_facs from last elements
852
    memcpy(ch_data->env_facs[0], ch_data->env_facs[ch_data->bs_num_env],
853
           sizeof(ch_data->env_facs[0]));
854
}
855

    
856
static void read_sbr_noise(SpectralBandReplication *sbr, GetBitContext *gb,
857
                           SBRData *ch_data, int ch)
858
{
859
    int i, j;
860
    VLC_TYPE (*t_huff)[2], (*f_huff)[2];
861
    int t_lav, f_lav;
862
    int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
863

    
864
    if (sbr->bs_coupling && ch) {
865
        t_huff = vlc_sbr[T_HUFFMAN_NOISE_BAL_3_0DB].table;
866
        t_lav  = vlc_sbr_lav[T_HUFFMAN_NOISE_BAL_3_0DB];
867
        f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
868
        f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
869
    } else {
870
        t_huff = vlc_sbr[T_HUFFMAN_NOISE_3_0DB].table;
871
        t_lav  = vlc_sbr_lav[T_HUFFMAN_NOISE_3_0DB];
872
        f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
873
        f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
874
    }
875

    
876
    for (i = 0; i < ch_data->bs_num_noise; i++) {
877
        if (ch_data->bs_df_noise[i]) {
878
            for (j = 0; j < sbr->n_q; j++)
879
                ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 2) - t_lav);
880
        } else {
881
            ch_data->noise_facs[i + 1][0] = delta * get_bits(gb, 5); // bs_noise_start_value_balance or bs_noise_start_value_level
882
            for (j = 1; j < sbr->n_q; j++)
883
                ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
884
        }
885
    }
886

    
887
    //assign 0th elements of noise_facs from last elements
888
    memcpy(ch_data->noise_facs[0], ch_data->noise_facs[ch_data->bs_num_noise],
889
           sizeof(ch_data->noise_facs[0]));
890
}
891

    
892
static void read_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
893
                               GetBitContext *gb,
894
                          int bs_extension_id, int *num_bits_left)
895
{
896
//TODO - implement ps_data for parametric stereo parsing
897
    switch (bs_extension_id) {
898
    case EXTENSION_ID_PS:
899
#if 0
900
        *num_bits_left -= ff_ps_data(gb, ps);
901
#else
902
        av_log_missing_feature(ac->avccontext, "Parametric Stereo is", 0);
903
        skip_bits_long(gb, *num_bits_left); // bs_fill_bits
904
        *num_bits_left = 0;
905
#endif
906
        break;
907
    default:
908
        av_log_missing_feature(ac->avccontext, "Reserved SBR extensions are", 1);
909
        skip_bits_long(gb, *num_bits_left); // bs_fill_bits
910
        *num_bits_left = 0;
911
        break;
912
    }
913
}
914

    
915
static int read_sbr_single_channel_element(AACContext *ac,
916
                                            SpectralBandReplication *sbr,
917
                                            GetBitContext *gb)
918
{
919
    if (get_bits1(gb)) // bs_data_extra
920
        skip_bits(gb, 4); // bs_reserved
921

    
922
    if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
923
        return -1;
924
    read_sbr_dtdf(sbr, gb, &sbr->data[0]);
925
    read_sbr_invf(sbr, gb, &sbr->data[0]);
926
    read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
927
    read_sbr_noise(sbr, gb, &sbr->data[0], 0);
928

    
929
    if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
930
        get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
931

    
932
    return 0;
933
}
934

    
935
static int read_sbr_channel_pair_element(AACContext *ac,
936
                                          SpectralBandReplication *sbr,
937
                                          GetBitContext *gb)
938
{
939
    if (get_bits1(gb))    // bs_data_extra
940
        skip_bits(gb, 8); // bs_reserved
941

    
942
    if ((sbr->bs_coupling = get_bits1(gb))) {
943
        if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
944
            return -1;
945
        copy_sbr_grid(&sbr->data[1], &sbr->data[0]);
946
        read_sbr_dtdf(sbr, gb, &sbr->data[0]);
947
        read_sbr_dtdf(sbr, gb, &sbr->data[1]);
948
        read_sbr_invf(sbr, gb, &sbr->data[0]);
949
        memcpy(sbr->data[1].bs_invf_mode[1], sbr->data[1].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
950
        memcpy(sbr->data[1].bs_invf_mode[0], sbr->data[0].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
951
        read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
952
        read_sbr_noise(sbr, gb, &sbr->data[0], 0);
953
        read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
954
        read_sbr_noise(sbr, gb, &sbr->data[1], 1);
955
    } else {
956
        if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]) ||
957
            read_sbr_grid(ac, sbr, gb, &sbr->data[1]))
958
            return -1;
959
        read_sbr_dtdf(sbr, gb, &sbr->data[0]);
960
        read_sbr_dtdf(sbr, gb, &sbr->data[1]);
961
        read_sbr_invf(sbr, gb, &sbr->data[0]);
962
        read_sbr_invf(sbr, gb, &sbr->data[1]);
963
        read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
964
        read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
965
        read_sbr_noise(sbr, gb, &sbr->data[0], 0);
966
        read_sbr_noise(sbr, gb, &sbr->data[1], 1);
967
    }
968

    
969
    if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
970
        get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
971
    if ((sbr->data[1].bs_add_harmonic_flag = get_bits1(gb)))
972
        get_bits1_vector(gb, sbr->data[1].bs_add_harmonic, sbr->n[1]);
973

    
974
    return 0;
975
}
976

    
977
static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr,
978
                                  GetBitContext *gb, int id_aac)
979
{
980
    unsigned int cnt = get_bits_count(gb);
981

    
982
    if (id_aac == TYPE_SCE || id_aac == TYPE_CCE) {
983
        if (read_sbr_single_channel_element(ac, sbr, gb)) {
984
            sbr->start = 0;
985
            return get_bits_count(gb) - cnt;
986
        }
987
    } else if (id_aac == TYPE_CPE) {
988
        if (read_sbr_channel_pair_element(ac, sbr, gb)) {
989
            sbr->start = 0;
990
            return get_bits_count(gb) - cnt;
991
        }
992
    } else {
993
        av_log(ac->avccontext, AV_LOG_ERROR,
994
            "Invalid bitstream - cannot apply SBR to element type %d\n", id_aac);
995
        sbr->start = 0;
996
        return get_bits_count(gb) - cnt;
997
    }
998
    if (get_bits1(gb)) { // bs_extended_data
999
        int num_bits_left = get_bits(gb, 4); // bs_extension_size
1000
        if (num_bits_left == 15)
1001
            num_bits_left += get_bits(gb, 8); // bs_esc_count
1002

    
1003
        num_bits_left <<= 3;
1004
        while (num_bits_left > 7) {
1005
            num_bits_left -= 2;
1006
            read_sbr_extension(ac, sbr, gb, get_bits(gb, 2), &num_bits_left); // bs_extension_id
1007
        }
1008
    }
1009

    
1010
    return get_bits_count(gb) - cnt;
1011
}
1012

    
1013
static void sbr_reset(AACContext *ac, SpectralBandReplication *sbr)
1014
{
1015
    int err;
1016
    err = sbr_make_f_master(ac, sbr, &sbr->spectrum_params);
1017
    if (err >= 0)
1018
        err = sbr_make_f_derived(ac, sbr);
1019
    if (err < 0) {
1020
        av_log(ac->avccontext, AV_LOG_ERROR,
1021
               "SBR reset failed. Switching SBR to pure upsampling mode.\n");
1022
        sbr->start = 0;
1023
    }
1024
}
1025

    
1026
/**
1027
 * Decode Spectral Band Replication extension data; reference: table 4.55.
1028
 *
1029
 * @param   crc flag indicating the presence of CRC checksum
1030
 * @param   cnt length of TYPE_FIL syntactic element in bytes
1031
 *
1032
 * @return  Returns number of bytes consumed from the TYPE_FIL element.
1033
 */
1034
int ff_decode_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
1035
                            GetBitContext *gb_host, int crc, int cnt, int id_aac)
1036
{
1037
    unsigned int num_sbr_bits = 0, num_align_bits;
1038
    unsigned bytes_read;
1039
    GetBitContext gbc = *gb_host, *gb = &gbc;
1040
    skip_bits_long(gb_host, cnt*8 - 4);
1041

    
1042
    sbr->reset = 0;
1043

    
1044
    if (!sbr->sample_rate)
1045
        sbr->sample_rate = 2 * ac->m4ac.sample_rate; //TODO use the nominal sample rate for arbitrary sample rate support
1046
    if (!ac->m4ac.ext_sample_rate)
1047
        ac->m4ac.ext_sample_rate = 2 * ac->m4ac.sample_rate;
1048

    
1049
    if (crc) {
1050
        skip_bits(gb, 10); // bs_sbr_crc_bits; TODO - implement CRC check
1051
        num_sbr_bits += 10;
1052
    }
1053

    
1054
    //Save some state from the previous frame.
1055
    sbr->kx[0] = sbr->kx[1];
1056
    sbr->m[0] = sbr->m[1];
1057

    
1058
    num_sbr_bits++;
1059
    if (get_bits1(gb)) // bs_header_flag
1060
        num_sbr_bits += read_sbr_header(sbr, gb);
1061

    
1062
    if (sbr->reset)
1063
        sbr_reset(ac, sbr);
1064

    
1065
    if (sbr->start)
1066
        num_sbr_bits  += read_sbr_data(ac, sbr, gb, id_aac);
1067

    
1068
    num_align_bits = ((cnt << 3) - 4 - num_sbr_bits) & 7;
1069
    bytes_read = ((num_sbr_bits + num_align_bits + 4) >> 3);
1070

    
1071
    if (bytes_read > cnt) {
1072
        av_log(ac->avccontext, AV_LOG_ERROR,
1073
               "Expected to read %d SBR bytes actually read %d.\n", cnt, bytes_read);
1074
    }
1075
    return cnt;
1076
}
1077

    
1078
/// Dequantization and stereo decoding (14496-3 sp04 p203)
1079
static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
1080
{
1081
    int k, e;
1082
    int ch;
1083

    
1084
    if (id_aac == TYPE_CPE && sbr->bs_coupling) {
1085
        float alpha      = sbr->data[0].bs_amp_res ?  1.0f :  0.5f;
1086
        float pan_offset = sbr->data[0].bs_amp_res ? 12.0f : 24.0f;
1087
        for (e = 1; e <= sbr->data[0].bs_num_env; e++) {
1088
            for (k = 0; k < sbr->n[sbr->data[0].bs_freq_res[e]]; k++) {
1089
                float temp1 = exp2f(sbr->data[0].env_facs[e][k] * alpha + 7.0f);
1090
                float temp2 = exp2f((pan_offset - sbr->data[1].env_facs[e][k]) * alpha);
1091
                float fac   = temp1 / (1.0f + temp2);
1092
                sbr->data[0].env_facs[e][k] = fac;
1093
                sbr->data[1].env_facs[e][k] = fac * temp2;
1094
            }
1095
        }
1096
        for (e = 1; e <= sbr->data[0].bs_num_noise; e++) {
1097
            for (k = 0; k < sbr->n_q; k++) {
1098
                float temp1 = exp2f(NOISE_FLOOR_OFFSET - sbr->data[0].noise_facs[e][k] + 1);
1099
                float temp2 = exp2f(12 - sbr->data[1].noise_facs[e][k]);
1100
                float fac   = temp1 / (1.0f + temp2);
1101
                sbr->data[0].noise_facs[e][k] = fac;
1102
                sbr->data[1].noise_facs[e][k] = fac * temp2;
1103
            }
1104
        }
1105
    } else { // SCE or one non-coupled CPE
1106
        for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) {
1107
            float alpha = sbr->data[ch].bs_amp_res ? 1.0f : 0.5f;
1108
            for (e = 1; e <= sbr->data[ch].bs_num_env; e++)
1109
                for (k = 0; k < sbr->n[sbr->data[ch].bs_freq_res[e]]; k++)
1110
                    sbr->data[ch].env_facs[e][k] =
1111
                        exp2f(alpha * sbr->data[ch].env_facs[e][k] + 6.0f);
1112
            for (e = 1; e <= sbr->data[ch].bs_num_noise; e++)
1113
                for (k = 0; k < sbr->n_q; k++)
1114
                    sbr->data[ch].noise_facs[e][k] =
1115
                        exp2f(NOISE_FLOOR_OFFSET - sbr->data[ch].noise_facs[e][k]);
1116
        }
1117
    }
1118
}
1119

    
1120
/**
1121
 * Analysis QMF Bank (14496-3 sp04 p206)
1122
 *
1123
 * @param   x       pointer to the beginning of the first sample window
1124
 * @param   W       array of complex-valued samples split into subbands
1125
 */
1126
static void sbr_qmf_analysis(DSPContext *dsp, RDFTContext *rdft, const float *in, float *x,
1127
                             float z[320], float W[2][32][32][2],
1128
                             float bias, float scale)
1129
{
1130
    int i, k;
1131
    memcpy(W[0], W[1], sizeof(W[0]));
1132
    memcpy(x    , x+1024, (320-32)*sizeof(x[0]));
1133
    if (scale != 1.0f || bias != 0.0f)
1134
        for (i = 0; i < 1024; i++)
1135
            x[288 + i] = (in[i] - bias) * scale;
1136
    else
1137
        memcpy(x+288, in, 1024*sizeof(*x));
1138
    for (i = 0; i < 32; i++) { // numTimeSlots*RATE = 16*2 as 960 sample frames
1139
                               // are not supported
1140
        float re, im;
1141
        dsp->vector_fmul_reverse(z, sbr_qmf_window_ds, x, 320);
1142
        for (k = 0; k < 64; k++) {
1143
            float f = z[k] + z[k + 64] + z[k + 128] + z[k + 192] + z[k + 256];
1144
            z[k] = f * analysis_cos_pre[k];
1145
            z[k+64] = f;
1146
        }
1147
        ff_rdft_calc(rdft, z);
1148
        re = z[0] * 0.5f;
1149
        im = 0.5f * dsp->scalarproduct_float(z+64, analysis_sin_pre, 64);
1150
        W[1][i][0][0] = re * analysis_cossin_post[0][0] - im * analysis_cossin_post[0][1];
1151
        W[1][i][0][1] = re * analysis_cossin_post[0][1] + im * analysis_cossin_post[0][0];
1152
        for (k = 1; k < 32; k++) {
1153
            re = z[2*k  ] - re;
1154
            im = z[2*k+1] - im;
1155
            W[1][i][k][0] = re * analysis_cossin_post[k][0] - im * analysis_cossin_post[k][1];
1156
            W[1][i][k][1] = re * analysis_cossin_post[k][1] + im * analysis_cossin_post[k][0];
1157
        }
1158
        x += 32;
1159
    }
1160
}
1161

    
1162
/**
1163
 * Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank
1164
 * (14496-3 sp04 p206)
1165
 */
1166
static void sbr_qmf_synthesis(DSPContext *dsp, FFTContext *mdct,
1167
                              float *out, float X[2][32][64],
1168
                              float mdct_buf[2][64],
1169
                              float *v0, int *v_off, const unsigned int div,
1170
                              float bias, float scale)
1171
{
1172
    int i, n;
1173
    const float *sbr_qmf_window = div ? sbr_qmf_window_ds : sbr_qmf_window_us;
1174
    int scale_and_bias = scale != 1.0f || bias != 0.0f;
1175
    float *v;
1176
    for (i = 0; i < 32; i++) {
1177
        if (*v_off == 0) {
1178
            int saved_samples = (1280 - 128) >> div;
1179
            memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, saved_samples * sizeof(float));
1180
            *v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - (128 >> div);
1181
        } else {
1182
            *v_off -= 128 >> div;
1183
        }
1184
        v = v0 + *v_off;
1185
        for (n = 1; n < 64 >> div; n+=2) {
1186
            X[1][i][n] = -X[1][i][n];
1187
        }
1188
        if (div) {
1189
            memset(X[0][i]+32, 0, 32*sizeof(float));
1190
            memset(X[1][i]+32, 0, 32*sizeof(float));
1191
        }
1192
        ff_imdct_half(mdct, mdct_buf[0], X[0][i]);
1193
        ff_imdct_half(mdct, mdct_buf[1], X[1][i]);
1194
        if (div) {
1195
            for (n = 0; n < 32; n++) {
1196
                v[      n] = -mdct_buf[0][63 - 2*n] + mdct_buf[1][2*n    ];
1197
                v[ 63 - n] =  mdct_buf[0][62 - 2*n] + mdct_buf[1][2*n + 1];
1198
            }
1199
        } else {
1200
            for (n = 0; n < 64; n++) {
1201
                v[      n] = -mdct_buf[0][63 -   n] + mdct_buf[1][  n    ];
1202
                v[127 - n] =  mdct_buf[0][63 -   n] + mdct_buf[1][  n    ];
1203
            }
1204
        }
1205
        dsp->vector_fmul_add(out, v                , sbr_qmf_window               , zero64, 64 >> div);
1206
        dsp->vector_fmul_add(out, v + ( 192 >> div), sbr_qmf_window + ( 64 >> div), out   , 64 >> div);
1207
        dsp->vector_fmul_add(out, v + ( 256 >> div), sbr_qmf_window + (128 >> div), out   , 64 >> div);
1208
        dsp->vector_fmul_add(out, v + ( 448 >> div), sbr_qmf_window + (192 >> div), out   , 64 >> div);
1209
        dsp->vector_fmul_add(out, v + ( 512 >> div), sbr_qmf_window + (256 >> div), out   , 64 >> div);
1210
        dsp->vector_fmul_add(out, v + ( 704 >> div), sbr_qmf_window + (320 >> div), out   , 64 >> div);
1211
        dsp->vector_fmul_add(out, v + ( 768 >> div), sbr_qmf_window + (384 >> div), out   , 64 >> div);
1212
        dsp->vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out   , 64 >> div);
1213
        dsp->vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out   , 64 >> div);
1214
        dsp->vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out   , 64 >> div);
1215
        if (scale_and_bias)
1216
            for (n = 0; n < 64 >> div; n++)
1217
                out[n] = out[n] * scale + bias;
1218
        out += 64 >> div;
1219
    }
1220
}
1221

    
1222
static void autocorrelate(const float x[40][2], float phi[3][2][2], int lag)
1223
{
1224
    int i;
1225
    float real_sum = 0.0f;
1226
    float imag_sum = 0.0f;
1227
    if (lag) {
1228
        for (i = 1; i < 38; i++) {
1229
            real_sum += x[i][0] * x[i+lag][0] + x[i][1] * x[i+lag][1];
1230
            imag_sum += x[i][0] * x[i+lag][1] - x[i][1] * x[i+lag][0];
1231
        }
1232
        phi[2-lag][1][0] = real_sum + x[ 0][0] * x[lag][0] + x[ 0][1] * x[lag][1];
1233
        phi[2-lag][1][1] = imag_sum + x[ 0][0] * x[lag][1] - x[ 0][1] * x[lag][0];
1234
        if (lag == 1) {
1235
            phi[0][0][0] = real_sum + x[38][0] * x[39][0] + x[38][1] * x[39][1];
1236
            phi[0][0][1] = imag_sum + x[38][0] * x[39][1] - x[38][1] * x[39][0];
1237
        }
1238
    } else {
1239
        for (i = 1; i < 38; i++) {
1240
            real_sum += x[i][0] * x[i][0] + x[i][1] * x[i][1];
1241
        }
1242
        phi[2][1][0] = real_sum + x[ 0][0] * x[ 0][0] + x[ 0][1] * x[ 0][1];
1243
        phi[1][0][0] = real_sum + x[38][0] * x[38][0] + x[38][1] * x[38][1];
1244
    }
1245
}
1246

    
1247
/** High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering
1248
 * (14496-3 sp04 p214)
1249
 * Warning: This routine does not seem numerically stable.
1250
 */
1251
static void sbr_hf_inverse_filter(float (*alpha0)[2], float (*alpha1)[2],
1252
                                  const float X_low[32][40][2], int k0)
1253
{
1254
    int k;
1255
    for (k = 0; k < k0; k++) {
1256
        float phi[3][2][2], dk;
1257

    
1258
        autocorrelate(X_low[k], phi, 0);
1259
        autocorrelate(X_low[k], phi, 1);
1260
        autocorrelate(X_low[k], phi, 2);
1261

    
1262
        dk =  phi[2][1][0] * phi[1][0][0] -
1263
             (phi[1][1][0] * phi[1][1][0] + phi[1][1][1] * phi[1][1][1]) / 1.000001f;
1264

    
1265
        if (!dk) {
1266
            alpha1[k][0] = 0;
1267
            alpha1[k][1] = 0;
1268
        } else {
1269
            float temp_real, temp_im;
1270
            temp_real = phi[0][0][0] * phi[1][1][0] -
1271
                        phi[0][0][1] * phi[1][1][1] -
1272
                        phi[0][1][0] * phi[1][0][0];
1273
            temp_im   = phi[0][0][0] * phi[1][1][1] +
1274
                        phi[0][0][1] * phi[1][1][0] -
1275
                        phi[0][1][1] * phi[1][0][0];
1276

    
1277
            alpha1[k][0] = temp_real / dk;
1278
            alpha1[k][1] = temp_im   / dk;
1279
        }
1280

    
1281
        if (!phi[1][0][0]) {
1282
            alpha0[k][0] = 0;
1283
            alpha0[k][1] = 0;
1284
        } else {
1285
            float temp_real, temp_im;
1286
            temp_real = phi[0][0][0] + alpha1[k][0] * phi[1][1][0] +
1287
                                       alpha1[k][1] * phi[1][1][1];
1288
            temp_im   = phi[0][0][1] + alpha1[k][1] * phi[1][1][0] -
1289
                                       alpha1[k][0] * phi[1][1][1];
1290

    
1291
            alpha0[k][0] = -temp_real / phi[1][0][0];
1292
            alpha0[k][1] = -temp_im   / phi[1][0][0];
1293
        }
1294

    
1295
        if (alpha1[k][0] * alpha1[k][0] + alpha1[k][1] * alpha1[k][1] >= 16.0f ||
1296
           alpha0[k][0] * alpha0[k][0] + alpha0[k][1] * alpha0[k][1] >= 16.0f) {
1297
            alpha1[k][0] = 0;
1298
            alpha1[k][1] = 0;
1299
            alpha0[k][0] = 0;
1300
            alpha0[k][1] = 0;
1301
        }
1302
    }
1303
}
1304

    
1305
/// Chirp Factors (14496-3 sp04 p214)
1306
static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
1307
{
1308
    int i;
1309
    float new_bw;
1310
    static const float bw_tab[] = { 0.0f, 0.75f, 0.9f, 0.98f };
1311

    
1312
    for (i = 0; i < sbr->n_q; i++) {
1313
        if (ch_data->bs_invf_mode[0][i] + ch_data->bs_invf_mode[1][i] == 1) {
1314
            new_bw = 0.6f;
1315
        } else
1316
            new_bw = bw_tab[ch_data->bs_invf_mode[0][i]];
1317

    
1318
        if (new_bw < ch_data->bw_array[i]) {
1319
            new_bw = 0.75f    * new_bw + 0.25f    * ch_data->bw_array[i];
1320
        } else
1321
            new_bw = 0.90625f * new_bw + 0.09375f * ch_data->bw_array[i];
1322
        ch_data->bw_array[i] = new_bw < 0.015625f ? 0.0f : new_bw;
1323
    }
1324
}
1325

    
1326
/// Generate the subband filtered lowband
1327
static int sbr_lf_gen(AACContext *ac, SpectralBandReplication *sbr,
1328
                      float X_low[32][40][2], const float W[2][32][32][2])
1329
{
1330
    int i, k;
1331
    const int t_HFGen = 8;
1332
    const int i_f = 32;
1333
    memset(X_low, 0, 32*sizeof(*X_low));
1334
    for (k = 0; k < sbr->kx[1]; k++) {
1335
        for (i = t_HFGen; i < i_f + t_HFGen; i++) {
1336
            X_low[k][i][0] = W[1][i - t_HFGen][k][0];
1337
            X_low[k][i][1] = W[1][i - t_HFGen][k][1];
1338
        }
1339
    }
1340
    for (k = 0; k < sbr->kx[0]; k++) {
1341
        for (i = 0; i < t_HFGen; i++) {
1342
            X_low[k][i][0] = W[0][i + i_f - t_HFGen][k][0];
1343
            X_low[k][i][1] = W[0][i + i_f - t_HFGen][k][1];
1344
        }
1345
    }
1346
    return 0;
1347
}
1348

    
1349
/// High Frequency Generator (14496-3 sp04 p215)
1350
static int sbr_hf_gen(AACContext *ac, SpectralBandReplication *sbr,
1351
                      float X_high[64][40][2], const float X_low[32][40][2],
1352
                      const float (*alpha0)[2], const float (*alpha1)[2],
1353
                      const float bw_array[5], const uint8_t *t_env,
1354
                      int bs_num_env)
1355
{
1356
    int i, j, x;
1357
    int g = 0;
1358
    int k = sbr->kx[1];
1359
    for (j = 0; j < sbr->num_patches; j++) {
1360
        for (x = 0; x < sbr->patch_num_subbands[j]; x++, k++) {
1361
            float alpha[4];
1362
            const int p = sbr->patch_start_subband[j] + x;
1363
            while (g <= sbr->n_q && k >= sbr->f_tablenoise[g])
1364
                g++;
1365
            g--;
1366

    
1367
            if (g < 0) {
1368
                av_log(ac->avccontext, AV_LOG_ERROR,
1369
                       "ERROR : no subband found for frequency %d\n", k);
1370
                return -1;
1371
            }
1372

    
1373
            alpha[0] = alpha1[p][0] * bw_array[g] * bw_array[g];
1374
            alpha[1] = alpha1[p][1] * bw_array[g] * bw_array[g];
1375
            alpha[2] = alpha0[p][0] * bw_array[g];
1376
            alpha[3] = alpha0[p][1] * bw_array[g];
1377

    
1378
            for (i = 2 * t_env[0]; i < 2 * t_env[bs_num_env]; i++) {
1379
                const int idx = i + ENVELOPE_ADJUSTMENT_OFFSET;
1380
                X_high[k][idx][0] =
1381
                    X_low[p][idx - 2][0] * alpha[0] -
1382
                    X_low[p][idx - 2][1] * alpha[1] +
1383
                    X_low[p][idx - 1][0] * alpha[2] -
1384
                    X_low[p][idx - 1][1] * alpha[3] +
1385
                    X_low[p][idx][0];
1386
                X_high[k][idx][1] =
1387
                    X_low[p][idx - 2][1] * alpha[0] +
1388
                    X_low[p][idx - 2][0] * alpha[1] +
1389
                    X_low[p][idx - 1][1] * alpha[2] +
1390
                    X_low[p][idx - 1][0] * alpha[3] +
1391
                    X_low[p][idx][1];
1392
            }
1393
        }
1394
    }
1395
    if (k < sbr->m[1] + sbr->kx[1])
1396
        memset(X_high + k, 0, (sbr->m[1] + sbr->kx[1] - k) * sizeof(*X_high));
1397

    
1398
    return 0;
1399
}
1400

    
1401
/// Generate the subband filtered lowband
1402
static int sbr_x_gen(SpectralBandReplication *sbr, float X[2][32][64],
1403
                     const float X_low[32][40][2], const float Y[2][38][64][2],
1404
                     int ch)
1405
{
1406
    int k, i;
1407
    const int i_f = 32;
1408
    const int i_Temp = FFMAX(2*sbr->data[ch].t_env_num_env_old - i_f, 0);
1409
    memset(X, 0, 2*sizeof(*X));
1410
    for (k = 0; k < sbr->kx[0]; k++) {
1411
        for (i = 0; i < i_Temp; i++) {
1412
            X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
1413
            X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
1414
        }
1415
    }
1416
    for (; k < sbr->kx[0] + sbr->m[0]; k++) {
1417
        for (i = 0; i < i_Temp; i++) {
1418
            X[0][i][k] = Y[0][i + i_f][k][0];
1419
            X[1][i][k] = Y[0][i + i_f][k][1];
1420
        }
1421
    }
1422

    
1423
    for (k = 0; k < sbr->kx[1]; k++) {
1424
        for (i = i_Temp; i < i_f; i++) {
1425
            X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
1426
            X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
1427
        }
1428
    }
1429
    for (; k < sbr->kx[1] + sbr->m[1]; k++) {
1430
        for (i = i_Temp; i < i_f; i++) {
1431
            X[0][i][k] = Y[1][i][k][0];
1432
            X[1][i][k] = Y[1][i][k][1];
1433
        }
1434
    }
1435
    return 0;
1436
}
1437

    
1438
/** High Frequency Adjustment (14496-3 sp04 p217) and Mapping
1439
 * (14496-3 sp04 p217)
1440
 */
1441
static void sbr_mapping(AACContext *ac, SpectralBandReplication *sbr,
1442
                        SBRData *ch_data, int e_a[2])
1443
{
1444
    int e, i, m;
1445

    
1446
    memset(ch_data->s_indexmapped[1], 0, 7*sizeof(ch_data->s_indexmapped[1]));
1447
    for (e = 0; e < ch_data->bs_num_env; e++) {
1448
        const unsigned int ilim = sbr->n[ch_data->bs_freq_res[e + 1]];
1449
        uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
1450
        int k;
1451

    
1452
        for (i = 0; i < ilim; i++)
1453
            for (m = table[i]; m < table[i + 1]; m++)
1454
                sbr->e_origmapped[e][m - sbr->kx[1]] = ch_data->env_facs[e+1][i];
1455

    
1456
        // ch_data->bs_num_noise > 1 => 2 noise floors
1457
        k = (ch_data->bs_num_noise > 1) && (ch_data->t_env[e] >= ch_data->t_q[1]);
1458
        for (i = 0; i < sbr->n_q; i++)
1459
            for (m = sbr->f_tablenoise[i]; m < sbr->f_tablenoise[i + 1]; m++)
1460
                sbr->q_mapped[e][m - sbr->kx[1]] = ch_data->noise_facs[k+1][i];
1461

    
1462
        for (i = 0; i < sbr->n[1]; i++) {
1463
            if (ch_data->bs_add_harmonic_flag) {
1464
                const unsigned int m_midpoint =
1465
                    (sbr->f_tablehigh[i] + sbr->f_tablehigh[i + 1]) >> 1;
1466

    
1467
                ch_data->s_indexmapped[e + 1][m_midpoint - sbr->kx[1]] = ch_data->bs_add_harmonic[i] *
1468
                    (e >= e_a[1] || (ch_data->s_indexmapped[0][m_midpoint - sbr->kx[1]] == 1));
1469
            }
1470
        }
1471

    
1472
        for (i = 0; i < ilim; i++) {
1473
            int additional_sinusoid_present = 0;
1474
            for (m = table[i]; m < table[i + 1]; m++) {
1475
                if (ch_data->s_indexmapped[e + 1][m - sbr->kx[1]]) {
1476
                    additional_sinusoid_present = 1;
1477
                    break;
1478
                }
1479
            }
1480
            memset(&sbr->s_mapped[e][table[i] - sbr->kx[1]], additional_sinusoid_present,
1481
                   (table[i + 1] - table[i]) * sizeof(sbr->s_mapped[e][0]));
1482
        }
1483
    }
1484

    
1485
    memcpy(ch_data->s_indexmapped[0], ch_data->s_indexmapped[ch_data->bs_num_env], sizeof(ch_data->s_indexmapped[0]));
1486
}
1487

    
1488
/// Estimation of current envelope (14496-3 sp04 p218)
1489
static void sbr_env_estimate(float (*e_curr)[48], float X_high[64][40][2],
1490
                             SpectralBandReplication *sbr, SBRData *ch_data)
1491
{
1492
    int e, i, m;
1493

    
1494
    if (sbr->bs_interpol_freq) {
1495
        for (e = 0; e < ch_data->bs_num_env; e++) {
1496
            const float recip_env_size = 0.5f / (ch_data->t_env[e + 1] - ch_data->t_env[e]);
1497
            int ilb = ch_data->t_env[e]     * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1498
            int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1499

    
1500
            for (m = 0; m < sbr->m[1]; m++) {
1501
                float sum = 0.0f;
1502

    
1503
                for (i = ilb; i < iub; i++) {
1504
                    sum += X_high[m + sbr->kx[1]][i][0] * X_high[m + sbr->kx[1]][i][0] +
1505
                           X_high[m + sbr->kx[1]][i][1] * X_high[m + sbr->kx[1]][i][1];
1506
                }
1507
                e_curr[e][m] = sum * recip_env_size;
1508
            }
1509
        }
1510
    } else {
1511
        int k, p;
1512

    
1513
        for (e = 0; e < ch_data->bs_num_env; e++) {
1514
            const int env_size = 2 * (ch_data->t_env[e + 1] - ch_data->t_env[e]);
1515
            int ilb = ch_data->t_env[e]     * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1516
            int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1517
            const uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
1518

    
1519
            for (p = 0; p < sbr->n[ch_data->bs_freq_res[e + 1]]; p++) {
1520
                float sum = 0.0f;
1521
                const int den = env_size * (table[p + 1] - table[p]);
1522

    
1523
                for (k = table[p]; k < table[p + 1]; k++) {
1524
                    for (i = ilb; i < iub; i++) {
1525
                        sum += X_high[k][i][0] * X_high[k][i][0] +
1526
                               X_high[k][i][1] * X_high[k][i][1];
1527
                    }
1528
                }
1529
                sum /= den;
1530
                for (k = table[p]; k < table[p + 1]; k++) {
1531
                    e_curr[e][k - sbr->kx[1]] = sum;
1532
                }
1533
            }
1534
        }
1535
    }
1536
}
1537

    
1538
/**
1539
 * Calculation of levels of additional HF signal components (14496-3 sp04 p219)
1540
 * and Calculation of gain (14496-3 sp04 p219)
1541
 */
1542
static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr,
1543
                          SBRData *ch_data, const int e_a[2])
1544
{
1545
    int e, k, m;
1546
    // max gain limits : -3dB, 0dB, 3dB, inf dB (limiter off)
1547
    static const float limgain[4] = { 0.70795, 1.0, 1.41254, 10000000000 };
1548

    
1549
    for (e = 0; e < ch_data->bs_num_env; e++) {
1550
        int delta = !((e == e_a[1]) || (e == e_a[0]));
1551
        for (k = 0; k < sbr->n_lim; k++) {
1552
            float gain_boost, gain_max;
1553
            float sum[2] = { 0.0f, 0.0f };
1554
            for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1555
                const float temp = sbr->e_origmapped[e][m] / (1.0f + sbr->q_mapped[e][m]);
1556
                sbr->q_m[e][m] = sqrtf(temp * sbr->q_mapped[e][m]);
1557
                sbr->s_m[e][m] = sqrtf(temp * ch_data->s_indexmapped[e + 1][m]);
1558
                if (!sbr->s_mapped[e][m]) {
1559
                    sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] /
1560
                                            ((1.0f + sbr->e_curr[e][m]) *
1561
                                             (1.0f + sbr->q_mapped[e][m] * delta)));
1562
                } else {
1563
                    sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] * sbr->q_mapped[e][m] /
1564
                                            ((1.0f + sbr->e_curr[e][m]) *
1565
                                             (1.0f + sbr->q_mapped[e][m])));
1566
                }
1567
            }
1568
            for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1569
                sum[0] += sbr->e_origmapped[e][m];
1570
                sum[1] += sbr->e_curr[e][m];
1571
            }
1572
            gain_max = limgain[sbr->bs_limiter_gains] * sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
1573
            gain_max = FFMIN(100000, gain_max);
1574
            for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1575
                float q_m_max   = sbr->q_m[e][m] * gain_max / sbr->gain[e][m];
1576
                sbr->q_m[e][m]  = FFMIN(sbr->q_m[e][m], q_m_max);
1577
                sbr->gain[e][m] = FFMIN(sbr->gain[e][m], gain_max);
1578
            }
1579
            sum[0] = sum[1] = 0.0f;
1580
            for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1581
                sum[0] += sbr->e_origmapped[e][m];
1582
                sum[1] += sbr->e_curr[e][m] * sbr->gain[e][m] * sbr->gain[e][m]
1583
                          + sbr->s_m[e][m] * sbr->s_m[e][m]
1584
                          + (delta && !sbr->s_m[e][m]) * sbr->q_m[e][m] * sbr->q_m[e][m];
1585
            }
1586
            gain_boost = sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
1587
            gain_boost = FFMIN(1.584893192, gain_boost);
1588
            for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1589
                sbr->gain[e][m] *= gain_boost;
1590
                sbr->q_m[e][m]  *= gain_boost;
1591
                sbr->s_m[e][m]  *= gain_boost;
1592
            }
1593
        }
1594
    }
1595
}
1596

    
1597
/// Assembling HF Signals (14496-3 sp04 p220)
1598
static void sbr_hf_assemble(float Y[2][38][64][2], const float X_high[64][40][2],
1599
                            SpectralBandReplication *sbr, SBRData *ch_data,
1600
                            const int e_a[2])
1601
{
1602
    int e, i, j, m;
1603
    const int h_SL = 4 * !sbr->bs_smoothing_mode;
1604
    const int kx = sbr->kx[1];
1605
    const int m_max = sbr->m[1];
1606
    static const float h_smooth[5] = {
1607
        0.33333333333333,
1608
        0.30150283239582,
1609
        0.21816949906249,
1610
        0.11516383427084,
1611
        0.03183050093751,
1612
    };
1613
    static const int8_t phi[2][4] = {
1614
        {  1,  0, -1,  0}, // real
1615
        {  0,  1,  0, -1}, // imaginary
1616
    };
1617
    float (*g_temp)[48] = ch_data->g_temp, (*q_temp)[48] = ch_data->q_temp;
1618
    int indexnoise = ch_data->f_indexnoise;
1619
    int indexsine  = ch_data->f_indexsine;
1620
    memcpy(Y[0], Y[1], sizeof(Y[0]));
1621

    
1622
    if (sbr->reset) {
1623
        for (i = 0; i < h_SL; i++) {
1624
            memcpy(g_temp[i + 2*ch_data->t_env[0]], sbr->gain[0], m_max * sizeof(sbr->gain[0][0]));
1625
            memcpy(q_temp[i + 2*ch_data->t_env[0]], sbr->q_m[0],  m_max * sizeof(sbr->q_m[0][0]));
1626
        }
1627
    } else if (h_SL) {
1628
        memcpy(g_temp[2*ch_data->t_env[0]], g_temp[2*ch_data->t_env_num_env_old], 4*sizeof(g_temp[0]));
1629
        memcpy(q_temp[2*ch_data->t_env[0]], q_temp[2*ch_data->t_env_num_env_old], 4*sizeof(q_temp[0]));
1630
    }
1631

    
1632
    for (e = 0; e < ch_data->bs_num_env; e++) {
1633
        for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
1634
            memcpy(g_temp[h_SL + i], sbr->gain[e], m_max * sizeof(sbr->gain[0][0]));
1635
            memcpy(q_temp[h_SL + i], sbr->q_m[e],  m_max * sizeof(sbr->q_m[0][0]));
1636
        }
1637
    }
1638

    
1639
    for (e = 0; e < ch_data->bs_num_env; e++) {
1640
        for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
1641
            int phi_sign = (1 - 2*(kx & 1));
1642

    
1643
            if (h_SL && e != e_a[0] && e != e_a[1]) {
1644
                for (m = 0; m < m_max; m++) {
1645
                    const int idx1 = i + h_SL;
1646
                    float g_filt = 0.0f;
1647
                    for (j = 0; j <= h_SL; j++)
1648
                        g_filt += g_temp[idx1 - j][m] * h_smooth[j];
1649
                    Y[1][i][m + kx][0] =
1650
                        X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][0] * g_filt;
1651
                    Y[1][i][m + kx][1] =
1652
                        X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][1] * g_filt;
1653
                }
1654
            } else {
1655
                for (m = 0; m < m_max; m++) {
1656
                    const float g_filt = g_temp[i + h_SL][m];
1657
                    Y[1][i][m + kx][0] =
1658
                        X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][0] * g_filt;
1659
                    Y[1][i][m + kx][1] =
1660
                        X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][1] * g_filt;
1661
                }
1662
            }
1663

    
1664
            if (e != e_a[0] && e != e_a[1]) {
1665
                for (m = 0; m < m_max; m++) {
1666
                    indexnoise = (indexnoise + 1) & 0x1ff;
1667
                    if (sbr->s_m[e][m]) {
1668
                        Y[1][i][m + kx][0] +=
1669
                            sbr->s_m[e][m] * phi[0][indexsine];
1670
                        Y[1][i][m + kx][1] +=
1671
                            sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign);
1672
                    } else {
1673
                        float q_filt;
1674
                        if (h_SL) {
1675
                            const int idx1 = i + h_SL;
1676
                            q_filt = 0.0f;
1677
                            for (j = 0; j <= h_SL; j++)
1678
                                q_filt += q_temp[idx1 - j][m] * h_smooth[j];
1679
                        } else {
1680
                            q_filt = q_temp[i][m];
1681
                        }
1682
                        Y[1][i][m + kx][0] +=
1683
                            q_filt * sbr_noise_table[indexnoise][0];
1684
                        Y[1][i][m + kx][1] +=
1685
                            q_filt * sbr_noise_table[indexnoise][1];
1686
                    }
1687
                    phi_sign = -phi_sign;
1688
                }
1689
            } else {
1690
                indexnoise = (indexnoise + m_max) & 0x1ff;
1691
                for (m = 0; m < m_max; m++) {
1692
                    Y[1][i][m + kx][0] +=
1693
                        sbr->s_m[e][m] * phi[0][indexsine];
1694
                    Y[1][i][m + kx][1] +=
1695
                        sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign);
1696
                    phi_sign = -phi_sign;
1697
                }
1698
            }
1699
            indexsine = (indexsine + 1) & 3;
1700
        }
1701
    }
1702
    ch_data->f_indexnoise = indexnoise;
1703
    ch_data->f_indexsine  = indexsine;
1704
}
1705

    
1706
void ff_sbr_dequant(AACContext *ac, SpectralBandReplication *sbr, int id_aac)
1707
{
1708
    if (sbr->start) {
1709
        sbr_dequant(sbr, id_aac);
1710
    }
1711
}
1712

    
1713
void ff_sbr_apply(AACContext *ac, SpectralBandReplication *sbr, int ch,
1714
                  const float* in, float* out)
1715
{
1716
    int downsampled = ac->m4ac.ext_sample_rate < sbr->sample_rate;
1717

    
1718
    /* decode channel */
1719
    sbr_qmf_analysis(&ac->dsp, &sbr->rdft, in, sbr->data[ch].analysis_filterbank_samples,
1720
                     (float*)sbr->qmf_filter_scratch,
1721
                     sbr->data[ch].W, ac->add_bias, 1/(-1024 * ac->sf_scale));
1722
    sbr_lf_gen(ac, sbr, sbr->X_low, sbr->data[ch].W);
1723
    if (sbr->start) {
1724
        sbr_hf_inverse_filter(sbr->alpha0, sbr->alpha1, sbr->X_low, sbr->k[0]);
1725
        sbr_chirp(sbr, &sbr->data[ch]);
1726
        sbr_hf_gen(ac, sbr, sbr->X_high, sbr->X_low, sbr->alpha0, sbr->alpha1,
1727
                   sbr->data[ch].bw_array, sbr->data[ch].t_env,
1728
                   sbr->data[ch].bs_num_env);
1729

    
1730
        // hf_adj
1731
        sbr_mapping(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
1732
        sbr_env_estimate(sbr->e_curr, sbr->X_high, sbr, &sbr->data[ch]);
1733
        sbr_gain_calc(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
1734
        sbr_hf_assemble(sbr->data[ch].Y, sbr->X_high, sbr, &sbr->data[ch],
1735
                        sbr->data[ch].e_a);
1736
    }
1737

    
1738
    /* synthesis */
1739
    sbr_x_gen(sbr, sbr->X, sbr->X_low, sbr->data[ch].Y, ch);
1740
    sbr_qmf_synthesis(&ac->dsp, &sbr->mdct, out, sbr->X, sbr->qmf_filter_scratch,
1741
                      sbr->data[ch].synthesis_filterbank_samples,
1742
                      &sbr->data[ch].synthesis_filterbank_samples_offset,
1743
                      downsampled,
1744
                      ac->add_bias, -1024 * ac->sf_scale);
1745
}