Statistics
| Branch: | Revision:

ffmpeg / libavcodec / vp8.c @ 153da88d

History | View | Annotate | Download (53.9 KB)

1
/**
2
 * VP8 compatible video decoder
3
 *
4
 * Copyright (C) 2010 David Conrad
5
 * Copyright (C) 2010 Ronald S. Bultje
6
 *
7
 * This file is part of FFmpeg.
8
 *
9
 * FFmpeg is free software; you can redistribute it and/or
10
 * modify it under the terms of the GNU Lesser General Public
11
 * License as published by the Free Software Foundation; either
12
 * version 2.1 of the License, or (at your option) any later version.
13
 *
14
 * FFmpeg is distributed in the hope that it will be useful,
15
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17
 * Lesser General Public License for more details.
18
 *
19
 * You should have received a copy of the GNU Lesser General Public
20
 * License along with FFmpeg; if not, write to the Free Software
21
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22
 */
23

    
24
#include "avcodec.h"
25
#include "vp56.h"
26
#include "vp8data.h"
27
#include "vp8dsp.h"
28
#include "h264pred.h"
29
#include "rectangle.h"
30

    
31
typedef struct {
32
    uint8_t segment;
33
    uint8_t skip;
34
    // todo: make it possible to check for at least (i4x4 or split_mv)
35
    // in one op. are others needed?
36
    uint8_t mode;
37
    uint8_t ref_frame;
38
    uint8_t partitioning;
39
    VP56mv mv;
40
    VP56mv bmv[16];
41
} VP8Macroblock;
42

    
43
typedef struct {
44
    AVCodecContext *avctx;
45
    DSPContext dsp;
46
    VP8DSPContext vp8dsp;
47
    H264PredContext hpc;
48
    vp8_mc_func put_pixels_tab[3][3][3];
49
    AVFrame frames[4];
50
    AVFrame *framep[4];
51
    uint8_t *edge_emu_buffer;
52
    VP56RangeCoder c;   ///< header context, includes mb modes and motion vectors
53
    int profile;
54

    
55
    int mb_width;   /* number of horizontal MB */
56
    int mb_height;  /* number of vertical MB */
57
    int linesize;
58
    int uvlinesize;
59

    
60
    int keyframe;
61
    int invisible;
62
    int update_last;    ///< update VP56_FRAME_PREVIOUS with the current one
63
    int update_golden;  ///< VP56_FRAME_NONE if not updated, or which frame to copy if so
64
    int update_altref;
65
    int deblock_filter;
66

    
67
    /**
68
     * If this flag is not set, all the probability updates
69
     * are discarded after this frame is decoded.
70
     */
71
    int update_probabilities;
72

    
73
    /**
74
     * All coefficients are contained in separate arith coding contexts.
75
     * There can be 1, 2, 4, or 8 of these after the header context.
76
     */
77
    int num_coeff_partitions;
78
    VP56RangeCoder coeff_partition[8];
79

    
80
    VP8Macroblock *macroblocks;
81
    VP8Macroblock *macroblocks_base;
82
    int mb_stride;
83

    
84
    uint8_t *intra4x4_pred_mode;
85
    uint8_t *intra4x4_pred_mode_base;
86
    int b4_stride;
87

    
88
    /**
89
     * Cache of the top row needed for intra prediction
90
     * 16 for luma, 8 for each chroma plane
91
     */
92
    uint8_t (*top_border)[16+8+8];
93

    
94
    /**
95
     * For coeff decode, we need to know whether the above block had non-zero
96
     * coefficients. This means for each macroblock, we need data for 4 luma
97
     * blocks, 2 u blocks, 2 v blocks, and the luma dc block, for a total of 9
98
     * per macroblock. We keep the last row in top_nnz.
99
     */
100
    uint8_t (*top_nnz)[9];
101
    DECLARE_ALIGNED(8, uint8_t, left_nnz)[9];
102

    
103
    /**
104
     * This is the index plus one of the last non-zero coeff
105
     * for each of the blocks in the current macroblock.
106
     * So, 0 -> no coeffs
107
     *     1 -> dc-only (special transform)
108
     *     2+-> full transform
109
     */
110
    DECLARE_ALIGNED(16, uint8_t, non_zero_count_cache)[6][4];
111
    DECLARE_ALIGNED(16, DCTELEM, block)[6][4][16];
112

    
113
    int chroma_pred_mode;    ///< 8x8c pred mode of the current macroblock
114

    
115
    int mbskip_enabled;
116
    int sign_bias[4]; ///< one state [0, 1] per ref frame type
117

    
118
    /**
119
     * Base parameters for segmentation, i.e. per-macroblock parameters.
120
     * These must be kept unchanged even if segmentation is not used for
121
     * a frame, since the values persist between interframes.
122
     */
123
    struct {
124
        int enabled;
125
        int absolute_vals;
126
        int update_map;
127
        int8_t base_quant[4];
128
        int8_t filter_level[4];     ///< base loop filter level
129
    } segmentation;
130

    
131
    /**
132
     * Macroblocks can have one of 4 different quants in a frame when
133
     * segmentation is enabled.
134
     * If segmentation is disabled, only the first segment's values are used.
135
     */
136
    struct {
137
        // [0] - DC qmul  [1] - AC qmul
138
        int16_t luma_qmul[2];
139
        int16_t luma_dc_qmul[2];    ///< luma dc-only block quant
140
        int16_t chroma_qmul[2];
141
    } qmat[4];
142

    
143
    struct {
144
        int simple;
145
        int level;
146
        int sharpness;
147
    } filter;
148

    
149
    struct {
150
        int enabled;    ///< whether each mb can have a different strength based on mode/ref
151

    
152
        /**
153
         * filter strength adjustment for the following macroblock modes:
154
         * [0] - i4x4
155
         * [1] - zero mv
156
         * [2] - inter modes except for zero or split mv
157
         * [3] - split mv
158
         *  i16x16 modes never have any adjustment
159
         */
160
        int8_t mode[4];
161

    
162
        /**
163
         * filter strength adjustment for macroblocks that reference:
164
         * [0] - intra / VP56_FRAME_CURRENT
165
         * [1] - VP56_FRAME_PREVIOUS
166
         * [2] - VP56_FRAME_GOLDEN
167
         * [3] - altref / VP56_FRAME_GOLDEN2
168
         */
169
        int8_t ref[4];
170
    } lf_delta;
171

    
172
    /**
173
     * These are all of the updatable probabilities for binary decisions.
174
     * They are only implictly reset on keyframes, making it quite likely
175
     * for an interframe to desync if a prior frame's header was corrupt
176
     * or missing outright!
177
     */
178
    struct {
179
        uint8_t segmentid[3];
180
        uint8_t mbskip;
181
        uint8_t intra;
182
        uint8_t last;
183
        uint8_t golden;
184
        uint8_t pred16x16[4];
185
        uint8_t pred8x8c[3];
186
        uint8_t token[4][8][3][NUM_DCT_TOKENS-1];
187
        uint8_t mvc[2][19];
188
    } prob[2];
189
} VP8Context;
190

    
191
#define RL24(p) (AV_RL16(p) + ((p)[2] << 16))
192

    
193
static void vp8_decode_flush(AVCodecContext *avctx)
194
{
195
    VP8Context *s = avctx->priv_data;
196
    int i;
197

    
198
    for (i = 0; i < 4; i++)
199
        if (s->frames[i].data[0])
200
            avctx->release_buffer(avctx, &s->frames[i]);
201
    memset(s->framep, 0, sizeof(s->framep));
202

    
203
    av_freep(&s->macroblocks_base);
204
    av_freep(&s->intra4x4_pred_mode_base);
205
    av_freep(&s->top_nnz);
206
    av_freep(&s->edge_emu_buffer);
207
    av_freep(&s->top_border);
208

    
209
    s->macroblocks        = NULL;
210
    s->intra4x4_pred_mode = NULL;
211
}
212

    
213
static int update_dimensions(VP8Context *s, int width, int height)
214
{
215
    int i;
216

    
217
    if (avcodec_check_dimensions(s->avctx, width, height))
218
        return AVERROR_INVALIDDATA;
219

    
220
    vp8_decode_flush(s->avctx);
221

    
222
    avcodec_set_dimensions(s->avctx, width, height);
223

    
224
    s->mb_width  = (s->avctx->coded_width +15) / 16;
225
    s->mb_height = (s->avctx->coded_height+15) / 16;
226

    
227
    // we allocate a border around the top/left of intra4x4 modes
228
    // this is 4 blocks for intra4x4 to keep 4-byte alignment for fill_rectangle
229
    s->mb_stride = s->mb_width+1;
230
    s->b4_stride = 4*s->mb_stride;
231

    
232
    s->macroblocks_base        = av_mallocz(s->mb_stride*(s->mb_height+1)*sizeof(*s->macroblocks));
233
    s->intra4x4_pred_mode_base = av_mallocz(s->b4_stride*(4*s->mb_height+1));
234
    s->top_nnz                 = av_mallocz(s->mb_width*sizeof(*s->top_nnz));
235
    s->top_border              = av_mallocz((s->mb_width+1)*sizeof(*s->top_border));
236

    
237
    if (!s->macroblocks_base || !s->intra4x4_pred_mode_base || !s->top_nnz || !s->top_border)
238
        return AVERROR(ENOMEM);
239

    
240
    s->macroblocks        = s->macroblocks_base        + 1 + s->mb_stride;
241
    s->intra4x4_pred_mode = s->intra4x4_pred_mode_base + 4 + s->b4_stride;
242

    
243
    memset(s->intra4x4_pred_mode_base, DC_PRED, s->b4_stride);
244
    for (i = 0; i < 4*s->mb_height; i++)
245
        s->intra4x4_pred_mode[i*s->b4_stride-1] = DC_PRED;
246

    
247
    return 0;
248
}
249

    
250
static void parse_segment_info(VP8Context *s)
251
{
252
    VP56RangeCoder *c = &s->c;
253
    int i;
254

    
255
    s->segmentation.update_map = vp8_rac_get(c);
256

    
257
    if (vp8_rac_get(c)) { // update segment feature data
258
        s->segmentation.absolute_vals = vp8_rac_get(c);
259

    
260
        for (i = 0; i < 4; i++)
261
            s->segmentation.base_quant[i]   = vp8_rac_get_sint(c, 7);
262

    
263
        for (i = 0; i < 4; i++)
264
            s->segmentation.filter_level[i] = vp8_rac_get_sint(c, 6);
265
    }
266
    if (s->segmentation.update_map)
267
        for (i = 0; i < 3; i++)
268
            s->prob->segmentid[i] = vp8_rac_get(c) ? vp8_rac_get_uint(c, 8) : 255;
269
}
270

    
271
static void update_lf_deltas(VP8Context *s)
272
{
273
    VP56RangeCoder *c = &s->c;
274
    int i;
275

    
276
    for (i = 0; i < 4; i++)
277
        s->lf_delta.ref[i]  = vp8_rac_get_sint(c, 6);
278

    
279
    for (i = 0; i < 4; i++)
280
        s->lf_delta.mode[i] = vp8_rac_get_sint(c, 6);
281
}
282

    
283
static int setup_partitions(VP8Context *s, const uint8_t *buf, int buf_size)
284
{
285
    const uint8_t *sizes = buf;
286
    int i;
287

    
288
    s->num_coeff_partitions = 1 << vp8_rac_get_uint(&s->c, 2);
289

    
290
    buf      += 3*(s->num_coeff_partitions-1);
291
    buf_size -= 3*(s->num_coeff_partitions-1);
292
    if (buf_size < 0)
293
        return -1;
294

    
295
    for (i = 0; i < s->num_coeff_partitions-1; i++) {
296
        int size = RL24(sizes + 3*i);
297
        if (buf_size - size < 0)
298
            return -1;
299

    
300
        vp56_init_range_decoder(&s->coeff_partition[i], buf, size);
301
        buf      += size;
302
        buf_size -= size;
303
    }
304
    vp56_init_range_decoder(&s->coeff_partition[i], buf, buf_size);
305

    
306
    return 0;
307
}
308

    
309
static void get_quants(VP8Context *s)
310
{
311
    VP56RangeCoder *c = &s->c;
312
    int i, base_qi;
313

    
314
    int yac_qi     = vp8_rac_get_uint(c, 7);
315
    int ydc_delta  = vp8_rac_get_sint(c, 4);
316
    int y2dc_delta = vp8_rac_get_sint(c, 4);
317
    int y2ac_delta = vp8_rac_get_sint(c, 4);
318
    int uvdc_delta = vp8_rac_get_sint(c, 4);
319
    int uvac_delta = vp8_rac_get_sint(c, 4);
320

    
321
    for (i = 0; i < 4; i++) {
322
        if (s->segmentation.enabled) {
323
            base_qi = s->segmentation.base_quant[i];
324
            if (!s->segmentation.absolute_vals)
325
                base_qi += yac_qi;
326
        } else
327
            base_qi = yac_qi;
328

    
329
        s->qmat[i].luma_qmul[0]    =       vp8_dc_qlookup[av_clip(base_qi + ydc_delta , 0, 127)];
330
        s->qmat[i].luma_qmul[1]    =       vp8_ac_qlookup[av_clip(base_qi             , 0, 127)];
331
        s->qmat[i].luma_dc_qmul[0] =   2 * vp8_dc_qlookup[av_clip(base_qi + y2dc_delta, 0, 127)];
332
        s->qmat[i].luma_dc_qmul[1] = 155 * vp8_ac_qlookup[av_clip(base_qi + y2ac_delta, 0, 127)] / 100;
333
        s->qmat[i].chroma_qmul[0]  =       vp8_dc_qlookup[av_clip(base_qi + uvdc_delta, 0, 127)];
334
        s->qmat[i].chroma_qmul[1]  =       vp8_ac_qlookup[av_clip(base_qi + uvac_delta, 0, 127)];
335

    
336
        s->qmat[i].luma_dc_qmul[1] = FFMAX(s->qmat[i].luma_dc_qmul[1], 8);
337
        s->qmat[i].chroma_qmul[0]  = FFMIN(s->qmat[i].chroma_qmul[0], 132);
338
    }
339
}
340

    
341
/**
342
 * Determine which buffers golden and altref should be updated with after this frame.
343
 * The spec isn't clear here, so I'm going by my understanding of what libvpx does
344
 *
345
 * Intra frames update all 3 references
346
 * Inter frames update VP56_FRAME_PREVIOUS if the update_last flag is set
347
 * If the update (golden|altref) flag is set, it's updated with the current frame
348
 *      if update_last is set, and VP56_FRAME_PREVIOUS otherwise.
349
 * If the flag is not set, the number read means:
350
 *      0: no update
351
 *      1: VP56_FRAME_PREVIOUS
352
 *      2: update golden with altref, or update altref with golden
353
 */
354
static VP56Frame ref_to_update(VP8Context *s, int update, VP56Frame ref)
355
{
356
    VP56RangeCoder *c = &s->c;
357

    
358
    if (update)
359
        return VP56_FRAME_CURRENT;
360

    
361
    switch (vp8_rac_get_uint(c, 2)) {
362
    case 1:
363
        return VP56_FRAME_PREVIOUS;
364
    case 2:
365
        return (ref == VP56_FRAME_GOLDEN) ? VP56_FRAME_GOLDEN2 : VP56_FRAME_GOLDEN;
366
    }
367
    return VP56_FRAME_NONE;
368
}
369

    
370
static void update_refs(VP8Context *s)
371
{
372
    VP56RangeCoder *c = &s->c;
373

    
374
    int update_golden = vp8_rac_get(c);
375
    int update_altref = vp8_rac_get(c);
376

    
377
    s->update_golden = ref_to_update(s, update_golden, VP56_FRAME_GOLDEN);
378
    s->update_altref = ref_to_update(s, update_altref, VP56_FRAME_GOLDEN2);
379
}
380

    
381
static int decode_frame_header(VP8Context *s, const uint8_t *buf, int buf_size)
382
{
383
    VP56RangeCoder *c = &s->c;
384
    int header_size, hscale, vscale, i, j, k, l, ret;
385
    int width  = s->avctx->width;
386
    int height = s->avctx->height;
387

    
388
    s->keyframe  = !(buf[0] & 1);
389
    s->profile   =  (buf[0]>>1) & 7;
390
    s->invisible = !(buf[0] & 0x10);
391
    header_size  = RL24(buf) >> 5;
392
    buf      += 3;
393
    buf_size -= 3;
394

    
395
    if (s->profile > 3)
396
        av_log(s->avctx, AV_LOG_WARNING, "Unknown profile %d\n", s->profile);
397

    
398
    if (!s->profile)
399
        memcpy(s->put_pixels_tab, s->vp8dsp.put_vp8_epel_pixels_tab, sizeof(s->put_pixels_tab));
400
    else    // profile 1-3 use bilinear, 4+ aren't defined so whatever
401
        memcpy(s->put_pixels_tab, s->vp8dsp.put_vp8_bilinear_pixels_tab, sizeof(s->put_pixels_tab));
402

    
403
    if (header_size > buf_size - 7*s->keyframe) {
404
        av_log(s->avctx, AV_LOG_ERROR, "Header size larger than data provided\n");
405
        return AVERROR_INVALIDDATA;
406
    }
407

    
408
    if (s->keyframe) {
409
        if (RL24(buf) != 0x2a019d) {
410
            av_log(s->avctx, AV_LOG_ERROR, "Invalid start code 0x%x\n", RL24(buf));
411
            return AVERROR_INVALIDDATA;
412
        }
413
        width  = AV_RL16(buf+3) & 0x3fff;
414
        height = AV_RL16(buf+5) & 0x3fff;
415
        hscale = buf[4] >> 6;
416
        vscale = buf[6] >> 6;
417
        buf      += 7;
418
        buf_size -= 7;
419

    
420
        if (hscale || vscale)
421
            av_log_missing_feature(s->avctx, "Upscaling", 1);
422

    
423
        s->update_golden = s->update_altref = VP56_FRAME_CURRENT;
424
        memcpy(s->prob->token    , vp8_token_default_probs , sizeof(s->prob->token));
425
        memcpy(s->prob->pred16x16, vp8_pred16x16_prob_inter, sizeof(s->prob->pred16x16));
426
        memcpy(s->prob->pred8x8c , vp8_pred8x8c_prob_inter , sizeof(s->prob->pred8x8c));
427
        memcpy(s->prob->mvc      , vp8_mv_default_prob     , sizeof(s->prob->mvc));
428
        memset(&s->segmentation, 0, sizeof(s->segmentation));
429
    }
430

    
431
    if (!s->macroblocks_base || /* first frame */
432
        width != s->avctx->width || height != s->avctx->height) {
433
        if ((ret = update_dimensions(s, width, height) < 0))
434
            return ret;
435
    }
436

    
437
    vp56_init_range_decoder(c, buf, header_size);
438
    buf      += header_size;
439
    buf_size -= header_size;
440

    
441
    if (s->keyframe) {
442
        if (vp8_rac_get(c))
443
            av_log(s->avctx, AV_LOG_WARNING, "Unspecified colorspace\n");
444
        vp8_rac_get(c); // whether we can skip clamping in dsp functions
445
    }
446

    
447
    if ((s->segmentation.enabled = vp8_rac_get(c)))
448
        parse_segment_info(s);
449
    else
450
        s->segmentation.update_map = 0; // FIXME: move this to some init function?
451

    
452
    s->filter.simple    = vp8_rac_get(c);
453
    s->filter.level     = vp8_rac_get_uint(c, 6);
454
    s->filter.sharpness = vp8_rac_get_uint(c, 3);
455

    
456
    if ((s->lf_delta.enabled = vp8_rac_get(c)))
457
        if (vp8_rac_get(c))
458
            update_lf_deltas(s);
459

    
460
    if (setup_partitions(s, buf, buf_size)) {
461
        av_log(s->avctx, AV_LOG_ERROR, "Invalid partitions\n");
462
        return AVERROR_INVALIDDATA;
463
    }
464

    
465
    get_quants(s);
466

    
467
    if (!s->keyframe) {
468
        update_refs(s);
469
        s->sign_bias[VP56_FRAME_GOLDEN]               = vp8_rac_get(c);
470
        s->sign_bias[VP56_FRAME_GOLDEN2 /* altref */] = vp8_rac_get(c);
471
    }
472

    
473
    // if we aren't saving this frame's probabilities for future frames,
474
    // make a copy of the current probabilities
475
    if (!(s->update_probabilities = vp8_rac_get(c)))
476
        s->prob[1] = s->prob[0];
477

    
478
    s->update_last = s->keyframe || vp8_rac_get(c);
479

    
480
    for (i = 0; i < 4; i++)
481
        for (j = 0; j < 8; j++)
482
            for (k = 0; k < 3; k++)
483
                for (l = 0; l < NUM_DCT_TOKENS-1; l++)
484
                    if (vp56_rac_get_prob(c, vp8_token_update_probs[i][j][k][l]))
485
                        s->prob->token[i][j][k][l] = vp8_rac_get_uint(c, 8);
486

    
487
    if ((s->mbskip_enabled = vp8_rac_get(c)))
488
        s->prob->mbskip = vp8_rac_get_uint(c, 8);
489

    
490
    if (!s->keyframe) {
491
        s->prob->intra  = vp8_rac_get_uint(c, 8);
492
        s->prob->last   = vp8_rac_get_uint(c, 8);
493
        s->prob->golden = vp8_rac_get_uint(c, 8);
494

    
495
        if (vp8_rac_get(c))
496
            for (i = 0; i < 4; i++)
497
                s->prob->pred16x16[i] = vp8_rac_get_uint(c, 8);
498
        if (vp8_rac_get(c))
499
            for (i = 0; i < 3; i++)
500
                s->prob->pred8x8c[i]  = vp8_rac_get_uint(c, 8);
501

    
502
        // 17.2 MV probability update
503
        for (i = 0; i < 2; i++)
504
            for (j = 0; j < 19; j++)
505
                if (vp56_rac_get_prob(c, vp8_mv_update_prob[i][j]))
506
                    s->prob->mvc[i][j] = vp8_rac_get_nn(c);
507
    }
508

    
509
    return 0;
510
}
511

    
512
static inline void clamp_mv(VP8Context *s, VP56mv *dst, const VP56mv *src,
513
                            int mb_x, int mb_y)
514
{
515
#define MARGIN (16 << 2)
516
    dst->x = av_clip(src->x, -((mb_x << 6) + MARGIN),
517
                     ((s->mb_width  - 1 - mb_x) << 6) + MARGIN);
518
    dst->y = av_clip(src->y, -((mb_y << 6) + MARGIN),
519
                     ((s->mb_height - 1 - mb_y) << 6) + MARGIN);
520
}
521

    
522
static void find_near_mvs(VP8Context *s, VP8Macroblock *mb, int mb_x, int mb_y,
523
                          VP56mv near[2], VP56mv *best, int cnt[4])
524
{
525
    VP8Macroblock *mb_edge[3] = { mb - s->mb_stride     /* top */,
526
                                  mb - 1                /* left */,
527
                                  mb - s->mb_stride - 1 /* top-left */ };
528
    enum { EDGE_TOP, EDGE_LEFT, EDGE_TOPLEFT };
529
    VP56mv near_mv[4]  = {{ 0 }};
530
    enum { CNT_ZERO, CNT_NEAREST, CNT_NEAR, CNT_SPLITMV };
531
    int idx = CNT_ZERO, n;
532
    int best_idx = CNT_ZERO;
533

    
534
    /* Process MB on top, left and top-left */
535
    for (n = 0; n < 3; n++) {
536
        VP8Macroblock *edge = mb_edge[n];
537
        if (edge->ref_frame != VP56_FRAME_CURRENT) {
538
            if (edge->mv.x | edge->mv.y) {
539
                VP56mv tmp = edge->mv;
540
                if (s->sign_bias[mb->ref_frame] != s->sign_bias[edge->ref_frame]) {
541
                    tmp.x *= -1;
542
                    tmp.y *= -1;
543
                }
544
                if ((tmp.x ^ near_mv[idx].x) | (tmp.y ^ near_mv[idx].y))
545
                    near_mv[++idx] = tmp;
546
                cnt[idx]       += 1 + (n != 2);
547
            } else
548
                cnt[CNT_ZERO] += 1 + (n != 2);
549
        }
550
    }
551

    
552
    /* If we have three distinct MV's, merge first and last if they're the same */
553
    if (cnt[CNT_SPLITMV] &&
554
        !((near_mv[1+EDGE_TOP].x ^ near_mv[1+EDGE_TOPLEFT].x) |
555
          (near_mv[1+EDGE_TOP].y ^ near_mv[1+EDGE_TOPLEFT].y)))
556
        cnt[CNT_NEAREST] += 1;
557

    
558
    cnt[CNT_SPLITMV] = ((mb_edge[EDGE_LEFT]->mode   == VP8_MVMODE_SPLIT) +
559
                        (mb_edge[EDGE_TOP]->mode    == VP8_MVMODE_SPLIT)) * 2 +
560
                       (mb_edge[EDGE_TOPLEFT]->mode == VP8_MVMODE_SPLIT);
561

    
562
    /* Swap near and nearest if necessary */
563
    if (cnt[CNT_NEAR] > cnt[CNT_NEAREST]) {
564
        FFSWAP(int,    cnt[CNT_NEAREST],     cnt[CNT_NEAR]);
565
        FFSWAP(VP56mv, near_mv[CNT_NEAREST], near_mv[CNT_NEAR]);
566
    }
567

    
568
    /* Choose the best mv out of 0,0 and the nearest mv */
569
    if (cnt[CNT_NEAREST] >= cnt[CNT_ZERO])
570
        best_idx = CNT_NEAREST;
571

    
572
    clamp_mv(s, best, &near_mv[best_idx], mb_x, mb_y);
573
    near[0] = near_mv[CNT_NEAREST];
574
    near[1] = near_mv[CNT_NEAR];
575
}
576

    
577
/**
578
 * Motion vector coding, 17.1.
579
 */
580
static int read_mv_component(VP56RangeCoder *c, const uint8_t *p)
581
{
582
    int x = 0;
583

    
584
    if (vp56_rac_get_prob(c, p[0])) {
585
        int i;
586

    
587
        for (i = 0; i < 3; i++)
588
            x += vp56_rac_get_prob(c, p[9 + i]) << i;
589
        for (i = 9; i > 3; i--)
590
            x += vp56_rac_get_prob(c, p[9 + i]) << i;
591
        if (!(x & 0xFFF0) || vp56_rac_get_prob(c, p[12]))
592
            x += 8;
593
    } else
594
        x = vp8_rac_get_tree(c, vp8_small_mvtree, &p[2]);
595

    
596
    return (x && vp56_rac_get_prob(c, p[1])) ? -x : x;
597
}
598

    
599
static const uint8_t *get_submv_prob(const VP56mv *left, const VP56mv *top)
600
{
601
    int l_is_zero = !(left->x | left->y);
602
    int t_is_zero = !(top->x  | top->y);
603
    int equal = !((left->x ^ top->x) | (left->y ^ top->y));
604

    
605
    if (equal)
606
        return l_is_zero ? vp8_submv_prob[4] : vp8_submv_prob[3];
607
    if (t_is_zero)
608
        return vp8_submv_prob[2];
609
    return l_is_zero ? vp8_submv_prob[1] : vp8_submv_prob[0];
610
}
611

    
612
/**
613
 * Split motion vector prediction, 16.4.
614
 * @returns the number of motion vectors parsed (2, 4 or 16)
615
 */
616
static int decode_splitmvs(VP8Context    *s,  VP56RangeCoder *c,
617
                            VP8Macroblock *mb, VP56mv         *base_mv)
618
{
619
    int part_idx = mb->partitioning =
620
        vp8_rac_get_tree(c, vp8_mbsplit_tree, vp8_mbsplit_prob);
621
    int n, num = vp8_mbsplit_count[part_idx];
622
    const uint8_t *mbsplits = vp8_mbsplits[part_idx],
623
                  *firstidx = vp8_mbfirstidx[part_idx];
624

    
625
    for (n = 0; n < num; n++) {
626
        int k = firstidx[n];
627
        const VP56mv *left, *above;
628
        const uint8_t *submv_prob;
629

    
630
        if (!(k & 3)) {
631
            VP8Macroblock *left_mb = &mb[-1];
632
            left = &left_mb->bmv[vp8_mbsplits[left_mb->partitioning][k + 3]];
633
        } else
634
            left  = &mb->bmv[mbsplits[k - 1]];
635
        if (k <= 3) {
636
            VP8Macroblock *above_mb = &mb[-s->mb_stride];
637
            above = &above_mb->bmv[vp8_mbsplits[above_mb->partitioning][k + 12]];
638
        } else
639
            above = &mb->bmv[mbsplits[k - 4]];
640

    
641
        submv_prob = get_submv_prob(left, above);
642

    
643
        switch (vp8_rac_get_tree(c, vp8_submv_ref_tree, submv_prob)) {
644
        case VP8_SUBMVMODE_NEW4X4:
645
            mb->bmv[n].y = base_mv->y + read_mv_component(c, s->prob->mvc[0]);
646
            mb->bmv[n].x = base_mv->x + read_mv_component(c, s->prob->mvc[1]);
647
            break;
648
        case VP8_SUBMVMODE_ZERO4X4:
649
            mb->bmv[n].x = 0;
650
            mb->bmv[n].y = 0;
651
            break;
652
        case VP8_SUBMVMODE_LEFT4X4:
653
            mb->bmv[n] = *left;
654
            break;
655
        case VP8_SUBMVMODE_TOP4X4:
656
            mb->bmv[n] = *above;
657
            break;
658
        }
659
    }
660

    
661
    return num;
662
}
663

    
664
static inline void decode_intra4x4_modes(VP56RangeCoder *c, uint8_t *intra4x4,
665
                                         int stride, int keyframe)
666
{
667
    int x, y, t, l;
668
    const uint8_t *ctx = vp8_pred4x4_prob_inter;
669

    
670
    for (y = 0; y < 4; y++) {
671
        for (x = 0; x < 4; x++) {
672
            if (keyframe) {
673
                t = intra4x4[x - stride];
674
                l = intra4x4[x - 1];
675
                ctx = vp8_pred4x4_prob_intra[t][l];
676
            }
677
            intra4x4[x] = vp8_rac_get_tree(c, vp8_pred4x4_tree, ctx);
678
        }
679
        intra4x4 += stride;
680
    }
681
}
682

    
683
static void decode_mb_mode(VP8Context *s, VP8Macroblock *mb, int mb_x, int mb_y,
684
                           uint8_t *intra4x4)
685
{
686
    VP56RangeCoder *c = &s->c;
687
    int n;
688

    
689
    if (s->segmentation.update_map)
690
        mb->segment = vp8_rac_get_tree(c, vp8_segmentid_tree, s->prob->segmentid);
691

    
692
    mb->skip = s->mbskip_enabled ? vp56_rac_get_prob(c, s->prob->mbskip) : 0;
693

    
694
    if (s->keyframe) {
695
        mb->mode = vp8_rac_get_tree(c, vp8_pred16x16_tree_intra, vp8_pred16x16_prob_intra);
696

    
697
        if (mb->mode == MODE_I4x4) {
698
            decode_intra4x4_modes(c, intra4x4, s->b4_stride, 1);
699
        } else
700
            fill_rectangle(intra4x4, 4, 4, s->b4_stride, vp8_pred4x4_mode[mb->mode], 1);
701

    
702
        s->chroma_pred_mode = vp8_rac_get_tree(c, vp8_pred8x8c_tree, vp8_pred8x8c_prob_intra);
703
        mb->ref_frame = VP56_FRAME_CURRENT;
704
    } else if (vp56_rac_get_prob(c, s->prob->intra)) {
705
        VP56mv near[2], best;
706
        int cnt[4] = { 0 };
707
        uint8_t p[4];
708

    
709
        // inter MB, 16.2
710
        if (vp56_rac_get_prob(c, s->prob->last))
711
            mb->ref_frame = vp56_rac_get_prob(c, s->prob->golden) ?
712
                VP56_FRAME_GOLDEN2 /* altref */ : VP56_FRAME_GOLDEN;
713
        else
714
            mb->ref_frame = VP56_FRAME_PREVIOUS;
715

    
716
        // motion vectors, 16.3
717
        find_near_mvs(s, mb, mb_x, mb_y, near, &best, cnt);
718
        for (n = 0; n < 4; n++)
719
            p[n] = vp8_mode_contexts[cnt[n]][n];
720
        mb->mode = vp8_rac_get_tree(c, vp8_pred16x16_tree_mvinter, p);
721
        switch (mb->mode) {
722
        case VP8_MVMODE_SPLIT:
723
            mb->mv = mb->bmv[decode_splitmvs(s, c, mb, &best) - 1];
724
            break;
725
        case VP8_MVMODE_ZERO:
726
            mb->mv.x = 0;
727
            mb->mv.y = 0;
728
            break;
729
        case VP8_MVMODE_NEAREST:
730
            clamp_mv(s, &mb->mv, &near[0], mb_x, mb_y);
731
            break;
732
        case VP8_MVMODE_NEAR:
733
            clamp_mv(s, &mb->mv, &near[1], mb_x, mb_y);
734
            break;
735
        case VP8_MVMODE_NEW:
736
            mb->mv.y = best.y + read_mv_component(c, s->prob->mvc[0]);
737
            mb->mv.x = best.x + read_mv_component(c, s->prob->mvc[1]);
738
            break;
739
        }
740
        if (mb->mode != VP8_MVMODE_SPLIT) {
741
            mb->partitioning = VP8_SPLITMVMODE_NONE;
742
            mb->bmv[0] = mb->mv;
743
        }
744
    } else {
745
        // intra MB, 16.1
746
        mb->mode = vp8_rac_get_tree(c, vp8_pred16x16_tree_inter, s->prob->pred16x16);
747

    
748
        if (mb->mode == MODE_I4x4) {
749
            decode_intra4x4_modes(c, intra4x4, s->b4_stride, 0);
750
        } else
751
            fill_rectangle(intra4x4, 4, 4, s->b4_stride, vp8_pred4x4_mode[mb->mode], 1);
752

    
753
        s->chroma_pred_mode = vp8_rac_get_tree(c, vp8_pred8x8c_tree, s->prob->pred8x8c);
754
        mb->ref_frame = VP56_FRAME_CURRENT;
755
    }
756
}
757

    
758
/**
759
 * @param c arithmetic bitstream reader context
760
 * @param block destination for block coefficients
761
 * @param probs probabilities to use when reading trees from the bitstream
762
 * @param i initial coeff index, 0 unless a separate DC block is coded
763
 * @param zero_nhood the initial prediction context for number of surrounding
764
 *                   all-zero blocks (only left/top, so 0-2)
765
 * @param qmul array holding the dc/ac dequant factor at position 0/1
766
 * @return 0 if no coeffs were decoded
767
 *         otherwise, the index of the last coeff decoded plus one
768
 */
769
static int decode_block_coeffs(VP56RangeCoder *c, DCTELEM block[16],
770
                               uint8_t probs[8][3][NUM_DCT_TOKENS-1],
771
                               int i, int zero_nhood, int16_t qmul[2])
772
{
773
    int token, nonzero = 0;
774
    int offset = 0;
775

    
776
    for (; i < 16; i++) {
777
        token = vp8_rac_get_tree_with_offset(c, vp8_coeff_tree, probs[vp8_coeff_band[i]][zero_nhood], offset);
778

    
779
        if (token == DCT_EOB)
780
            break;
781
        else if (token >= DCT_CAT1) {
782
            int cat = token-DCT_CAT1;
783
            token = vp8_rac_get_coeff(c, vp8_dct_cat_prob[cat]);
784
            token += vp8_dct_cat_offset[cat];
785
        }
786

    
787
        // after the first token, the non-zero prediction context becomes
788
        // based on the last decoded coeff
789
        if (!token) {
790
            zero_nhood = 0;
791
            offset = 1;
792
            continue;
793
        } else if (token == 1)
794
            zero_nhood = 1;
795
        else
796
            zero_nhood = 2;
797

    
798
        // todo: full [16] qmat? load into register?
799
        block[zigzag_scan[i]] = (vp8_rac_get(c) ? -token : token) * qmul[!!i];
800
        nonzero = i+1;
801
        offset = 0;
802
    }
803
    return nonzero;
804
}
805

    
806
static void decode_mb_coeffs(VP8Context *s, VP56RangeCoder *c, VP8Macroblock *mb,
807
                             uint8_t t_nnz[9], uint8_t l_nnz[9])
808
{
809
    LOCAL_ALIGNED_16(DCTELEM, dc,[16]);
810
    int i, x, y, luma_start = 0, luma_ctx = 3;
811
    int nnz_pred, nnz, nnz_total = 0;
812
    int segment = s->segmentation.enabled ? mb->segment : 0;
813

    
814
    s->dsp.clear_blocks((DCTELEM *)s->block);
815

    
816
    if (mb->mode != MODE_I4x4 && mb->mode != VP8_MVMODE_SPLIT) {
817
        AV_ZERO128(dc);
818
        AV_ZERO128(dc+8);
819
        nnz_pred = t_nnz[8] + l_nnz[8];
820

    
821
        // decode DC values and do hadamard
822
        nnz = decode_block_coeffs(c, dc, s->prob->token[1], 0, nnz_pred,
823
                                  s->qmat[segment].luma_dc_qmul);
824
        l_nnz[8] = t_nnz[8] = !!nnz;
825
        nnz_total += nnz;
826
        s->vp8dsp.vp8_luma_dc_wht(s->block, dc);
827
        luma_start = 1;
828
        luma_ctx = 0;
829
    }
830

    
831
    // luma blocks
832
    for (y = 0; y < 4; y++)
833
        for (x = 0; x < 4; x++) {
834
            nnz_pred = l_nnz[y] + t_nnz[x];
835
            nnz = decode_block_coeffs(c, s->block[y][x], s->prob->token[luma_ctx], luma_start,
836
                                      nnz_pred, s->qmat[segment].luma_qmul);
837
            // nnz+luma_start may be one more than the actual last index, but we don't care
838
            s->non_zero_count_cache[y][x] = nnz + luma_start;
839
            t_nnz[x] = l_nnz[y] = !!nnz;
840
            nnz_total += nnz;
841
        }
842

    
843
    // chroma blocks
844
    // TODO: what to do about dimensions? 2nd dim for luma is x,
845
    // but for chroma it's (y<<1)|x
846
    for (i = 4; i < 6; i++)
847
        for (y = 0; y < 2; y++)
848
            for (x = 0; x < 2; x++) {
849
                nnz_pred = l_nnz[i+2*y] + t_nnz[i+2*x];
850
                nnz = decode_block_coeffs(c, s->block[i][(y<<1)+x], s->prob->token[2], 0,
851
                                          nnz_pred, s->qmat[segment].chroma_qmul);
852
                s->non_zero_count_cache[i][(y<<1)+x] = nnz;
853
                t_nnz[i+2*x] = l_nnz[i+2*y] = !!nnz;
854
                nnz_total += nnz;
855
            }
856

    
857
    // if there were no coded coeffs despite the macroblock not being marked skip,
858
    // we MUST not do the inner loop filter and should not do IDCT
859
    // Since skip isn't used for bitstream prediction, just manually set it.
860
    if (!nnz_total)
861
        mb->skip = 1;
862
}
863

    
864
static av_always_inline
865
void backup_mb_border(uint8_t *top_border, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr,
866
                      int linesize, int uvlinesize, int simple)
867
{
868
    AV_COPY128(top_border, src_y + 15*linesize);
869
    if (!simple) {
870
        AV_COPY64(top_border+16, src_cb + 7*uvlinesize);
871
        AV_COPY64(top_border+24, src_cr + 7*uvlinesize);
872
    }
873
}
874

    
875
static av_always_inline
876
void xchg_mb_border(uint8_t *top_border, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr,
877
                    int linesize, int uvlinesize, int mb_x, int mb_y, int mb_width,
878
                    int simple, int xchg)
879
{
880
    uint8_t *top_border_m1 = top_border-32;     // for TL prediction
881
    src_y  -=   linesize;
882
    src_cb -= uvlinesize;
883
    src_cr -= uvlinesize;
884

    
885
#define XCHG(a,b,xchg)\
886
if (xchg) AV_SWAP64(b,a);\
887
else      AV_COPY64(b,a);
888

    
889
    XCHG(top_border_m1+8, src_y-8, xchg);
890
    XCHG(top_border,      src_y,   xchg);
891
    XCHG(top_border+8,    src_y+8, 1);
892
    if (mb_x < mb_width-1) {
893
        XCHG(top_border+32, src_y+16, 1);
894
    }
895
    // only copy chroma for normal loop filter
896
    // or to initialize the top row to 127
897
    if (!simple || !mb_y) {
898
        XCHG(top_border_m1+16, src_cb-8, xchg);
899
        XCHG(top_border_m1+24, src_cr-8, xchg);
900
        XCHG(top_border+16,    src_cb, 1);
901
        XCHG(top_border+24,    src_cr, 1);
902
    }
903
}
904

    
905
static int check_intra_pred_mode(int mode, int mb_x, int mb_y)
906
{
907
    if (mode == DC_PRED8x8) {
908
        if (!(mb_x|mb_y))
909
            mode = DC_128_PRED8x8;
910
        else if (!mb_y)
911
            mode = LEFT_DC_PRED8x8;
912
        else if (!mb_x)
913
            mode = TOP_DC_PRED8x8;
914
    }
915
    return mode;
916
}
917

    
918
static void intra_predict(VP8Context *s, uint8_t *dst[3], VP8Macroblock *mb,
919
                          uint8_t *bmode, int mb_x, int mb_y)
920
{
921
    int x, y, mode, nnz, tr;
922

    
923
    // for the first row, we need to run xchg_mb_border to init the top edge to 127
924
    // otherwise, skip it if we aren't going to deblock
925
    if (s->deblock_filter || !mb_y)
926
        xchg_mb_border(s->top_border[mb_x+1], dst[0], dst[1], dst[2],
927
                       s->linesize, s->uvlinesize, mb_x, mb_y, s->mb_width,
928
                       s->filter.simple, 1);
929

    
930
    if (mb->mode < MODE_I4x4) {
931
        mode = check_intra_pred_mode(mb->mode, mb_x, mb_y);
932
        s->hpc.pred16x16[mode](dst[0], s->linesize);
933
    } else {
934
        uint8_t *ptr = dst[0];
935

    
936
        // all blocks on the right edge of the macroblock use bottom edge
937
        // the top macroblock for their topright edge
938
        uint8_t *tr_right = ptr - s->linesize + 16;
939

    
940
        // if we're on the right edge of the frame, said edge is extended
941
        // from the top macroblock
942
        if (mb_x == s->mb_width-1) {
943
            tr = tr_right[-1]*0x01010101;
944
            tr_right = (uint8_t *)&tr;
945
        }
946

    
947
        for (y = 0; y < 4; y++) {
948
            uint8_t *topright = ptr + 4 - s->linesize;
949
            for (x = 0; x < 4; x++) {
950
                if (x == 3)
951
                    topright = tr_right;
952

    
953
                s->hpc.pred4x4[bmode[x]](ptr+4*x, topright, s->linesize);
954

    
955
                nnz = s->non_zero_count_cache[y][x];
956
                if (nnz) {
957
                    if (nnz == 1)
958
                        s->vp8dsp.vp8_idct_dc_add(ptr+4*x, s->block[y][x], s->linesize);
959
                    else
960
                        s->vp8dsp.vp8_idct_add(ptr+4*x, s->block[y][x], s->linesize);
961
                }
962
                topright += 4;
963
            }
964

    
965
            ptr   += 4*s->linesize;
966
            bmode += s->b4_stride;
967
        }
968
    }
969

    
970
    mode = check_intra_pred_mode(s->chroma_pred_mode, mb_x, mb_y);
971
    s->hpc.pred8x8[mode](dst[1], s->uvlinesize);
972
    s->hpc.pred8x8[mode](dst[2], s->uvlinesize);
973

    
974
    if (s->deblock_filter || !mb_y)
975
        xchg_mb_border(s->top_border[mb_x+1], dst[0], dst[1], dst[2],
976
                       s->linesize, s->uvlinesize, mb_x, mb_y, s->mb_width,
977
                       s->filter.simple, 0);
978
}
979

    
980
/**
981
 * Generic MC function.
982
 *
983
 * @param s VP8 decoding context
984
 * @param luma 1 for luma (Y) planes, 0 for chroma (Cb/Cr) planes
985
 * @param dst target buffer for block data at block position
986
 * @param src reference picture buffer at origin (0, 0)
987
 * @param mv motion vector (relative to block position) to get pixel data from
988
 * @param x_off horizontal position of block from origin (0, 0)
989
 * @param y_off vertical position of block from origin (0, 0)
990
 * @param block_w width of block (16, 8 or 4)
991
 * @param block_h height of block (always same as block_w)
992
 * @param width width of src/dst plane data
993
 * @param height height of src/dst plane data
994
 * @param linesize size of a single line of plane data, including padding
995
 * @param mc_func motion compensation function pointers (bilinear or sixtap MC)
996
 */
997
static inline void vp8_mc(VP8Context *s, int luma,
998
                          uint8_t *dst, uint8_t *src, const VP56mv *mv,
999
                          int x_off, int y_off, int block_w, int block_h,
1000
                          int width, int height, int linesize,
1001
                          vp8_mc_func mc_func[3][3])
1002
{
1003
    static const uint8_t idx[8] = { 0, 1, 2, 1, 2, 1, 2, 1 };
1004
    int mx = (mv->x << luma)&7, mx_idx = idx[mx];
1005
    int my = (mv->y << luma)&7, my_idx = idx[my];
1006

    
1007
    x_off += mv->x >> (3 - luma);
1008
    y_off += mv->y >> (3 - luma);
1009

    
1010
    // edge emulation
1011
    src += y_off * linesize + x_off;
1012
    if (x_off < 2 || x_off >= width  - block_w - 3 ||
1013
        y_off < 2 || y_off >= height - block_h - 3) {
1014
        ff_emulated_edge_mc(s->edge_emu_buffer, src - 2 * linesize - 2, linesize,
1015
                            block_w + 5, block_h + 5,
1016
                            x_off - 2, y_off - 2, width, height);
1017
        src = s->edge_emu_buffer + 2 + linesize * 2;
1018
    }
1019

    
1020
    mc_func[my_idx][mx_idx](dst, linesize, src, linesize, block_h, mx, my);
1021
}
1022

    
1023
static inline void vp8_mc_part(VP8Context *s, uint8_t *dst[3],
1024
                               AVFrame *ref_frame, int x_off, int y_off,
1025
                               int bx_off, int by_off,
1026
                               int block_w, int block_h,
1027
                               int width, int height, VP56mv *mv)
1028
{
1029
    VP56mv uvmv = *mv;
1030

    
1031
    /* Y */
1032
    vp8_mc(s, 1, dst[0] + by_off * s->linesize + bx_off,
1033
           ref_frame->data[0], mv, x_off + bx_off, y_off + by_off,
1034
           block_w, block_h, width, height, s->linesize,
1035
           s->put_pixels_tab[block_w == 8]);
1036

    
1037
    /* U/V */
1038
    if (s->profile == 3) {
1039
        uvmv.x &= ~7;
1040
        uvmv.y &= ~7;
1041
    }
1042
    x_off   >>= 1; y_off   >>= 1;
1043
    bx_off  >>= 1; by_off  >>= 1;
1044
    width   >>= 1; height  >>= 1;
1045
    block_w >>= 1; block_h >>= 1;
1046
    vp8_mc(s, 0, dst[1] + by_off * s->uvlinesize + bx_off,
1047
           ref_frame->data[1], &uvmv, x_off + bx_off, y_off + by_off,
1048
           block_w, block_h, width, height, s->uvlinesize,
1049
           s->put_pixels_tab[1 + (block_w == 4)]);
1050
    vp8_mc(s, 0, dst[2] + by_off * s->uvlinesize + bx_off,
1051
           ref_frame->data[2], &uvmv, x_off + bx_off, y_off + by_off,
1052
           block_w, block_h, width, height, s->uvlinesize,
1053
           s->put_pixels_tab[1 + (block_w == 4)]);
1054
}
1055

    
1056
/**
1057
 * Apply motion vectors to prediction buffer, chapter 18.
1058
 */
1059
static void inter_predict(VP8Context *s, uint8_t *dst[3], VP8Macroblock *mb,
1060
                          int mb_x, int mb_y)
1061
{
1062
    int x_off = mb_x << 4, y_off = mb_y << 4;
1063
    int width = 16*s->mb_width, height = 16*s->mb_height;
1064

    
1065
    if (mb->mode < VP8_MVMODE_SPLIT) {
1066
        vp8_mc_part(s, dst, s->framep[mb->ref_frame], x_off, y_off,
1067
                    0, 0, 16, 16, width, height, &mb->mv);
1068
    } else switch (mb->partitioning) {
1069
    case VP8_SPLITMVMODE_4x4: {
1070
        int x, y;
1071
        VP56mv uvmv;
1072

    
1073
        /* Y */
1074
        for (y = 0; y < 4; y++) {
1075
            for (x = 0; x < 4; x++) {
1076
                vp8_mc(s, 1, dst[0] + 4*y*s->linesize + x*4,
1077
                       s->framep[mb->ref_frame]->data[0], &mb->bmv[4*y + x],
1078
                       4*x + x_off, 4*y + y_off, 4, 4,
1079
                       width, height, s->linesize,
1080
                       s->put_pixels_tab[2]);
1081
            }
1082
        }
1083

    
1084
        /* U/V */
1085
        x_off >>= 1; y_off >>= 1; width >>= 1; height >>= 1;
1086
        for (y = 0; y < 2; y++) {
1087
            for (x = 0; x < 2; x++) {
1088
                uvmv.x = mb->bmv[ 2*y    * 4 + 2*x  ].x +
1089
                         mb->bmv[ 2*y    * 4 + 2*x+1].x +
1090
                         mb->bmv[(2*y+1) * 4 + 2*x  ].x +
1091
                         mb->bmv[(2*y+1) * 4 + 2*x+1].x;
1092
                uvmv.y = mb->bmv[ 2*y    * 4 + 2*x  ].y +
1093
                         mb->bmv[ 2*y    * 4 + 2*x+1].y +
1094
                         mb->bmv[(2*y+1) * 4 + 2*x  ].y +
1095
                         mb->bmv[(2*y+1) * 4 + 2*x+1].y;
1096
                uvmv.x = (uvmv.x + 2 + (uvmv.x >> (INT_BIT-1))) >> 2;
1097
                uvmv.y = (uvmv.y + 2 + (uvmv.y >> (INT_BIT-1))) >> 2;
1098
                if (s->profile == 3) {
1099
                    uvmv.x &= ~7;
1100
                    uvmv.y &= ~7;
1101
                }
1102
                vp8_mc(s, 0, dst[1] + 4*y*s->uvlinesize + x*4,
1103
                       s->framep[mb->ref_frame]->data[1], &uvmv,
1104
                       4*x + x_off, 4*y + y_off, 4, 4,
1105
                       width, height, s->uvlinesize,
1106
                       s->put_pixels_tab[2]);
1107
                vp8_mc(s, 0, dst[2] + 4*y*s->uvlinesize + x*4,
1108
                       s->framep[mb->ref_frame]->data[2], &uvmv,
1109
                       4*x + x_off, 4*y + y_off, 4, 4,
1110
                       width, height, s->uvlinesize,
1111
                       s->put_pixels_tab[2]);
1112
            }
1113
        }
1114
        break;
1115
    }
1116
    case VP8_SPLITMVMODE_16x8:
1117
        vp8_mc_part(s, dst, s->framep[mb->ref_frame], x_off, y_off,
1118
                    0, 0, 16, 8, width, height, &mb->bmv[0]);
1119
        vp8_mc_part(s, dst, s->framep[mb->ref_frame], x_off, y_off,
1120
                    0, 8, 16, 8, width, height, &mb->bmv[1]);
1121
        break;
1122
    case VP8_SPLITMVMODE_8x16:
1123
        vp8_mc_part(s, dst, s->framep[mb->ref_frame], x_off, y_off,
1124
                    0, 0, 8, 16, width, height, &mb->bmv[0]);
1125
        vp8_mc_part(s, dst, s->framep[mb->ref_frame], x_off, y_off,
1126
                    8, 0, 8, 16, width, height, &mb->bmv[1]);
1127
        break;
1128
    case VP8_SPLITMVMODE_8x8:
1129
        vp8_mc_part(s, dst, s->framep[mb->ref_frame], x_off, y_off,
1130
                    0, 0, 8, 8, width, height, &mb->bmv[0]);
1131
        vp8_mc_part(s, dst, s->framep[mb->ref_frame], x_off, y_off,
1132
                    8, 0, 8, 8, width, height, &mb->bmv[1]);
1133
        vp8_mc_part(s, dst, s->framep[mb->ref_frame], x_off, y_off,
1134
                    0, 8, 8, 8, width, height, &mb->bmv[2]);
1135
        vp8_mc_part(s, dst, s->framep[mb->ref_frame], x_off, y_off,
1136
                    8, 8, 8, 8, width, height, &mb->bmv[3]);
1137
        break;
1138
    }
1139
}
1140

    
1141
static void idct_mb(VP8Context *s, uint8_t *y_dst, uint8_t *u_dst, uint8_t *v_dst,
1142
                    VP8Macroblock *mb)
1143
{
1144
    int x, y, nnz;
1145

    
1146
    if (mb->mode != MODE_I4x4)
1147
        for (y = 0; y < 4; y++) {
1148
            for (x = 0; x < 4; x++) {
1149
                nnz = s->non_zero_count_cache[y][x];
1150
                if (nnz) {
1151
                    if (nnz == 1)
1152
                        s->vp8dsp.vp8_idct_dc_add(y_dst+4*x, s->block[y][x], s->linesize);
1153
                    else
1154
                        s->vp8dsp.vp8_idct_add(y_dst+4*x, s->block[y][x], s->linesize);
1155
                }
1156
            }
1157
            y_dst += 4*s->linesize;
1158
        }
1159

    
1160
    for (y = 0; y < 2; y++) {
1161
        for (x = 0; x < 2; x++) {
1162
            nnz = s->non_zero_count_cache[4][(y<<1)+x];
1163
            if (nnz) {
1164
                if (nnz == 1)
1165
                    s->vp8dsp.vp8_idct_dc_add(u_dst+4*x, s->block[4][(y<<1)+x], s->uvlinesize);
1166
                else
1167
                    s->vp8dsp.vp8_idct_add(u_dst+4*x, s->block[4][(y<<1)+x], s->uvlinesize);
1168
            }
1169

    
1170
            nnz = s->non_zero_count_cache[5][(y<<1)+x];
1171
            if (nnz) {
1172
                if (nnz == 1)
1173
                    s->vp8dsp.vp8_idct_dc_add(v_dst+4*x, s->block[5][(y<<1)+x], s->uvlinesize);
1174
                else
1175
                    s->vp8dsp.vp8_idct_add(v_dst+4*x, s->block[5][(y<<1)+x], s->uvlinesize);
1176
            }
1177
        }
1178
        u_dst += 4*s->uvlinesize;
1179
        v_dst += 4*s->uvlinesize;
1180
    }
1181
}
1182

    
1183
static void filter_level_for_mb(VP8Context *s, VP8Macroblock *mb, int *level, int *inner, int *hev_thresh)
1184
{
1185
    int interior_limit, filter_level;
1186

    
1187
    if (s->segmentation.enabled) {
1188
        filter_level = s->segmentation.filter_level[mb->segment];
1189
        if (!s->segmentation.absolute_vals)
1190
            filter_level += s->filter.level;
1191
    } else
1192
        filter_level = s->filter.level;
1193

    
1194
    if (s->lf_delta.enabled) {
1195
        filter_level += s->lf_delta.ref[mb->ref_frame];
1196

    
1197
        if (mb->ref_frame == VP56_FRAME_CURRENT) {
1198
            if (mb->mode == MODE_I4x4)
1199
                filter_level += s->lf_delta.mode[0];
1200
        } else {
1201
            if (mb->mode == VP8_MVMODE_ZERO)
1202
                filter_level += s->lf_delta.mode[1];
1203
            else if (mb->mode == VP8_MVMODE_SPLIT)
1204
                filter_level += s->lf_delta.mode[3];
1205
            else
1206
                filter_level += s->lf_delta.mode[2];
1207
        }
1208
    }
1209
    filter_level = av_clip(filter_level, 0, 63);
1210

    
1211
    interior_limit = filter_level;
1212
    if (s->filter.sharpness) {
1213
        interior_limit >>= s->filter.sharpness > 4 ? 2 : 1;
1214
        interior_limit = FFMIN(interior_limit, 9 - s->filter.sharpness);
1215
    }
1216
    interior_limit = FFMAX(interior_limit, 1);
1217

    
1218
    *level = filter_level;
1219
    *inner = interior_limit;
1220

    
1221
    if (hev_thresh) {
1222
        *hev_thresh = filter_level >= 15;
1223

    
1224
        if (s->keyframe) {
1225
            if (filter_level >= 40)
1226
                *hev_thresh = 2;
1227
        } else {
1228
            if (filter_level >= 40)
1229
                *hev_thresh = 3;
1230
            else if (filter_level >= 20)
1231
                *hev_thresh = 2;
1232
        }
1233
    }
1234
}
1235

    
1236
static void filter_mb(VP8Context *s, uint8_t *dst[3], VP8Macroblock *mb, int mb_x, int mb_y)
1237
{
1238
    int filter_level, inner_limit, hev_thresh, mbedge_lim, bedge_lim;
1239

    
1240
    filter_level_for_mb(s, mb, &filter_level, &inner_limit, &hev_thresh);
1241
    if (!filter_level)
1242
        return;
1243

    
1244
    mbedge_lim = 2*(filter_level+2) + inner_limit;
1245
     bedge_lim = 2* filter_level    + inner_limit;
1246

    
1247
    if (mb_x) {
1248
        s->vp8dsp.vp8_h_loop_filter16y(dst[0],     s->linesize,
1249
                                       mbedge_lim, inner_limit, hev_thresh);
1250
        s->vp8dsp.vp8_h_loop_filter8uv(dst[1],     dst[2],      s->uvlinesize,
1251
                                       mbedge_lim, inner_limit, hev_thresh);
1252
    }
1253

    
1254
    if (!mb->skip || mb->mode == MODE_I4x4 || mb->mode == VP8_MVMODE_SPLIT) {
1255
        s->vp8dsp.vp8_h_loop_filter16y_inner(dst[0]+ 4, s->linesize, bedge_lim,
1256
                                             inner_limit,   hev_thresh);
1257
        s->vp8dsp.vp8_h_loop_filter16y_inner(dst[0]+ 8, s->linesize, bedge_lim,
1258
                                             inner_limit,   hev_thresh);
1259
        s->vp8dsp.vp8_h_loop_filter16y_inner(dst[0]+12, s->linesize, bedge_lim,
1260
                                             inner_limit,   hev_thresh);
1261
        s->vp8dsp.vp8_h_loop_filter8uv_inner(dst[1] + 4,    dst[2] + 4,
1262
                                             s->uvlinesize, bedge_lim,
1263
                                             inner_limit,   hev_thresh);
1264
    }
1265

    
1266
    if (mb_y) {
1267
        s->vp8dsp.vp8_v_loop_filter16y(dst[0],     s->linesize,
1268
                                       mbedge_lim, inner_limit, hev_thresh);
1269
        s->vp8dsp.vp8_v_loop_filter8uv(dst[1],     dst[2],      s->uvlinesize,
1270
                                       mbedge_lim, inner_limit, hev_thresh);
1271
    }
1272

    
1273
    if (!mb->skip || mb->mode == MODE_I4x4 || mb->mode == VP8_MVMODE_SPLIT) {
1274
        s->vp8dsp.vp8_v_loop_filter16y_inner(dst[0]+ 4*s->linesize,
1275
                                             s->linesize,   bedge_lim,
1276
                                             inner_limit,   hev_thresh);
1277
        s->vp8dsp.vp8_v_loop_filter16y_inner(dst[0]+ 8*s->linesize,
1278
                                             s->linesize,   bedge_lim,
1279
                                             inner_limit,   hev_thresh);
1280
        s->vp8dsp.vp8_v_loop_filter16y_inner(dst[0]+12*s->linesize,
1281
                                             s->linesize,   bedge_lim,
1282
                                             inner_limit, hev_thresh);
1283
        s->vp8dsp.vp8_v_loop_filter8uv_inner(dst[1] + 4 * s->uvlinesize,
1284
                                             dst[2] + 4 * s->uvlinesize,
1285
                                             s->uvlinesize, bedge_lim,
1286
                                             inner_limit,   hev_thresh);
1287
    }
1288
}
1289

    
1290
static void filter_mb_simple(VP8Context *s, uint8_t *dst, VP8Macroblock *mb, int mb_x, int mb_y)
1291
{
1292
    int filter_level, inner_limit, mbedge_lim, bedge_lim;
1293

    
1294
    filter_level_for_mb(s, mb, &filter_level, &inner_limit, NULL);
1295
    if (!filter_level)
1296
        return;
1297

    
1298
    mbedge_lim = 2*(filter_level+2) + inner_limit;
1299
     bedge_lim = 2* filter_level    + inner_limit;
1300

    
1301
    if (mb_x)
1302
        s->vp8dsp.vp8_h_loop_filter_simple(dst, s->linesize, mbedge_lim);
1303
    if (!mb->skip || mb->mode == MODE_I4x4 || mb->mode == VP8_MVMODE_SPLIT) {
1304
        s->vp8dsp.vp8_h_loop_filter_simple(dst+ 4, s->linesize, bedge_lim);
1305
        s->vp8dsp.vp8_h_loop_filter_simple(dst+ 8, s->linesize, bedge_lim);
1306
        s->vp8dsp.vp8_h_loop_filter_simple(dst+12, s->linesize, bedge_lim);
1307
    }
1308

    
1309
    if (mb_y)
1310
        s->vp8dsp.vp8_v_loop_filter_simple(dst, s->linesize, mbedge_lim);
1311
    if (!mb->skip || mb->mode == MODE_I4x4 || mb->mode == VP8_MVMODE_SPLIT) {
1312
        s->vp8dsp.vp8_v_loop_filter_simple(dst+ 4*s->linesize, s->linesize, bedge_lim);
1313
        s->vp8dsp.vp8_v_loop_filter_simple(dst+ 8*s->linesize, s->linesize, bedge_lim);
1314
        s->vp8dsp.vp8_v_loop_filter_simple(dst+12*s->linesize, s->linesize, bedge_lim);
1315
    }
1316
}
1317

    
1318
static void filter_mb_row(VP8Context *s, int mb_y)
1319
{
1320
    VP8Macroblock *mb = s->macroblocks + mb_y*s->mb_stride;
1321
    uint8_t *dst[3] = {
1322
        s->framep[VP56_FRAME_CURRENT]->data[0] + 16*mb_y*s->linesize,
1323
        s->framep[VP56_FRAME_CURRENT]->data[1] +  8*mb_y*s->uvlinesize,
1324
        s->framep[VP56_FRAME_CURRENT]->data[2] +  8*mb_y*s->uvlinesize
1325
    };
1326
    int mb_x;
1327

    
1328
    for (mb_x = 0; mb_x < s->mb_width; mb_x++) {
1329
        backup_mb_border(s->top_border[mb_x+1], dst[0], dst[1], dst[2], s->linesize, s->uvlinesize, 0);
1330
        filter_mb(s, dst, mb++, mb_x, mb_y);
1331
        dst[0] += 16;
1332
        dst[1] += 8;
1333
        dst[2] += 8;
1334
    }
1335
}
1336

    
1337
static void filter_mb_row_simple(VP8Context *s, int mb_y)
1338
{
1339
    uint8_t *dst = s->framep[VP56_FRAME_CURRENT]->data[0] + 16*mb_y*s->linesize;
1340
    VP8Macroblock *mb = s->macroblocks + mb_y*s->mb_stride;
1341
    int mb_x;
1342

    
1343
    for (mb_x = 0; mb_x < s->mb_width; mb_x++) {
1344
        backup_mb_border(s->top_border[mb_x+1], dst, NULL, NULL, s->linesize, 0, 1);
1345
        filter_mb_simple(s, dst, mb++, mb_x, mb_y);
1346
        dst += 16;
1347
    }
1348
}
1349

    
1350
static int vp8_decode_frame(AVCodecContext *avctx, void *data, int *data_size,
1351
                            AVPacket *avpkt)
1352
{
1353
    VP8Context *s = avctx->priv_data;
1354
    int ret, mb_x, mb_y, i, y, referenced;
1355
    enum AVDiscard skip_thresh;
1356
    AVFrame *curframe;
1357

    
1358
    if ((ret = decode_frame_header(s, avpkt->data, avpkt->size)) < 0)
1359
        return ret;
1360

    
1361
    referenced = s->update_last || s->update_golden == VP56_FRAME_CURRENT
1362
                                || s->update_altref == VP56_FRAME_CURRENT;
1363

    
1364
    skip_thresh = !referenced ? AVDISCARD_NONREF :
1365
                    !s->keyframe ? AVDISCARD_NONKEY : AVDISCARD_ALL;
1366

    
1367
    if (avctx->skip_frame >= skip_thresh) {
1368
        s->invisible = 1;
1369
        goto skip_decode;
1370
    }
1371
    s->deblock_filter = s->filter.level && avctx->skip_loop_filter < skip_thresh;
1372

    
1373
    for (i = 0; i < 4; i++)
1374
        if (&s->frames[i] != s->framep[VP56_FRAME_PREVIOUS] &&
1375
            &s->frames[i] != s->framep[VP56_FRAME_GOLDEN] &&
1376
            &s->frames[i] != s->framep[VP56_FRAME_GOLDEN2]) {
1377
            curframe = s->framep[VP56_FRAME_CURRENT] = &s->frames[i];
1378
            break;
1379
        }
1380
    if (curframe->data[0])
1381
        avctx->release_buffer(avctx, curframe);
1382

    
1383
    curframe->key_frame = s->keyframe;
1384
    curframe->pict_type = s->keyframe ? FF_I_TYPE : FF_P_TYPE;
1385
    curframe->reference = referenced ? 3 : 0;
1386
    if ((ret = avctx->get_buffer(avctx, curframe))) {
1387
        av_log(avctx, AV_LOG_ERROR, "get_buffer() failed!\n");
1388
        return ret;
1389
    }
1390

    
1391
    // Given that arithmetic probabilities are updated every frame, it's quite likely
1392
    // that the values we have on a random interframe are complete junk if we didn't
1393
    // start decode on a keyframe. So just don't display anything rather than junk.
1394
    if (!s->keyframe && (!s->framep[VP56_FRAME_PREVIOUS] ||
1395
                         !s->framep[VP56_FRAME_GOLDEN] ||
1396
                         !s->framep[VP56_FRAME_GOLDEN2])) {
1397
        av_log(avctx, AV_LOG_WARNING, "Discarding interframe without a prior keyframe!\n");
1398
        return AVERROR_INVALIDDATA;
1399
    }
1400

    
1401
    s->linesize   = curframe->linesize[0];
1402
    s->uvlinesize = curframe->linesize[1];
1403

    
1404
    if (!s->edge_emu_buffer)
1405
        s->edge_emu_buffer = av_malloc(21*s->linesize);
1406

    
1407
    memset(s->top_nnz, 0, s->mb_width*sizeof(*s->top_nnz));
1408

    
1409
    // top edge of 127 for intra prediction
1410
    memset(s->top_border, 127, (s->mb_width+1)*sizeof(*s->top_border));
1411

    
1412
    for (mb_y = 0; mb_y < s->mb_height; mb_y++) {
1413
        VP56RangeCoder *c = &s->coeff_partition[mb_y & (s->num_coeff_partitions-1)];
1414
        VP8Macroblock *mb = s->macroblocks + mb_y*s->mb_stride;
1415
        uint8_t *intra4x4 = s->intra4x4_pred_mode + 4*mb_y*s->b4_stride;
1416
        uint8_t *dst[3] = {
1417
            curframe->data[0] + 16*mb_y*s->linesize,
1418
            curframe->data[1] +  8*mb_y*s->uvlinesize,
1419
            curframe->data[2] +  8*mb_y*s->uvlinesize
1420
        };
1421

    
1422
        memset(s->left_nnz, 0, sizeof(s->left_nnz));
1423

    
1424
        // left edge of 129 for intra prediction
1425
        if (!(avctx->flags & CODEC_FLAG_EMU_EDGE))
1426
            for (i = 0; i < 3; i++)
1427
                for (y = 0; y < 16>>!!i; y++)
1428
                    dst[i][y*curframe->linesize[i]-1] = 129;
1429
        if (mb_y)
1430
            memset(s->top_border, 129, sizeof(*s->top_border));
1431

    
1432
        for (mb_x = 0; mb_x < s->mb_width; mb_x++) {
1433
            decode_mb_mode(s, mb, mb_x, mb_y, intra4x4 + 4*mb_x);
1434

    
1435
            if (!mb->skip)
1436
                decode_mb_coeffs(s, c, mb, s->top_nnz[mb_x], s->left_nnz);
1437
            else {
1438
                AV_ZERO128(s->non_zero_count_cache);    // luma
1439
                AV_ZERO64(s->non_zero_count_cache[4]);  // chroma
1440
            }
1441

    
1442
            if (mb->mode <= MODE_I4x4) {
1443
                intra_predict(s, dst, mb, intra4x4 + 4*mb_x, mb_x, mb_y);
1444
                memset(mb->bmv, 0, sizeof(mb->bmv));
1445
            } else {
1446
                inter_predict(s, dst, mb, mb_x, mb_y);
1447
            }
1448

    
1449
            if (!mb->skip) {
1450
                idct_mb(s, dst[0], dst[1], dst[2], mb);
1451
            } else {
1452
                AV_ZERO64(s->left_nnz);
1453
                AV_WN64(s->top_nnz[mb_x], 0);   // array of 9, so unaligned
1454

    
1455
                // Reset DC block predictors if they would exist if the mb had coefficients
1456
                if (mb->mode != MODE_I4x4 && mb->mode != VP8_MVMODE_SPLIT) {
1457
                    s->left_nnz[8]      = 0;
1458
                    s->top_nnz[mb_x][8] = 0;
1459
                }
1460
            }
1461

    
1462
            dst[0] += 16;
1463
            dst[1] += 8;
1464
            dst[2] += 8;
1465
            mb++;
1466
        }
1467
        if (s->deblock_filter) {
1468
            if (s->filter.simple)
1469
                filter_mb_row_simple(s, mb_y);
1470
            else
1471
                filter_mb_row(s, mb_y);
1472
        }
1473
    }
1474

    
1475
skip_decode:
1476
    // if future frames don't use the updated probabilities,
1477
    // reset them to the values we saved
1478
    if (!s->update_probabilities)
1479
        s->prob[0] = s->prob[1];
1480

    
1481
    // check if golden and altref are swapped
1482
    if (s->update_altref == VP56_FRAME_GOLDEN &&
1483
        s->update_golden == VP56_FRAME_GOLDEN2)
1484
        FFSWAP(AVFrame *, s->framep[VP56_FRAME_GOLDEN], s->framep[VP56_FRAME_GOLDEN2]);
1485
    else {
1486
        if (s->update_altref != VP56_FRAME_NONE)
1487
            s->framep[VP56_FRAME_GOLDEN2] = s->framep[s->update_altref];
1488

    
1489
        if (s->update_golden != VP56_FRAME_NONE)
1490
            s->framep[VP56_FRAME_GOLDEN] = s->framep[s->update_golden];
1491
    }
1492

    
1493
    if (s->update_last) // move cur->prev
1494
        s->framep[VP56_FRAME_PREVIOUS] = s->framep[VP56_FRAME_CURRENT];
1495

    
1496
    // release no longer referenced frames
1497
    for (i = 0; i < 4; i++)
1498
        if (s->frames[i].data[0] &&
1499
            &s->frames[i] != s->framep[VP56_FRAME_CURRENT] &&
1500
            &s->frames[i] != s->framep[VP56_FRAME_PREVIOUS] &&
1501
            &s->frames[i] != s->framep[VP56_FRAME_GOLDEN] &&
1502
            &s->frames[i] != s->framep[VP56_FRAME_GOLDEN2])
1503
            avctx->release_buffer(avctx, &s->frames[i]);
1504

    
1505
    if (!s->invisible) {
1506
        *(AVFrame*)data = *s->framep[VP56_FRAME_CURRENT];
1507
        *data_size = sizeof(AVFrame);
1508
    }
1509

    
1510
    return avpkt->size;
1511
}
1512

    
1513
static av_cold int vp8_decode_init(AVCodecContext *avctx)
1514
{
1515
    VP8Context *s = avctx->priv_data;
1516

    
1517
    s->avctx = avctx;
1518
    avctx->pix_fmt = PIX_FMT_YUV420P;
1519

    
1520
    dsputil_init(&s->dsp, avctx);
1521
    ff_h264_pred_init(&s->hpc, CODEC_ID_VP8);
1522
    ff_vp8dsp_init(&s->vp8dsp);
1523

    
1524
    // intra pred needs edge emulation among other things
1525
    if (avctx->flags&CODEC_FLAG_EMU_EDGE) {
1526
        av_log(avctx, AV_LOG_ERROR, "Edge emulation not supported\n");
1527
        return AVERROR_PATCHWELCOME;
1528
    }
1529

    
1530
    return 0;
1531
}
1532

    
1533
static av_cold int vp8_decode_free(AVCodecContext *avctx)
1534
{
1535
    vp8_decode_flush(avctx);
1536
    return 0;
1537
}
1538

    
1539
AVCodec vp8_decoder = {
1540
    "vp8",
1541
    AVMEDIA_TYPE_VIDEO,
1542
    CODEC_ID_VP8,
1543
    sizeof(VP8Context),
1544
    vp8_decode_init,
1545
    NULL,
1546
    vp8_decode_free,
1547
    vp8_decode_frame,
1548
    CODEC_CAP_DR1,
1549
    .flush = vp8_decode_flush,
1550
    .long_name = NULL_IF_CONFIG_SMALL("On2 VP8"),
1551
};