Statistics
| Branch: | Revision:

ffmpeg / libavcodec / aaccoder.c @ 1676b099

History | View | Annotate | Download (42.6 KB)

1
/*
2
 * AAC coefficients encoder
3
 * Copyright (C) 2008-2009 Konstantin Shishkov
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21

    
22
/**
23
 * @file
24
 * AAC coefficients encoder
25
 */
26

    
27
/***********************************
28
 *              TODOs:
29
 * speedup quantizer selection
30
 * add sane pulse detection
31
 ***********************************/
32

    
33
#include <float.h>
34
#include "avcodec.h"
35
#include "put_bits.h"
36
#include "aac.h"
37
#include "aacenc.h"
38
#include "aactab.h"
39

    
40
/** bits needed to code codebook run value for long windows */
41
static const uint8_t run_value_bits_long[64] = {
42
     5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,
43
     5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5, 10,
44
    10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
45
    10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 15
46
};
47

    
48
/** bits needed to code codebook run value for short windows */
49
static const uint8_t run_value_bits_short[16] = {
50
    3, 3, 3, 3, 3, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 9
51
};
52

    
53
static const uint8_t *run_value_bits[2] = {
54
    run_value_bits_long, run_value_bits_short
55
};
56

    
57

    
58
/**
59
 * Quantize one coefficient.
60
 * @return absolute value of the quantized coefficient
61
 * @see 3GPP TS26.403 5.6.2 "Scalefactor determination"
62
 */
63
static av_always_inline int quant(float coef, const float Q)
64
{
65
    float a = coef * Q;
66
    return sqrtf(a * sqrtf(a)) + 0.4054;
67
}
68

    
69
static void quantize_bands(int *out, const float *in, const float *scaled,
70
                           int size, float Q34, int is_signed, int maxval)
71
{
72
    int i;
73
    double qc;
74
    for (i = 0; i < size; i++) {
75
        qc = scaled[i] * Q34;
76
        out[i] = (int)FFMIN(qc + 0.4054, (double)maxval);
77
        if (is_signed && in[i] < 0.0f) {
78
            out[i] = -out[i];
79
        }
80
    }
81
}
82

    
83
static void abs_pow34_v(float *out, const float *in, const int size)
84
{
85
#ifndef USE_REALLY_FULL_SEARCH
86
    int i;
87
    for (i = 0; i < size; i++) {
88
        float a = fabsf(in[i]);
89
        out[i] = sqrtf(a * sqrtf(a));
90
    }
91
#endif /* USE_REALLY_FULL_SEARCH */
92
}
93

    
94
static const uint8_t aac_cb_range [12] = {0, 3, 3, 3, 3, 9, 9, 8, 8, 13, 13, 17};
95
static const uint8_t aac_cb_maxval[12] = {0, 1, 1, 2, 2, 4, 4, 7, 7, 12, 12, 16};
96

    
97
/**
98
 * Calculate rate distortion cost for quantizing with given codebook
99
 *
100
 * @return quantization distortion
101
 */
102
static av_always_inline float quantize_and_encode_band_cost_template(
103
                                struct AACEncContext *s,
104
                                PutBitContext *pb, const float *in,
105
                                const float *scaled, int size, int scale_idx,
106
                                int cb, const float lambda, const float uplim,
107
                                int *bits, int BT_ZERO, int BT_UNSIGNED,
108
                                int BT_PAIR, int BT_ESC)
109
{
110
    const float IQ = ff_aac_pow2sf_tab[200 + scale_idx - SCALE_ONE_POS + SCALE_DIV_512];
111
    const float  Q = ff_aac_pow2sf_tab[200 - scale_idx + SCALE_ONE_POS - SCALE_DIV_512];
112
    const float CLIPPED_ESCAPE = 165140.0f*IQ;
113
    int i, j, k;
114
    float cost = 0;
115
    const int dim = BT_PAIR ? 2 : 4;
116
    int resbits = 0;
117
    const float  Q34 = sqrtf(Q * sqrtf(Q));
118
    const int range  = aac_cb_range[cb];
119
    const int maxval = aac_cb_maxval[cb];
120
    int off;
121

    
122
    if (BT_ZERO) {
123
        for (i = 0; i < size; i++)
124
            cost += in[i]*in[i];
125
        if (bits)
126
            *bits = 0;
127
        return cost * lambda;
128
    }
129
    if (!scaled) {
130
        abs_pow34_v(s->scoefs, in, size);
131
        scaled = s->scoefs;
132
    }
133
    quantize_bands(s->qcoefs, in, scaled, size, Q34, !BT_UNSIGNED, maxval);
134
    if (BT_UNSIGNED) {
135
        off = 0;
136
    } else {
137
        off = maxval;
138
    }
139
    for (i = 0; i < size; i += dim) {
140
        const float *vec;
141
        int *quants = s->qcoefs + i;
142
        int curidx = 0;
143
        int curbits;
144
        float rd = 0.0f;
145
        for (j = 0; j < dim; j++) {
146
            curidx *= range;
147
            curidx += quants[j] + off;
148
        }
149
            curbits =  ff_aac_spectral_bits[cb-1][curidx];
150
            vec     = &ff_aac_codebook_vectors[cb-1][curidx*dim];
151
            if (BT_UNSIGNED) {
152
                for (k = 0; k < dim; k++) {
153
                    float t = fabsf(in[i+k]);
154
                    float di;
155
                    if (BT_ESC && vec[k] == 64.0f) { //FIXME: slow
156
                        if (t >= CLIPPED_ESCAPE) {
157
                            di = t - CLIPPED_ESCAPE;
158
                            curbits += 21;
159
                        } else {
160
                            int c = av_clip(quant(t, Q), 0, 8191);
161
                            di = t - c*cbrtf(c)*IQ;
162
                            curbits += av_log2(c)*2 - 4 + 1;
163
                        }
164
                    } else {
165
                        di = t - vec[k]*IQ;
166
                    }
167
                    if (vec[k] != 0.0f)
168
                        curbits++;
169
                    rd += di*di;
170
                }
171
            } else {
172
                for (k = 0; k < dim; k++) {
173
                    float di = in[i+k] - vec[k]*IQ;
174
                    rd += di*di;
175
                }
176
            }
177
        cost    += rd * lambda + curbits;
178
        resbits += curbits;
179
        if (cost >= uplim)
180
            return uplim;
181
        if (pb) {
182
        put_bits(pb, ff_aac_spectral_bits[cb-1][curidx], ff_aac_spectral_codes[cb-1][curidx]);
183
        if (BT_UNSIGNED)
184
            for (j = 0; j < dim; j++)
185
                if (ff_aac_codebook_vectors[cb-1][curidx*dim+j] != 0.0f)
186
                    put_bits(pb, 1, in[i+j] < 0.0f);
187
        if (BT_ESC) {
188
            for (j = 0; j < 2; j++) {
189
                if (ff_aac_codebook_vectors[cb-1][curidx*2+j] == 64.0f) {
190
                    int coef = av_clip(quant(fabsf(in[i+j]), Q), 0, 8191);
191
                    int len = av_log2(coef);
192

    
193
                    put_bits(pb, len - 4 + 1, (1 << (len - 4 + 1)) - 2);
194
                    put_bits(pb, len, coef & ((1 << len) - 1));
195
                }
196
            }
197
        }
198
        }
199
    }
200

    
201
    if (bits)
202
        *bits = resbits;
203
    return cost;
204
}
205

    
206
#define QUANTIZE_AND_ENCODE_BAND_COST_FUNC(NAME, BT_ZERO, BT_UNSIGNED, BT_PAIR, BT_ESC) \
207
static float quantize_and_encode_band_cost_ ## NAME(                                        \
208
                                struct AACEncContext *s,                                \
209
                                PutBitContext *pb, const float *in,                     \
210
                                const float *scaled, int size, int scale_idx,           \
211
                                int cb, const float lambda, const float uplim,          \
212
                                int *bits) {                                            \
213
    return quantize_and_encode_band_cost_template(                                      \
214
                                s, pb, in, scaled, size, scale_idx,                     \
215
                                BT_ESC ? ESC_BT : cb, lambda, uplim, bits,              \
216
                                BT_ZERO, BT_UNSIGNED, BT_PAIR, BT_ESC);                 \
217
}
218

    
219
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(ZERO,  1, 0, 0, 0)
220
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(SQUAD, 0, 0, 0, 0)
221
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(UQUAD, 0, 1, 0, 0)
222
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(SPAIR, 0, 0, 1, 0)
223
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(UPAIR, 0, 1, 1, 0)
224
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(ESC,   0, 1, 1, 1)
225

    
226
static float (*quantize_and_encode_band_cost_arr[])(
227
                                struct AACEncContext *s,
228
                                PutBitContext *pb, const float *in,
229
                                const float *scaled, int size, int scale_idx,
230
                                int cb, const float lambda, const float uplim,
231
                                int *bits) = {
232
    quantize_and_encode_band_cost_ZERO,
233
    quantize_and_encode_band_cost_SQUAD,
234
    quantize_and_encode_band_cost_SQUAD,
235
    quantize_and_encode_band_cost_UQUAD,
236
    quantize_and_encode_band_cost_UQUAD,
237
    quantize_and_encode_band_cost_SPAIR,
238
    quantize_and_encode_band_cost_SPAIR,
239
    quantize_and_encode_band_cost_UPAIR,
240
    quantize_and_encode_band_cost_UPAIR,
241
    quantize_and_encode_band_cost_UPAIR,
242
    quantize_and_encode_band_cost_UPAIR,
243
    quantize_and_encode_band_cost_ESC,
244
};
245

    
246
#define quantize_and_encode_band_cost(                                  \
247
                                s, pb, in, scaled, size, scale_idx, cb, \
248
                                lambda, uplim, bits)                    \
249
    quantize_and_encode_band_cost_arr[cb](                              \
250
                                s, pb, in, scaled, size, scale_idx, cb, \
251
                                lambda, uplim, bits)
252

    
253
static float quantize_band_cost(struct AACEncContext *s, const float *in,
254
                                const float *scaled, int size, int scale_idx,
255
                                int cb, const float lambda, const float uplim,
256
                                int *bits)
257
{
258
    return quantize_and_encode_band_cost(s, NULL, in, scaled, size, scale_idx,
259
                                         cb, lambda, uplim, bits);
260
}
261

    
262
static void quantize_and_encode_band(struct AACEncContext *s, PutBitContext *pb,
263
                                     const float *in, int size, int scale_idx,
264
                                     int cb, const float lambda)
265
{
266
    quantize_and_encode_band_cost(s, pb, in, NULL, size, scale_idx, cb, lambda,
267
                                  INFINITY, NULL);
268
}
269

    
270
static float find_max_val(int group_len, int swb_size, const float *scaled) {
271
    float maxval = 0.0f;
272
    int w2, i;
273
    for (w2 = 0; w2 < group_len; w2++) {
274
        for (i = 0; i < swb_size; i++) {
275
            maxval = FFMAX(maxval, scaled[w2*128+i]);
276
        }
277
    }
278
    return maxval;
279
}
280

    
281
static int find_min_book(float maxval, int sf) {
282
    float Q = ff_aac_pow2sf_tab[200 - sf + SCALE_ONE_POS - SCALE_DIV_512];
283
    float Q34 = sqrtf(Q * sqrtf(Q));
284
    int qmaxval, cb;
285
    qmaxval = maxval * Q34 + 0.4054f;
286
    if      (qmaxval ==  0) cb = 0;
287
    else if (qmaxval ==  1) cb = 1;
288
    else if (qmaxval ==  2) cb = 3;
289
    else if (qmaxval <=  4) cb = 5;
290
    else if (qmaxval <=  7) cb = 7;
291
    else if (qmaxval <= 12) cb = 9;
292
    else                    cb = 11;
293
    return cb;
294
}
295

    
296
/**
297
 * structure used in optimal codebook search
298
 */
299
typedef struct BandCodingPath {
300
    int prev_idx; ///< pointer to the previous path point
301
    float cost;   ///< path cost
302
    int run;
303
} BandCodingPath;
304

    
305
/**
306
 * Encode band info for single window group bands.
307
 */
308
static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce,
309
                                     int win, int group_len, const float lambda)
310
{
311
    BandCodingPath path[120][12];
312
    int w, swb, cb, start, start2, size;
313
    int i, j;
314
    const int max_sfb  = sce->ics.max_sfb;
315
    const int run_bits = sce->ics.num_windows == 1 ? 5 : 3;
316
    const int run_esc  = (1 << run_bits) - 1;
317
    int idx, ppos, count;
318
    int stackrun[120], stackcb[120], stack_len;
319
    float next_minrd = INFINITY;
320
    int next_mincb = 0;
321

    
322
    abs_pow34_v(s->scoefs, sce->coeffs, 1024);
323
    start = win*128;
324
    for (cb = 0; cb < 12; cb++) {
325
        path[0][cb].cost     = 0.0f;
326
        path[0][cb].prev_idx = -1;
327
        path[0][cb].run      = 0;
328
    }
329
    for (swb = 0; swb < max_sfb; swb++) {
330
        start2 = start;
331
        size = sce->ics.swb_sizes[swb];
332
        if (sce->zeroes[win*16 + swb]) {
333
            for (cb = 0; cb < 12; cb++) {
334
                path[swb+1][cb].prev_idx = cb;
335
                path[swb+1][cb].cost     = path[swb][cb].cost;
336
                path[swb+1][cb].run      = path[swb][cb].run + 1;
337
            }
338
        } else {
339
            float minrd = next_minrd;
340
            int mincb = next_mincb;
341
            next_minrd = INFINITY;
342
            next_mincb = 0;
343
            for (cb = 0; cb < 12; cb++) {
344
                float cost_stay_here, cost_get_here;
345
                float rd = 0.0f;
346
                for (w = 0; w < group_len; w++) {
347
                    FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(win+w)*16+swb];
348
                    rd += quantize_band_cost(s, sce->coeffs + start + w*128,
349
                                             s->scoefs + start + w*128, size,
350
                                             sce->sf_idx[(win+w)*16+swb], cb,
351
                                             lambda / band->threshold, INFINITY, NULL);
352
                }
353
                cost_stay_here = path[swb][cb].cost + rd;
354
                cost_get_here  = minrd              + rd + run_bits + 4;
355
                if (   run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run]
356
                    != run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1])
357
                    cost_stay_here += run_bits;
358
                if (cost_get_here < cost_stay_here) {
359
                    path[swb+1][cb].prev_idx = mincb;
360
                    path[swb+1][cb].cost     = cost_get_here;
361
                    path[swb+1][cb].run      = 1;
362
                } else {
363
                    path[swb+1][cb].prev_idx = cb;
364
                    path[swb+1][cb].cost     = cost_stay_here;
365
                    path[swb+1][cb].run      = path[swb][cb].run + 1;
366
                }
367
                if (path[swb+1][cb].cost < next_minrd) {
368
                    next_minrd = path[swb+1][cb].cost;
369
                    next_mincb = cb;
370
                }
371
            }
372
        }
373
        start += sce->ics.swb_sizes[swb];
374
    }
375

    
376
    //convert resulting path from backward-linked list
377
    stack_len = 0;
378
    idx       = 0;
379
    for (cb = 1; cb < 12; cb++)
380
        if (path[max_sfb][cb].cost < path[max_sfb][idx].cost)
381
            idx = cb;
382
    ppos = max_sfb;
383
    while (ppos > 0) {
384
        cb = idx;
385
        stackrun[stack_len] = path[ppos][cb].run;
386
        stackcb [stack_len] = cb;
387
        idx = path[ppos-path[ppos][cb].run+1][cb].prev_idx;
388
        ppos -= path[ppos][cb].run;
389
        stack_len++;
390
    }
391
    //perform actual band info encoding
392
    start = 0;
393
    for (i = stack_len - 1; i >= 0; i--) {
394
        put_bits(&s->pb, 4, stackcb[i]);
395
        count = stackrun[i];
396
        memset(sce->zeroes + win*16 + start, !stackcb[i], count);
397
        //XXX: memset when band_type is also uint8_t
398
        for (j = 0; j < count; j++) {
399
            sce->band_type[win*16 + start] =  stackcb[i];
400
            start++;
401
        }
402
        while (count >= run_esc) {
403
            put_bits(&s->pb, run_bits, run_esc);
404
            count -= run_esc;
405
        }
406
        put_bits(&s->pb, run_bits, count);
407
    }
408
}
409

    
410
static void codebook_trellis_rate(AACEncContext *s, SingleChannelElement *sce,
411
                                  int win, int group_len, const float lambda)
412
{
413
    BandCodingPath path[120][12];
414
    int w, swb, cb, start, start2, size;
415
    int i, j;
416
    const int max_sfb  = sce->ics.max_sfb;
417
    const int run_bits = sce->ics.num_windows == 1 ? 5 : 3;
418
    const int run_esc  = (1 << run_bits) - 1;
419
    int idx, ppos, count;
420
    int stackrun[120], stackcb[120], stack_len;
421
    float next_minrd = INFINITY;
422
    int next_mincb = 0;
423

    
424
    abs_pow34_v(s->scoefs, sce->coeffs, 1024);
425
    start = win*128;
426
    for (cb = 0; cb < 12; cb++) {
427
        path[0][cb].cost     = run_bits+4;
428
        path[0][cb].prev_idx = -1;
429
        path[0][cb].run      = 0;
430
    }
431
    for (swb = 0; swb < max_sfb; swb++) {
432
        start2 = start;
433
        size = sce->ics.swb_sizes[swb];
434
        if (sce->zeroes[win*16 + swb]) {
435
            for (cb = 0; cb < 12; cb++) {
436
                path[swb+1][cb].prev_idx = cb;
437
                path[swb+1][cb].cost     = path[swb][cb].cost;
438
                path[swb+1][cb].run      = path[swb][cb].run + 1;
439
            }
440
        } else {
441
            float minrd = next_minrd;
442
            int mincb = next_mincb;
443
            int startcb = sce->band_type[win*16+swb];
444
            next_minrd = INFINITY;
445
            next_mincb = 0;
446
            for (cb = 0; cb < startcb; cb++) {
447
                path[swb+1][cb].cost = 61450;
448
                path[swb+1][cb].prev_idx = -1;
449
                path[swb+1][cb].run = 0;
450
            }
451
            for (cb = startcb; cb < 12; cb++) {
452
                float cost_stay_here, cost_get_here;
453
                float rd = 0.0f;
454
                for (w = 0; w < group_len; w++) {
455
                    rd += quantize_band_cost(s, sce->coeffs + start + w*128,
456
                                             s->scoefs + start + w*128, size,
457
                                             sce->sf_idx[(win+w)*16+swb], cb,
458
                                             0, INFINITY, NULL);
459
                }
460
                cost_stay_here = path[swb][cb].cost + rd;
461
                cost_get_here  = minrd              + rd + run_bits + 4;
462
                if (   run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run]
463
                    != run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1])
464
                    cost_stay_here += run_bits;
465
                if (cost_get_here < cost_stay_here) {
466
                    path[swb+1][cb].prev_idx = mincb;
467
                    path[swb+1][cb].cost     = cost_get_here;
468
                    path[swb+1][cb].run      = 1;
469
                } else {
470
                    path[swb+1][cb].prev_idx = cb;
471
                    path[swb+1][cb].cost     = cost_stay_here;
472
                    path[swb+1][cb].run      = path[swb][cb].run + 1;
473
                }
474
                if (path[swb+1][cb].cost < next_minrd) {
475
                    next_minrd = path[swb+1][cb].cost;
476
                    next_mincb = cb;
477
                }
478
            }
479
        }
480
        start += sce->ics.swb_sizes[swb];
481
    }
482

    
483
    //convert resulting path from backward-linked list
484
    stack_len = 0;
485
    idx       = 0;
486
    for (cb = 1; cb < 12; cb++)
487
        if (path[max_sfb][cb].cost < path[max_sfb][idx].cost)
488
            idx = cb;
489
    ppos = max_sfb;
490
    while (ppos > 0) {
491
        if (idx < 0) abort();
492
        cb = idx;
493
        stackrun[stack_len] = path[ppos][cb].run;
494
        stackcb [stack_len] = cb;
495
        idx = path[ppos-path[ppos][cb].run+1][cb].prev_idx;
496
        ppos -= path[ppos][cb].run;
497
        stack_len++;
498
    }
499
    //perform actual band info encoding
500
    start = 0;
501
    for (i = stack_len - 1; i >= 0; i--) {
502
        put_bits(&s->pb, 4, stackcb[i]);
503
        count = stackrun[i];
504
        memset(sce->zeroes + win*16 + start, !stackcb[i], count);
505
        //XXX: memset when band_type is also uint8_t
506
        for (j = 0; j < count; j++) {
507
            sce->band_type[win*16 + start] =  stackcb[i];
508
            start++;
509
        }
510
        while (count >= run_esc) {
511
            put_bits(&s->pb, run_bits, run_esc);
512
            count -= run_esc;
513
        }
514
        put_bits(&s->pb, run_bits, count);
515
    }
516
}
517

    
518
typedef struct TrellisPath {
519
    float cost;
520
    int prev;
521
} TrellisPath;
522

    
523
#define TRELLIS_STAGES 121
524
#define TRELLIS_STATES (SCALE_MAX_DIFF+1)
525

    
526
static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s,
527
                                       SingleChannelElement *sce,
528
                                       const float lambda)
529
{
530
    int q, w, w2, g, start = 0;
531
    int i, j;
532
    int idx;
533
    TrellisPath paths[TRELLIS_STAGES][TRELLIS_STATES];
534
    int bandaddr[TRELLIS_STAGES];
535
    int minq;
536
    float mincost;
537
    float q0f = FLT_MAX, q1f = 0.0f, qnrgf = 0.0f;
538
    int q0, q1, qcnt = 0;
539

    
540
    for (i = 0; i < 1024; i++) {
541
        float t = fabsf(sce->coeffs[i]);
542
        if (t > 0.0f) {
543
            q0f = FFMIN(q0f, t);
544
            q1f = FFMAX(q1f, t);
545
            qnrgf += t*t;
546
            qcnt++;
547
        }
548
    }
549

    
550
    if (!qcnt) {
551
        memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
552
        memset(sce->zeroes, 1, sizeof(sce->zeroes));
553
        return;
554
    }
555

    
556
    //minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
557
    q0 = av_clip_uint8(log2(q0f)*4 - 69 + SCALE_ONE_POS - SCALE_DIV_512);
558
    //maximum scalefactor index is when maximum coefficient after quantizing is still not zero
559
    q1 = av_clip_uint8(log2(q1f)*4 +  6 + SCALE_ONE_POS - SCALE_DIV_512);
560
    //av_log(NULL, AV_LOG_ERROR, "q0 %d, q1 %d\n", q0, q1);
561
    if (q1 - q0 > 60) {
562
        int q0low  = q0;
563
        int q1high = q1;
564
        //minimum scalefactor index is when maximum nonzero coefficient after quantizing is not clipped
565
        int qnrg = av_clip_uint8(log2(sqrt(qnrgf/qcnt))*4 - 31 + SCALE_ONE_POS - SCALE_DIV_512);
566
        q1 = qnrg + 30;
567
        q0 = qnrg - 30;
568
    //av_log(NULL, AV_LOG_ERROR, "q0 %d, q1 %d\n", q0, q1);
569
        if (q0 < q0low) {
570
            q1 += q0low - q0;
571
            q0  = q0low;
572
        } else if (q1 > q1high) {
573
            q0 -= q1 - q1high;
574
            q1  = q1high;
575
        }
576
    }
577
    //av_log(NULL, AV_LOG_ERROR, "q0 %d, q1 %d\n", q0, q1);
578

    
579
    for (i = 0; i < TRELLIS_STATES; i++) {
580
        paths[0][i].cost    = 0.0f;
581
        paths[0][i].prev    = -1;
582
    }
583
    for (j = 1; j < TRELLIS_STAGES; j++) {
584
        for (i = 0; i < TRELLIS_STATES; i++) {
585
            paths[j][i].cost    = INFINITY;
586
            paths[j][i].prev    = -2;
587
        }
588
    }
589
    idx = 1;
590
    abs_pow34_v(s->scoefs, sce->coeffs, 1024);
591
    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
592
        start = w*128;
593
        for (g = 0; g < sce->ics.num_swb; g++) {
594
            const float *coefs = sce->coeffs + start;
595
            float qmin, qmax;
596
            int nz = 0;
597

    
598
            bandaddr[idx] = w * 16 + g;
599
            qmin = INT_MAX;
600
            qmax = 0.0f;
601
            for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
602
                FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
603
                if (band->energy <= band->threshold || band->threshold == 0.0f) {
604
                    sce->zeroes[(w+w2)*16+g] = 1;
605
                    continue;
606
                }
607
                sce->zeroes[(w+w2)*16+g] = 0;
608
                nz = 1;
609
                for (i = 0; i < sce->ics.swb_sizes[g]; i++) {
610
                    float t = fabsf(coefs[w2*128+i]);
611
                    if (t > 0.0f)
612
                        qmin = FFMIN(qmin, t);
613
                    qmax = FFMAX(qmax, t);
614
                }
615
            }
616
            if (nz) {
617
                int minscale, maxscale;
618
                float minrd = INFINITY;
619
                float maxval;
620
                //minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
621
                minscale = av_clip_uint8(log2(qmin)*4 - 69 + SCALE_ONE_POS - SCALE_DIV_512);
622
                //maximum scalefactor index is when maximum coefficient after quantizing is still not zero
623
                maxscale = av_clip_uint8(log2(qmax)*4 +  6 + SCALE_ONE_POS - SCALE_DIV_512);
624
                minscale = av_clip(minscale - q0, 0, TRELLIS_STATES - 1);
625
                maxscale = av_clip(maxscale - q0, 0, TRELLIS_STATES);
626
                maxval = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], s->scoefs+start);
627
                for (q = minscale; q < maxscale; q++) {
628
                    float dist = 0;
629
                    int cb = find_min_book(maxval, sce->sf_idx[w*16+g]);
630
                    for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
631
                        FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
632
                        dist += quantize_band_cost(s, coefs + w2*128, s->scoefs + start + w2*128, sce->ics.swb_sizes[g],
633
                                                   q + q0, cb, lambda / band->threshold, INFINITY, NULL);
634
                    }
635
                    minrd = FFMIN(minrd, dist);
636

    
637
                    for (i = 0; i < q1 - q0; i++) {
638
                        float cost;
639
                        cost = paths[idx - 1][i].cost + dist
640
                               + ff_aac_scalefactor_bits[q - i + SCALE_DIFF_ZERO];
641
                        if (cost < paths[idx][q].cost) {
642
                            paths[idx][q].cost    = cost;
643
                            paths[idx][q].prev    = i;
644
                        }
645
                    }
646
                }
647
            } else {
648
                for (q = 0; q < q1 - q0; q++) {
649
                    paths[idx][q].cost = paths[idx - 1][q].cost + 1;
650
                    paths[idx][q].prev = q;
651
                }
652
            }
653
            sce->zeroes[w*16+g] = !nz;
654
            start += sce->ics.swb_sizes[g];
655
            idx++;
656
        }
657
    }
658
    idx--;
659
    mincost = paths[idx][0].cost;
660
    minq    = 0;
661
    for (i = 1; i < TRELLIS_STATES; i++) {
662
        if (paths[idx][i].cost < mincost) {
663
            mincost = paths[idx][i].cost;
664
            minq = i;
665
        }
666
    }
667
    while (idx) {
668
        sce->sf_idx[bandaddr[idx]] = minq + q0;
669
        minq = paths[idx][minq].prev;
670
        idx--;
671
    }
672
    //set the same quantizers inside window groups
673
    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
674
        for (g = 0;  g < sce->ics.num_swb; g++)
675
            for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
676
                sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
677
}
678

    
679
/**
680
 * two-loop quantizers search taken from ISO 13818-7 Appendix C
681
 */
682
static void search_for_quantizers_twoloop(AVCodecContext *avctx,
683
                                          AACEncContext *s,
684
                                          SingleChannelElement *sce,
685
                                          const float lambda)
686
{
687
    int start = 0, i, w, w2, g;
688
    int destbits = avctx->bit_rate * 1024.0 / avctx->sample_rate / avctx->channels;
689
    float dists[128], uplims[128];
690
    int fflag, minscaler;
691
    int its  = 0;
692
    int allz = 0;
693
    float minthr = INFINITY;
694

    
695
    //XXX: some heuristic to determine initial quantizers will reduce search time
696
    memset(dists, 0, sizeof(dists));
697
    //determine zero bands and upper limits
698
    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
699
        for (g = 0;  g < sce->ics.num_swb; g++) {
700
            int nz = 0;
701
            float uplim = 0.0f;
702
            for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
703
                FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
704
                uplim += band->threshold;
705
                if (band->energy <= band->threshold || band->threshold == 0.0f) {
706
                    sce->zeroes[(w+w2)*16+g] = 1;
707
                    continue;
708
                }
709
                nz = 1;
710
            }
711
            uplims[w*16+g] = uplim *512;
712
            sce->zeroes[w*16+g] = !nz;
713
            if (nz)
714
                minthr = FFMIN(minthr, uplim);
715
            allz = FFMAX(allz, nz);
716
        }
717
    }
718
    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
719
        for (g = 0;  g < sce->ics.num_swb; g++) {
720
            if (sce->zeroes[w*16+g]) {
721
                sce->sf_idx[w*16+g] = SCALE_ONE_POS;
722
                continue;
723
            }
724
            sce->sf_idx[w*16+g] = SCALE_ONE_POS + FFMIN(log2(uplims[w*16+g]/minthr)*4,59);
725
        }
726
    }
727

    
728
    if (!allz)
729
        return;
730
    abs_pow34_v(s->scoefs, sce->coeffs, 1024);
731
    //perform two-loop search
732
    //outer loop - improve quality
733
    do {
734
        int tbits, qstep;
735
        minscaler = sce->sf_idx[0];
736
        //inner loop - quantize spectrum to fit into given number of bits
737
        qstep = its ? 1 : 32;
738
        do {
739
            int prev = -1;
740
            tbits = 0;
741
            fflag = 0;
742
            for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
743
                start = w*128;
744
                for (g = 0;  g < sce->ics.num_swb; g++) {
745
                    const float *coefs = sce->coeffs + start;
746
                    const float *scaled = s->scoefs + start;
747
                    int bits = 0;
748
                    int cb;
749
                    float dist = 0.0f;
750

    
751
                    if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218) {
752
                        start += sce->ics.swb_sizes[g];
753
                        continue;
754
                    }
755
                    minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]);
756
                    cb = find_min_book(find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], scaled), sce->sf_idx[w*16+g]);
757
                    for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
758
                        int b;
759
                        dist += quantize_band_cost(s, coefs + w2*128,
760
                                                   scaled + w2*128,
761
                                                   sce->ics.swb_sizes[g],
762
                                                   sce->sf_idx[w*16+g],
763
                                                   cb,
764
                                                   1.0f,
765
                                                   INFINITY,
766
                                                   &b);
767
                        bits += b;
768
                    }
769
                    dists[w*16+g] = dist - bits;
770
                    if (prev != -1) {
771
                        bits += ff_aac_scalefactor_bits[sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO];
772
                    }
773
                    tbits += bits;
774
                    start += sce->ics.swb_sizes[g];
775
                    prev = sce->sf_idx[w*16+g];
776
                }
777
            }
778
            if (tbits > destbits) {
779
                for (i = 0; i < 128; i++)
780
                    if (sce->sf_idx[i] < 218 - qstep)
781
                        sce->sf_idx[i] += qstep;
782
            } else {
783
                for (i = 0; i < 128; i++)
784
                    if (sce->sf_idx[i] > 60 - qstep)
785
                        sce->sf_idx[i] -= qstep;
786
            }
787
            qstep >>= 1;
788
            if (!qstep && tbits > destbits*1.02)
789
                qstep = 1;
790
            if (sce->sf_idx[0] >= 217)
791
                break;
792
        } while (qstep);
793

    
794
        fflag = 0;
795
        minscaler = av_clip(minscaler, 60, 255 - SCALE_MAX_DIFF);
796
        for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
797
            start = w*128;
798
            for (g = 0; g < sce->ics.num_swb; g++) {
799
                int prevsc = sce->sf_idx[w*16+g];
800
                const float *scaled = s->scoefs + start;
801
                if (dists[w*16+g] > uplims[w*16+g] && sce->sf_idx[w*16+g] > 60)
802
                    sce->sf_idx[w*16+g]--;
803
                sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler, minscaler + SCALE_MAX_DIFF);
804
                sce->sf_idx[w*16+g] = FFMIN(sce->sf_idx[w*16+g], 219);
805
                if (sce->sf_idx[w*16+g] != prevsc)
806
                    fflag = 1;
807
                sce->band_type[w*16+g] = find_min_book(find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], scaled), sce->sf_idx[w*16+g]);
808
                start += sce->ics.swb_sizes[g];
809
            }
810
        }
811
        its++;
812
    } while (fflag && its < 10);
813
}
814

    
815
static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s,
816
                                       SingleChannelElement *sce,
817
                                       const float lambda)
818
{
819
    int start = 0, i, w, w2, g;
820
    float uplim[128], maxq[128];
821
    int minq, maxsf;
822
    float distfact = ((sce->ics.num_windows > 1) ? 85.80 : 147.84) / lambda;
823
    int last = 0, lastband = 0, curband = 0;
824
    float avg_energy = 0.0;
825
    if (sce->ics.num_windows == 1) {
826
        start = 0;
827
        for (i = 0; i < 1024; i++) {
828
            if (i - start >= sce->ics.swb_sizes[curband]) {
829
                start += sce->ics.swb_sizes[curband];
830
                curband++;
831
            }
832
            if (sce->coeffs[i]) {
833
                avg_energy += sce->coeffs[i] * sce->coeffs[i];
834
                last = i;
835
                lastband = curband;
836
            }
837
        }
838
    } else {
839
        for (w = 0; w < 8; w++) {
840
            const float *coeffs = sce->coeffs + w*128;
841
            start = 0;
842
            for (i = 0; i < 128; i++) {
843
                if (i - start >= sce->ics.swb_sizes[curband]) {
844
                    start += sce->ics.swb_sizes[curband];
845
                    curband++;
846
                }
847
                if (coeffs[i]) {
848
                    avg_energy += coeffs[i] * coeffs[i];
849
                    last = FFMAX(last, i);
850
                    lastband = FFMAX(lastband, curband);
851
                }
852
            }
853
        }
854
    }
855
    last++;
856
    avg_energy /= last;
857
    if (avg_energy == 0.0f) {
858
        for (i = 0; i < FF_ARRAY_ELEMS(sce->sf_idx); i++)
859
            sce->sf_idx[i] = SCALE_ONE_POS;
860
        return;
861
    }
862
    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
863
        start = w*128;
864
        for (g = 0; g < sce->ics.num_swb; g++) {
865
            float *coefs   = sce->coeffs + start;
866
            const int size = sce->ics.swb_sizes[g];
867
            int start2 = start, end2 = start + size, peakpos = start;
868
            float maxval = -1, thr = 0.0f, t;
869
            maxq[w*16+g] = 0.0f;
870
            if (g > lastband) {
871
                maxq[w*16+g] = 0.0f;
872
                start += size;
873
                for (w2 = 0; w2 < sce->ics.group_len[w]; w2++)
874
                    memset(coefs + w2*128, 0, sizeof(coefs[0])*size);
875
                continue;
876
            }
877
            for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
878
                for (i = 0; i < size; i++) {
879
                    float t = coefs[w2*128+i]*coefs[w2*128+i];
880
                    maxq[w*16+g] = FFMAX(maxq[w*16+g], fabsf(coefs[w2*128 + i]));
881
                    thr += t;
882
                    if (sce->ics.num_windows == 1 && maxval < t) {
883
                        maxval  = t;
884
                        peakpos = start+i;
885
                    }
886
                }
887
            }
888
            if (sce->ics.num_windows == 1) {
889
                start2 = FFMAX(peakpos - 2, start2);
890
                end2   = FFMIN(peakpos + 3, end2);
891
            } else {
892
                start2 -= start;
893
                end2   -= start;
894
            }
895
            start += size;
896
            thr = pow(thr / (avg_energy * (end2 - start2)), 0.3 + 0.1*(lastband - g) / lastband);
897
            t   = 1.0 - (1.0 * start2 / last);
898
            uplim[w*16+g] = distfact / (1.4 * thr + t*t*t + 0.075);
899
        }
900
    }
901
    memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
902
    abs_pow34_v(s->scoefs, sce->coeffs, 1024);
903
    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
904
        start = w*128;
905
        for (g = 0;  g < sce->ics.num_swb; g++) {
906
            const float *coefs  = sce->coeffs + start;
907
            const float *scaled = s->scoefs   + start;
908
            const int size      = sce->ics.swb_sizes[g];
909
            int scf, prev_scf, step;
910
            int min_scf = -1, max_scf = 256;
911
            float curdiff;
912
            if (maxq[w*16+g] < 21.544) {
913
                sce->zeroes[w*16+g] = 1;
914
                start += size;
915
                continue;
916
            }
917
            sce->zeroes[w*16+g] = 0;
918
            scf  = prev_scf = av_clip(SCALE_ONE_POS - SCALE_DIV_512 - log2(1/maxq[w*16+g])*16/3, 60, 218);
919
            step = 16;
920
            for (;;) {
921
                float dist = 0.0f;
922
                int quant_max;
923

    
924
                for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
925
                    int b;
926
                    dist += quantize_band_cost(s, coefs + w2*128,
927
                                               scaled + w2*128,
928
                                               sce->ics.swb_sizes[g],
929
                                               scf,
930
                                               ESC_BT,
931
                                               lambda,
932
                                               INFINITY,
933
                                               &b);
934
                    dist -= b;
935
                }
936
                dist *= 1.0f / 512.0f / lambda;
937
                quant_max = quant(maxq[w*16+g], ff_aac_pow2sf_tab[200 - scf + SCALE_ONE_POS - SCALE_DIV_512]);
938
                if (quant_max >= 8191) { // too much, return to the previous quantizer
939
                    sce->sf_idx[w*16+g] = prev_scf;
940
                    break;
941
                }
942
                prev_scf = scf;
943
                curdiff = fabsf(dist - uplim[w*16+g]);
944
                if (curdiff <= 1.0f)
945
                    step = 0;
946
                else
947
                    step = log2(curdiff);
948
                if (dist > uplim[w*16+g])
949
                    step = -step;
950
                scf += step;
951
                scf = av_clip_uint8(scf);
952
                step = scf - prev_scf;
953
                if (FFABS(step) <= 1 || (step > 0 && scf >= max_scf) || (step < 0 && scf <= min_scf)) {
954
                    sce->sf_idx[w*16+g] = av_clip(scf, min_scf, max_scf);
955
                    break;
956
                }
957
                if (step > 0)
958
                    min_scf = prev_scf;
959
                else
960
                    max_scf = prev_scf;
961
            }
962
            start += size;
963
        }
964
    }
965
    minq = sce->sf_idx[0] ? sce->sf_idx[0] : INT_MAX;
966
    for (i = 1; i < 128; i++) {
967
        if (!sce->sf_idx[i])
968
            sce->sf_idx[i] = sce->sf_idx[i-1];
969
        else
970
            minq = FFMIN(minq, sce->sf_idx[i]);
971
    }
972
    if (minq == INT_MAX)
973
        minq = 0;
974
    minq = FFMIN(minq, SCALE_MAX_POS);
975
    maxsf = FFMIN(minq + SCALE_MAX_DIFF, SCALE_MAX_POS);
976
    for (i = 126; i >= 0; i--) {
977
        if (!sce->sf_idx[i])
978
            sce->sf_idx[i] = sce->sf_idx[i+1];
979
        sce->sf_idx[i] = av_clip(sce->sf_idx[i], minq, maxsf);
980
    }
981
}
982

    
983
static void search_for_quantizers_fast(AVCodecContext *avctx, AACEncContext *s,
984
                                       SingleChannelElement *sce,
985
                                       const float lambda)
986
{
987
    int start = 0, i, w, w2, g;
988
    int minq = 255;
989

    
990
    memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
991
    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
992
        start = w*128;
993
        for (g = 0; g < sce->ics.num_swb; g++) {
994
            for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
995
                FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
996
                if (band->energy <= band->threshold) {
997
                    sce->sf_idx[(w+w2)*16+g] = 218;
998
                    sce->zeroes[(w+w2)*16+g] = 1;
999
                } else {
1000
                    sce->sf_idx[(w+w2)*16+g] = av_clip(SCALE_ONE_POS - SCALE_DIV_512 + log2(band->threshold), 80, 218);
1001
                    sce->zeroes[(w+w2)*16+g] = 0;
1002
                }
1003
                minq = FFMIN(minq, sce->sf_idx[(w+w2)*16+g]);
1004
            }
1005
        }
1006
    }
1007
    for (i = 0; i < 128; i++) {
1008
        sce->sf_idx[i] = 140;
1009
        //av_clip(sce->sf_idx[i], minq, minq + SCALE_MAX_DIFF - 1);
1010
    }
1011
    //set the same quantizers inside window groups
1012
    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
1013
        for (g = 0;  g < sce->ics.num_swb; g++)
1014
            for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
1015
                sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
1016
}
1017

    
1018
static void search_for_ms(AACEncContext *s, ChannelElement *cpe,
1019
                          const float lambda)
1020
{
1021
    int start = 0, i, w, w2, g;
1022
    float M[128], S[128];
1023
    float *L34 = s->scoefs, *R34 = s->scoefs + 128, *M34 = s->scoefs + 128*2, *S34 = s->scoefs + 128*3;
1024
    SingleChannelElement *sce0 = &cpe->ch[0];
1025
    SingleChannelElement *sce1 = &cpe->ch[1];
1026
    if (!cpe->common_window)
1027
        return;
1028
    for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) {
1029
        for (g = 0;  g < sce0->ics.num_swb; g++) {
1030
            if (!cpe->ch[0].zeroes[w*16+g] && !cpe->ch[1].zeroes[w*16+g]) {
1031
                float dist1 = 0.0f, dist2 = 0.0f;
1032
                for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
1033
                    FFPsyBand *band0 = &s->psy.psy_bands[(s->cur_channel+0)*PSY_MAX_BANDS+(w+w2)*16+g];
1034
                    FFPsyBand *band1 = &s->psy.psy_bands[(s->cur_channel+1)*PSY_MAX_BANDS+(w+w2)*16+g];
1035
                    float minthr = FFMIN(band0->threshold, band1->threshold);
1036
                    float maxthr = FFMAX(band0->threshold, band1->threshold);
1037
                    for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
1038
                        M[i] = (sce0->coeffs[start+w2*128+i]
1039
                              + sce1->coeffs[start+w2*128+i]) * 0.5;
1040
                        S[i] =  sce0->coeffs[start+w2*128+i]
1041
                              - sce1->coeffs[start+w2*128+i];
1042
                    }
1043
                    abs_pow34_v(L34, sce0->coeffs+start+w2*128, sce0->ics.swb_sizes[g]);
1044
                    abs_pow34_v(R34, sce1->coeffs+start+w2*128, sce0->ics.swb_sizes[g]);
1045
                    abs_pow34_v(M34, M,                         sce0->ics.swb_sizes[g]);
1046
                    abs_pow34_v(S34, S,                         sce0->ics.swb_sizes[g]);
1047
                    dist1 += quantize_band_cost(s, sce0->coeffs + start + w2*128,
1048
                                                L34,
1049
                                                sce0->ics.swb_sizes[g],
1050
                                                sce0->sf_idx[(w+w2)*16+g],
1051
                                                sce0->band_type[(w+w2)*16+g],
1052
                                                lambda / band0->threshold, INFINITY, NULL);
1053
                    dist1 += quantize_band_cost(s, sce1->coeffs + start + w2*128,
1054
                                                R34,
1055
                                                sce1->ics.swb_sizes[g],
1056
                                                sce1->sf_idx[(w+w2)*16+g],
1057
                                                sce1->band_type[(w+w2)*16+g],
1058
                                                lambda / band1->threshold, INFINITY, NULL);
1059
                    dist2 += quantize_band_cost(s, M,
1060
                                                M34,
1061
                                                sce0->ics.swb_sizes[g],
1062
                                                sce0->sf_idx[(w+w2)*16+g],
1063
                                                sce0->band_type[(w+w2)*16+g],
1064
                                                lambda / maxthr, INFINITY, NULL);
1065
                    dist2 += quantize_band_cost(s, S,
1066
                                                S34,
1067
                                                sce1->ics.swb_sizes[g],
1068
                                                sce1->sf_idx[(w+w2)*16+g],
1069
                                                sce1->band_type[(w+w2)*16+g],
1070
                                                lambda / minthr, INFINITY, NULL);
1071
                }
1072
                cpe->ms_mask[w*16+g] = dist2 < dist1;
1073
            }
1074
            start += sce0->ics.swb_sizes[g];
1075
        }
1076
    }
1077
}
1078

    
1079
AACCoefficientsEncoder ff_aac_coders[] = {
1080
    {
1081
        search_for_quantizers_faac,
1082
        encode_window_bands_info,
1083
        quantize_and_encode_band,
1084
        search_for_ms,
1085
    },
1086
    {
1087
        search_for_quantizers_anmr,
1088
        encode_window_bands_info,
1089
        quantize_and_encode_band,
1090
        search_for_ms,
1091
    },
1092
    {
1093
        search_for_quantizers_twoloop,
1094
        codebook_trellis_rate,
1095
        quantize_and_encode_band,
1096
        search_for_ms,
1097
    },
1098
    {
1099
        search_for_quantizers_fast,
1100
        encode_window_bands_info,
1101
        quantize_and_encode_band,
1102
        search_for_ms,
1103
    },
1104
};