ffmpeg / libavcodec / aaccoder.c @ 1676b099
History  View  Annotate  Download (42.6 KB)
1 
/*


2 
* AAC coefficients encoder

3 
* Copyright (C) 20082009 Konstantin Shishkov

4 
*

5 
* This file is part of FFmpeg.

6 
*

7 
* FFmpeg is free software; you can redistribute it and/or

8 
* modify it under the terms of the GNU Lesser General Public

9 
* License as published by the Free Software Foundation; either

10 
* version 2.1 of the License, or (at your option) any later version.

11 
*

12 
* FFmpeg is distributed in the hope that it will be useful,

13 
* but WITHOUT ANY WARRANTY; without even the implied warranty of

14 
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

15 
* Lesser General Public License for more details.

16 
*

17 
* You should have received a copy of the GNU Lesser General Public

18 
* License along with FFmpeg; if not, write to the Free Software

19 
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 021101301 USA

20 
*/

21  
22 
/**

23 
* @file

24 
* AAC coefficients encoder

25 
*/

26  
27 
/***********************************

28 
* TODOs:

29 
* speedup quantizer selection

30 
* add sane pulse detection

31 
***********************************/

32  
33 
#include <float.h> 
34 
#include "avcodec.h" 
35 
#include "put_bits.h" 
36 
#include "aac.h" 
37 
#include "aacenc.h" 
38 
#include "aactab.h" 
39  
40 
/** bits needed to code codebook run value for long windows */

41 
static const uint8_t run_value_bits_long[64] = { 
42 
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 
43 
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 10, 
44 
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 
45 
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 15 
46 
}; 
47  
48 
/** bits needed to code codebook run value for short windows */

49 
static const uint8_t run_value_bits_short[16] = { 
50 
3, 3, 3, 3, 3, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 9 
51 
}; 
52  
53 
static const uint8_t *run_value_bits[2] = { 
54 
run_value_bits_long, run_value_bits_short 
55 
}; 
56  
57  
58 
/**

59 
* Quantize one coefficient.

60 
* @return absolute value of the quantized coefficient

61 
* @see 3GPP TS26.403 5.6.2 "Scalefactor determination"

62 
*/

63 
static av_always_inline int quant(float coef, const float Q) 
64 
{ 
65 
float a = coef * Q;

66 
return sqrtf(a * sqrtf(a)) + 0.4054; 
67 
} 
68  
69 
static void quantize_bands(int *out, const float *in, const float *scaled, 
70 
int size, float Q34, int is_signed, int maxval) 
71 
{ 
72 
int i;

73 
double qc;

74 
for (i = 0; i < size; i++) { 
75 
qc = scaled[i] * Q34; 
76 
out[i] = (int)FFMIN(qc + 0.4054, (double)maxval); 
77 
if (is_signed && in[i] < 0.0f) { 
78 
out[i] = out[i]; 
79 
} 
80 
} 
81 
} 
82  
83 
static void abs_pow34_v(float *out, const float *in, const int size) 
84 
{ 
85 
#ifndef USE_REALLY_FULL_SEARCH

86 
int i;

87 
for (i = 0; i < size; i++) { 
88 
float a = fabsf(in[i]);

89 
out[i] = sqrtf(a * sqrtf(a)); 
90 
} 
91 
#endif /* USE_REALLY_FULL_SEARCH */ 
92 
} 
93  
94 
static const uint8_t aac_cb_range [12] = {0, 3, 3, 3, 3, 9, 9, 8, 8, 13, 13, 17}; 
95 
static const uint8_t aac_cb_maxval[12] = {0, 1, 1, 2, 2, 4, 4, 7, 7, 12, 12, 16}; 
96  
97 
/**

98 
* Calculate rate distortion cost for quantizing with given codebook

99 
*

100 
* @return quantization distortion

101 
*/

102 
static av_always_inline float quantize_and_encode_band_cost_template( 
103 
struct AACEncContext *s,

104 
PutBitContext *pb, const float *in, 
105 
const float *scaled, int size, int scale_idx, 
106 
int cb, const float lambda, const float uplim, 
107 
int *bits, int BT_ZERO, int BT_UNSIGNED, 
108 
int BT_PAIR, int BT_ESC) 
109 
{ 
110 
const float IQ = ff_aac_pow2sf_tab[200 + scale_idx  SCALE_ONE_POS + SCALE_DIV_512]; 
111 
const float Q = ff_aac_pow2sf_tab[200  scale_idx + SCALE_ONE_POS  SCALE_DIV_512]; 
112 
const float CLIPPED_ESCAPE = 165140.0f*IQ; 
113 
int i, j, k;

114 
float cost = 0; 
115 
const int dim = BT_PAIR ? 2 : 4; 
116 
int resbits = 0; 
117 
const float Q34 = sqrtf(Q * sqrtf(Q)); 
118 
const int range = aac_cb_range[cb]; 
119 
const int maxval = aac_cb_maxval[cb]; 
120 
int off;

121  
122 
if (BT_ZERO) {

123 
for (i = 0; i < size; i++) 
124 
cost += in[i]*in[i]; 
125 
if (bits)

126 
*bits = 0;

127 
return cost * lambda;

128 
} 
129 
if (!scaled) {

130 
abs_pow34_v(s>scoefs, in, size); 
131 
scaled = s>scoefs; 
132 
} 
133 
quantize_bands(s>qcoefs, in, scaled, size, Q34, !BT_UNSIGNED, maxval); 
134 
if (BT_UNSIGNED) {

135 
off = 0;

136 
} else {

137 
off = maxval; 
138 
} 
139 
for (i = 0; i < size; i += dim) { 
140 
const float *vec; 
141 
int *quants = s>qcoefs + i;

142 
int curidx = 0; 
143 
int curbits;

144 
float rd = 0.0f; 
145 
for (j = 0; j < dim; j++) { 
146 
curidx *= range; 
147 
curidx += quants[j] + off; 
148 
} 
149 
curbits = ff_aac_spectral_bits[cb1][curidx];

150 
vec = &ff_aac_codebook_vectors[cb1][curidx*dim];

151 
if (BT_UNSIGNED) {

152 
for (k = 0; k < dim; k++) { 
153 
float t = fabsf(in[i+k]);

154 
float di;

155 
if (BT_ESC && vec[k] == 64.0f) { //FIXME: slow 
156 
if (t >= CLIPPED_ESCAPE) {

157 
di = t  CLIPPED_ESCAPE; 
158 
curbits += 21;

159 
} else {

160 
int c = av_clip(quant(t, Q), 0, 8191); 
161 
di = t  c*cbrtf(c)*IQ; 
162 
curbits += av_log2(c)*2  4 + 1; 
163 
} 
164 
} else {

165 
di = t  vec[k]*IQ; 
166 
} 
167 
if (vec[k] != 0.0f) 
168 
curbits++; 
169 
rd += di*di; 
170 
} 
171 
} else {

172 
for (k = 0; k < dim; k++) { 
173 
float di = in[i+k]  vec[k]*IQ;

174 
rd += di*di; 
175 
} 
176 
} 
177 
cost += rd * lambda + curbits; 
178 
resbits += curbits; 
179 
if (cost >= uplim)

180 
return uplim;

181 
if (pb) {

182 
put_bits(pb, ff_aac_spectral_bits[cb1][curidx], ff_aac_spectral_codes[cb1][curidx]); 
183 
if (BT_UNSIGNED)

184 
for (j = 0; j < dim; j++) 
185 
if (ff_aac_codebook_vectors[cb1][curidx*dim+j] != 0.0f) 
186 
put_bits(pb, 1, in[i+j] < 0.0f); 
187 
if (BT_ESC) {

188 
for (j = 0; j < 2; j++) { 
189 
if (ff_aac_codebook_vectors[cb1][curidx*2+j] == 64.0f) { 
190 
int coef = av_clip(quant(fabsf(in[i+j]), Q), 0, 8191); 
191 
int len = av_log2(coef);

192  
193 
put_bits(pb, len  4 + 1, (1 << (len  4 + 1))  2); 
194 
put_bits(pb, len, coef & ((1 << len)  1)); 
195 
} 
196 
} 
197 
} 
198 
} 
199 
} 
200  
201 
if (bits)

202 
*bits = resbits; 
203 
return cost;

204 
} 
205  
206 
#define QUANTIZE_AND_ENCODE_BAND_COST_FUNC(NAME, BT_ZERO, BT_UNSIGNED, BT_PAIR, BT_ESC) \

207 
static float quantize_and_encode_band_cost_ ## NAME( \ 
208 
struct AACEncContext *s, \

209 
PutBitContext *pb, const float *in, \ 
210 
const float *scaled, int size, int scale_idx, \ 
211 
int cb, const float lambda, const float uplim, \ 
212 
int *bits) { \

213 
return quantize_and_encode_band_cost_template( \

214 
s, pb, in, scaled, size, scale_idx, \ 
215 
BT_ESC ? ESC_BT : cb, lambda, uplim, bits, \ 
216 
BT_ZERO, BT_UNSIGNED, BT_PAIR, BT_ESC); \ 
217 
} 
218  
219 
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(ZERO, 1, 0, 0, 0) 
220 
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(SQUAD, 0, 0, 0, 0) 
221 
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(UQUAD, 0, 1, 0, 0) 
222 
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(SPAIR, 0, 0, 1, 0) 
223 
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(UPAIR, 0, 1, 1, 0) 
224 
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(ESC, 0, 1, 1, 1) 
225  
226 
static float (*quantize_and_encode_band_cost_arr[])( 
227 
struct AACEncContext *s,

228 
PutBitContext *pb, const float *in, 
229 
const float *scaled, int size, int scale_idx, 
230 
int cb, const float lambda, const float uplim, 
231 
int *bits) = {

232 
quantize_and_encode_band_cost_ZERO, 
233 
quantize_and_encode_band_cost_SQUAD, 
234 
quantize_and_encode_band_cost_SQUAD, 
235 
quantize_and_encode_band_cost_UQUAD, 
236 
quantize_and_encode_band_cost_UQUAD, 
237 
quantize_and_encode_band_cost_SPAIR, 
238 
quantize_and_encode_band_cost_SPAIR, 
239 
quantize_and_encode_band_cost_UPAIR, 
240 
quantize_and_encode_band_cost_UPAIR, 
241 
quantize_and_encode_band_cost_UPAIR, 
242 
quantize_and_encode_band_cost_UPAIR, 
243 
quantize_and_encode_band_cost_ESC, 
244 
}; 
245  
246 
#define quantize_and_encode_band_cost( \

247 
s, pb, in, scaled, size, scale_idx, cb, \ 
248 
lambda, uplim, bits) \ 
249 
quantize_and_encode_band_cost_arr[cb]( \ 
250 
s, pb, in, scaled, size, scale_idx, cb, \ 
251 
lambda, uplim, bits) 
252  
253 
static float quantize_band_cost(struct AACEncContext *s, const float *in, 
254 
const float *scaled, int size, int scale_idx, 
255 
int cb, const float lambda, const float uplim, 
256 
int *bits)

257 
{ 
258 
return quantize_and_encode_band_cost(s, NULL, in, scaled, size, scale_idx, 
259 
cb, lambda, uplim, bits); 
260 
} 
261  
262 
static void quantize_and_encode_band(struct AACEncContext *s, PutBitContext *pb, 
263 
const float *in, int size, int scale_idx, 
264 
int cb, const float lambda) 
265 
{ 
266 
quantize_and_encode_band_cost(s, pb, in, NULL, size, scale_idx, cb, lambda,

267 
INFINITY, NULL);

268 
} 
269  
270 
static float find_max_val(int group_len, int swb_size, const float *scaled) { 
271 
float maxval = 0.0f; 
272 
int w2, i;

273 
for (w2 = 0; w2 < group_len; w2++) { 
274 
for (i = 0; i < swb_size; i++) { 
275 
maxval = FFMAX(maxval, scaled[w2*128+i]);

276 
} 
277 
} 
278 
return maxval;

279 
} 
280  
281 
static int find_min_book(float maxval, int sf) { 
282 
float Q = ff_aac_pow2sf_tab[200  sf + SCALE_ONE_POS  SCALE_DIV_512]; 
283 
float Q34 = sqrtf(Q * sqrtf(Q));

284 
int qmaxval, cb;

285 
qmaxval = maxval * Q34 + 0.4054f; 
286 
if (qmaxval == 0) cb = 0; 
287 
else if (qmaxval == 1) cb = 1; 
288 
else if (qmaxval == 2) cb = 3; 
289 
else if (qmaxval <= 4) cb = 5; 
290 
else if (qmaxval <= 7) cb = 7; 
291 
else if (qmaxval <= 12) cb = 9; 
292 
else cb = 11; 
293 
return cb;

294 
} 
295  
296 
/**

297 
* structure used in optimal codebook search

298 
*/

299 
typedef struct BandCodingPath { 
300 
int prev_idx; ///< pointer to the previous path point 
301 
float cost; ///< path cost 
302 
int run;

303 
} BandCodingPath; 
304  
305 
/**

306 
* Encode band info for single window group bands.

307 
*/

308 
static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce, 
309 
int win, int group_len, const float lambda) 
310 
{ 
311 
BandCodingPath path[120][12]; 
312 
int w, swb, cb, start, start2, size;

313 
int i, j;

314 
const int max_sfb = sce>ics.max_sfb; 
315 
const int run_bits = sce>ics.num_windows == 1 ? 5 : 3; 
316 
const int run_esc = (1 << run_bits)  1; 
317 
int idx, ppos, count;

318 
int stackrun[120], stackcb[120], stack_len; 
319 
float next_minrd = INFINITY;

320 
int next_mincb = 0; 
321  
322 
abs_pow34_v(s>scoefs, sce>coeffs, 1024);

323 
start = win*128;

324 
for (cb = 0; cb < 12; cb++) { 
325 
path[0][cb].cost = 0.0f; 
326 
path[0][cb].prev_idx = 1; 
327 
path[0][cb].run = 0; 
328 
} 
329 
for (swb = 0; swb < max_sfb; swb++) { 
330 
start2 = start; 
331 
size = sce>ics.swb_sizes[swb]; 
332 
if (sce>zeroes[win*16 + swb]) { 
333 
for (cb = 0; cb < 12; cb++) { 
334 
path[swb+1][cb].prev_idx = cb;

335 
path[swb+1][cb].cost = path[swb][cb].cost;

336 
path[swb+1][cb].run = path[swb][cb].run + 1; 
337 
} 
338 
} else {

339 
float minrd = next_minrd;

340 
int mincb = next_mincb;

341 
next_minrd = INFINITY; 
342 
next_mincb = 0;

343 
for (cb = 0; cb < 12; cb++) { 
344 
float cost_stay_here, cost_get_here;

345 
float rd = 0.0f; 
346 
for (w = 0; w < group_len; w++) { 
347 
FFPsyBand *band = &s>psy.psy_bands[s>cur_channel*PSY_MAX_BANDS+(win+w)*16+swb];

348 
rd += quantize_band_cost(s, sce>coeffs + start + w*128,

349 
s>scoefs + start + w*128, size,

350 
sce>sf_idx[(win+w)*16+swb], cb,

351 
lambda / band>threshold, INFINITY, NULL);

352 
} 
353 
cost_stay_here = path[swb][cb].cost + rd; 
354 
cost_get_here = minrd + rd + run_bits + 4;

355 
if ( run_value_bits[sce>ics.num_windows == 8][path[swb][cb].run] 
356 
!= run_value_bits[sce>ics.num_windows == 8][path[swb][cb].run+1]) 
357 
cost_stay_here += run_bits; 
358 
if (cost_get_here < cost_stay_here) {

359 
path[swb+1][cb].prev_idx = mincb;

360 
path[swb+1][cb].cost = cost_get_here;

361 
path[swb+1][cb].run = 1; 
362 
} else {

363 
path[swb+1][cb].prev_idx = cb;

364 
path[swb+1][cb].cost = cost_stay_here;

365 
path[swb+1][cb].run = path[swb][cb].run + 1; 
366 
} 
367 
if (path[swb+1][cb].cost < next_minrd) { 
368 
next_minrd = path[swb+1][cb].cost;

369 
next_mincb = cb; 
370 
} 
371 
} 
372 
} 
373 
start += sce>ics.swb_sizes[swb]; 
374 
} 
375  
376 
//convert resulting path from backwardlinked list

377 
stack_len = 0;

378 
idx = 0;

379 
for (cb = 1; cb < 12; cb++) 
380 
if (path[max_sfb][cb].cost < path[max_sfb][idx].cost)

381 
idx = cb; 
382 
ppos = max_sfb; 
383 
while (ppos > 0) { 
384 
cb = idx; 
385 
stackrun[stack_len] = path[ppos][cb].run; 
386 
stackcb [stack_len] = cb; 
387 
idx = path[ppospath[ppos][cb].run+1][cb].prev_idx;

388 
ppos = path[ppos][cb].run; 
389 
stack_len++; 
390 
} 
391 
//perform actual band info encoding

392 
start = 0;

393 
for (i = stack_len  1; i >= 0; i) { 
394 
put_bits(&s>pb, 4, stackcb[i]);

395 
count = stackrun[i]; 
396 
memset(sce>zeroes + win*16 + start, !stackcb[i], count);

397 
//XXX: memset when band_type is also uint8_t

398 
for (j = 0; j < count; j++) { 
399 
sce>band_type[win*16 + start] = stackcb[i];

400 
start++; 
401 
} 
402 
while (count >= run_esc) {

403 
put_bits(&s>pb, run_bits, run_esc); 
404 
count = run_esc; 
405 
} 
406 
put_bits(&s>pb, run_bits, count); 
407 
} 
408 
} 
409  
410 
static void codebook_trellis_rate(AACEncContext *s, SingleChannelElement *sce, 
411 
int win, int group_len, const float lambda) 
412 
{ 
413 
BandCodingPath path[120][12]; 
414 
int w, swb, cb, start, start2, size;

415 
int i, j;

416 
const int max_sfb = sce>ics.max_sfb; 
417 
const int run_bits = sce>ics.num_windows == 1 ? 5 : 3; 
418 
const int run_esc = (1 << run_bits)  1; 
419 
int idx, ppos, count;

420 
int stackrun[120], stackcb[120], stack_len; 
421 
float next_minrd = INFINITY;

422 
int next_mincb = 0; 
423  
424 
abs_pow34_v(s>scoefs, sce>coeffs, 1024);

425 
start = win*128;

426 
for (cb = 0; cb < 12; cb++) { 
427 
path[0][cb].cost = run_bits+4; 
428 
path[0][cb].prev_idx = 1; 
429 
path[0][cb].run = 0; 
430 
} 
431 
for (swb = 0; swb < max_sfb; swb++) { 
432 
start2 = start; 
433 
size = sce>ics.swb_sizes[swb]; 
434 
if (sce>zeroes[win*16 + swb]) { 
435 
for (cb = 0; cb < 12; cb++) { 
436 
path[swb+1][cb].prev_idx = cb;

437 
path[swb+1][cb].cost = path[swb][cb].cost;

438 
path[swb+1][cb].run = path[swb][cb].run + 1; 
439 
} 
440 
} else {

441 
float minrd = next_minrd;

442 
int mincb = next_mincb;

443 
int startcb = sce>band_type[win*16+swb]; 
444 
next_minrd = INFINITY; 
445 
next_mincb = 0;

446 
for (cb = 0; cb < startcb; cb++) { 
447 
path[swb+1][cb].cost = 61450; 
448 
path[swb+1][cb].prev_idx = 1; 
449 
path[swb+1][cb].run = 0; 
450 
} 
451 
for (cb = startcb; cb < 12; cb++) { 
452 
float cost_stay_here, cost_get_here;

453 
float rd = 0.0f; 
454 
for (w = 0; w < group_len; w++) { 
455 
rd += quantize_band_cost(s, sce>coeffs + start + w*128,

456 
s>scoefs + start + w*128, size,

457 
sce>sf_idx[(win+w)*16+swb], cb,

458 
0, INFINITY, NULL); 
459 
} 
460 
cost_stay_here = path[swb][cb].cost + rd; 
461 
cost_get_here = minrd + rd + run_bits + 4;

462 
if ( run_value_bits[sce>ics.num_windows == 8][path[swb][cb].run] 
463 
!= run_value_bits[sce>ics.num_windows == 8][path[swb][cb].run+1]) 
464 
cost_stay_here += run_bits; 
465 
if (cost_get_here < cost_stay_here) {

466 
path[swb+1][cb].prev_idx = mincb;

467 
path[swb+1][cb].cost = cost_get_here;

468 
path[swb+1][cb].run = 1; 
469 
} else {

470 
path[swb+1][cb].prev_idx = cb;

471 
path[swb+1][cb].cost = cost_stay_here;

472 
path[swb+1][cb].run = path[swb][cb].run + 1; 
473 
} 
474 
if (path[swb+1][cb].cost < next_minrd) { 
475 
next_minrd = path[swb+1][cb].cost;

476 
next_mincb = cb; 
477 
} 
478 
} 
479 
} 
480 
start += sce>ics.swb_sizes[swb]; 
481 
} 
482  
483 
//convert resulting path from backwardlinked list

484 
stack_len = 0;

485 
idx = 0;

486 
for (cb = 1; cb < 12; cb++) 
487 
if (path[max_sfb][cb].cost < path[max_sfb][idx].cost)

488 
idx = cb; 
489 
ppos = max_sfb; 
490 
while (ppos > 0) { 
491 
if (idx < 0) abort(); 
492 
cb = idx; 
493 
stackrun[stack_len] = path[ppos][cb].run; 
494 
stackcb [stack_len] = cb; 
495 
idx = path[ppospath[ppos][cb].run+1][cb].prev_idx;

496 
ppos = path[ppos][cb].run; 
497 
stack_len++; 
498 
} 
499 
//perform actual band info encoding

500 
start = 0;

501 
for (i = stack_len  1; i >= 0; i) { 
502 
put_bits(&s>pb, 4, stackcb[i]);

503 
count = stackrun[i]; 
504 
memset(sce>zeroes + win*16 + start, !stackcb[i], count);

505 
//XXX: memset when band_type is also uint8_t

506 
for (j = 0; j < count; j++) { 
507 
sce>band_type[win*16 + start] = stackcb[i];

508 
start++; 
509 
} 
510 
while (count >= run_esc) {

511 
put_bits(&s>pb, run_bits, run_esc); 
512 
count = run_esc; 
513 
} 
514 
put_bits(&s>pb, run_bits, count); 
515 
} 
516 
} 
517  
518 
typedef struct TrellisPath { 
519 
float cost;

520 
int prev;

521 
} TrellisPath; 
522  
523 
#define TRELLIS_STAGES 121 
524 
#define TRELLIS_STATES (SCALE_MAX_DIFF+1) 
525  
526 
static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s, 
527 
SingleChannelElement *sce, 
528 
const float lambda) 
529 
{ 
530 
int q, w, w2, g, start = 0; 
531 
int i, j;

532 
int idx;

533 
TrellisPath paths[TRELLIS_STAGES][TRELLIS_STATES]; 
534 
int bandaddr[TRELLIS_STAGES];

535 
int minq;

536 
float mincost;

537 
float q0f = FLT_MAX, q1f = 0.0f, qnrgf = 0.0f; 
538 
int q0, q1, qcnt = 0; 
539  
540 
for (i = 0; i < 1024; i++) { 
541 
float t = fabsf(sce>coeffs[i]);

542 
if (t > 0.0f) { 
543 
q0f = FFMIN(q0f, t); 
544 
q1f = FFMAX(q1f, t); 
545 
qnrgf += t*t; 
546 
qcnt++; 
547 
} 
548 
} 
549  
550 
if (!qcnt) {

551 
memset(sce>sf_idx, 0, sizeof(sce>sf_idx)); 
552 
memset(sce>zeroes, 1, sizeof(sce>zeroes)); 
553 
return;

554 
} 
555  
556 
//minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped

557 
q0 = av_clip_uint8(log2(q0f)*4  69 + SCALE_ONE_POS  SCALE_DIV_512); 
558 
//maximum scalefactor index is when maximum coefficient after quantizing is still not zero

559 
q1 = av_clip_uint8(log2(q1f)*4 + 6 + SCALE_ONE_POS  SCALE_DIV_512); 
560 
//av_log(NULL, AV_LOG_ERROR, "q0 %d, q1 %d\n", q0, q1);

561 
if (q1  q0 > 60) { 
562 
int q0low = q0;

563 
int q1high = q1;

564 
//minimum scalefactor index is when maximum nonzero coefficient after quantizing is not clipped

565 
int qnrg = av_clip_uint8(log2(sqrt(qnrgf/qcnt))*4  31 + SCALE_ONE_POS  SCALE_DIV_512); 
566 
q1 = qnrg + 30;

567 
q0 = qnrg  30;

568 
//av_log(NULL, AV_LOG_ERROR, "q0 %d, q1 %d\n", q0, q1);

569 
if (q0 < q0low) {

570 
q1 += q0low  q0; 
571 
q0 = q0low; 
572 
} else if (q1 > q1high) { 
573 
q0 = q1  q1high; 
574 
q1 = q1high; 
575 
} 
576 
} 
577 
//av_log(NULL, AV_LOG_ERROR, "q0 %d, q1 %d\n", q0, q1);

578  
579 
for (i = 0; i < TRELLIS_STATES; i++) { 
580 
paths[0][i].cost = 0.0f; 
581 
paths[0][i].prev = 1; 
582 
} 
583 
for (j = 1; j < TRELLIS_STAGES; j++) { 
584 
for (i = 0; i < TRELLIS_STATES; i++) { 
585 
paths[j][i].cost = INFINITY; 
586 
paths[j][i].prev = 2;

587 
} 
588 
} 
589 
idx = 1;

590 
abs_pow34_v(s>scoefs, sce>coeffs, 1024);

591 
for (w = 0; w < sce>ics.num_windows; w += sce>ics.group_len[w]) { 
592 
start = w*128;

593 
for (g = 0; g < sce>ics.num_swb; g++) { 
594 
const float *coefs = sce>coeffs + start; 
595 
float qmin, qmax;

596 
int nz = 0; 
597  
598 
bandaddr[idx] = w * 16 + g;

599 
qmin = INT_MAX; 
600 
qmax = 0.0f; 
601 
for (w2 = 0; w2 < sce>ics.group_len[w]; w2++) { 
602 
FFPsyBand *band = &s>psy.psy_bands[s>cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];

603 
if (band>energy <= band>threshold  band>threshold == 0.0f) { 
604 
sce>zeroes[(w+w2)*16+g] = 1; 
605 
continue;

606 
} 
607 
sce>zeroes[(w+w2)*16+g] = 0; 
608 
nz = 1;

609 
for (i = 0; i < sce>ics.swb_sizes[g]; i++) { 
610 
float t = fabsf(coefs[w2*128+i]); 
611 
if (t > 0.0f) 
612 
qmin = FFMIN(qmin, t); 
613 
qmax = FFMAX(qmax, t); 
614 
} 
615 
} 
616 
if (nz) {

617 
int minscale, maxscale;

618 
float minrd = INFINITY;

619 
float maxval;

620 
//minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped

621 
minscale = av_clip_uint8(log2(qmin)*4  69 + SCALE_ONE_POS  SCALE_DIV_512); 
622 
//maximum scalefactor index is when maximum coefficient after quantizing is still not zero

623 
maxscale = av_clip_uint8(log2(qmax)*4 + 6 + SCALE_ONE_POS  SCALE_DIV_512); 
624 
minscale = av_clip(minscale  q0, 0, TRELLIS_STATES  1); 
625 
maxscale = av_clip(maxscale  q0, 0, TRELLIS_STATES);

626 
maxval = find_max_val(sce>ics.group_len[w], sce>ics.swb_sizes[g], s>scoefs+start); 
627 
for (q = minscale; q < maxscale; q++) {

628 
float dist = 0; 
629 
int cb = find_min_book(maxval, sce>sf_idx[w*16+g]); 
630 
for (w2 = 0; w2 < sce>ics.group_len[w]; w2++) { 
631 
FFPsyBand *band = &s>psy.psy_bands[s>cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];

632 
dist += quantize_band_cost(s, coefs + w2*128, s>scoefs + start + w2*128, sce>ics.swb_sizes[g], 
633 
q + q0, cb, lambda / band>threshold, INFINITY, NULL);

634 
} 
635 
minrd = FFMIN(minrd, dist); 
636  
637 
for (i = 0; i < q1  q0; i++) { 
638 
float cost;

639 
cost = paths[idx  1][i].cost + dist

640 
+ ff_aac_scalefactor_bits[q  i + SCALE_DIFF_ZERO]; 
641 
if (cost < paths[idx][q].cost) {

642 
paths[idx][q].cost = cost; 
643 
paths[idx][q].prev = i; 
644 
} 
645 
} 
646 
} 
647 
} else {

648 
for (q = 0; q < q1  q0; q++) { 
649 
paths[idx][q].cost = paths[idx  1][q].cost + 1; 
650 
paths[idx][q].prev = q; 
651 
} 
652 
} 
653 
sce>zeroes[w*16+g] = !nz;

654 
start += sce>ics.swb_sizes[g]; 
655 
idx++; 
656 
} 
657 
} 
658 
idx; 
659 
mincost = paths[idx][0].cost;

660 
minq = 0;

661 
for (i = 1; i < TRELLIS_STATES; i++) { 
662 
if (paths[idx][i].cost < mincost) {

663 
mincost = paths[idx][i].cost; 
664 
minq = i; 
665 
} 
666 
} 
667 
while (idx) {

668 
sce>sf_idx[bandaddr[idx]] = minq + q0; 
669 
minq = paths[idx][minq].prev; 
670 
idx; 
671 
} 
672 
//set the same quantizers inside window groups

673 
for (w = 0; w < sce>ics.num_windows; w += sce>ics.group_len[w]) 
674 
for (g = 0; g < sce>ics.num_swb; g++) 
675 
for (w2 = 1; w2 < sce>ics.group_len[w]; w2++) 
676 
sce>sf_idx[(w+w2)*16+g] = sce>sf_idx[w*16+g]; 
677 
} 
678  
679 
/**

680 
* twoloop quantizers search taken from ISO 138187 Appendix C

681 
*/

682 
static void search_for_quantizers_twoloop(AVCodecContext *avctx, 
683 
AACEncContext *s, 
684 
SingleChannelElement *sce, 
685 
const float lambda) 
686 
{ 
687 
int start = 0, i, w, w2, g; 
688 
int destbits = avctx>bit_rate * 1024.0 / avctx>sample_rate / avctx>channels; 
689 
float dists[128], uplims[128]; 
690 
int fflag, minscaler;

691 
int its = 0; 
692 
int allz = 0; 
693 
float minthr = INFINITY;

694  
695 
//XXX: some heuristic to determine initial quantizers will reduce search time

696 
memset(dists, 0, sizeof(dists)); 
697 
//determine zero bands and upper limits

698 
for (w = 0; w < sce>ics.num_windows; w += sce>ics.group_len[w]) { 
699 
for (g = 0; g < sce>ics.num_swb; g++) { 
700 
int nz = 0; 
701 
float uplim = 0.0f; 
702 
for (w2 = 0; w2 < sce>ics.group_len[w]; w2++) { 
703 
FFPsyBand *band = &s>psy.psy_bands[s>cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];

704 
uplim += band>threshold; 
705 
if (band>energy <= band>threshold  band>threshold == 0.0f) { 
706 
sce>zeroes[(w+w2)*16+g] = 1; 
707 
continue;

708 
} 
709 
nz = 1;

710 
} 
711 
uplims[w*16+g] = uplim *512; 
712 
sce>zeroes[w*16+g] = !nz;

713 
if (nz)

714 
minthr = FFMIN(minthr, uplim); 
715 
allz = FFMAX(allz, nz); 
716 
} 
717 
} 
718 
for (w = 0; w < sce>ics.num_windows; w += sce>ics.group_len[w]) { 
719 
for (g = 0; g < sce>ics.num_swb; g++) { 
720 
if (sce>zeroes[w*16+g]) { 
721 
sce>sf_idx[w*16+g] = SCALE_ONE_POS;

722 
continue;

723 
} 
724 
sce>sf_idx[w*16+g] = SCALE_ONE_POS + FFMIN(log2(uplims[w*16+g]/minthr)*4,59); 
725 
} 
726 
} 
727  
728 
if (!allz)

729 
return;

730 
abs_pow34_v(s>scoefs, sce>coeffs, 1024);

731 
//perform twoloop search

732 
//outer loop  improve quality

733 
do {

734 
int tbits, qstep;

735 
minscaler = sce>sf_idx[0];

736 
//inner loop  quantize spectrum to fit into given number of bits

737 
qstep = its ? 1 : 32; 
738 
do {

739 
int prev = 1; 
740 
tbits = 0;

741 
fflag = 0;

742 
for (w = 0; w < sce>ics.num_windows; w += sce>ics.group_len[w]) { 
743 
start = w*128;

744 
for (g = 0; g < sce>ics.num_swb; g++) { 
745 
const float *coefs = sce>coeffs + start; 
746 
const float *scaled = s>scoefs + start; 
747 
int bits = 0; 
748 
int cb;

749 
float dist = 0.0f; 
750  
751 
if (sce>zeroes[w*16+g]  sce>sf_idx[w*16+g] >= 218) { 
752 
start += sce>ics.swb_sizes[g]; 
753 
continue;

754 
} 
755 
minscaler = FFMIN(minscaler, sce>sf_idx[w*16+g]);

756 
cb = find_min_book(find_max_val(sce>ics.group_len[w], sce>ics.swb_sizes[g], scaled), sce>sf_idx[w*16+g]);

757 
for (w2 = 0; w2 < sce>ics.group_len[w]; w2++) { 
758 
int b;

759 
dist += quantize_band_cost(s, coefs + w2*128,

760 
scaled + w2*128,

761 
sce>ics.swb_sizes[g], 
762 
sce>sf_idx[w*16+g],

763 
cb, 
764 
1.0f, 
765 
INFINITY, 
766 
&b); 
767 
bits += b; 
768 
} 
769 
dists[w*16+g] = dist  bits;

770 
if (prev != 1) { 
771 
bits += ff_aac_scalefactor_bits[sce>sf_idx[w*16+g]  prev + SCALE_DIFF_ZERO];

772 
} 
773 
tbits += bits; 
774 
start += sce>ics.swb_sizes[g]; 
775 
prev = sce>sf_idx[w*16+g];

776 
} 
777 
} 
778 
if (tbits > destbits) {

779 
for (i = 0; i < 128; i++) 
780 
if (sce>sf_idx[i] < 218  qstep) 
781 
sce>sf_idx[i] += qstep; 
782 
} else {

783 
for (i = 0; i < 128; i++) 
784 
if (sce>sf_idx[i] > 60  qstep) 
785 
sce>sf_idx[i] = qstep; 
786 
} 
787 
qstep >>= 1;

788 
if (!qstep && tbits > destbits*1.02) 
789 
qstep = 1;

790 
if (sce>sf_idx[0] >= 217) 
791 
break;

792 
} while (qstep);

793  
794 
fflag = 0;

795 
minscaler = av_clip(minscaler, 60, 255  SCALE_MAX_DIFF); 
796 
for (w = 0; w < sce>ics.num_windows; w += sce>ics.group_len[w]) { 
797 
start = w*128;

798 
for (g = 0; g < sce>ics.num_swb; g++) { 
799 
int prevsc = sce>sf_idx[w*16+g]; 
800 
const float *scaled = s>scoefs + start; 
801 
if (dists[w*16+g] > uplims[w*16+g] && sce>sf_idx[w*16+g] > 60) 
802 
sce>sf_idx[w*16+g];

803 
sce>sf_idx[w*16+g] = av_clip(sce>sf_idx[w*16+g], minscaler, minscaler + SCALE_MAX_DIFF); 
804 
sce>sf_idx[w*16+g] = FFMIN(sce>sf_idx[w*16+g], 219); 
805 
if (sce>sf_idx[w*16+g] != prevsc) 
806 
fflag = 1;

807 
sce>band_type[w*16+g] = find_min_book(find_max_val(sce>ics.group_len[w], sce>ics.swb_sizes[g], scaled), sce>sf_idx[w*16+g]); 
808 
start += sce>ics.swb_sizes[g]; 
809 
} 
810 
} 
811 
its++; 
812 
} while (fflag && its < 10); 
813 
} 
814  
815 
static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s, 
816 
SingleChannelElement *sce, 
817 
const float lambda) 
818 
{ 
819 
int start = 0, i, w, w2, g; 
820 
float uplim[128], maxq[128]; 
821 
int minq, maxsf;

822 
float distfact = ((sce>ics.num_windows > 1) ? 85.80 : 147.84) / lambda; 
823 
int last = 0, lastband = 0, curband = 0; 
824 
float avg_energy = 0.0; 
825 
if (sce>ics.num_windows == 1) { 
826 
start = 0;

827 
for (i = 0; i < 1024; i++) { 
828 
if (i  start >= sce>ics.swb_sizes[curband]) {

829 
start += sce>ics.swb_sizes[curband]; 
830 
curband++; 
831 
} 
832 
if (sce>coeffs[i]) {

833 
avg_energy += sce>coeffs[i] * sce>coeffs[i]; 
834 
last = i; 
835 
lastband = curband; 
836 
} 
837 
} 
838 
} else {

839 
for (w = 0; w < 8; w++) { 
840 
const float *coeffs = sce>coeffs + w*128; 
841 
start = 0;

842 
for (i = 0; i < 128; i++) { 
843 
if (i  start >= sce>ics.swb_sizes[curband]) {

844 
start += sce>ics.swb_sizes[curband]; 
845 
curband++; 
846 
} 
847 
if (coeffs[i]) {

848 
avg_energy += coeffs[i] * coeffs[i]; 
849 
last = FFMAX(last, i); 
850 
lastband = FFMAX(lastband, curband); 
851 
} 
852 
} 
853 
} 
854 
} 
855 
last++; 
856 
avg_energy /= last; 
857 
if (avg_energy == 0.0f) { 
858 
for (i = 0; i < FF_ARRAY_ELEMS(sce>sf_idx); i++) 
859 
sce>sf_idx[i] = SCALE_ONE_POS; 
860 
return;

861 
} 
862 
for (w = 0; w < sce>ics.num_windows; w += sce>ics.group_len[w]) { 
863 
start = w*128;

864 
for (g = 0; g < sce>ics.num_swb; g++) { 
865 
float *coefs = sce>coeffs + start;

866 
const int size = sce>ics.swb_sizes[g]; 
867 
int start2 = start, end2 = start + size, peakpos = start;

868 
float maxval = 1, thr = 0.0f, t; 
869 
maxq[w*16+g] = 0.0f; 
870 
if (g > lastband) {

871 
maxq[w*16+g] = 0.0f; 
872 
start += size; 
873 
for (w2 = 0; w2 < sce>ics.group_len[w]; w2++) 
874 
memset(coefs + w2*128, 0, sizeof(coefs[0])*size); 
875 
continue;

876 
} 
877 
for (w2 = 0; w2 < sce>ics.group_len[w]; w2++) { 
878 
for (i = 0; i < size; i++) { 
879 
float t = coefs[w2*128+i]*coefs[w2*128+i]; 
880 
maxq[w*16+g] = FFMAX(maxq[w*16+g], fabsf(coefs[w2*128 + i])); 
881 
thr += t; 
882 
if (sce>ics.num_windows == 1 && maxval < t) { 
883 
maxval = t; 
884 
peakpos = start+i; 
885 
} 
886 
} 
887 
} 
888 
if (sce>ics.num_windows == 1) { 
889 
start2 = FFMAX(peakpos  2, start2);

890 
end2 = FFMIN(peakpos + 3, end2);

891 
} else {

892 
start2 = start; 
893 
end2 = start; 
894 
} 
895 
start += size; 
896 
thr = pow(thr / (avg_energy * (end2  start2)), 0.3 + 0.1*(lastband  g) / lastband); 
897 
t = 1.0  (1.0 * start2 / last); 
898 
uplim[w*16+g] = distfact / (1.4 * thr + t*t*t + 0.075); 
899 
} 
900 
} 
901 
memset(sce>sf_idx, 0, sizeof(sce>sf_idx)); 
902 
abs_pow34_v(s>scoefs, sce>coeffs, 1024);

903 
for (w = 0; w < sce>ics.num_windows; w += sce>ics.group_len[w]) { 
904 
start = w*128;

905 
for (g = 0; g < sce>ics.num_swb; g++) { 
906 
const float *coefs = sce>coeffs + start; 
907 
const float *scaled = s>scoefs + start; 
908 
const int size = sce>ics.swb_sizes[g]; 
909 
int scf, prev_scf, step;

910 
int min_scf = 1, max_scf = 256; 
911 
float curdiff;

912 
if (maxq[w*16+g] < 21.544) { 
913 
sce>zeroes[w*16+g] = 1; 
914 
start += size; 
915 
continue;

916 
} 
917 
sce>zeroes[w*16+g] = 0; 
918 
scf = prev_scf = av_clip(SCALE_ONE_POS  SCALE_DIV_512  log2(1/maxq[w*16+g])*16/3, 60, 218); 
919 
step = 16;

920 
for (;;) {

921 
float dist = 0.0f; 
922 
int quant_max;

923  
924 
for (w2 = 0; w2 < sce>ics.group_len[w]; w2++) { 
925 
int b;

926 
dist += quantize_band_cost(s, coefs + w2*128,

927 
scaled + w2*128,

928 
sce>ics.swb_sizes[g], 
929 
scf, 
930 
ESC_BT, 
931 
lambda, 
932 
INFINITY, 
933 
&b); 
934 
dist = b; 
935 
} 
936 
dist *= 1.0f / 512.0f / lambda; 
937 
quant_max = quant(maxq[w*16+g], ff_aac_pow2sf_tab[200  scf + SCALE_ONE_POS  SCALE_DIV_512]); 
938 
if (quant_max >= 8191) { // too much, return to the previous quantizer 
939 
sce>sf_idx[w*16+g] = prev_scf;

940 
break;

941 
} 
942 
prev_scf = scf; 
943 
curdiff = fabsf(dist  uplim[w*16+g]);

944 
if (curdiff <= 1.0f) 
945 
step = 0;

946 
else

947 
step = log2(curdiff); 
948 
if (dist > uplim[w*16+g]) 
949 
step = step; 
950 
scf += step; 
951 
scf = av_clip_uint8(scf); 
952 
step = scf  prev_scf; 
953 
if (FFABS(step) <= 1  (step > 0 && scf >= max_scf)  (step < 0 && scf <= min_scf)) { 
954 
sce>sf_idx[w*16+g] = av_clip(scf, min_scf, max_scf);

955 
break;

956 
} 
957 
if (step > 0) 
958 
min_scf = prev_scf; 
959 
else

960 
max_scf = prev_scf; 
961 
} 
962 
start += size; 
963 
} 
964 
} 
965 
minq = sce>sf_idx[0] ? sce>sf_idx[0] : INT_MAX; 
966 
for (i = 1; i < 128; i++) { 
967 
if (!sce>sf_idx[i])

968 
sce>sf_idx[i] = sce>sf_idx[i1];

969 
else

970 
minq = FFMIN(minq, sce>sf_idx[i]); 
971 
} 
972 
if (minq == INT_MAX)

973 
minq = 0;

974 
minq = FFMIN(minq, SCALE_MAX_POS); 
975 
maxsf = FFMIN(minq + SCALE_MAX_DIFF, SCALE_MAX_POS); 
976 
for (i = 126; i >= 0; i) { 
977 
if (!sce>sf_idx[i])

978 
sce>sf_idx[i] = sce>sf_idx[i+1];

979 
sce>sf_idx[i] = av_clip(sce>sf_idx[i], minq, maxsf); 
980 
} 
981 
} 
982  
983 
static void search_for_quantizers_fast(AVCodecContext *avctx, AACEncContext *s, 
984 
SingleChannelElement *sce, 
985 
const float lambda) 
986 
{ 
987 
int start = 0, i, w, w2, g; 
988 
int minq = 255; 
989  
990 
memset(sce>sf_idx, 0, sizeof(sce>sf_idx)); 
991 
for (w = 0; w < sce>ics.num_windows; w += sce>ics.group_len[w]) { 
992 
start = w*128;

993 
for (g = 0; g < sce>ics.num_swb; g++) { 
994 
for (w2 = 0; w2 < sce>ics.group_len[w]; w2++) { 
995 
FFPsyBand *band = &s>psy.psy_bands[s>cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];

996 
if (band>energy <= band>threshold) {

997 
sce>sf_idx[(w+w2)*16+g] = 218; 
998 
sce>zeroes[(w+w2)*16+g] = 1; 
999 
} else {

1000 
sce>sf_idx[(w+w2)*16+g] = av_clip(SCALE_ONE_POS  SCALE_DIV_512 + log2(band>threshold), 80, 218); 
1001 
sce>zeroes[(w+w2)*16+g] = 0; 
1002 
} 
1003 
minq = FFMIN(minq, sce>sf_idx[(w+w2)*16+g]);

1004 
} 
1005 
} 
1006 
} 
1007 
for (i = 0; i < 128; i++) { 
1008 
sce>sf_idx[i] = 140;

1009 
//av_clip(sce>sf_idx[i], minq, minq + SCALE_MAX_DIFF  1);

1010 
} 
1011 
//set the same quantizers inside window groups

1012 
for (w = 0; w < sce>ics.num_windows; w += sce>ics.group_len[w]) 
1013 
for (g = 0; g < sce>ics.num_swb; g++) 
1014 
for (w2 = 1; w2 < sce>ics.group_len[w]; w2++) 
1015 
sce>sf_idx[(w+w2)*16+g] = sce>sf_idx[w*16+g]; 
1016 
} 
1017  
1018 
static void search_for_ms(AACEncContext *s, ChannelElement *cpe, 
1019 
const float lambda) 
1020 
{ 
1021 
int start = 0, i, w, w2, g; 
1022 
float M[128], S[128]; 
1023 
float *L34 = s>scoefs, *R34 = s>scoefs + 128, *M34 = s>scoefs + 128*2, *S34 = s>scoefs + 128*3; 
1024 
SingleChannelElement *sce0 = &cpe>ch[0];

1025 
SingleChannelElement *sce1 = &cpe>ch[1];

1026 
if (!cpe>common_window)

1027 
return;

1028 
for (w = 0; w < sce0>ics.num_windows; w += sce0>ics.group_len[w]) { 
1029 
for (g = 0; g < sce0>ics.num_swb; g++) { 
1030 
if (!cpe>ch[0].zeroes[w*16+g] && !cpe>ch[1].zeroes[w*16+g]) { 
1031 
float dist1 = 0.0f, dist2 = 0.0f; 
1032 
for (w2 = 0; w2 < sce0>ics.group_len[w]; w2++) { 
1033 
FFPsyBand *band0 = &s>psy.psy_bands[(s>cur_channel+0)*PSY_MAX_BANDS+(w+w2)*16+g]; 
1034 
FFPsyBand *band1 = &s>psy.psy_bands[(s>cur_channel+1)*PSY_MAX_BANDS+(w+w2)*16+g]; 
1035 
float minthr = FFMIN(band0>threshold, band1>threshold);

1036 
float maxthr = FFMAX(band0>threshold, band1>threshold);

1037 
for (i = 0; i < sce0>ics.swb_sizes[g]; i++) { 
1038 
M[i] = (sce0>coeffs[start+w2*128+i]

1039 
+ sce1>coeffs[start+w2*128+i]) * 0.5; 
1040 
S[i] = sce0>coeffs[start+w2*128+i]

1041 
 sce1>coeffs[start+w2*128+i];

1042 
} 
1043 
abs_pow34_v(L34, sce0>coeffs+start+w2*128, sce0>ics.swb_sizes[g]);

1044 
abs_pow34_v(R34, sce1>coeffs+start+w2*128, sce0>ics.swb_sizes[g]);

1045 
abs_pow34_v(M34, M, sce0>ics.swb_sizes[g]); 
1046 
abs_pow34_v(S34, S, sce0>ics.swb_sizes[g]); 
1047 
dist1 += quantize_band_cost(s, sce0>coeffs + start + w2*128,

1048 
L34, 
1049 
sce0>ics.swb_sizes[g], 
1050 
sce0>sf_idx[(w+w2)*16+g],

1051 
sce0>band_type[(w+w2)*16+g],

1052 
lambda / band0>threshold, INFINITY, NULL);

1053 
dist1 += quantize_band_cost(s, sce1>coeffs + start + w2*128,

1054 
R34, 
1055 
sce1>ics.swb_sizes[g], 
1056 
sce1>sf_idx[(w+w2)*16+g],

1057 
sce1>band_type[(w+w2)*16+g],

1058 
lambda / band1>threshold, INFINITY, NULL);

1059 
dist2 += quantize_band_cost(s, M, 
1060 
M34, 
1061 
sce0>ics.swb_sizes[g], 
1062 
sce0>sf_idx[(w+w2)*16+g],

1063 
sce0>band_type[(w+w2)*16+g],

1064 
lambda / maxthr, INFINITY, NULL);

1065 
dist2 += quantize_band_cost(s, S, 
1066 
S34, 
1067 
sce1>ics.swb_sizes[g], 
1068 
sce1>sf_idx[(w+w2)*16+g],

1069 
sce1>band_type[(w+w2)*16+g],

1070 
lambda / minthr, INFINITY, NULL);

1071 
} 
1072 
cpe>ms_mask[w*16+g] = dist2 < dist1;

1073 
} 
1074 
start += sce0>ics.swb_sizes[g]; 
1075 
} 
1076 
} 
1077 
} 
1078  
1079 
AACCoefficientsEncoder ff_aac_coders[] = { 
1080 
{ 
1081 
search_for_quantizers_faac, 
1082 
encode_window_bands_info, 
1083 
quantize_and_encode_band, 
1084 
search_for_ms, 
1085 
}, 
1086 
{ 
1087 
search_for_quantizers_anmr, 
1088 
encode_window_bands_info, 
1089 
quantize_and_encode_band, 
1090 
search_for_ms, 
1091 
}, 
1092 
{ 
1093 
search_for_quantizers_twoloop, 
1094 
codebook_trellis_rate, 
1095 
quantize_and_encode_band, 
1096 
search_for_ms, 
1097 
}, 
1098 
{ 
1099 
search_for_quantizers_fast, 
1100 
encode_window_bands_info, 
1101 
quantize_and_encode_band, 
1102 
search_for_ms, 
1103 
}, 
1104 
}; 