Statistics
| Branch: | Revision:

ffmpeg / libavcodec / mdct.c @ 186447f8

History | View | Annotate | Download (4.42 KB)

1
/*
2
 * MDCT/IMDCT transforms
3
 * Copyright (c) 2002 Fabrice Bellard.
4
 *
5
 * This library is free software; you can redistribute it and/or
6
 * modify it under the terms of the GNU Lesser General Public
7
 * License as published by the Free Software Foundation; either
8
 * version 2 of the License, or (at your option) any later version.
9
 *
10
 * This library is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13
 * Lesser General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU Lesser General Public
16
 * License along with this library; if not, write to the Free Software
17
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
18
 */
19
#include "dsputil.h"
20

    
21
/**
22
 * @file mdct.c
23
 * MDCT/IMDCT transforms.
24
 */
25

    
26
/**
27
 * init MDCT or IMDCT computation.
28
 */
29
int ff_mdct_init(MDCTContext *s, int nbits, int inverse)
30
{
31
    int n, n4, i;
32
    float alpha;
33

    
34
    memset(s, 0, sizeof(*s));
35
    n = 1 << nbits;
36
    s->nbits = nbits;
37
    s->n = n;
38
    n4 = n >> 2;
39
    s->tcos = av_malloc(n4 * sizeof(FFTSample));
40
    if (!s->tcos)
41
        goto fail;
42
    s->tsin = av_malloc(n4 * sizeof(FFTSample));
43
    if (!s->tsin)
44
        goto fail;
45

    
46
    for(i=0;i<n4;i++) {
47
        alpha = 2 * M_PI * (i + 1.0 / 8.0) / n;
48
        s->tcos[i] = -cos(alpha);
49
        s->tsin[i] = -sin(alpha);
50
    }
51
    if (fft_init(&s->fft, s->nbits - 2, inverse) < 0)
52
        goto fail;
53
    return 0;
54
 fail:
55
    av_freep(&s->tcos);
56
    av_freep(&s->tsin);
57
    return -1;
58
}
59

    
60
/* complex multiplication: p = a * b */
61
#define CMUL(pre, pim, are, aim, bre, bim) \
62
{\
63
    float _are = (are);\
64
    float _aim = (aim);\
65
    float _bre = (bre);\
66
    float _bim = (bim);\
67
    (pre) = _are * _bre - _aim * _bim;\
68
    (pim) = _are * _bim + _aim * _bre;\
69
}
70

    
71
/**
72
 * Compute inverse MDCT of size N = 2^nbits
73
 * @param output N samples
74
 * @param input N/2 samples
75
 * @param tmp N/2 samples
76
 */
77
void ff_imdct_calc(MDCTContext *s, FFTSample *output, 
78
                   const FFTSample *input, FFTSample *tmp)
79
{
80
    int k, n8, n4, n2, n, j;
81
    const uint16_t *revtab = s->fft.revtab;
82
    const FFTSample *tcos = s->tcos;
83
    const FFTSample *tsin = s->tsin;
84
    const FFTSample *in1, *in2;
85
    FFTComplex *z = (FFTComplex *)tmp;
86

    
87
    n = 1 << s->nbits;
88
    n2 = n >> 1;
89
    n4 = n >> 2;
90
    n8 = n >> 3;
91

    
92
    /* pre rotation */
93
    in1 = input;
94
    in2 = input + n2 - 1;
95
    for(k = 0; k < n4; k++) {
96
        j=revtab[k];
97
        CMUL(z[j].re, z[j].im, *in2, *in1, tcos[k], tsin[k]);
98
        in1 += 2;
99
        in2 -= 2;
100
    }
101
    fft_calc(&s->fft, z);
102

    
103
    /* post rotation + reordering */
104
    /* XXX: optimize */
105
    for(k = 0; k < n4; k++) {
106
        CMUL(z[k].re, z[k].im, z[k].re, z[k].im, tcos[k], tsin[k]);
107
    }
108
    for(k = 0; k < n8; k++) {
109
        output[2*k] = -z[n8 + k].im;
110
        output[n2-1-2*k] = z[n8 + k].im;
111

    
112
        output[2*k+1] = z[n8-1-k].re;
113
        output[n2-1-2*k-1] = -z[n8-1-k].re;
114

    
115
        output[n2 + 2*k]=-z[k+n8].re;
116
        output[n-1- 2*k]=-z[k+n8].re;
117

    
118
        output[n2 + 2*k+1]=z[n8-k-1].im;
119
        output[n-2 - 2 * k] = z[n8-k-1].im;
120
    }
121
}
122

    
123
/**
124
 * Compute MDCT of size N = 2^nbits
125
 * @param input N samples
126
 * @param out N/2 samples
127
 * @param tmp temporary storage of N/2 samples
128
 */
129
void ff_mdct_calc(MDCTContext *s, FFTSample *out, 
130
                  const FFTSample *input, FFTSample *tmp)
131
{
132
    int i, j, n, n8, n4, n2, n3;
133
    FFTSample re, im, re1, im1;
134
    const uint16_t *revtab = s->fft.revtab;
135
    const FFTSample *tcos = s->tcos;
136
    const FFTSample *tsin = s->tsin;
137
    FFTComplex *x = (FFTComplex *)tmp;
138

    
139
    n = 1 << s->nbits;
140
    n2 = n >> 1;
141
    n4 = n >> 2;
142
    n8 = n >> 3;
143
    n3 = 3 * n4;
144

    
145
    /* pre rotation */
146
    for(i=0;i<n8;i++) {
147
        re = -input[2*i+3*n4] - input[n3-1-2*i];
148
        im = -input[n4+2*i] + input[n4-1-2*i];
149
        j = revtab[i];
150
        CMUL(x[j].re, x[j].im, re, im, -tcos[i], tsin[i]);
151

    
152
        re = input[2*i] - input[n2-1-2*i];
153
        im = -(input[n2+2*i] + input[n-1-2*i]);
154
        j = revtab[n8 + i];
155
        CMUL(x[j].re, x[j].im, re, im, -tcos[n8 + i], tsin[n8 + i]);
156
    }
157

    
158
    fft_calc(&s->fft, x);
159
  
160
    /* post rotation */
161
    for(i=0;i<n4;i++) {
162
        re = x[i].re;
163
        im = x[i].im;
164
        CMUL(re1, im1, re, im, -tsin[i], -tcos[i]);
165
        out[2*i] = im1;
166
        out[n2-1-2*i] = re1;
167
    }
168
}
169

    
170
void ff_mdct_end(MDCTContext *s)
171
{
172
    av_freep(&s->tcos);
173
    av_freep(&s->tsin);
174
    fft_end(&s->fft);
175
}