ffmpeg / libavcodec / ppc / mpegvideo_altivec.c @ 186447f8
History  View  Annotate  Download (24.5 KB)
1 
/*


2 
* Copyright (c) 2002 Dieter Shirley

3 
*

4 
* This library is free software; you can redistribute it and/or

5 
* modify it under the terms of the GNU Lesser General Public

6 
* License as published by the Free Software Foundation; either

7 
* version 2 of the License, or (at your option) any later version.

8 
*

9 
* This library is distributed in the hope that it will be useful,

10 
* but WITHOUT ANY WARRANTY; without even the implied warranty of

11 
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

12 
* Lesser General Public License for more details.

13 
*

14 
* You should have received a copy of the GNU Lesser General Public

15 
* License along with this library; if not, write to the Free Software

16 
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 021111307 USA

17 
*/

18  
19 
#include <stdlib.h> 
20 
#include <stdio.h> 
21 
#include "../dsputil.h" 
22 
#include "../mpegvideo.h" 
23  
24 
#include "gcc_fixes.h" 
25 

26 
#include "dsputil_altivec.h" 
27  
28 
// Swaps two variables (used for altivec registers)

29 
#define SWAP(a,b) \

30 
do { \

31 
__typeof__(a) swap_temp=a; \ 
32 
a=b; \ 
33 
b=swap_temp; \ 
34 
} while (0) 
35  
36 
// transposes a matrix consisting of four vectors with four elements each

37 
#define TRANSPOSE4(a,b,c,d) \

38 
do { \

39 
__typeof__(a) _trans_ach = vec_mergeh(a, c); \ 
40 
__typeof__(a) _trans_acl = vec_mergel(a, c); \ 
41 
__typeof__(a) _trans_bdh = vec_mergeh(b, d); \ 
42 
__typeof__(a) _trans_bdl = vec_mergel(b, d); \ 
43 
\ 
44 
a = vec_mergeh(_trans_ach, _trans_bdh); \ 
45 
b = vec_mergel(_trans_ach, _trans_bdh); \ 
46 
c = vec_mergeh(_trans_acl, _trans_bdl); \ 
47 
d = vec_mergel(_trans_acl, _trans_bdl); \ 
48 
} while (0) 
49  
50 
#define TRANSPOSE8(a,b,c,d,e,f,g,h) \

51 
do { \

52 
__typeof__(a) _A1, _B1, _C1, _D1, _E1, _F1, _G1, _H1; \ 
53 
__typeof__(a) _A2, _B2, _C2, _D2, _E2, _F2, _G2, _H2; \ 
54 
\ 
55 
_A1 = vec_mergeh (a, e); \ 
56 
_B1 = vec_mergel (a, e); \ 
57 
_C1 = vec_mergeh (b, f); \ 
58 
_D1 = vec_mergel (b, f); \ 
59 
_E1 = vec_mergeh (c, g); \ 
60 
_F1 = vec_mergel (c, g); \ 
61 
_G1 = vec_mergeh (d, h); \ 
62 
_H1 = vec_mergel (d, h); \ 
63 
\ 
64 
_A2 = vec_mergeh (_A1, _E1); \ 
65 
_B2 = vec_mergel (_A1, _E1); \ 
66 
_C2 = vec_mergeh (_B1, _F1); \ 
67 
_D2 = vec_mergel (_B1, _F1); \ 
68 
_E2 = vec_mergeh (_C1, _G1); \ 
69 
_F2 = vec_mergel (_C1, _G1); \ 
70 
_G2 = vec_mergeh (_D1, _H1); \ 
71 
_H2 = vec_mergel (_D1, _H1); \ 
72 
\ 
73 
a = vec_mergeh (_A2, _E2); \ 
74 
b = vec_mergel (_A2, _E2); \ 
75 
c = vec_mergeh (_B2, _F2); \ 
76 
d = vec_mergel (_B2, _F2); \ 
77 
e = vec_mergeh (_C2, _G2); \ 
78 
f = vec_mergel (_C2, _G2); \ 
79 
g = vec_mergeh (_D2, _H2); \ 
80 
h = vec_mergel (_D2, _H2); \ 
81 
} while (0) 
82  
83  
84 
// Loads a fourbyte value (int or float) from the target address

85 
// into every element in the target vector. Only works if the

86 
// target address is fourbyte aligned (which should be always).

87 
#define LOAD4(vec, address) \

88 
{ \ 
89 
__typeof__(vec)* _load_addr = (__typeof__(vec)*)(address); \ 
90 
vector unsigned char _perm_vec = vec_lvsl(0,(address)); \ 
91 
vec = vec_ld(0, _load_addr); \

92 
vec = vec_perm(vec, vec, _perm_vec); \ 
93 
vec = vec_splat(vec, 0); \

94 
} 
95  
96  
97 
#ifdef CONFIG_DARWIN

98 
#define FOUROF(a) (a)

99 
#else

100 
// slower, for dumb nonapple GCC

101 
#define FOUROF(a) {a,a,a,a}

102 
#endif

103 
int dct_quantize_altivec(MpegEncContext* s,

104 
DCTELEM* data, int n,

105 
int qscale, int* overflow) 
106 
{ 
107 
int lastNonZero;

108 
vector float row0, row1, row2, row3, row4, row5, row6, row7;

109 
vector float alt0, alt1, alt2, alt3, alt4, alt5, alt6, alt7;

110 
const vector float zero = (const vector float)FOUROF(0.); 
111  
112 
// Load the data into the row/alt vectors

113 
{ 
114 
vector signed short data0, data1, data2, data3, data4, data5, data6, data7; 
115  
116 
data0 = vec_ld(0, data);

117 
data1 = vec_ld(16, data);

118 
data2 = vec_ld(32, data);

119 
data3 = vec_ld(48, data);

120 
data4 = vec_ld(64, data);

121 
data5 = vec_ld(80, data);

122 
data6 = vec_ld(96, data);

123 
data7 = vec_ld(112, data);

124  
125 
// Transpose the data before we start

126 
TRANSPOSE8(data0, data1, data2, data3, data4, data5, data6, data7); 
127  
128 
// load the data into floating point vectors. We load

129 
// the high half of each row into the main row vectors

130 
// and the low half into the alt vectors.

131 
row0 = vec_ctf(vec_unpackh(data0), 0);

132 
alt0 = vec_ctf(vec_unpackl(data0), 0);

133 
row1 = vec_ctf(vec_unpackh(data1), 0);

134 
alt1 = vec_ctf(vec_unpackl(data1), 0);

135 
row2 = vec_ctf(vec_unpackh(data2), 0);

136 
alt2 = vec_ctf(vec_unpackl(data2), 0);

137 
row3 = vec_ctf(vec_unpackh(data3), 0);

138 
alt3 = vec_ctf(vec_unpackl(data3), 0);

139 
row4 = vec_ctf(vec_unpackh(data4), 0);

140 
alt4 = vec_ctf(vec_unpackl(data4), 0);

141 
row5 = vec_ctf(vec_unpackh(data5), 0);

142 
alt5 = vec_ctf(vec_unpackl(data5), 0);

143 
row6 = vec_ctf(vec_unpackh(data6), 0);

144 
alt6 = vec_ctf(vec_unpackl(data6), 0);

145 
row7 = vec_ctf(vec_unpackh(data7), 0);

146 
alt7 = vec_ctf(vec_unpackl(data7), 0);

147 
} 
148  
149 
// The following block could exist as a separate an altivec dct

150 
// function. However, if we put it inline, the DCT data can remain

151 
// in the vector local variables, as floats, which we'll use during the

152 
// quantize step...

153 
{ 
154 
const vector float vec_0_298631336 = (vector float)FOUROF(0.298631336f); 
155 
const vector float vec_0_390180644 = (vector float)FOUROF(0.390180644f); 
156 
const vector float vec_0_541196100 = (vector float)FOUROF(0.541196100f); 
157 
const vector float vec_0_765366865 = (vector float)FOUROF(0.765366865f); 
158 
const vector float vec_0_899976223 = (vector float)FOUROF(0.899976223f); 
159 
const vector float vec_1_175875602 = (vector float)FOUROF(1.175875602f); 
160 
const vector float vec_1_501321110 = (vector float)FOUROF(1.501321110f); 
161 
const vector float vec_1_847759065 = (vector float)FOUROF(1.847759065f); 
162 
const vector float vec_1_961570560 = (vector float)FOUROF(1.961570560f); 
163 
const vector float vec_2_053119869 = (vector float)FOUROF(2.053119869f); 
164 
const vector float vec_2_562915447 = (vector float)FOUROF(2.562915447f); 
165 
const vector float vec_3_072711026 = (vector float)FOUROF(3.072711026f); 
166  
167  
168 
int whichPass, whichHalf;

169  
170 
for(whichPass = 1; whichPass<=2; whichPass++) 
171 
{ 
172 
for(whichHalf = 1; whichHalf<=2; whichHalf++) 
173 
{ 
174 
vector float tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;

175 
vector float tmp10, tmp11, tmp12, tmp13;

176 
vector float z1, z2, z3, z4, z5;

177  
178 
tmp0 = vec_add(row0, row7); // tmp0 = dataptr[0] + dataptr[7];

179 
tmp7 = vec_sub(row0, row7); // tmp7 = dataptr[0]  dataptr[7];

180 
tmp3 = vec_add(row3, row4); // tmp3 = dataptr[3] + dataptr[4];

181 
tmp4 = vec_sub(row3, row4); // tmp4 = dataptr[3]  dataptr[4];

182 
tmp1 = vec_add(row1, row6); // tmp1 = dataptr[1] + dataptr[6];

183 
tmp6 = vec_sub(row1, row6); // tmp6 = dataptr[1]  dataptr[6];

184 
tmp2 = vec_add(row2, row5); // tmp2 = dataptr[2] + dataptr[5];

185 
tmp5 = vec_sub(row2, row5); // tmp5 = dataptr[2]  dataptr[5];

186  
187 
tmp10 = vec_add(tmp0, tmp3); // tmp10 = tmp0 + tmp3;

188 
tmp13 = vec_sub(tmp0, tmp3); // tmp13 = tmp0  tmp3;

189 
tmp11 = vec_add(tmp1, tmp2); // tmp11 = tmp1 + tmp2;

190 
tmp12 = vec_sub(tmp1, tmp2); // tmp12 = tmp1  tmp2;

191  
192  
193 
// dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);

194 
row0 = vec_add(tmp10, tmp11); 
195  
196 
// dataptr[4] = (DCTELEM) ((tmp10  tmp11) << PASS1_BITS);

197 
row4 = vec_sub(tmp10, tmp11); 
198  
199  
200 
// z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);

201 
z1 = vec_madd(vec_add(tmp12, tmp13), vec_0_541196100, (vector float)zero);

202  
203 
// dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),

204 
// CONST_BITSPASS1_BITS);

205 
row2 = vec_madd(tmp13, vec_0_765366865, z1); 
206  
207 
// dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12,  FIX_1_847759065),

208 
// CONST_BITSPASS1_BITS);

209 
row6 = vec_madd(tmp12, vec_1_847759065, z1); 
210  
211 
z1 = vec_add(tmp4, tmp7); // z1 = tmp4 + tmp7;

212 
z2 = vec_add(tmp5, tmp6); // z2 = tmp5 + tmp6;

213 
z3 = vec_add(tmp4, tmp6); // z3 = tmp4 + tmp6;

214 
z4 = vec_add(tmp5, tmp7); // z4 = tmp5 + tmp7;

215  
216 
// z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */

217 
z5 = vec_madd(vec_add(z3, z4), vec_1_175875602, (vector float)zero);

218  
219 
// z3 = MULTIPLY(z3,  FIX_1_961570560); /* sqrt(2) * (c3c5) */

220 
z3 = vec_madd(z3, vec_1_961570560, z5); 
221  
222 
// z4 = MULTIPLY(z4,  FIX_0_390180644); /* sqrt(2) * (c5c3) */

223 
z4 = vec_madd(z4, vec_0_390180644, z5); 
224  
225 
// The following adds are rolled into the multiplies above

226 
// z3 = vec_add(z3, z5); // z3 += z5;

227 
// z4 = vec_add(z4, z5); // z4 += z5;

228  
229 
// z2 = MULTIPLY(z2,  FIX_2_562915447); /* sqrt(2) * (c1c3) */

230 
// Wow! It's actually more effecient to roll this multiply

231 
// into the adds below, even thought the multiply gets done twice!

232 
// z2 = vec_madd(z2, vec_2_562915447, (vector float)zero);

233  
234 
// z1 = MULTIPLY(z1,  FIX_0_899976223); /* sqrt(2) * (c7c3) */

235 
// Same with this one...

236 
// z1 = vec_madd(z1, vec_0_899976223, (vector float)zero);

237  
238 
// tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (c1+c3+c5c7) */

239 
// dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITSPASS1_BITS);

240 
row7 = vec_madd(tmp4, vec_0_298631336, vec_madd(z1, vec_0_899976223, z3)); 
241  
242 
// tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3c5+c7) */

243 
// dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITSPASS1_BITS);

244 
row5 = vec_madd(tmp5, vec_2_053119869, vec_madd(z2, vec_2_562915447, z4)); 
245  
246 
// tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5c7) */

247 
// dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITSPASS1_BITS);

248 
row3 = vec_madd(tmp6, vec_3_072711026, vec_madd(z2, vec_2_562915447, z3)); 
249  
250 
// tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3c5c7) */

251 
// dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITSPASS1_BITS);

252 
row1 = vec_madd(z1, vec_0_899976223, vec_madd(tmp7, vec_1_501321110, z4)); 
253  
254 
// Swap the row values with the alts. If this is the first half,

255 
// this sets up the low values to be acted on in the second half.

256 
// If this is the second half, it puts the high values back in

257 
// the row values where they are expected to be when we're done.

258 
SWAP(row0, alt0); 
259 
SWAP(row1, alt1); 
260 
SWAP(row2, alt2); 
261 
SWAP(row3, alt3); 
262 
SWAP(row4, alt4); 
263 
SWAP(row5, alt5); 
264 
SWAP(row6, alt6); 
265 
SWAP(row7, alt7); 
266 
} 
267  
268 
if (whichPass == 1) 
269 
{ 
270 
// transpose the data for the second pass

271 

272 
// First, block transpose the upper right with lower left.

273 
SWAP(row4, alt0); 
274 
SWAP(row5, alt1); 
275 
SWAP(row6, alt2); 
276 
SWAP(row7, alt3); 
277  
278 
// Now, transpose each block of four

279 
TRANSPOSE4(row0, row1, row2, row3); 
280 
TRANSPOSE4(row4, row5, row6, row7); 
281 
TRANSPOSE4(alt0, alt1, alt2, alt3); 
282 
TRANSPOSE4(alt4, alt5, alt6, alt7); 
283 
} 
284 
} 
285 
} 
286  
287 
// used after quantise step

288 
int oldBaseValue = 0; 
289  
290 
// perform the quantise step, using the floating point data

291 
// still in the row/alt registers

292 
{ 
293 
const int* biasAddr; 
294 
const vector signed int* qmat; 
295 
vector float bias, negBias;

296  
297 
if (s>mb_intra)

298 
{ 
299 
vector signed int baseVector; 
300  
301 
// We must cache element 0 in the intra case

302 
// (it needs special handling).

303 
baseVector = vec_cts(vec_splat(row0, 0), 0); 
304 
vec_ste(baseVector, 0, &oldBaseValue);

305  
306 
qmat = (vector signed int*)s>q_intra_matrix[qscale]; 
307 
biasAddr = &(s>intra_quant_bias); 
308 
} 
309 
else

310 
{ 
311 
qmat = (vector signed int*)s>q_inter_matrix[qscale]; 
312 
biasAddr = &(s>inter_quant_bias); 
313 
} 
314  
315 
// Load the bias vector (We add 0.5 to the bias so that we're

316 
// rounding when we convert to int, instead of flooring.)

317 
{ 
318 
vector signed int biasInt; 
319 
const vector float negOneFloat = (vector float)FOUROF(1.0f); 
320 
LOAD4(biasInt, biasAddr); 
321 
bias = vec_ctf(biasInt, QUANT_BIAS_SHIFT); 
322 
negBias = vec_madd(bias, negOneFloat, zero); 
323 
} 
324  
325 
{ 
326 
vector float q0, q1, q2, q3, q4, q5, q6, q7;

327  
328 
q0 = vec_ctf(qmat[0], QMAT_SHIFT);

329 
q1 = vec_ctf(qmat[2], QMAT_SHIFT);

330 
q2 = vec_ctf(qmat[4], QMAT_SHIFT);

331 
q3 = vec_ctf(qmat[6], QMAT_SHIFT);

332 
q4 = vec_ctf(qmat[8], QMAT_SHIFT);

333 
q5 = vec_ctf(qmat[10], QMAT_SHIFT);

334 
q6 = vec_ctf(qmat[12], QMAT_SHIFT);

335 
q7 = vec_ctf(qmat[14], QMAT_SHIFT);

336  
337 
row0 = vec_sel(vec_madd(row0, q0, negBias), vec_madd(row0, q0, bias), 
338 
vec_cmpgt(row0, zero)); 
339 
row1 = vec_sel(vec_madd(row1, q1, negBias), vec_madd(row1, q1, bias), 
340 
vec_cmpgt(row1, zero)); 
341 
row2 = vec_sel(vec_madd(row2, q2, negBias), vec_madd(row2, q2, bias), 
342 
vec_cmpgt(row2, zero)); 
343 
row3 = vec_sel(vec_madd(row3, q3, negBias), vec_madd(row3, q3, bias), 
344 
vec_cmpgt(row3, zero)); 
345 
row4 = vec_sel(vec_madd(row4, q4, negBias), vec_madd(row4, q4, bias), 
346 
vec_cmpgt(row4, zero)); 
347 
row5 = vec_sel(vec_madd(row5, q5, negBias), vec_madd(row5, q5, bias), 
348 
vec_cmpgt(row5, zero)); 
349 
row6 = vec_sel(vec_madd(row6, q6, negBias), vec_madd(row6, q6, bias), 
350 
vec_cmpgt(row6, zero)); 
351 
row7 = vec_sel(vec_madd(row7, q7, negBias), vec_madd(row7, q7, bias), 
352 
vec_cmpgt(row7, zero)); 
353  
354 
q0 = vec_ctf(qmat[1], QMAT_SHIFT);

355 
q1 = vec_ctf(qmat[3], QMAT_SHIFT);

356 
q2 = vec_ctf(qmat[5], QMAT_SHIFT);

357 
q3 = vec_ctf(qmat[7], QMAT_SHIFT);

358 
q4 = vec_ctf(qmat[9], QMAT_SHIFT);

359 
q5 = vec_ctf(qmat[11], QMAT_SHIFT);

360 
q6 = vec_ctf(qmat[13], QMAT_SHIFT);

361 
q7 = vec_ctf(qmat[15], QMAT_SHIFT);

362  
363 
alt0 = vec_sel(vec_madd(alt0, q0, negBias), vec_madd(alt0, q0, bias), 
364 
vec_cmpgt(alt0, zero)); 
365 
alt1 = vec_sel(vec_madd(alt1, q1, negBias), vec_madd(alt1, q1, bias), 
366 
vec_cmpgt(alt1, zero)); 
367 
alt2 = vec_sel(vec_madd(alt2, q2, negBias), vec_madd(alt2, q2, bias), 
368 
vec_cmpgt(alt2, zero)); 
369 
alt3 = vec_sel(vec_madd(alt3, q3, negBias), vec_madd(alt3, q3, bias), 
370 
vec_cmpgt(alt3, zero)); 
371 
alt4 = vec_sel(vec_madd(alt4, q4, negBias), vec_madd(alt4, q4, bias), 
372 
vec_cmpgt(alt4, zero)); 
373 
alt5 = vec_sel(vec_madd(alt5, q5, negBias), vec_madd(alt5, q5, bias), 
374 
vec_cmpgt(alt5, zero)); 
375 
alt6 = vec_sel(vec_madd(alt6, q6, negBias), vec_madd(alt6, q6, bias), 
376 
vec_cmpgt(alt6, zero)); 
377 
alt7 = vec_sel(vec_madd(alt7, q7, negBias), vec_madd(alt7, q7, bias), 
378 
vec_cmpgt(alt7, zero)); 
379 
} 
380  
381 

382 
} 
383  
384 
// Store the data back into the original block

385 
{ 
386 
vector signed short data0, data1, data2, data3, data4, data5, data6, data7; 
387  
388 
data0 = vec_pack(vec_cts(row0, 0), vec_cts(alt0, 0)); 
389 
data1 = vec_pack(vec_cts(row1, 0), vec_cts(alt1, 0)); 
390 
data2 = vec_pack(vec_cts(row2, 0), vec_cts(alt2, 0)); 
391 
data3 = vec_pack(vec_cts(row3, 0), vec_cts(alt3, 0)); 
392 
data4 = vec_pack(vec_cts(row4, 0), vec_cts(alt4, 0)); 
393 
data5 = vec_pack(vec_cts(row5, 0), vec_cts(alt5, 0)); 
394 
data6 = vec_pack(vec_cts(row6, 0), vec_cts(alt6, 0)); 
395 
data7 = vec_pack(vec_cts(row7, 0), vec_cts(alt7, 0)); 
396  
397 
{ 
398 
// Clamp for overflow

399 
vector signed int max_q_int, min_q_int; 
400 
vector signed short max_q, min_q; 
401  
402 
LOAD4(max_q_int, &(s>max_qcoeff)); 
403 
LOAD4(min_q_int, &(s>min_qcoeff)); 
404  
405 
max_q = vec_pack(max_q_int, max_q_int); 
406 
min_q = vec_pack(min_q_int, min_q_int); 
407  
408 
data0 = vec_max(vec_min(data0, max_q), min_q); 
409 
data1 = vec_max(vec_min(data1, max_q), min_q); 
410 
data2 = vec_max(vec_min(data2, max_q), min_q); 
411 
data4 = vec_max(vec_min(data4, max_q), min_q); 
412 
data5 = vec_max(vec_min(data5, max_q), min_q); 
413 
data6 = vec_max(vec_min(data6, max_q), min_q); 
414 
data7 = vec_max(vec_min(data7, max_q), min_q); 
415 
} 
416  
417 
vector bool char zero_01, zero_23, zero_45, zero_67; 
418 
vector signed char scanIndices_01, scanIndices_23, scanIndices_45, scanIndices_67; 
419 
vector signed char negOne = vec_splat_s8(1); 
420 
vector signed char* scanPtr = 
421 
(vector signed char*)(s>intra_scantable.inverse); 
422  
423 
// Determine the largest nonzero index.

424 
zero_01 = vec_pack(vec_cmpeq(data0, (vector short)zero),

425 
vec_cmpeq(data1, (vector short)zero));

426 
zero_23 = vec_pack(vec_cmpeq(data2, (vector short)zero),

427 
vec_cmpeq(data3, (vector short)zero));

428 
zero_45 = vec_pack(vec_cmpeq(data4, (vector short)zero),

429 
vec_cmpeq(data5, (vector short)zero));

430 
zero_67 = vec_pack(vec_cmpeq(data6, (vector short)zero),

431 
vec_cmpeq(data7, (vector short)zero));

432  
433 
// 64 biggest values

434 
scanIndices_01 = vec_sel(scanPtr[0], negOne, zero_01);

435 
scanIndices_23 = vec_sel(scanPtr[1], negOne, zero_23);

436 
scanIndices_45 = vec_sel(scanPtr[2], negOne, zero_45);

437 
scanIndices_67 = vec_sel(scanPtr[3], negOne, zero_67);

438  
439 
// 32 largest values

440 
scanIndices_01 = vec_max(scanIndices_01, scanIndices_23); 
441 
scanIndices_45 = vec_max(scanIndices_45, scanIndices_67); 
442  
443 
// 16 largest values

444 
scanIndices_01 = vec_max(scanIndices_01, scanIndices_45); 
445  
446 
// 8 largest values

447 
scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne), 
448 
vec_mergel(scanIndices_01, negOne)); 
449  
450 
// 4 largest values

451 
scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne), 
452 
vec_mergel(scanIndices_01, negOne)); 
453  
454 
// 2 largest values

455 
scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne), 
456 
vec_mergel(scanIndices_01, negOne)); 
457  
458 
// largest value

459 
scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne), 
460 
vec_mergel(scanIndices_01, negOne)); 
461  
462 
scanIndices_01 = vec_splat(scanIndices_01, 0);

463  
464 
signed char lastNonZeroChar; 
465  
466 
vec_ste(scanIndices_01, 0, &lastNonZeroChar);

467  
468 
lastNonZero = lastNonZeroChar; 
469 

470 
// While the data is still in vectors we check for the transpose IDCT permute

471 
// and handle it using the vector unit if we can. This is the permute used

472 
// by the altivec idct, so it is common when using the altivec dct.

473  
474 
if ((lastNonZero > 0) && (s>dsp.idct_permutation_type == FF_TRANSPOSE_IDCT_PERM)) 
475 
{ 
476 
TRANSPOSE8(data0, data1, data2, data3, data4, data5, data6, data7); 
477 
} 
478  
479 
vec_st(data0, 0, data);

480 
vec_st(data1, 16, data);

481 
vec_st(data2, 32, data);

482 
vec_st(data3, 48, data);

483 
vec_st(data4, 64, data);

484 
vec_st(data5, 80, data);

485 
vec_st(data6, 96, data);

486 
vec_st(data7, 112, data);

487 
} 
488  
489 
// special handling of block[0]

490 
if (s>mb_intra)

491 
{ 
492 
if (!s>h263_aic)

493 
{ 
494 
if (n < 4) 
495 
oldBaseValue /= s>y_dc_scale; 
496 
else

497 
oldBaseValue /= s>c_dc_scale; 
498 
} 
499  
500 
// Divide by 8, rounding the result

501 
data[0] = (oldBaseValue + 4) >> 3; 
502 
} 
503  
504 
// We handled the tranpose permutation above and we don't

505 
// need to permute the "no" permutation case.

506 
if ((lastNonZero > 0) && 
507 
(s>dsp.idct_permutation_type != FF_TRANSPOSE_IDCT_PERM) && 
508 
(s>dsp.idct_permutation_type != FF_NO_IDCT_PERM)) 
509 
{ 
510 
ff_block_permute(data, s>dsp.idct_permutation, 
511 
s>intra_scantable.scantable, lastNonZero); 
512 
} 
513  
514 
return lastNonZero;

515 
} 
516 
#undef FOUROF

517  
518 
/*

519 
AltiVec version of dct_unquantize_h263

520 
this code assumes `block' is 16 bytesaligned

521 
*/

522 
void dct_unquantize_h263_altivec(MpegEncContext *s,

523 
DCTELEM *block, int n, int qscale) 
524 
{ 
525 
POWERPC_PERF_DECLARE(altivec_dct_unquantize_h263_num, 1);

526 
int i, level, qmul, qadd;

527 
int nCoeffs;

528 

529 
assert(s>block_last_index[n]>=0);

530  
531 
POWERPC_PERF_START_COUNT(altivec_dct_unquantize_h263_num, 1);

532 

533 
qadd = (qscale  1)  1; 
534 
qmul = qscale << 1;

535 

536 
if (s>mb_intra) {

537 
if (!s>h263_aic) {

538 
if (n < 4) 
539 
block[0] = block[0] * s>y_dc_scale; 
540 
else

541 
block[0] = block[0] * s>c_dc_scale; 
542 
}else

543 
qadd = 0;

544 
i = 1;

545 
nCoeffs= 63; //does not allways use zigzag table 
546 
} else {

547 
i = 0;

548 
nCoeffs= s>intra_scantable.raster_end[ s>block_last_index[n] ]; 
549 
} 
550  
551 
#ifdef ALTIVEC_USE_REFERENCE_C_CODE

552 
for(;i<=nCoeffs;i++) {

553 
level = block[i]; 
554 
if (level) {

555 
if (level < 0) { 
556 
level = level * qmul  qadd; 
557 
} else {

558 
level = level * qmul + qadd; 
559 
} 
560 
block[i] = level; 
561 
} 
562 
} 
563 
#else /* ALTIVEC_USE_REFERENCE_C_CODE */ 
564 
{ 
565 
register const vector short vczero = (const vector short)vec_splat_s16(0); 
566 
short __attribute__ ((aligned(16))) qmul8[] = 
567 
{ 
568 
qmul, qmul, qmul, qmul, 
569 
qmul, qmul, qmul, qmul 
570 
}; 
571 
short __attribute__ ((aligned(16))) qadd8[] = 
572 
{ 
573 
qadd, qadd, qadd, qadd, 
574 
qadd, qadd, qadd, qadd 
575 
}; 
576 
short __attribute__ ((aligned(16))) nqadd8[] = 
577 
{ 
578 
qadd, qadd, qadd, qadd, 
579 
qadd, qadd, qadd, qadd 
580 
}; 
581 
register vector short blockv, qmulv, qaddv, nqaddv, temp1; 
582 
register vector bool short blockv_null, blockv_neg; 
583 
register short backup_0 = block[0]; 
584 
register int j = 0; 
585 

586 
qmulv = vec_ld(0, qmul8);

587 
qaddv = vec_ld(0, qadd8);

588 
nqaddv = vec_ld(0, nqadd8);

589  
590 
#if 0 // block *is* 16 bytesaligned, it seems.

591 
// first make sure block[j] is 16 bytesaligned

592 
for(j = 0; (j <= nCoeffs) && ((((unsigned long)block) + (j << 1)) & 0x0000000F) ; j++) {

593 
level = block[j];

594 
if (level) {

595 
if (level < 0) {

596 
level = level * qmul  qadd;

597 
} else {

598 
level = level * qmul + qadd;

599 
}

600 
block[j] = level;

601 
}

602 
}

603 
#endif

604 

605 
// vectorize all the 16 bytesaligned blocks

606 
// of 8 elements

607 
for(; (j + 7) <= nCoeffs ; j+=8) 
608 
{ 
609 
blockv = vec_ld(j << 1, block);

610 
blockv_neg = vec_cmplt(blockv, vczero); 
611 
blockv_null = vec_cmpeq(blockv, vczero); 
612 
// choose between +qadd or qadd as the third operand

613 
temp1 = vec_sel(qaddv, nqaddv, blockv_neg); 
614 
// multiply & add (block{i,i+7} * qmul [+] qadd)

615 
temp1 = vec_mladd(blockv, qmulv, temp1); 
616 
// put 0 where block[{i,i+7} used to have 0

617 
blockv = vec_sel(temp1, blockv, blockv_null); 
618 
vec_st(blockv, j << 1, block);

619 
} 
620  
621 
// if nCoeffs isn't a multiple of 8, finish the job

622 
// using good old scalar units.

623 
// (we could do it using a truncated vector,

624 
// but I'm not sure it's worth the hassle)

625 
for(; j <= nCoeffs ; j++) {

626 
level = block[j]; 
627 
if (level) {

628 
if (level < 0) { 
629 
level = level * qmul  qadd; 
630 
} else {

631 
level = level * qmul + qadd; 
632 
} 
633 
block[j] = level; 
634 
} 
635 
} 
636 

637 
if (i == 1) 
638 
{ // cheat. this avoid specialcasing the first iteration

639 
block[0] = backup_0;

640 
} 
641 
} 
642 
#endif /* ALTIVEC_USE_REFERENCE_C_CODE */ 
643  
644 
POWERPC_PERF_STOP_COUNT(altivec_dct_unquantize_h263_num, nCoeffs == 63);

645 
} 