Statistics
| Branch: | Revision:

ffmpeg / libavcodec / adpcm.c @ 1a68e7ed

History | View | Annotate | Download (64.6 KB)

1
/*
2
 * ADPCM codecs
3
 * Copyright (c) 2001-2003 The ffmpeg Project
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
#include "avcodec.h"
22
#include "get_bits.h"
23
#include "put_bits.h"
24
#include "bytestream.h"
25

    
26
/**
27
 * @file
28
 * ADPCM codecs.
29
 * First version by Francois Revol (revol@free.fr)
30
 * Fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
31
 *   by Mike Melanson (melanson@pcisys.net)
32
 * CD-ROM XA ADPCM codec by BERO
33
 * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
34
 * EA ADPCM R1/R2/R3 decoder by Peter Ross (pross@xvid.org)
35
 * EA IMA EACS decoder by Peter Ross (pross@xvid.org)
36
 * EA IMA SEAD decoder by Peter Ross (pross@xvid.org)
37
 * EA ADPCM XAS decoder by Peter Ross (pross@xvid.org)
38
 * MAXIS EA ADPCM decoder by Robert Marston (rmarston@gmail.com)
39
 * THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl)
40
 *
41
 * Features and limitations:
42
 *
43
 * Reference documents:
44
 * http://www.pcisys.net/~melanson/codecs/simpleaudio.html
45
 * http://www.geocities.com/SiliconValley/8682/aud3.txt
46
 * http://openquicktime.sourceforge.net/plugins.htm
47
 * XAnim sources (xa_codec.c) http://www.rasnaimaging.com/people/lapus/download.html
48
 * http://www.cs.ucla.edu/~leec/mediabench/applications.html
49
 * SoX source code http://home.sprynet.com/~cbagwell/sox.html
50
 *
51
 * CD-ROM XA:
52
 * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html
53
 * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html
54
 * readstr http://www.geocities.co.jp/Playtown/2004/
55
 */
56

    
57
#define BLKSIZE 1024
58

    
59
/* step_table[] and index_table[] are from the ADPCM reference source */
60
/* This is the index table: */
61
static const int index_table[16] = {
62
    -1, -1, -1, -1, 2, 4, 6, 8,
63
    -1, -1, -1, -1, 2, 4, 6, 8,
64
};
65

    
66
/**
67
 * This is the step table. Note that many programs use slight deviations from
68
 * this table, but such deviations are negligible:
69
 */
70
static const int step_table[89] = {
71
    7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
72
    19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
73
    50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
74
    130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
75
    337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
76
    876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
77
    2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
78
    5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
79
    15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
80
};
81

    
82
/* These are for MS-ADPCM */
83
/* AdaptationTable[], AdaptCoeff1[], and AdaptCoeff2[] are from libsndfile */
84
static const int AdaptationTable[] = {
85
        230, 230, 230, 230, 307, 409, 512, 614,
86
        768, 614, 512, 409, 307, 230, 230, 230
87
};
88

    
89
/** Divided by 4 to fit in 8-bit integers */
90
static const uint8_t AdaptCoeff1[] = {
91
        64, 128, 0, 48, 60, 115, 98
92
};
93

    
94
/** Divided by 4 to fit in 8-bit integers */
95
static const int8_t AdaptCoeff2[] = {
96
        0, -64, 0, 16, 0, -52, -58
97
};
98

    
99
/* These are for CD-ROM XA ADPCM */
100
static const int xa_adpcm_table[5][2] = {
101
   {   0,   0 },
102
   {  60,   0 },
103
   { 115, -52 },
104
   {  98, -55 },
105
   { 122, -60 }
106
};
107

    
108
static const int ea_adpcm_table[] = {
109
    0, 240, 460, 392, 0, 0, -208, -220, 0, 1,
110
    3, 4, 7, 8, 10, 11, 0, -1, -3, -4
111
};
112

    
113
// padded to zero where table size is less then 16
114
static const int swf_index_tables[4][16] = {
115
    /*2*/ { -1, 2 },
116
    /*3*/ { -1, -1, 2, 4 },
117
    /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
118
    /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
119
};
120

    
121
static const int yamaha_indexscale[] = {
122
    230, 230, 230, 230, 307, 409, 512, 614,
123
    230, 230, 230, 230, 307, 409, 512, 614
124
};
125

    
126
static const int yamaha_difflookup[] = {
127
    1, 3, 5, 7, 9, 11, 13, 15,
128
    -1, -3, -5, -7, -9, -11, -13, -15
129
};
130

    
131
/* end of tables */
132

    
133
typedef struct ADPCMChannelStatus {
134
    int predictor;
135
    short int step_index;
136
    int step;
137
    /* for encoding */
138
    int prev_sample;
139

    
140
    /* MS version */
141
    short sample1;
142
    short sample2;
143
    int coeff1;
144
    int coeff2;
145
    int idelta;
146
} ADPCMChannelStatus;
147

    
148
typedef struct TrellisPath {
149
    int nibble;
150
    int prev;
151
} TrellisPath;
152

    
153
typedef struct TrellisNode {
154
    uint32_t ssd;
155
    int path;
156
    int sample1;
157
    int sample2;
158
    int step;
159
} TrellisNode;
160

    
161
typedef struct ADPCMContext {
162
    ADPCMChannelStatus status[6];
163
    TrellisPath *paths;
164
    TrellisNode *node_buf;
165
    TrellisNode **nodep_buf;
166
    uint8_t *trellis_hash;
167
} ADPCMContext;
168

    
169
#define FREEZE_INTERVAL 128
170

    
171
/* XXX: implement encoding */
172

    
173
#if CONFIG_ENCODERS
174
static av_cold int adpcm_encode_init(AVCodecContext *avctx)
175
{
176
    ADPCMContext *s = avctx->priv_data;
177
    uint8_t *extradata;
178
    int i;
179
    if (avctx->channels > 2)
180
        return -1; /* only stereo or mono =) */
181

    
182
    if(avctx->trellis && (unsigned)avctx->trellis > 16U){
183
        av_log(avctx, AV_LOG_ERROR, "invalid trellis size\n");
184
        return -1;
185
    }
186

    
187
    if (avctx->trellis) {
188
        int frontier = 1 << avctx->trellis;
189
        int max_paths =  frontier * FREEZE_INTERVAL;
190
        FF_ALLOC_OR_GOTO(avctx, s->paths,     max_paths * sizeof(*s->paths), error);
191
        FF_ALLOC_OR_GOTO(avctx, s->node_buf,  2 * frontier * sizeof(*s->node_buf), error);
192
        FF_ALLOC_OR_GOTO(avctx, s->nodep_buf, 2 * frontier * sizeof(*s->nodep_buf), error);
193
        FF_ALLOC_OR_GOTO(avctx, s->trellis_hash, 65536 * sizeof(*s->trellis_hash), error);
194
    }
195

    
196
    switch(avctx->codec->id) {
197
    case CODEC_ID_ADPCM_IMA_WAV:
198
        avctx->frame_size = (BLKSIZE - 4 * avctx->channels) * 8 / (4 * avctx->channels) + 1; /* each 16 bits sample gives one nibble */
199
                                                             /* and we have 4 bytes per channel overhead */
200
        avctx->block_align = BLKSIZE;
201
        /* seems frame_size isn't taken into account... have to buffer the samples :-( */
202
        break;
203
    case CODEC_ID_ADPCM_IMA_QT:
204
        avctx->frame_size = 64;
205
        avctx->block_align = 34 * avctx->channels;
206
        break;
207
    case CODEC_ID_ADPCM_MS:
208
        avctx->frame_size = (BLKSIZE - 7 * avctx->channels) * 2 / avctx->channels + 2; /* each 16 bits sample gives one nibble */
209
                                                             /* and we have 7 bytes per channel overhead */
210
        avctx->block_align = BLKSIZE;
211
        avctx->extradata_size = 32;
212
        extradata = avctx->extradata = av_malloc(avctx->extradata_size);
213
        if (!extradata)
214
            return AVERROR(ENOMEM);
215
        bytestream_put_le16(&extradata, avctx->frame_size);
216
        bytestream_put_le16(&extradata, 7); /* wNumCoef */
217
        for (i = 0; i < 7; i++) {
218
            bytestream_put_le16(&extradata, AdaptCoeff1[i] * 4);
219
            bytestream_put_le16(&extradata, AdaptCoeff2[i] * 4);
220
        }
221
        break;
222
    case CODEC_ID_ADPCM_YAMAHA:
223
        avctx->frame_size = BLKSIZE * avctx->channels;
224
        avctx->block_align = BLKSIZE;
225
        break;
226
    case CODEC_ID_ADPCM_SWF:
227
        if (avctx->sample_rate != 11025 &&
228
            avctx->sample_rate != 22050 &&
229
            avctx->sample_rate != 44100) {
230
            av_log(avctx, AV_LOG_ERROR, "Sample rate must be 11025, 22050 or 44100\n");
231
            goto error;
232
        }
233
        avctx->frame_size = 512 * (avctx->sample_rate / 11025);
234
        break;
235
    default:
236
        goto error;
237
    }
238

    
239
    avctx->coded_frame= avcodec_alloc_frame();
240
    avctx->coded_frame->key_frame= 1;
241

    
242
    return 0;
243
error:
244
    av_freep(&s->paths);
245
    av_freep(&s->node_buf);
246
    av_freep(&s->nodep_buf);
247
    av_freep(&s->trellis_hash);
248
    return -1;
249
}
250

    
251
static av_cold int adpcm_encode_close(AVCodecContext *avctx)
252
{
253
    ADPCMContext *s = avctx->priv_data;
254
    av_freep(&avctx->coded_frame);
255
    av_freep(&s->paths);
256
    av_freep(&s->node_buf);
257
    av_freep(&s->nodep_buf);
258
    av_freep(&s->trellis_hash);
259

    
260
    return 0;
261
}
262

    
263

    
264
static inline unsigned char adpcm_ima_compress_sample(ADPCMChannelStatus *c, short sample)
265
{
266
    int delta = sample - c->prev_sample;
267
    int nibble = FFMIN(7, abs(delta)*4/step_table[c->step_index]) + (delta<0)*8;
268
    c->prev_sample += ((step_table[c->step_index] * yamaha_difflookup[nibble]) / 8);
269
    c->prev_sample = av_clip_int16(c->prev_sample);
270
    c->step_index = av_clip(c->step_index + index_table[nibble], 0, 88);
271
    return nibble;
272
}
273

    
274
static inline unsigned char adpcm_ms_compress_sample(ADPCMChannelStatus *c, short sample)
275
{
276
    int predictor, nibble, bias;
277

    
278
    predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
279

    
280
    nibble= sample - predictor;
281
    if(nibble>=0) bias= c->idelta/2;
282
    else          bias=-c->idelta/2;
283

    
284
    nibble= (nibble + bias) / c->idelta;
285
    nibble= av_clip(nibble, -8, 7)&0x0F;
286

    
287
    predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
288

    
289
    c->sample2 = c->sample1;
290
    c->sample1 = av_clip_int16(predictor);
291

    
292
    c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
293
    if (c->idelta < 16) c->idelta = 16;
294

    
295
    return nibble;
296
}
297

    
298
static inline unsigned char adpcm_yamaha_compress_sample(ADPCMChannelStatus *c, short sample)
299
{
300
    int nibble, delta;
301

    
302
    if(!c->step) {
303
        c->predictor = 0;
304
        c->step = 127;
305
    }
306

    
307
    delta = sample - c->predictor;
308

    
309
    nibble = FFMIN(7, abs(delta)*4/c->step) + (delta<0)*8;
310

    
311
    c->predictor += ((c->step * yamaha_difflookup[nibble]) / 8);
312
    c->predictor = av_clip_int16(c->predictor);
313
    c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
314
    c->step = av_clip(c->step, 127, 24567);
315

    
316
    return nibble;
317
}
318

    
319
static void adpcm_compress_trellis(AVCodecContext *avctx, const short *samples,
320
                                   uint8_t *dst, ADPCMChannelStatus *c, int n)
321
{
322
    //FIXME 6% faster if frontier is a compile-time constant
323
    ADPCMContext *s = avctx->priv_data;
324
    const int frontier = 1 << avctx->trellis;
325
    const int stride = avctx->channels;
326
    const int version = avctx->codec->id;
327
    TrellisPath *paths = s->paths, *p;
328
    TrellisNode *node_buf = s->node_buf;
329
    TrellisNode **nodep_buf = s->nodep_buf;
330
    TrellisNode **nodes = nodep_buf; // nodes[] is always sorted by .ssd
331
    TrellisNode **nodes_next = nodep_buf + frontier;
332
    int pathn = 0, froze = -1, i, j, k, generation = 0;
333
    uint8_t *hash = s->trellis_hash;
334
    memset(hash, 0xff, 65536 * sizeof(*hash));
335

    
336
    memset(nodep_buf, 0, 2 * frontier * sizeof(*nodep_buf));
337
    nodes[0] = node_buf + frontier;
338
    nodes[0]->ssd = 0;
339
    nodes[0]->path = 0;
340
    nodes[0]->step = c->step_index;
341
    nodes[0]->sample1 = c->sample1;
342
    nodes[0]->sample2 = c->sample2;
343
    if((version == CODEC_ID_ADPCM_IMA_WAV) || (version == CODEC_ID_ADPCM_IMA_QT) || (version == CODEC_ID_ADPCM_SWF))
344
        nodes[0]->sample1 = c->prev_sample;
345
    if(version == CODEC_ID_ADPCM_MS)
346
        nodes[0]->step = c->idelta;
347
    if(version == CODEC_ID_ADPCM_YAMAHA) {
348
        if(c->step == 0) {
349
            nodes[0]->step = 127;
350
            nodes[0]->sample1 = 0;
351
        } else {
352
            nodes[0]->step = c->step;
353
            nodes[0]->sample1 = c->predictor;
354
        }
355
    }
356

    
357
    for(i=0; i<n; i++) {
358
        TrellisNode *t = node_buf + frontier*(i&1);
359
        TrellisNode **u;
360
        int sample = samples[i*stride];
361
        int heap_pos = 0;
362
        memset(nodes_next, 0, frontier*sizeof(TrellisNode*));
363
        for(j=0; j<frontier && nodes[j]; j++) {
364
            // higher j have higher ssd already, so they're likely to yield a suboptimal next sample too
365
            const int range = (j < frontier/2) ? 1 : 0;
366
            const int step = nodes[j]->step;
367
            int nidx;
368
            if(version == CODEC_ID_ADPCM_MS) {
369
                const int predictor = ((nodes[j]->sample1 * c->coeff1) + (nodes[j]->sample2 * c->coeff2)) / 64;
370
                const int div = (sample - predictor) / step;
371
                const int nmin = av_clip(div-range, -8, 6);
372
                const int nmax = av_clip(div+range, -7, 7);
373
                for(nidx=nmin; nidx<=nmax; nidx++) {
374
                    const int nibble = nidx & 0xf;
375
                    int dec_sample = predictor + nidx * step;
376
#define STORE_NODE(NAME, STEP_INDEX)\
377
                    int d;\
378
                    uint32_t ssd;\
379
                    int pos;\
380
                    TrellisNode *u;\
381
                    uint8_t *h;\
382
                    dec_sample = av_clip_int16(dec_sample);\
383
                    d = sample - dec_sample;\
384
                    ssd = nodes[j]->ssd + d*d;\
385
                    /* Collapse any two states with the same previous sample value. \
386
                     * One could also distinguish states by step and by 2nd to last
387
                     * sample, but the effects of that are negligible.
388
                     * Since nodes in the previous generation are iterated
389
                     * through a heap, they're roughly ordered from better to
390
                     * worse, but not strictly ordered. Therefore, an earlier
391
                     * node with the same sample value is better in most cases
392
                     * (and thus the current is skipped), but not strictly
393
                     * in all cases. Only skipping samples where ssd >=
394
                     * ssd of the earlier node with the same sample gives
395
                     * slightly worse quality, though, for some reason. */ \
396
                    h = &hash[(uint16_t) dec_sample];\
397
                    if (*h == generation)\
398
                        goto next_##NAME;\
399
                    if (heap_pos < frontier) {\
400
                        pos = heap_pos++;\
401
                    } else {\
402
                        /* Try to replace one of the leaf nodes with the new \
403
                         * one, but try a different slot each time. */\
404
                        pos = (frontier >> 1) + (heap_pos & ((frontier >> 1) - 1));\
405
                        if (ssd > nodes_next[pos]->ssd)\
406
                            goto next_##NAME;\
407
                        heap_pos++;\
408
                    }\
409
                    *h = generation;\
410
                    u = nodes_next[pos];\
411
                    if(!u) {\
412
                        assert(pathn < FREEZE_INTERVAL<<avctx->trellis);\
413
                        u = t++;\
414
                        nodes_next[pos] = u;\
415
                        u->path = pathn++;\
416
                    }\
417
                    u->ssd = ssd;\
418
                    u->step = STEP_INDEX;\
419
                    u->sample2 = nodes[j]->sample1;\
420
                    u->sample1 = dec_sample;\
421
                    paths[u->path].nibble = nibble;\
422
                    paths[u->path].prev = nodes[j]->path;\
423
                    /* Sift the newly inserted node up in the heap to \
424
                     * restore the heap property. */\
425
                    while (pos > 0) {\
426
                        int parent = (pos - 1) >> 1;\
427
                        if (nodes_next[parent]->ssd <= ssd)\
428
                            break;\
429
                        FFSWAP(TrellisNode*, nodes_next[parent], nodes_next[pos]);\
430
                        pos = parent;\
431
                    }\
432
                    next_##NAME:;
433
                    STORE_NODE(ms, FFMAX(16, (AdaptationTable[nibble] * step) >> 8));
434
                }
435
            } else if((version == CODEC_ID_ADPCM_IMA_WAV)|| (version == CODEC_ID_ADPCM_IMA_QT)|| (version == CODEC_ID_ADPCM_SWF)) {
436
#define LOOP_NODES(NAME, STEP_TABLE, STEP_INDEX)\
437
                const int predictor = nodes[j]->sample1;\
438
                const int div = (sample - predictor) * 4 / STEP_TABLE;\
439
                int nmin = av_clip(div-range, -7, 6);\
440
                int nmax = av_clip(div+range, -6, 7);\
441
                if(nmin<=0) nmin--; /* distinguish -0 from +0 */\
442
                if(nmax<0) nmax--;\
443
                for(nidx=nmin; nidx<=nmax; nidx++) {\
444
                    const int nibble = nidx<0 ? 7-nidx : nidx;\
445
                    int dec_sample = predictor + (STEP_TABLE * yamaha_difflookup[nibble]) / 8;\
446
                    STORE_NODE(NAME, STEP_INDEX);\
447
                }
448
                LOOP_NODES(ima, step_table[step], av_clip(step + index_table[nibble], 0, 88));
449
            } else { //CODEC_ID_ADPCM_YAMAHA
450
                LOOP_NODES(yamaha, step, av_clip((step * yamaha_indexscale[nibble]) >> 8, 127, 24567));
451
#undef LOOP_NODES
452
#undef STORE_NODE
453
            }
454
        }
455

    
456
        u = nodes;
457
        nodes = nodes_next;
458
        nodes_next = u;
459

    
460
        generation++;
461
        if (generation == 255) {
462
            memset(hash, 0xff, 65536 * sizeof(*hash));
463
            generation = 0;
464
        }
465

    
466
        // prevent overflow
467
        if(nodes[0]->ssd > (1<<28)) {
468
            for(j=1; j<frontier && nodes[j]; j++)
469
                nodes[j]->ssd -= nodes[0]->ssd;
470
            nodes[0]->ssd = 0;
471
        }
472

    
473
        // merge old paths to save memory
474
        if(i == froze + FREEZE_INTERVAL) {
475
            p = &paths[nodes[0]->path];
476
            for(k=i; k>froze; k--) {
477
                dst[k] = p->nibble;
478
                p = &paths[p->prev];
479
            }
480
            froze = i;
481
            pathn = 0;
482
            // other nodes might use paths that don't coincide with the frozen one.
483
            // checking which nodes do so is too slow, so just kill them all.
484
            // this also slightly improves quality, but I don't know why.
485
            memset(nodes+1, 0, (frontier-1)*sizeof(TrellisNode*));
486
        }
487
    }
488

    
489
    p = &paths[nodes[0]->path];
490
    for(i=n-1; i>froze; i--) {
491
        dst[i] = p->nibble;
492
        p = &paths[p->prev];
493
    }
494

    
495
    c->predictor = nodes[0]->sample1;
496
    c->sample1 = nodes[0]->sample1;
497
    c->sample2 = nodes[0]->sample2;
498
    c->step_index = nodes[0]->step;
499
    c->step = nodes[0]->step;
500
    c->idelta = nodes[0]->step;
501
}
502

    
503
static int adpcm_encode_frame(AVCodecContext *avctx,
504
                            unsigned char *frame, int buf_size, void *data)
505
{
506
    int n, i, st;
507
    short *samples;
508
    unsigned char *dst;
509
    ADPCMContext *c = avctx->priv_data;
510
    uint8_t *buf;
511

    
512
    dst = frame;
513
    samples = (short *)data;
514
    st= avctx->channels == 2;
515
/*    n = (BLKSIZE - 4 * avctx->channels) / (2 * 8 * avctx->channels); */
516

    
517
    switch(avctx->codec->id) {
518
    case CODEC_ID_ADPCM_IMA_WAV:
519
        n = avctx->frame_size / 8;
520
            c->status[0].prev_sample = (signed short)samples[0]; /* XXX */
521
/*            c->status[0].step_index = 0; *//* XXX: not sure how to init the state machine */
522
            bytestream_put_le16(&dst, c->status[0].prev_sample);
523
            *dst++ = (unsigned char)c->status[0].step_index;
524
            *dst++ = 0; /* unknown */
525
            samples++;
526
            if (avctx->channels == 2) {
527
                c->status[1].prev_sample = (signed short)samples[0];
528
/*                c->status[1].step_index = 0; */
529
                bytestream_put_le16(&dst, c->status[1].prev_sample);
530
                *dst++ = (unsigned char)c->status[1].step_index;
531
                *dst++ = 0;
532
                samples++;
533
            }
534

    
535
            /* stereo: 4 bytes (8 samples) for left, 4 bytes for right, 4 bytes left, ... */
536
            if(avctx->trellis > 0) {
537
                FF_ALLOC_OR_GOTO(avctx, buf, 2*n*8, error);
538
                adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n*8);
539
                if(avctx->channels == 2)
540
                    adpcm_compress_trellis(avctx, samples+1, buf + n*8, &c->status[1], n*8);
541
                for(i=0; i<n; i++) {
542
                    *dst++ = buf[8*i+0] | (buf[8*i+1] << 4);
543
                    *dst++ = buf[8*i+2] | (buf[8*i+3] << 4);
544
                    *dst++ = buf[8*i+4] | (buf[8*i+5] << 4);
545
                    *dst++ = buf[8*i+6] | (buf[8*i+7] << 4);
546
                    if (avctx->channels == 2) {
547
                        uint8_t *buf1 = buf + n*8;
548
                        *dst++ = buf1[8*i+0] | (buf1[8*i+1] << 4);
549
                        *dst++ = buf1[8*i+2] | (buf1[8*i+3] << 4);
550
                        *dst++ = buf1[8*i+4] | (buf1[8*i+5] << 4);
551
                        *dst++ = buf1[8*i+6] | (buf1[8*i+7] << 4);
552
                    }
553
                }
554
                av_free(buf);
555
            } else
556
            for (; n>0; n--) {
557
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[0]);
558
                *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels]) << 4;
559
                dst++;
560
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 2]);
561
                *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 3]) << 4;
562
                dst++;
563
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 4]);
564
                *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 5]) << 4;
565
                dst++;
566
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 6]);
567
                *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 7]) << 4;
568
                dst++;
569
                /* right channel */
570
                if (avctx->channels == 2) {
571
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[1]);
572
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[3]) << 4;
573
                    dst++;
574
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[5]);
575
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[7]) << 4;
576
                    dst++;
577
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[9]);
578
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[11]) << 4;
579
                    dst++;
580
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[13]);
581
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[15]) << 4;
582
                    dst++;
583
                }
584
                samples += 8 * avctx->channels;
585
            }
586
        break;
587
    case CODEC_ID_ADPCM_IMA_QT:
588
    {
589
        int ch, i;
590
        PutBitContext pb;
591
        init_put_bits(&pb, dst, buf_size*8);
592

    
593
        for(ch=0; ch<avctx->channels; ch++){
594
            put_bits(&pb, 9, (c->status[ch].prev_sample + 0x10000) >> 7);
595
            put_bits(&pb, 7, c->status[ch].step_index);
596
            if(avctx->trellis > 0) {
597
                uint8_t buf[64];
598
                adpcm_compress_trellis(avctx, samples+ch, buf, &c->status[ch], 64);
599
                for(i=0; i<64; i++)
600
                    put_bits(&pb, 4, buf[i^1]);
601
                c->status[ch].prev_sample = c->status[ch].predictor & ~0x7F;
602
            } else {
603
                for (i=0; i<64; i+=2){
604
                    int t1, t2;
605
                    t1 = adpcm_ima_compress_sample(&c->status[ch], samples[avctx->channels*(i+0)+ch]);
606
                    t2 = adpcm_ima_compress_sample(&c->status[ch], samples[avctx->channels*(i+1)+ch]);
607
                    put_bits(&pb, 4, t2);
608
                    put_bits(&pb, 4, t1);
609
                }
610
                c->status[ch].prev_sample &= ~0x7F;
611
            }
612
        }
613

    
614
        flush_put_bits(&pb);
615
        dst += put_bits_count(&pb)>>3;
616
        break;
617
    }
618
    case CODEC_ID_ADPCM_SWF:
619
    {
620
        int i;
621
        PutBitContext pb;
622
        init_put_bits(&pb, dst, buf_size*8);
623

    
624
        n = avctx->frame_size-1;
625

    
626
        //Store AdpcmCodeSize
627
        put_bits(&pb, 2, 2);                //Set 4bits flash adpcm format
628

    
629
        //Init the encoder state
630
        for(i=0; i<avctx->channels; i++){
631
            c->status[i].step_index = av_clip(c->status[i].step_index, 0, 63); // clip step so it fits 6 bits
632
            put_sbits(&pb, 16, samples[i]);
633
            put_bits(&pb, 6, c->status[i].step_index);
634
            c->status[i].prev_sample = (signed short)samples[i];
635
        }
636

    
637
        if(avctx->trellis > 0) {
638
            FF_ALLOC_OR_GOTO(avctx, buf, 2*n, error);
639
            adpcm_compress_trellis(avctx, samples+2, buf, &c->status[0], n);
640
            if (avctx->channels == 2)
641
                adpcm_compress_trellis(avctx, samples+3, buf+n, &c->status[1], n);
642
            for(i=0; i<n; i++) {
643
                put_bits(&pb, 4, buf[i]);
644
                if (avctx->channels == 2)
645
                    put_bits(&pb, 4, buf[n+i]);
646
            }
647
            av_free(buf);
648
        } else {
649
            for (i=1; i<avctx->frame_size; i++) {
650
                put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels*i]));
651
                if (avctx->channels == 2)
652
                    put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[1], samples[2*i+1]));
653
            }
654
        }
655
        flush_put_bits(&pb);
656
        dst += put_bits_count(&pb)>>3;
657
        break;
658
    }
659
    case CODEC_ID_ADPCM_MS:
660
        for(i=0; i<avctx->channels; i++){
661
            int predictor=0;
662

    
663
            *dst++ = predictor;
664
            c->status[i].coeff1 = AdaptCoeff1[predictor];
665
            c->status[i].coeff2 = AdaptCoeff2[predictor];
666
        }
667
        for(i=0; i<avctx->channels; i++){
668
            if (c->status[i].idelta < 16)
669
                c->status[i].idelta = 16;
670

    
671
            bytestream_put_le16(&dst, c->status[i].idelta);
672
        }
673
        for(i=0; i<avctx->channels; i++){
674
            c->status[i].sample2= *samples++;
675
        }
676
        for(i=0; i<avctx->channels; i++){
677
            c->status[i].sample1= *samples++;
678

    
679
            bytestream_put_le16(&dst, c->status[i].sample1);
680
        }
681
        for(i=0; i<avctx->channels; i++)
682
            bytestream_put_le16(&dst, c->status[i].sample2);
683

    
684
        if(avctx->trellis > 0) {
685
            int n = avctx->block_align - 7*avctx->channels;
686
            FF_ALLOC_OR_GOTO(avctx, buf, 2*n, error);
687
            if(avctx->channels == 1) {
688
                adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n);
689
                for(i=0; i<n; i+=2)
690
                    *dst++ = (buf[i] << 4) | buf[i+1];
691
            } else {
692
                adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n);
693
                adpcm_compress_trellis(avctx, samples+1, buf+n, &c->status[1], n);
694
                for(i=0; i<n; i++)
695
                    *dst++ = (buf[i] << 4) | buf[n+i];
696
            }
697
            av_free(buf);
698
        } else
699
        for(i=7*avctx->channels; i<avctx->block_align; i++) {
700
            int nibble;
701
            nibble = adpcm_ms_compress_sample(&c->status[ 0], *samples++)<<4;
702
            nibble|= adpcm_ms_compress_sample(&c->status[st], *samples++);
703
            *dst++ = nibble;
704
        }
705
        break;
706
    case CODEC_ID_ADPCM_YAMAHA:
707
        n = avctx->frame_size / 2;
708
        if(avctx->trellis > 0) {
709
            FF_ALLOC_OR_GOTO(avctx, buf, 2*n*2, error);
710
            n *= 2;
711
            if(avctx->channels == 1) {
712
                adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n);
713
                for(i=0; i<n; i+=2)
714
                    *dst++ = buf[i] | (buf[i+1] << 4);
715
            } else {
716
                adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n);
717
                adpcm_compress_trellis(avctx, samples+1, buf+n, &c->status[1], n);
718
                for(i=0; i<n; i++)
719
                    *dst++ = buf[i] | (buf[n+i] << 4);
720
            }
721
            av_free(buf);
722
        } else
723
            for (n *= avctx->channels; n>0; n--) {
724
                int nibble;
725
                nibble  = adpcm_yamaha_compress_sample(&c->status[ 0], *samples++);
726
                nibble |= adpcm_yamaha_compress_sample(&c->status[st], *samples++) << 4;
727
                *dst++ = nibble;
728
            }
729
        break;
730
    default:
731
    error:
732
        return -1;
733
    }
734
    return dst - frame;
735
}
736
#endif //CONFIG_ENCODERS
737

    
738
static av_cold int adpcm_decode_init(AVCodecContext * avctx)
739
{
740
    ADPCMContext *c = avctx->priv_data;
741
    unsigned int max_channels = 2;
742

    
743
    switch(avctx->codec->id) {
744
    case CODEC_ID_ADPCM_EA_R1:
745
    case CODEC_ID_ADPCM_EA_R2:
746
    case CODEC_ID_ADPCM_EA_R3:
747
        max_channels = 6;
748
        break;
749
    }
750
    if(avctx->channels > max_channels){
751
        return -1;
752
    }
753

    
754
    switch(avctx->codec->id) {
755
    case CODEC_ID_ADPCM_CT:
756
        c->status[0].step = c->status[1].step = 511;
757
        break;
758
    case CODEC_ID_ADPCM_IMA_WAV:
759
        if (avctx->bits_per_coded_sample != 4) {
760
            av_log(avctx, AV_LOG_ERROR, "Only 4-bit ADPCM IMA WAV files are supported\n");
761
            return -1;
762
        }
763
        break;
764
    case CODEC_ID_ADPCM_IMA_WS:
765
        if (avctx->extradata && avctx->extradata_size == 2 * 4) {
766
            c->status[0].predictor = AV_RL32(avctx->extradata);
767
            c->status[1].predictor = AV_RL32(avctx->extradata + 4);
768
        }
769
        break;
770
    default:
771
        break;
772
    }
773
    avctx->sample_fmt = AV_SAMPLE_FMT_S16;
774
    return 0;
775
}
776

    
777
static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift)
778
{
779
    int step_index;
780
    int predictor;
781
    int sign, delta, diff, step;
782

    
783
    step = step_table[c->step_index];
784
    step_index = c->step_index + index_table[(unsigned)nibble];
785
    if (step_index < 0) step_index = 0;
786
    else if (step_index > 88) step_index = 88;
787

    
788
    sign = nibble & 8;
789
    delta = nibble & 7;
790
    /* perform direct multiplication instead of series of jumps proposed by
791
     * the reference ADPCM implementation since modern CPUs can do the mults
792
     * quickly enough */
793
    diff = ((2 * delta + 1) * step) >> shift;
794
    predictor = c->predictor;
795
    if (sign) predictor -= diff;
796
    else predictor += diff;
797

    
798
    c->predictor = av_clip_int16(predictor);
799
    c->step_index = step_index;
800

    
801
    return (short)c->predictor;
802
}
803

    
804
static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, char nibble)
805
{
806
    int predictor;
807

    
808
    predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
809
    predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
810

    
811
    c->sample2 = c->sample1;
812
    c->sample1 = av_clip_int16(predictor);
813
    c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
814
    if (c->idelta < 16) c->idelta = 16;
815

    
816
    return c->sample1;
817
}
818

    
819
static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble)
820
{
821
    int sign, delta, diff;
822
    int new_step;
823

    
824
    sign = nibble & 8;
825
    delta = nibble & 7;
826
    /* perform direct multiplication instead of series of jumps proposed by
827
     * the reference ADPCM implementation since modern CPUs can do the mults
828
     * quickly enough */
829
    diff = ((2 * delta + 1) * c->step) >> 3;
830
    /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
831
    c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff);
832
    c->predictor = av_clip_int16(c->predictor);
833
    /* calculate new step and clamp it to range 511..32767 */
834
    new_step = (AdaptationTable[nibble & 7] * c->step) >> 8;
835
    c->step = av_clip(new_step, 511, 32767);
836

    
837
    return (short)c->predictor;
838
}
839

    
840
static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift)
841
{
842
    int sign, delta, diff;
843

    
844
    sign = nibble & (1<<(size-1));
845
    delta = nibble & ((1<<(size-1))-1);
846
    diff = delta << (7 + c->step + shift);
847

    
848
    /* clamp result */
849
    c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256);
850

    
851
    /* calculate new step */
852
    if (delta >= (2*size - 3) && c->step < 3)
853
        c->step++;
854
    else if (delta == 0 && c->step > 0)
855
        c->step--;
856

    
857
    return (short) c->predictor;
858
}
859

    
860
static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble)
861
{
862
    if(!c->step) {
863
        c->predictor = 0;
864
        c->step = 127;
865
    }
866

    
867
    c->predictor += (c->step * yamaha_difflookup[nibble]) / 8;
868
    c->predictor = av_clip_int16(c->predictor);
869
    c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
870
    c->step = av_clip(c->step, 127, 24567);
871
    return c->predictor;
872
}
873

    
874
static void xa_decode(short *out, const unsigned char *in,
875
    ADPCMChannelStatus *left, ADPCMChannelStatus *right, int inc)
876
{
877
    int i, j;
878
    int shift,filter,f0,f1;
879
    int s_1,s_2;
880
    int d,s,t;
881

    
882
    for(i=0;i<4;i++) {
883

    
884
        shift  = 12 - (in[4+i*2] & 15);
885
        filter = in[4+i*2] >> 4;
886
        f0 = xa_adpcm_table[filter][0];
887
        f1 = xa_adpcm_table[filter][1];
888

    
889
        s_1 = left->sample1;
890
        s_2 = left->sample2;
891

    
892
        for(j=0;j<28;j++) {
893
            d = in[16+i+j*4];
894

    
895
            t = (signed char)(d<<4)>>4;
896
            s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
897
            s_2 = s_1;
898
            s_1 = av_clip_int16(s);
899
            *out = s_1;
900
            out += inc;
901
        }
902

    
903
        if (inc==2) { /* stereo */
904
            left->sample1 = s_1;
905
            left->sample2 = s_2;
906
            s_1 = right->sample1;
907
            s_2 = right->sample2;
908
            out = out + 1 - 28*2;
909
        }
910

    
911
        shift  = 12 - (in[5+i*2] & 15);
912
        filter = in[5+i*2] >> 4;
913

    
914
        f0 = xa_adpcm_table[filter][0];
915
        f1 = xa_adpcm_table[filter][1];
916

    
917
        for(j=0;j<28;j++) {
918
            d = in[16+i+j*4];
919

    
920
            t = (signed char)d >> 4;
921
            s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
922
            s_2 = s_1;
923
            s_1 = av_clip_int16(s);
924
            *out = s_1;
925
            out += inc;
926
        }
927

    
928
        if (inc==2) { /* stereo */
929
            right->sample1 = s_1;
930
            right->sample2 = s_2;
931
            out -= 1;
932
        } else {
933
            left->sample1 = s_1;
934
            left->sample2 = s_2;
935
        }
936
    }
937
}
938

    
939

    
940
/* DK3 ADPCM support macro */
941
#define DK3_GET_NEXT_NIBBLE() \
942
    if (decode_top_nibble_next) \
943
    { \
944
        nibble = last_byte >> 4; \
945
        decode_top_nibble_next = 0; \
946
    } \
947
    else \
948
    { \
949
        last_byte = *src++; \
950
        if (src >= buf + buf_size) break; \
951
        nibble = last_byte & 0x0F; \
952
        decode_top_nibble_next = 1; \
953
    }
954

    
955
static int adpcm_decode_frame(AVCodecContext *avctx,
956
                            void *data, int *data_size,
957
                            AVPacket *avpkt)
958
{
959
    const uint8_t *buf = avpkt->data;
960
    int buf_size = avpkt->size;
961
    ADPCMContext *c = avctx->priv_data;
962
    ADPCMChannelStatus *cs;
963
    int n, m, channel, i;
964
    int block_predictor[2];
965
    short *samples;
966
    short *samples_end;
967
    const uint8_t *src;
968
    int st; /* stereo */
969

    
970
    /* DK3 ADPCM accounting variables */
971
    unsigned char last_byte = 0;
972
    unsigned char nibble;
973
    int decode_top_nibble_next = 0;
974
    int diff_channel;
975

    
976
    /* EA ADPCM state variables */
977
    uint32_t samples_in_chunk;
978
    int32_t previous_left_sample, previous_right_sample;
979
    int32_t current_left_sample, current_right_sample;
980
    int32_t next_left_sample, next_right_sample;
981
    int32_t coeff1l, coeff2l, coeff1r, coeff2r;
982
    uint8_t shift_left, shift_right;
983
    int count1, count2;
984
    int coeff[2][2], shift[2];//used in EA MAXIS ADPCM
985

    
986
    if (!buf_size)
987
        return 0;
988

    
989
    //should protect all 4bit ADPCM variants
990
    //8 is needed for CODEC_ID_ADPCM_IMA_WAV with 2 channels
991
    //
992
    if(*data_size/4 < buf_size + 8)
993
        return -1;
994

    
995
    samples = data;
996
    samples_end= samples + *data_size/2;
997
    *data_size= 0;
998
    src = buf;
999

    
1000
    st = avctx->channels == 2 ? 1 : 0;
1001

    
1002
    switch(avctx->codec->id) {
1003
    case CODEC_ID_ADPCM_IMA_QT:
1004
        n = buf_size - 2*avctx->channels;
1005
        for (channel = 0; channel < avctx->channels; channel++) {
1006
            cs = &(c->status[channel]);
1007
            /* (pppppp) (piiiiiii) */
1008

    
1009
            /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
1010
            cs->predictor = (*src++) << 8;
1011
            cs->predictor |= (*src & 0x80);
1012
            cs->predictor &= 0xFF80;
1013

    
1014
            /* sign extension */
1015
            if(cs->predictor & 0x8000)
1016
                cs->predictor -= 0x10000;
1017

    
1018
            cs->predictor = av_clip_int16(cs->predictor);
1019

    
1020
            cs->step_index = (*src++) & 0x7F;
1021

    
1022
            if (cs->step_index > 88){
1023
                av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
1024
                cs->step_index = 88;
1025
            }
1026

    
1027
            cs->step = step_table[cs->step_index];
1028

    
1029
            samples = (short*)data + channel;
1030

    
1031
            for(m=32; n>0 && m>0; n--, m--) { /* in QuickTime, IMA is encoded by chuncks of 34 bytes (=64 samples) */
1032
                *samples = adpcm_ima_expand_nibble(cs, src[0] & 0x0F, 3);
1033
                samples += avctx->channels;
1034
                *samples = adpcm_ima_expand_nibble(cs, src[0] >> 4  , 3);
1035
                samples += avctx->channels;
1036
                src ++;
1037
            }
1038
        }
1039
        if (st)
1040
            samples--;
1041
        break;
1042
    case CODEC_ID_ADPCM_IMA_WAV:
1043
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
1044
            buf_size = avctx->block_align;
1045

    
1046
//        samples_per_block= (block_align-4*chanels)*8 / (bits_per_sample * chanels) + 1;
1047

    
1048
        for(i=0; i<avctx->channels; i++){
1049
            cs = &(c->status[i]);
1050
            cs->predictor = *samples++ = (int16_t)bytestream_get_le16(&src);
1051

    
1052
            cs->step_index = *src++;
1053
            if (cs->step_index > 88){
1054
                av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
1055
                cs->step_index = 88;
1056
            }
1057
            if (*src++) av_log(avctx, AV_LOG_ERROR, "unused byte should be null but is %d!!\n", src[-1]); /* unused */
1058
        }
1059

    
1060
        while(src < buf + buf_size){
1061
            for(m=0; m<4; m++){
1062
                for(i=0; i<=st; i++)
1063
                    *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] & 0x0F, 3);
1064
                for(i=0; i<=st; i++)
1065
                    *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] >> 4  , 3);
1066
                src++;
1067
            }
1068
            src += 4*st;
1069
        }
1070
        break;
1071
    case CODEC_ID_ADPCM_4XM:
1072
        cs = &(c->status[0]);
1073
        c->status[0].predictor= (int16_t)bytestream_get_le16(&src);
1074
        if(st){
1075
            c->status[1].predictor= (int16_t)bytestream_get_le16(&src);
1076
        }
1077
        c->status[0].step_index= (int16_t)bytestream_get_le16(&src);
1078
        if(st){
1079
            c->status[1].step_index= (int16_t)bytestream_get_le16(&src);
1080
        }
1081
        if (cs->step_index < 0) cs->step_index = 0;
1082
        if (cs->step_index > 88) cs->step_index = 88;
1083

    
1084
        m= (buf_size - (src - buf))>>st;
1085
        for(i=0; i<m; i++) {
1086
            *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] & 0x0F, 4);
1087
            if (st)
1088
                *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] & 0x0F, 4);
1089
            *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] >> 4, 4);
1090
            if (st)
1091
                *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] >> 4, 4);
1092
        }
1093

    
1094
        src += m<<st;
1095

    
1096
        break;
1097
    case CODEC_ID_ADPCM_MS:
1098
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
1099
            buf_size = avctx->block_align;
1100
        n = buf_size - 7 * avctx->channels;
1101
        if (n < 0)
1102
            return -1;
1103
        block_predictor[0] = av_clip(*src++, 0, 6);
1104
        block_predictor[1] = 0;
1105
        if (st)
1106
            block_predictor[1] = av_clip(*src++, 0, 6);
1107
        c->status[0].idelta = (int16_t)bytestream_get_le16(&src);
1108
        if (st){
1109
            c->status[1].idelta = (int16_t)bytestream_get_le16(&src);
1110
        }
1111
        c->status[0].coeff1 = AdaptCoeff1[block_predictor[0]];
1112
        c->status[0].coeff2 = AdaptCoeff2[block_predictor[0]];
1113
        c->status[1].coeff1 = AdaptCoeff1[block_predictor[1]];
1114
        c->status[1].coeff2 = AdaptCoeff2[block_predictor[1]];
1115

    
1116
        c->status[0].sample1 = bytestream_get_le16(&src);
1117
        if (st) c->status[1].sample1 = bytestream_get_le16(&src);
1118
        c->status[0].sample2 = bytestream_get_le16(&src);
1119
        if (st) c->status[1].sample2 = bytestream_get_le16(&src);
1120

    
1121
        *samples++ = c->status[0].sample2;
1122
        if (st) *samples++ = c->status[1].sample2;
1123
        *samples++ = c->status[0].sample1;
1124
        if (st) *samples++ = c->status[1].sample1;
1125
        for(;n>0;n--) {
1126
            *samples++ = adpcm_ms_expand_nibble(&c->status[0 ], src[0] >> 4  );
1127
            *samples++ = adpcm_ms_expand_nibble(&c->status[st], src[0] & 0x0F);
1128
            src ++;
1129
        }
1130
        break;
1131
    case CODEC_ID_ADPCM_IMA_DK4:
1132
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
1133
            buf_size = avctx->block_align;
1134

    
1135
        c->status[0].predictor  = (int16_t)bytestream_get_le16(&src);
1136
        c->status[0].step_index = *src++;
1137
        src++;
1138
        *samples++ = c->status[0].predictor;
1139
        if (st) {
1140
            c->status[1].predictor  = (int16_t)bytestream_get_le16(&src);
1141
            c->status[1].step_index = *src++;
1142
            src++;
1143
            *samples++ = c->status[1].predictor;
1144
        }
1145
        while (src < buf + buf_size) {
1146

    
1147
            /* take care of the top nibble (always left or mono channel) */
1148
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1149
                src[0] >> 4, 3);
1150

    
1151
            /* take care of the bottom nibble, which is right sample for
1152
             * stereo, or another mono sample */
1153
            if (st)
1154
                *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1155
                    src[0] & 0x0F, 3);
1156
            else
1157
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1158
                    src[0] & 0x0F, 3);
1159

    
1160
            src++;
1161
        }
1162
        break;
1163
    case CODEC_ID_ADPCM_IMA_DK3:
1164
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
1165
            buf_size = avctx->block_align;
1166

    
1167
        if(buf_size + 16 > (samples_end - samples)*3/8)
1168
            return -1;
1169

    
1170
        c->status[0].predictor  = (int16_t)AV_RL16(src + 10);
1171
        c->status[1].predictor  = (int16_t)AV_RL16(src + 12);
1172
        c->status[0].step_index = src[14];
1173
        c->status[1].step_index = src[15];
1174
        /* sign extend the predictors */
1175
        src += 16;
1176
        diff_channel = c->status[1].predictor;
1177

    
1178
        /* the DK3_GET_NEXT_NIBBLE macro issues the break statement when
1179
         * the buffer is consumed */
1180
        while (1) {
1181

    
1182
            /* for this algorithm, c->status[0] is the sum channel and
1183
             * c->status[1] is the diff channel */
1184

    
1185
            /* process the first predictor of the sum channel */
1186
            DK3_GET_NEXT_NIBBLE();
1187
            adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1188

    
1189
            /* process the diff channel predictor */
1190
            DK3_GET_NEXT_NIBBLE();
1191
            adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
1192

    
1193
            /* process the first pair of stereo PCM samples */
1194
            diff_channel = (diff_channel + c->status[1].predictor) / 2;
1195
            *samples++ = c->status[0].predictor + c->status[1].predictor;
1196
            *samples++ = c->status[0].predictor - c->status[1].predictor;
1197

    
1198
            /* process the second predictor of the sum channel */
1199
            DK3_GET_NEXT_NIBBLE();
1200
            adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1201

    
1202
            /* process the second pair of stereo PCM samples */
1203
            diff_channel = (diff_channel + c->status[1].predictor) / 2;
1204
            *samples++ = c->status[0].predictor + c->status[1].predictor;
1205
            *samples++ = c->status[0].predictor - c->status[1].predictor;
1206
        }
1207
        break;
1208
    case CODEC_ID_ADPCM_IMA_ISS:
1209
        c->status[0].predictor  = (int16_t)AV_RL16(src + 0);
1210
        c->status[0].step_index = src[2];
1211
        src += 4;
1212
        if(st) {
1213
            c->status[1].predictor  = (int16_t)AV_RL16(src + 0);
1214
            c->status[1].step_index = src[2];
1215
            src += 4;
1216
        }
1217

    
1218
        while (src < buf + buf_size) {
1219

    
1220
            if (st) {
1221
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1222
                    src[0] >> 4  , 3);
1223
                *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1224
                    src[0] & 0x0F, 3);
1225
            } else {
1226
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1227
                    src[0] & 0x0F, 3);
1228
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1229
                    src[0] >> 4  , 3);
1230
            }
1231

    
1232
            src++;
1233
        }
1234
        break;
1235
    case CODEC_ID_ADPCM_IMA_WS:
1236
        /* no per-block initialization; just start decoding the data */
1237
        while (src < buf + buf_size) {
1238

    
1239
            if (st) {
1240
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1241
                    src[0] >> 4  , 3);
1242
                *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1243
                    src[0] & 0x0F, 3);
1244
            } else {
1245
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1246
                    src[0] >> 4  , 3);
1247
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1248
                    src[0] & 0x0F, 3);
1249
            }
1250

    
1251
            src++;
1252
        }
1253
        break;
1254
    case CODEC_ID_ADPCM_XA:
1255
        while (buf_size >= 128) {
1256
            xa_decode(samples, src, &c->status[0], &c->status[1],
1257
                avctx->channels);
1258
            src += 128;
1259
            samples += 28 * 8;
1260
            buf_size -= 128;
1261
        }
1262
        break;
1263
    case CODEC_ID_ADPCM_IMA_EA_EACS:
1264
        samples_in_chunk = bytestream_get_le32(&src) >> (1-st);
1265

    
1266
        if (samples_in_chunk > buf_size-4-(8<<st)) {
1267
            src += buf_size - 4;
1268
            break;
1269
        }
1270

    
1271
        for (i=0; i<=st; i++)
1272
            c->status[i].step_index = bytestream_get_le32(&src);
1273
        for (i=0; i<=st; i++)
1274
            c->status[i].predictor  = bytestream_get_le32(&src);
1275

    
1276
        for (; samples_in_chunk; samples_in_chunk--, src++) {
1277
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],  *src>>4,   3);
1278
            *samples++ = adpcm_ima_expand_nibble(&c->status[st], *src&0x0F, 3);
1279
        }
1280
        break;
1281
    case CODEC_ID_ADPCM_IMA_EA_SEAD:
1282
        for (; src < buf+buf_size; src++) {
1283
            *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[0] >> 4, 6);
1284
            *samples++ = adpcm_ima_expand_nibble(&c->status[st],src[0]&0x0F, 6);
1285
        }
1286
        break;
1287
    case CODEC_ID_ADPCM_EA:
1288
        if (buf_size < 4 || AV_RL32(src) >= ((buf_size - 12) * 2)) {
1289
            src += buf_size;
1290
            break;
1291
        }
1292
        samples_in_chunk = AV_RL32(src);
1293
        src += 4;
1294
        current_left_sample   = (int16_t)bytestream_get_le16(&src);
1295
        previous_left_sample  = (int16_t)bytestream_get_le16(&src);
1296
        current_right_sample  = (int16_t)bytestream_get_le16(&src);
1297
        previous_right_sample = (int16_t)bytestream_get_le16(&src);
1298

    
1299
        for (count1 = 0; count1 < samples_in_chunk/28;count1++) {
1300
            coeff1l = ea_adpcm_table[ *src >> 4       ];
1301
            coeff2l = ea_adpcm_table[(*src >> 4  ) + 4];
1302
            coeff1r = ea_adpcm_table[*src & 0x0F];
1303
            coeff2r = ea_adpcm_table[(*src & 0x0F) + 4];
1304
            src++;
1305

    
1306
            shift_left  = (*src >> 4  ) + 8;
1307
            shift_right = (*src & 0x0F) + 8;
1308
            src++;
1309

    
1310
            for (count2 = 0; count2 < 28; count2++) {
1311
                next_left_sample  = (int32_t)((*src & 0xF0) << 24) >> shift_left;
1312
                next_right_sample = (int32_t)((*src & 0x0F) << 28) >> shift_right;
1313
                src++;
1314

    
1315
                next_left_sample = (next_left_sample +
1316
                    (current_left_sample * coeff1l) +
1317
                    (previous_left_sample * coeff2l) + 0x80) >> 8;
1318
                next_right_sample = (next_right_sample +
1319
                    (current_right_sample * coeff1r) +
1320
                    (previous_right_sample * coeff2r) + 0x80) >> 8;
1321

    
1322
                previous_left_sample = current_left_sample;
1323
                current_left_sample = av_clip_int16(next_left_sample);
1324
                previous_right_sample = current_right_sample;
1325
                current_right_sample = av_clip_int16(next_right_sample);
1326
                *samples++ = (unsigned short)current_left_sample;
1327
                *samples++ = (unsigned short)current_right_sample;
1328
            }
1329
        }
1330

    
1331
        if (src - buf == buf_size - 2)
1332
            src += 2; // Skip terminating 0x0000
1333

    
1334
        break;
1335
    case CODEC_ID_ADPCM_EA_MAXIS_XA:
1336
        for(channel = 0; channel < avctx->channels; channel++) {
1337
            for (i=0; i<2; i++)
1338
                coeff[channel][i] = ea_adpcm_table[(*src >> 4) + 4*i];
1339
            shift[channel] = (*src & 0x0F) + 8;
1340
            src++;
1341
        }
1342
        for (count1 = 0; count1 < (buf_size - avctx->channels) / avctx->channels; count1++) {
1343
            for(i = 4; i >= 0; i-=4) { /* Pairwise samples LL RR (st) or LL LL (mono) */
1344
                for(channel = 0; channel < avctx->channels; channel++) {
1345
                    int32_t sample = (int32_t)(((*(src+channel) >> i) & 0x0F) << 0x1C) >> shift[channel];
1346
                    sample = (sample +
1347
                             c->status[channel].sample1 * coeff[channel][0] +
1348
                             c->status[channel].sample2 * coeff[channel][1] + 0x80) >> 8;
1349
                    c->status[channel].sample2 = c->status[channel].sample1;
1350
                    c->status[channel].sample1 = av_clip_int16(sample);
1351
                    *samples++ = c->status[channel].sample1;
1352
                }
1353
            }
1354
            src+=avctx->channels;
1355
        }
1356
        break;
1357
    case CODEC_ID_ADPCM_EA_R1:
1358
    case CODEC_ID_ADPCM_EA_R2:
1359
    case CODEC_ID_ADPCM_EA_R3: {
1360
        /* channel numbering
1361
           2chan: 0=fl, 1=fr
1362
           4chan: 0=fl, 1=rl, 2=fr, 3=rr
1363
           6chan: 0=fl, 1=c,  2=fr, 3=rl,  4=rr, 5=sub */
1364
        const int big_endian = avctx->codec->id == CODEC_ID_ADPCM_EA_R3;
1365
        int32_t previous_sample, current_sample, next_sample;
1366
        int32_t coeff1, coeff2;
1367
        uint8_t shift;
1368
        unsigned int channel;
1369
        uint16_t *samplesC;
1370
        const uint8_t *srcC;
1371
        const uint8_t *src_end = buf + buf_size;
1372

    
1373
        samples_in_chunk = (big_endian ? bytestream_get_be32(&src)
1374
                                       : bytestream_get_le32(&src)) / 28;
1375
        if (samples_in_chunk > UINT32_MAX/(28*avctx->channels) ||
1376
            28*samples_in_chunk*avctx->channels > samples_end-samples) {
1377
            src += buf_size - 4;
1378
            break;
1379
        }
1380

    
1381
        for (channel=0; channel<avctx->channels; channel++) {
1382
            int32_t offset = (big_endian ? bytestream_get_be32(&src)
1383
                                         : bytestream_get_le32(&src))
1384
                           + (avctx->channels-channel-1) * 4;
1385

    
1386
            if ((offset < 0) || (offset >= src_end - src - 4)) break;
1387
            srcC  = src + offset;
1388
            samplesC = samples + channel;
1389

    
1390
            if (avctx->codec->id == CODEC_ID_ADPCM_EA_R1) {
1391
                current_sample  = (int16_t)bytestream_get_le16(&srcC);
1392
                previous_sample = (int16_t)bytestream_get_le16(&srcC);
1393
            } else {
1394
                current_sample  = c->status[channel].predictor;
1395
                previous_sample = c->status[channel].prev_sample;
1396
            }
1397

    
1398
            for (count1=0; count1<samples_in_chunk; count1++) {
1399
                if (*srcC == 0xEE) {  /* only seen in R2 and R3 */
1400
                    srcC++;
1401
                    if (srcC > src_end - 30*2) break;
1402
                    current_sample  = (int16_t)bytestream_get_be16(&srcC);
1403
                    previous_sample = (int16_t)bytestream_get_be16(&srcC);
1404

    
1405
                    for (count2=0; count2<28; count2++) {
1406
                        *samplesC = (int16_t)bytestream_get_be16(&srcC);
1407
                        samplesC += avctx->channels;
1408
                    }
1409
                } else {
1410
                    coeff1 = ea_adpcm_table[ *srcC>>4     ];
1411
                    coeff2 = ea_adpcm_table[(*srcC>>4) + 4];
1412
                    shift = (*srcC++ & 0x0F) + 8;
1413

    
1414
                    if (srcC > src_end - 14) break;
1415
                    for (count2=0; count2<28; count2++) {
1416
                        if (count2 & 1)
1417
                            next_sample = (int32_t)((*srcC++ & 0x0F) << 28) >> shift;
1418
                        else
1419
                            next_sample = (int32_t)((*srcC   & 0xF0) << 24) >> shift;
1420

    
1421
                        next_sample += (current_sample  * coeff1) +
1422
                                       (previous_sample * coeff2);
1423
                        next_sample = av_clip_int16(next_sample >> 8);
1424

    
1425
                        previous_sample = current_sample;
1426
                        current_sample  = next_sample;
1427
                        *samplesC = current_sample;
1428
                        samplesC += avctx->channels;
1429
                    }
1430
                }
1431
            }
1432

    
1433
            if (avctx->codec->id != CODEC_ID_ADPCM_EA_R1) {
1434
                c->status[channel].predictor   = current_sample;
1435
                c->status[channel].prev_sample = previous_sample;
1436
            }
1437
        }
1438

    
1439
        src = src + buf_size - (4 + 4*avctx->channels);
1440
        samples += 28 * samples_in_chunk * avctx->channels;
1441
        break;
1442
    }
1443
    case CODEC_ID_ADPCM_EA_XAS:
1444
        if (samples_end-samples < 32*4*avctx->channels
1445
            || buf_size < (4+15)*4*avctx->channels) {
1446
            src += buf_size;
1447
            break;
1448
        }
1449
        for (channel=0; channel<avctx->channels; channel++) {
1450
            int coeff[2][4], shift[4];
1451
            short *s2, *s = &samples[channel];
1452
            for (n=0; n<4; n++, s+=32*avctx->channels) {
1453
                for (i=0; i<2; i++)
1454
                    coeff[i][n] = ea_adpcm_table[(src[0]&0x0F)+4*i];
1455
                shift[n] = (src[2]&0x0F) + 8;
1456
                for (s2=s, i=0; i<2; i++, src+=2, s2+=avctx->channels)
1457
                    s2[0] = (src[0]&0xF0) + (src[1]<<8);
1458
            }
1459

    
1460
            for (m=2; m<32; m+=2) {
1461
                s = &samples[m*avctx->channels + channel];
1462
                for (n=0; n<4; n++, src++, s+=32*avctx->channels) {
1463
                    for (s2=s, i=0; i<8; i+=4, s2+=avctx->channels) {
1464
                        int level = (int32_t)((*src & (0xF0>>i)) << (24+i)) >> shift[n];
1465
                        int pred  = s2[-1*avctx->channels] * coeff[0][n]
1466
                                  + s2[-2*avctx->channels] * coeff[1][n];
1467
                        s2[0] = av_clip_int16((level + pred + 0x80) >> 8);
1468
                    }
1469
                }
1470
            }
1471
        }
1472
        samples += 32*4*avctx->channels;
1473
        break;
1474
    case CODEC_ID_ADPCM_IMA_AMV:
1475
    case CODEC_ID_ADPCM_IMA_SMJPEG:
1476
        c->status[0].predictor = (int16_t)bytestream_get_le16(&src);
1477
        c->status[0].step_index = bytestream_get_le16(&src);
1478

    
1479
        if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
1480
            src+=4;
1481

    
1482
        while (src < buf + buf_size) {
1483
            char hi, lo;
1484
            lo = *src & 0x0F;
1485
            hi = *src >> 4;
1486

    
1487
            if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
1488
                FFSWAP(char, hi, lo);
1489

    
1490
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1491
                lo, 3);
1492
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1493
                hi, 3);
1494
            src++;
1495
        }
1496
        break;
1497
    case CODEC_ID_ADPCM_CT:
1498
        while (src < buf + buf_size) {
1499
            if (st) {
1500
                *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1501
                    src[0] >> 4);
1502
                *samples++ = adpcm_ct_expand_nibble(&c->status[1],
1503
                    src[0] & 0x0F);
1504
            } else {
1505
                *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1506
                    src[0] >> 4);
1507
                *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1508
                    src[0] & 0x0F);
1509
            }
1510
            src++;
1511
        }
1512
        break;
1513
    case CODEC_ID_ADPCM_SBPRO_4:
1514
    case CODEC_ID_ADPCM_SBPRO_3:
1515
    case CODEC_ID_ADPCM_SBPRO_2:
1516
        if (!c->status[0].step_index) {
1517
            /* the first byte is a raw sample */
1518
            *samples++ = 128 * (*src++ - 0x80);
1519
            if (st)
1520
              *samples++ = 128 * (*src++ - 0x80);
1521
            c->status[0].step_index = 1;
1522
        }
1523
        if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_4) {
1524
            while (src < buf + buf_size) {
1525
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1526
                    src[0] >> 4, 4, 0);
1527
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1528
                    src[0] & 0x0F, 4, 0);
1529
                src++;
1530
            }
1531
        } else if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_3) {
1532
            while (src < buf + buf_size && samples + 2 < samples_end) {
1533
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1534
                     src[0] >> 5        , 3, 0);
1535
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1536
                    (src[0] >> 2) & 0x07, 3, 0);
1537
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1538
                    src[0] & 0x03, 2, 0);
1539
                src++;
1540
            }
1541
        } else {
1542
            while (src < buf + buf_size && samples + 3 < samples_end) {
1543
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1544
                     src[0] >> 6        , 2, 2);
1545
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1546
                    (src[0] >> 4) & 0x03, 2, 2);
1547
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1548
                    (src[0] >> 2) & 0x03, 2, 2);
1549
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1550
                    src[0] & 0x03, 2, 2);
1551
                src++;
1552
            }
1553
        }
1554
        break;
1555
    case CODEC_ID_ADPCM_SWF:
1556
    {
1557
        GetBitContext gb;
1558
        const int *table;
1559
        int k0, signmask, nb_bits, count;
1560
        int size = buf_size*8;
1561

    
1562
        init_get_bits(&gb, buf, size);
1563

    
1564
        //read bits & initial values
1565
        nb_bits = get_bits(&gb, 2)+2;
1566
        //av_log(NULL,AV_LOG_INFO,"nb_bits: %d\n", nb_bits);
1567
        table = swf_index_tables[nb_bits-2];
1568
        k0 = 1 << (nb_bits-2);
1569
        signmask = 1 << (nb_bits-1);
1570

    
1571
        while (get_bits_count(&gb) <= size - 22*avctx->channels) {
1572
            for (i = 0; i < avctx->channels; i++) {
1573
                *samples++ = c->status[i].predictor = get_sbits(&gb, 16);
1574
                c->status[i].step_index = get_bits(&gb, 6);
1575
            }
1576

    
1577
            for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) {
1578
                int i;
1579

    
1580
                for (i = 0; i < avctx->channels; i++) {
1581
                    // similar to IMA adpcm
1582
                    int delta = get_bits(&gb, nb_bits);
1583
                    int step = step_table[c->status[i].step_index];
1584
                    long vpdiff = 0; // vpdiff = (delta+0.5)*step/4
1585
                    int k = k0;
1586

    
1587
                    do {
1588
                        if (delta & k)
1589
                            vpdiff += step;
1590
                        step >>= 1;
1591
                        k >>= 1;
1592
                    } while(k);
1593
                    vpdiff += step;
1594

    
1595
                    if (delta & signmask)
1596
                        c->status[i].predictor -= vpdiff;
1597
                    else
1598
                        c->status[i].predictor += vpdiff;
1599

    
1600
                    c->status[i].step_index += table[delta & (~signmask)];
1601

    
1602
                    c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
1603
                    c->status[i].predictor = av_clip_int16(c->status[i].predictor);
1604

    
1605
                    *samples++ = c->status[i].predictor;
1606
                    if (samples >= samples_end) {
1607
                        av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n");
1608
                        return -1;
1609
                    }
1610
                }
1611
            }
1612
        }
1613
        src += buf_size;
1614
        break;
1615
    }
1616
    case CODEC_ID_ADPCM_YAMAHA:
1617
        while (src < buf + buf_size) {
1618
            if (st) {
1619
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1620
                        src[0] & 0x0F);
1621
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[1],
1622
                        src[0] >> 4  );
1623
            } else {
1624
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1625
                        src[0] & 0x0F);
1626
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1627
                        src[0] >> 4  );
1628
            }
1629
            src++;
1630
        }
1631
        break;
1632
    case CODEC_ID_ADPCM_THP:
1633
    {
1634
        int table[2][16];
1635
        unsigned int samplecnt;
1636
        int prev[2][2];
1637
        int ch;
1638

    
1639
        if (buf_size < 80) {
1640
            av_log(avctx, AV_LOG_ERROR, "frame too small\n");
1641
            return -1;
1642
        }
1643

    
1644
        src+=4;
1645
        samplecnt = bytestream_get_be32(&src);
1646

    
1647
        for (i = 0; i < 32; i++)
1648
            table[0][i] = (int16_t)bytestream_get_be16(&src);
1649

    
1650
        /* Initialize the previous sample.  */
1651
        for (i = 0; i < 4; i++)
1652
            prev[0][i] = (int16_t)bytestream_get_be16(&src);
1653

    
1654
        if (samplecnt >= (samples_end - samples) /  (st + 1)) {
1655
            av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n");
1656
            return -1;
1657
        }
1658

    
1659
        for (ch = 0; ch <= st; ch++) {
1660
            samples = (unsigned short *) data + ch;
1661

    
1662
            /* Read in every sample for this channel.  */
1663
            for (i = 0; i < samplecnt / 14; i++) {
1664
                int index = (*src >> 4) & 7;
1665
                unsigned int exp = 28 - (*src++ & 15);
1666
                int factor1 = table[ch][index * 2];
1667
                int factor2 = table[ch][index * 2 + 1];
1668

    
1669
                /* Decode 14 samples.  */
1670
                for (n = 0; n < 14; n++) {
1671
                    int32_t sampledat;
1672
                    if(n&1) sampledat=  *src++    <<28;
1673
                    else    sampledat= (*src&0xF0)<<24;
1674

    
1675
                    sampledat = ((prev[ch][0]*factor1
1676
                                + prev[ch][1]*factor2) >> 11) + (sampledat>>exp);
1677
                    *samples = av_clip_int16(sampledat);
1678
                    prev[ch][1] = prev[ch][0];
1679
                    prev[ch][0] = *samples++;
1680

    
1681
                    /* In case of stereo, skip one sample, this sample
1682
                       is for the other channel.  */
1683
                    samples += st;
1684
                }
1685
            }
1686
        }
1687

    
1688
        /* In the previous loop, in case stereo is used, samples is
1689
           increased exactly one time too often.  */
1690
        samples -= st;
1691
        break;
1692
    }
1693

    
1694
    default:
1695
        return -1;
1696
    }
1697
    *data_size = (uint8_t *)samples - (uint8_t *)data;
1698
    return src - buf;
1699
}
1700

    
1701

    
1702

    
1703
#if CONFIG_ENCODERS
1704
#define ADPCM_ENCODER(id,name,long_name_)       \
1705
AVCodec name ## _encoder = {                    \
1706
    #name,                                      \
1707
    AVMEDIA_TYPE_AUDIO,                         \
1708
    id,                                         \
1709
    sizeof(ADPCMContext),                       \
1710
    adpcm_encode_init,                          \
1711
    adpcm_encode_frame,                         \
1712
    adpcm_encode_close,                         \
1713
    NULL,                                       \
1714
    .sample_fmts = (const enum AVSampleFormat[]){AV_SAMPLE_FMT_S16,AV_SAMPLE_FMT_NONE}, \
1715
    .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
1716
};
1717
#else
1718
#define ADPCM_ENCODER(id,name,long_name_)
1719
#endif
1720

    
1721
#if CONFIG_DECODERS
1722
#define ADPCM_DECODER(id,name,long_name_)       \
1723
AVCodec name ## _decoder = {                    \
1724
    #name,                                      \
1725
    AVMEDIA_TYPE_AUDIO,                         \
1726
    id,                                         \
1727
    sizeof(ADPCMContext),                       \
1728
    adpcm_decode_init,                          \
1729
    NULL,                                       \
1730
    NULL,                                       \
1731
    adpcm_decode_frame,                         \
1732
    .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
1733
};
1734
#else
1735
#define ADPCM_DECODER(id,name,long_name_)
1736
#endif
1737

    
1738
#define ADPCM_CODEC(id,name,long_name_)         \
1739
    ADPCM_ENCODER(id,name,long_name_) ADPCM_DECODER(id,name,long_name_)
1740

    
1741
/* Note: Do not forget to add new entries to the Makefile as well. */
1742
ADPCM_DECODER(CODEC_ID_ADPCM_4XM, adpcm_4xm, "ADPCM 4X Movie");
1743
ADPCM_DECODER(CODEC_ID_ADPCM_CT, adpcm_ct, "ADPCM Creative Technology");
1744
ADPCM_DECODER(CODEC_ID_ADPCM_EA, adpcm_ea, "ADPCM Electronic Arts");
1745
ADPCM_DECODER(CODEC_ID_ADPCM_EA_MAXIS_XA, adpcm_ea_maxis_xa, "ADPCM Electronic Arts Maxis CDROM XA");
1746
ADPCM_DECODER(CODEC_ID_ADPCM_EA_R1, adpcm_ea_r1, "ADPCM Electronic Arts R1");
1747
ADPCM_DECODER(CODEC_ID_ADPCM_EA_R2, adpcm_ea_r2, "ADPCM Electronic Arts R2");
1748
ADPCM_DECODER(CODEC_ID_ADPCM_EA_R3, adpcm_ea_r3, "ADPCM Electronic Arts R3");
1749
ADPCM_DECODER(CODEC_ID_ADPCM_EA_XAS, adpcm_ea_xas, "ADPCM Electronic Arts XAS");
1750
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_AMV, adpcm_ima_amv, "ADPCM IMA AMV");
1751
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK3, adpcm_ima_dk3, "ADPCM IMA Duck DK3");
1752
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK4, adpcm_ima_dk4, "ADPCM IMA Duck DK4");
1753
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_EACS, adpcm_ima_ea_eacs, "ADPCM IMA Electronic Arts EACS");
1754
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_SEAD, adpcm_ima_ea_sead, "ADPCM IMA Electronic Arts SEAD");
1755
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_ISS, adpcm_ima_iss, "ADPCM IMA Funcom ISS");
1756
ADPCM_CODEC  (CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt, "ADPCM IMA QuickTime");
1757
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_SMJPEG, adpcm_ima_smjpeg, "ADPCM IMA Loki SDL MJPEG");
1758
ADPCM_CODEC  (CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav, "ADPCM IMA WAV");
1759
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_WS, adpcm_ima_ws, "ADPCM IMA Westwood");
1760
ADPCM_CODEC  (CODEC_ID_ADPCM_MS, adpcm_ms, "ADPCM Microsoft");
1761
ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_2, adpcm_sbpro_2, "ADPCM Sound Blaster Pro 2-bit");
1762
ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_3, adpcm_sbpro_3, "ADPCM Sound Blaster Pro 2.6-bit");
1763
ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_4, adpcm_sbpro_4, "ADPCM Sound Blaster Pro 4-bit");
1764
ADPCM_CODEC  (CODEC_ID_ADPCM_SWF, adpcm_swf, "ADPCM Shockwave Flash");
1765
ADPCM_DECODER(CODEC_ID_ADPCM_THP, adpcm_thp, "ADPCM Nintendo Gamecube THP");
1766
ADPCM_DECODER(CODEC_ID_ADPCM_XA, adpcm_xa, "ADPCM CDROM XA");
1767
ADPCM_CODEC  (CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha, "ADPCM Yamaha");