Statistics
| Branch: | Revision:

ffmpeg / libavcodec / dsputil.h @ 1e2245c2

History | View | Annotate | Download (39.7 KB)

1
/*
2
 * DSP utils
3
 * Copyright (c) 2000, 2001, 2002 Fabrice Bellard
4
 * Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at>
5
 *
6
 * This file is part of FFmpeg.
7
 *
8
 * FFmpeg is free software; you can redistribute it and/or
9
 * modify it under the terms of the GNU Lesser General Public
10
 * License as published by the Free Software Foundation; either
11
 * version 2.1 of the License, or (at your option) any later version.
12
 *
13
 * FFmpeg is distributed in the hope that it will be useful,
14
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16
 * Lesser General Public License for more details.
17
 *
18
 * You should have received a copy of the GNU Lesser General Public
19
 * License along with FFmpeg; if not, write to the Free Software
20
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21
 */
22

    
23
/**
24
 * @file libavcodec/dsputil.h
25
 * DSP utils.
26
 * note, many functions in here may use MMX which trashes the FPU state, it is
27
 * absolutely necessary to call emms_c() between dsp & float/double code
28
 */
29

    
30
#ifndef AVCODEC_DSPUTIL_H
31
#define AVCODEC_DSPUTIL_H
32

    
33
#include "libavutil/intreadwrite.h"
34
#include "avcodec.h"
35

    
36

    
37
//#define DEBUG
38
/* dct code */
39
typedef short DCTELEM;
40
typedef int DWTELEM;
41
typedef short IDWTELEM;
42

    
43
void fdct_ifast (DCTELEM *data);
44
void fdct_ifast248 (DCTELEM *data);
45
void ff_jpeg_fdct_islow (DCTELEM *data);
46
void ff_fdct248_islow (DCTELEM *data);
47

    
48
void j_rev_dct (DCTELEM *data);
49
void j_rev_dct4 (DCTELEM *data);
50
void j_rev_dct2 (DCTELEM *data);
51
void j_rev_dct1 (DCTELEM *data);
52
void ff_wmv2_idct_c(DCTELEM *data);
53

    
54
void ff_fdct_mmx(DCTELEM *block);
55
void ff_fdct_mmx2(DCTELEM *block);
56
void ff_fdct_sse2(DCTELEM *block);
57

    
58
void ff_h264_idct8_add_c(uint8_t *dst, DCTELEM *block, int stride);
59
void ff_h264_idct_add_c(uint8_t *dst, DCTELEM *block, int stride);
60
void ff_h264_idct8_dc_add_c(uint8_t *dst, DCTELEM *block, int stride);
61
void ff_h264_idct_dc_add_c(uint8_t *dst, DCTELEM *block, int stride);
62
void ff_h264_lowres_idct_add_c(uint8_t *dst, int stride, DCTELEM *block);
63
void ff_h264_lowres_idct_put_c(uint8_t *dst, int stride, DCTELEM *block);
64
void ff_h264_idct_add16_c(uint8_t *dst, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]);
65
void ff_h264_idct_add16intra_c(uint8_t *dst, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]);
66
void ff_h264_idct8_add4_c(uint8_t *dst, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]);
67
void ff_h264_idct_add8_c(uint8_t **dest, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]);
68

    
69
void ff_vector_fmul_window_c(float *dst, const float *src0, const float *src1,
70
                             const float *win, float add_bias, int len);
71
void ff_float_to_int16_c(int16_t *dst, const float *src, long len);
72
void ff_float_to_int16_interleave_c(int16_t *dst, const float **src, long len, int channels);
73

    
74
/* encoding scans */
75
extern const uint8_t ff_alternate_horizontal_scan[64];
76
extern const uint8_t ff_alternate_vertical_scan[64];
77
extern const uint8_t ff_zigzag_direct[64];
78
extern const uint8_t ff_zigzag248_direct[64];
79

    
80
/* pixel operations */
81
#define MAX_NEG_CROP 1024
82

    
83
/* temporary */
84
extern uint32_t ff_squareTbl[512];
85
extern uint8_t ff_cropTbl[256 + 2 * MAX_NEG_CROP];
86

    
87
/* VP3 DSP functions */
88
void ff_vp3_idct_c(DCTELEM *block/* align 16*/);
89
void ff_vp3_idct_put_c(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/);
90
void ff_vp3_idct_add_c(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/);
91

    
92
void ff_vp3_v_loop_filter_c(uint8_t *src, int stride, int *bounding_values);
93
void ff_vp3_h_loop_filter_c(uint8_t *src, int stride, int *bounding_values);
94

    
95
/* VP6 DSP functions */
96
void ff_vp6_filter_diag4_c(uint8_t *dst, uint8_t *src, int stride,
97
                           const int16_t *h_weights, const int16_t *v_weights);
98

    
99
/* 1/2^n downscaling functions from imgconvert.c */
100
void ff_img_copy_plane(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
101
void ff_shrink22(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
102
void ff_shrink44(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
103
void ff_shrink88(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
104

    
105
void ff_gmc_c(uint8_t *dst, uint8_t *src, int stride, int h, int ox, int oy,
106
              int dxx, int dxy, int dyx, int dyy, int shift, int r, int width, int height);
107

    
108
/* minimum alignment rules ;)
109
If you notice errors in the align stuff, need more alignment for some ASM code
110
for some CPU or need to use a function with less aligned data then send a mail
111
to the ffmpeg-devel mailing list, ...
112

113
!warning These alignments might not match reality, (missing attribute((align))
114
stuff somewhere possible).
115
I (Michael) did not check them, these are just the alignments which I think
116
could be reached easily ...
117

118
!future video codecs might need functions with less strict alignment
119
*/
120

    
121
/*
122
void get_pixels_c(DCTELEM *block, const uint8_t *pixels, int line_size);
123
void diff_pixels_c(DCTELEM *block, const uint8_t *s1, const uint8_t *s2, int stride);
124
void put_pixels_clamped_c(const DCTELEM *block, uint8_t *pixels, int line_size);
125
void add_pixels_clamped_c(const DCTELEM *block, uint8_t *pixels, int line_size);
126
void clear_blocks_c(DCTELEM *blocks);
127
*/
128

    
129
/* add and put pixel (decoding) */
130
// blocksizes for op_pixels_func are 8x4,8x8 16x8 16x16
131
//h for op_pixels_func is limited to {width/2, width} but never larger than 16 and never smaller then 4
132
typedef void (*op_pixels_func)(uint8_t *block/*align width (8 or 16)*/, const uint8_t *pixels/*align 1*/, int line_size, int h);
133
typedef void (*tpel_mc_func)(uint8_t *block/*align width (8 or 16)*/, const uint8_t *pixels/*align 1*/, int line_size, int w, int h);
134
typedef void (*qpel_mc_func)(uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);
135
typedef void (*h264_chroma_mc_func)(uint8_t *dst/*align 8*/, uint8_t *src/*align 1*/, int srcStride, int h, int x, int y);
136
typedef void (*h264_weight_func)(uint8_t *block, int stride, int log2_denom, int weight, int offset);
137
typedef void (*h264_biweight_func)(uint8_t *dst, uint8_t *src, int stride, int log2_denom, int weightd, int weights, int offset);
138

    
139
#define DEF_OLD_QPEL(name)\
140
void ff_put_        ## name (uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);\
141
void ff_put_no_rnd_ ## name (uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);\
142
void ff_avg_        ## name (uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);
143

    
144
DEF_OLD_QPEL(qpel16_mc11_old_c)
145
DEF_OLD_QPEL(qpel16_mc31_old_c)
146
DEF_OLD_QPEL(qpel16_mc12_old_c)
147
DEF_OLD_QPEL(qpel16_mc32_old_c)
148
DEF_OLD_QPEL(qpel16_mc13_old_c)
149
DEF_OLD_QPEL(qpel16_mc33_old_c)
150
DEF_OLD_QPEL(qpel8_mc11_old_c)
151
DEF_OLD_QPEL(qpel8_mc31_old_c)
152
DEF_OLD_QPEL(qpel8_mc12_old_c)
153
DEF_OLD_QPEL(qpel8_mc32_old_c)
154
DEF_OLD_QPEL(qpel8_mc13_old_c)
155
DEF_OLD_QPEL(qpel8_mc33_old_c)
156

    
157
#define CALL_2X_PIXELS(a, b, n)\
158
static void a(uint8_t *block, const uint8_t *pixels, int line_size, int h){\
159
    b(block  , pixels  , line_size, h);\
160
    b(block+n, pixels+n, line_size, h);\
161
}
162

    
163
/* motion estimation */
164
// h is limited to {width/2, width, 2*width} but never larger than 16 and never smaller then 2
165
// although currently h<4 is not used as functions with width <8 are neither used nor implemented
166
typedef int (*me_cmp_func)(void /*MpegEncContext*/ *s, uint8_t *blk1/*align width (8 or 16)*/, uint8_t *blk2/*align 1*/, int line_size, int h)/* __attribute__ ((const))*/;
167

    
168

    
169
// for snow slices
170
typedef struct slice_buffer_s slice_buffer;
171

    
172
/**
173
 * Scantable.
174
 */
175
typedef struct ScanTable{
176
    const uint8_t *scantable;
177
    uint8_t permutated[64];
178
    uint8_t raster_end[64];
179
#if ARCH_PPC
180
                /** Used by dct_quantize_altivec to find last-non-zero */
181
    DECLARE_ALIGNED(16, uint8_t, inverse)[64];
182
#endif
183
} ScanTable;
184

    
185
void ff_init_scantable(uint8_t *, ScanTable *st, const uint8_t *src_scantable);
186

    
187
void ff_emulated_edge_mc(uint8_t *buf, uint8_t *src, int linesize,
188
                         int block_w, int block_h,
189
                         int src_x, int src_y, int w, int h);
190

    
191
/**
192
 * DSPContext.
193
 */
194
typedef struct DSPContext {
195
    /* pixel ops : interface with DCT */
196
    void (*get_pixels)(DCTELEM *block/*align 16*/, const uint8_t *pixels/*align 8*/, int line_size);
197
    void (*diff_pixels)(DCTELEM *block/*align 16*/, const uint8_t *s1/*align 8*/, const uint8_t *s2/*align 8*/, int stride);
198
    void (*put_pixels_clamped)(const DCTELEM *block/*align 16*/, uint8_t *pixels/*align 8*/, int line_size);
199
    void (*put_signed_pixels_clamped)(const DCTELEM *block/*align 16*/, uint8_t *pixels/*align 8*/, int line_size);
200
    void (*add_pixels_clamped)(const DCTELEM *block/*align 16*/, uint8_t *pixels/*align 8*/, int line_size);
201
    void (*add_pixels8)(uint8_t *pixels, DCTELEM *block, int line_size);
202
    void (*add_pixels4)(uint8_t *pixels, DCTELEM *block, int line_size);
203
    int (*sum_abs_dctelem)(DCTELEM *block/*align 16*/);
204
    /**
205
     * translational global motion compensation.
206
     */
207
    void (*gmc1)(uint8_t *dst/*align 8*/, uint8_t *src/*align 1*/, int srcStride, int h, int x16, int y16, int rounder);
208
    /**
209
     * global motion compensation.
210
     */
211
    void (*gmc )(uint8_t *dst/*align 8*/, uint8_t *src/*align 1*/, int stride, int h, int ox, int oy,
212
                    int dxx, int dxy, int dyx, int dyy, int shift, int r, int width, int height);
213
    void (*clear_block)(DCTELEM *block/*align 16*/);
214
    void (*clear_blocks)(DCTELEM *blocks/*align 16*/);
215
    int (*pix_sum)(uint8_t * pix, int line_size);
216
    int (*pix_norm1)(uint8_t * pix, int line_size);
217
// 16x16 8x8 4x4 2x2 16x8 8x4 4x2 8x16 4x8 2x4
218

    
219
    me_cmp_func sad[6]; /* identical to pix_absAxA except additional void * */
220
    me_cmp_func sse[6];
221
    me_cmp_func hadamard8_diff[6];
222
    me_cmp_func dct_sad[6];
223
    me_cmp_func quant_psnr[6];
224
    me_cmp_func bit[6];
225
    me_cmp_func rd[6];
226
    me_cmp_func vsad[6];
227
    me_cmp_func vsse[6];
228
    me_cmp_func nsse[6];
229
    me_cmp_func w53[6];
230
    me_cmp_func w97[6];
231
    me_cmp_func dct_max[6];
232
    me_cmp_func dct264_sad[6];
233

    
234
    me_cmp_func me_pre_cmp[6];
235
    me_cmp_func me_cmp[6];
236
    me_cmp_func me_sub_cmp[6];
237
    me_cmp_func mb_cmp[6];
238
    me_cmp_func ildct_cmp[6]; //only width 16 used
239
    me_cmp_func frame_skip_cmp[6]; //only width 8 used
240

    
241
    int (*ssd_int8_vs_int16)(const int8_t *pix1, const int16_t *pix2,
242
                             int size);
243

    
244
    /**
245
     * Halfpel motion compensation with rounding (a+b+1)>>1.
246
     * this is an array[4][4] of motion compensation functions for 4
247
     * horizontal blocksizes (8,16) and the 4 halfpel positions<br>
248
     * *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
249
     * @param block destination where the result is stored
250
     * @param pixels source
251
     * @param line_size number of bytes in a horizontal line of block
252
     * @param h height
253
     */
254
    op_pixels_func put_pixels_tab[4][4];
255

    
256
    /**
257
     * Halfpel motion compensation with rounding (a+b+1)>>1.
258
     * This is an array[4][4] of motion compensation functions for 4
259
     * horizontal blocksizes (8,16) and the 4 halfpel positions<br>
260
     * *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
261
     * @param block destination into which the result is averaged (a+b+1)>>1
262
     * @param pixels source
263
     * @param line_size number of bytes in a horizontal line of block
264
     * @param h height
265
     */
266
    op_pixels_func avg_pixels_tab[4][4];
267

    
268
    /**
269
     * Halfpel motion compensation with no rounding (a+b)>>1.
270
     * this is an array[2][4] of motion compensation functions for 2
271
     * horizontal blocksizes (8,16) and the 4 halfpel positions<br>
272
     * *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
273
     * @param block destination where the result is stored
274
     * @param pixels source
275
     * @param line_size number of bytes in a horizontal line of block
276
     * @param h height
277
     */
278
    op_pixels_func put_no_rnd_pixels_tab[4][4];
279

    
280
    /**
281
     * Halfpel motion compensation with no rounding (a+b)>>1.
282
     * this is an array[2][4] of motion compensation functions for 2
283
     * horizontal blocksizes (8,16) and the 4 halfpel positions<br>
284
     * *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
285
     * @param block destination into which the result is averaged (a+b)>>1
286
     * @param pixels source
287
     * @param line_size number of bytes in a horizontal line of block
288
     * @param h height
289
     */
290
    op_pixels_func avg_no_rnd_pixels_tab[4][4];
291

    
292
    void (*put_no_rnd_pixels_l2[2])(uint8_t *block/*align width (8 or 16)*/, const uint8_t *a/*align 1*/, const uint8_t *b/*align 1*/, int line_size, int h);
293

    
294
    /**
295
     * Thirdpel motion compensation with rounding (a+b+1)>>1.
296
     * this is an array[12] of motion compensation functions for the 9 thirdpe
297
     * positions<br>
298
     * *pixels_tab[ xthirdpel + 4*ythirdpel ]
299
     * @param block destination where the result is stored
300
     * @param pixels source
301
     * @param line_size number of bytes in a horizontal line of block
302
     * @param h height
303
     */
304
    tpel_mc_func put_tpel_pixels_tab[11]; //FIXME individual func ptr per width?
305
    tpel_mc_func avg_tpel_pixels_tab[11]; //FIXME individual func ptr per width?
306

    
307
    qpel_mc_func put_qpel_pixels_tab[2][16];
308
    qpel_mc_func avg_qpel_pixels_tab[2][16];
309
    qpel_mc_func put_no_rnd_qpel_pixels_tab[2][16];
310
    qpel_mc_func avg_no_rnd_qpel_pixels_tab[2][16];
311
    qpel_mc_func put_mspel_pixels_tab[8];
312

    
313
    /**
314
     * h264 Chroma MC
315
     */
316
    h264_chroma_mc_func put_h264_chroma_pixels_tab[3];
317
    h264_chroma_mc_func avg_h264_chroma_pixels_tab[3];
318
    /* This is really one func used in VC-1 decoding */
319
    h264_chroma_mc_func put_no_rnd_vc1_chroma_pixels_tab[3];
320
    h264_chroma_mc_func avg_no_rnd_vc1_chroma_pixels_tab[3];
321

    
322
    qpel_mc_func put_h264_qpel_pixels_tab[4][16];
323
    qpel_mc_func avg_h264_qpel_pixels_tab[4][16];
324

    
325
    qpel_mc_func put_2tap_qpel_pixels_tab[4][16];
326
    qpel_mc_func avg_2tap_qpel_pixels_tab[4][16];
327

    
328
    h264_weight_func weight_h264_pixels_tab[10];
329
    h264_biweight_func biweight_h264_pixels_tab[10];
330

    
331
    /* AVS specific */
332
    qpel_mc_func put_cavs_qpel_pixels_tab[2][16];
333
    qpel_mc_func avg_cavs_qpel_pixels_tab[2][16];
334
    void (*cavs_filter_lv)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2);
335
    void (*cavs_filter_lh)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2);
336
    void (*cavs_filter_cv)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2);
337
    void (*cavs_filter_ch)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2);
338
    void (*cavs_idct8_add)(uint8_t *dst, DCTELEM *block, int stride);
339

    
340
    me_cmp_func pix_abs[2][4];
341

    
342
    /* huffyuv specific */
343
    void (*add_bytes)(uint8_t *dst/*align 16*/, uint8_t *src/*align 16*/, int w);
344
    void (*add_bytes_l2)(uint8_t *dst/*align 16*/, uint8_t *src1/*align 16*/, uint8_t *src2/*align 16*/, int w);
345
    void (*diff_bytes)(uint8_t *dst/*align 16*/, uint8_t *src1/*align 16*/, uint8_t *src2/*align 1*/,int w);
346
    /**
347
     * subtract huffyuv's variant of median prediction
348
     * note, this might read from src1[-1], src2[-1]
349
     */
350
    void (*sub_hfyu_median_prediction)(uint8_t *dst, const uint8_t *src1, const uint8_t *src2, int w, int *left, int *left_top);
351
    void (*add_hfyu_median_prediction)(uint8_t *dst, const uint8_t *top, const uint8_t *diff, int w, int *left, int *left_top);
352
    int  (*add_hfyu_left_prediction)(uint8_t *dst, const uint8_t *src, int w, int left);
353
    void (*add_hfyu_left_prediction_bgr32)(uint8_t *dst, const uint8_t *src, int w, int *red, int *green, int *blue, int *alpha);
354
    /* this might write to dst[w] */
355
    void (*add_png_paeth_prediction)(uint8_t *dst, uint8_t *src, uint8_t *top, int w, int bpp);
356
    void (*bswap_buf)(uint32_t *dst, const uint32_t *src, int w);
357

    
358
    void (*h264_v_loop_filter_luma)(uint8_t *pix/*align 16*/, int stride, int alpha, int beta, int8_t *tc0);
359
    void (*h264_h_loop_filter_luma)(uint8_t *pix/*align 4 */, int stride, int alpha, int beta, int8_t *tc0);
360
    /* v/h_loop_filter_luma_intra: align 16 */
361
    void (*h264_v_loop_filter_luma_intra)(uint8_t *pix, int stride, int alpha, int beta);
362
    void (*h264_h_loop_filter_luma_intra)(uint8_t *pix, int stride, int alpha, int beta);
363
    void (*h264_v_loop_filter_chroma)(uint8_t *pix/*align 8*/, int stride, int alpha, int beta, int8_t *tc0);
364
    void (*h264_h_loop_filter_chroma)(uint8_t *pix/*align 4*/, int stride, int alpha, int beta, int8_t *tc0);
365
    void (*h264_v_loop_filter_chroma_intra)(uint8_t *pix/*align 8*/, int stride, int alpha, int beta);
366
    void (*h264_h_loop_filter_chroma_intra)(uint8_t *pix/*align 8*/, int stride, int alpha, int beta);
367
    // h264_loop_filter_strength: simd only. the C version is inlined in h264.c
368
    void (*h264_loop_filter_strength)(int16_t bS[2][4][4], uint8_t nnz[40], int8_t ref[2][40], int16_t mv[2][40][2],
369
                                      int bidir, int edges, int step, int mask_mv0, int mask_mv1, int field);
370

    
371
    void (*h263_v_loop_filter)(uint8_t *src, int stride, int qscale);
372
    void (*h263_h_loop_filter)(uint8_t *src, int stride, int qscale);
373

    
374
    void (*h261_loop_filter)(uint8_t *src, int stride);
375

    
376
    void (*x8_v_loop_filter)(uint8_t *src, int stride, int qscale);
377
    void (*x8_h_loop_filter)(uint8_t *src, int stride, int qscale);
378

    
379
    void (*vp3_v_loop_filter)(uint8_t *src, int stride, int *bounding_values);
380
    void (*vp3_h_loop_filter)(uint8_t *src, int stride, int *bounding_values);
381

    
382
    void (*vp6_filter_diag4)(uint8_t *dst, uint8_t *src, int stride,
383
                             const int16_t *h_weights,const int16_t *v_weights);
384

    
385
    /* assume len is a multiple of 4, and arrays are 16-byte aligned */
386
    void (*vorbis_inverse_coupling)(float *mag, float *ang, int blocksize);
387
    void (*ac3_downmix)(float (*samples)[256], float (*matrix)[2], int out_ch, int in_ch, int len);
388
    /* no alignment needed */
389
    void (*lpc_compute_autocorr)(const int32_t *data, int len, int lag, double *autoc);
390
    /* assume len is a multiple of 8, and arrays are 16-byte aligned */
391
    void (*vector_fmul)(float *dst, const float *src, int len);
392
    void (*vector_fmul_reverse)(float *dst, const float *src0, const float *src1, int len);
393
    /* assume len is a multiple of 8, and src arrays are 16-byte aligned */
394
    void (*vector_fmul_add)(float *dst, const float *src0, const float *src1, const float *src2, int len);
395
    /* assume len is a multiple of 4, and arrays are 16-byte aligned */
396
    void (*vector_fmul_window)(float *dst, const float *src0, const float *src1, const float *win, float add_bias, int len);
397
    /* assume len is a multiple of 8, and arrays are 16-byte aligned */
398
    void (*int32_to_float_fmul_scalar)(float *dst, const int *src, float mul, int len);
399
    void (*vector_clipf)(float *dst /* align 16 */, const float *src /* align 16 */, float min, float max, int len /* align 16 */);
400
    /**
401
     * Multiply a vector of floats by a scalar float.  Source and
402
     * destination vectors must overlap exactly or not at all.
403
     * @param dst result vector, 16-byte aligned
404
     * @param src input vector, 16-byte aligned
405
     * @param mul scalar value
406
     * @param len length of vector, multiple of 4
407
     */
408
    void (*vector_fmul_scalar)(float *dst, const float *src, float mul,
409
                               int len);
410
    /**
411
     * Multiply a vector of floats by concatenated short vectors of
412
     * floats and by a scalar float.  Source and destination vectors
413
     * must overlap exactly or not at all.
414
     * [0]: short vectors of length 2, 8-byte aligned
415
     * [1]: short vectors of length 4, 16-byte aligned
416
     * @param dst output vector, 16-byte aligned
417
     * @param src input vector, 16-byte aligned
418
     * @param sv  array of pointers to short vectors
419
     * @param mul scalar value
420
     * @param len number of elements in src and dst, multiple of 4
421
     */
422
    void (*vector_fmul_sv_scalar[2])(float *dst, const float *src,
423
                                     const float **sv, float mul, int len);
424
    /**
425
     * Multiply short vectors of floats by a scalar float, store
426
     * concatenated result.
427
     * [0]: short vectors of length 2, 8-byte aligned
428
     * [1]: short vectors of length 4, 16-byte aligned
429
     * @param dst output vector, 16-byte aligned
430
     * @param sv  array of pointers to short vectors
431
     * @param mul scalar value
432
     * @param len number of output elements, multiple of 4
433
     */
434
    void (*sv_fmul_scalar[2])(float *dst, const float **sv,
435
                              float mul, int len);
436
    /**
437
     * Calculate the scalar product of two vectors of floats.
438
     * @param v1  first vector, 16-byte aligned
439
     * @param v2  second vector, 16-byte aligned
440
     * @param len length of vectors, multiple of 4
441
     */
442
    float (*scalarproduct_float)(const float *v1, const float *v2, int len);
443
    /**
444
     * Calculate the sum and difference of two vectors of floats.
445
     * @param v1  first input vector, sum output, 16-byte aligned
446
     * @param v2  second input vector, difference output, 16-byte aligned
447
     * @param len length of vectors, multiple of 4
448
     */
449
    void (*butterflies_float)(float *restrict v1, float *restrict v2, int len);
450

    
451
    /* C version: convert floats from the range [384.0,386.0] to ints in [-32768,32767]
452
     * simd versions: convert floats from [-32768.0,32767.0] without rescaling and arrays are 16byte aligned */
453
    void (*float_to_int16)(int16_t *dst, const float *src, long len);
454
    void (*float_to_int16_interleave)(int16_t *dst, const float **src, long len, int channels);
455

    
456
    /* (I)DCT */
457
    void (*fdct)(DCTELEM *block/* align 16*/);
458
    void (*fdct248)(DCTELEM *block/* align 16*/);
459

    
460
    /* IDCT really*/
461
    void (*idct)(DCTELEM *block/* align 16*/);
462

    
463
    /**
464
     * block -> idct -> clip to unsigned 8 bit -> dest.
465
     * (-1392, 0, 0, ...) -> idct -> (-174, -174, ...) -> put -> (0, 0, ...)
466
     * @param line_size size in bytes of a horizontal line of dest
467
     */
468
    void (*idct_put)(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/);
469

    
470
    /**
471
     * block -> idct -> add dest -> clip to unsigned 8 bit -> dest.
472
     * @param line_size size in bytes of a horizontal line of dest
473
     */
474
    void (*idct_add)(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/);
475

    
476
    /**
477
     * idct input permutation.
478
     * several optimized IDCTs need a permutated input (relative to the normal order of the reference
479
     * IDCT)
480
     * this permutation must be performed before the idct_put/add, note, normally this can be merged
481
     * with the zigzag/alternate scan<br>
482
     * an example to avoid confusion:
483
     * - (->decode coeffs -> zigzag reorder -> dequant -> reference idct ->...)
484
     * - (x -> referece dct -> reference idct -> x)
485
     * - (x -> referece dct -> simple_mmx_perm = idct_permutation -> simple_idct_mmx -> x)
486
     * - (->decode coeffs -> zigzag reorder -> simple_mmx_perm -> dequant -> simple_idct_mmx ->...)
487
     */
488
    uint8_t idct_permutation[64];
489
    int idct_permutation_type;
490
#define FF_NO_IDCT_PERM 1
491
#define FF_LIBMPEG2_IDCT_PERM 2
492
#define FF_SIMPLE_IDCT_PERM 3
493
#define FF_TRANSPOSE_IDCT_PERM 4
494
#define FF_PARTTRANS_IDCT_PERM 5
495
#define FF_SSE2_IDCT_PERM 6
496

    
497
    int (*try_8x8basis)(int16_t rem[64], int16_t weight[64], int16_t basis[64], int scale);
498
    void (*add_8x8basis)(int16_t rem[64], int16_t basis[64], int scale);
499
#define BASIS_SHIFT 16
500
#define RECON_SHIFT 6
501

    
502
    void (*draw_edges)(uint8_t *buf, int wrap, int width, int height, int w);
503
#define EDGE_WIDTH 16
504

    
505
    /* h264 functions */
506
    /* NOTE!!! if you implement any of h264_idct8_add, h264_idct8_add4 then you must implement all of them
507
       NOTE!!! if you implement any of h264_idct_add, h264_idct_add16, h264_idct_add16intra, h264_idct_add8 then you must implement all of them
508
        The reason for above, is that no 2 out of one list may use a different permutation.
509
    */
510
    void (*h264_idct_add)(uint8_t *dst/*align 4*/, DCTELEM *block/*align 16*/, int stride);
511
    void (*h264_idct8_add)(uint8_t *dst/*align 8*/, DCTELEM *block/*align 16*/, int stride);
512
    void (*h264_idct_dc_add)(uint8_t *dst/*align 4*/, DCTELEM *block/*align 16*/, int stride);
513
    void (*h264_idct8_dc_add)(uint8_t *dst/*align 8*/, DCTELEM *block/*align 16*/, int stride);
514
    void (*h264_dct)(DCTELEM block[4][4]);
515
    void (*h264_idct_add16)(uint8_t *dst/*align 16*/, const int *blockoffset, DCTELEM *block/*align 16*/, int stride, const uint8_t nnzc[6*8]);
516
    void (*h264_idct8_add4)(uint8_t *dst/*align 16*/, const int *blockoffset, DCTELEM *block/*align 16*/, int stride, const uint8_t nnzc[6*8]);
517
    void (*h264_idct_add8)(uint8_t **dst/*align 16*/, const int *blockoffset, DCTELEM *block/*align 16*/, int stride, const uint8_t nnzc[6*8]);
518
    void (*h264_idct_add16intra)(uint8_t *dst/*align 16*/, const int *blockoffset, DCTELEM *block/*align 16*/, int stride, const uint8_t nnzc[6*8]);
519

    
520
    /* snow wavelet */
521
    void (*vertical_compose97i)(IDWTELEM *b0, IDWTELEM *b1, IDWTELEM *b2, IDWTELEM *b3, IDWTELEM *b4, IDWTELEM *b5, int width);
522
    void (*horizontal_compose97i)(IDWTELEM *b, int width);
523
    void (*inner_add_yblock)(const uint8_t *obmc, const int obmc_stride, uint8_t * * block, int b_w, int b_h, int src_x, int src_y, int src_stride, slice_buffer * sb, int add, uint8_t * dst8);
524

    
525
    void (*prefetch)(void *mem, int stride, int h);
526

    
527
    void (*shrink[4])(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
528

    
529
    /* mlp/truehd functions */
530
    void (*mlp_filter_channel)(int32_t *state, const int32_t *coeff,
531
                               int firorder, int iirorder,
532
                               unsigned int filter_shift, int32_t mask, int blocksize,
533
                               int32_t *sample_buffer);
534

    
535
    /* vc1 functions */
536
    void (*vc1_inv_trans_8x8)(DCTELEM *b);
537
    void (*vc1_inv_trans_8x4)(uint8_t *dest, int line_size, DCTELEM *block);
538
    void (*vc1_inv_trans_4x8)(uint8_t *dest, int line_size, DCTELEM *block);
539
    void (*vc1_inv_trans_4x4)(uint8_t *dest, int line_size, DCTELEM *block);
540
    void (*vc1_inv_trans_8x8_dc)(uint8_t *dest, int line_size, DCTELEM *block);
541
    void (*vc1_inv_trans_8x4_dc)(uint8_t *dest, int line_size, DCTELEM *block);
542
    void (*vc1_inv_trans_4x8_dc)(uint8_t *dest, int line_size, DCTELEM *block);
543
    void (*vc1_inv_trans_4x4_dc)(uint8_t *dest, int line_size, DCTELEM *block);
544
    void (*vc1_v_overlap)(uint8_t* src, int stride);
545
    void (*vc1_h_overlap)(uint8_t* src, int stride);
546
    void (*vc1_v_loop_filter4)(uint8_t *src, int stride, int pq);
547
    void (*vc1_h_loop_filter4)(uint8_t *src, int stride, int pq);
548
    void (*vc1_v_loop_filter8)(uint8_t *src, int stride, int pq);
549
    void (*vc1_h_loop_filter8)(uint8_t *src, int stride, int pq);
550
    void (*vc1_v_loop_filter16)(uint8_t *src, int stride, int pq);
551
    void (*vc1_h_loop_filter16)(uint8_t *src, int stride, int pq);
552
    /* put 8x8 block with bicubic interpolation and quarterpel precision
553
     * last argument is actually round value instead of height
554
     */
555
    op_pixels_func put_vc1_mspel_pixels_tab[16];
556
    op_pixels_func avg_vc1_mspel_pixels_tab[16];
557

    
558
    /* intrax8 functions */
559
    void (*x8_spatial_compensation[12])(uint8_t *src , uint8_t *dst, int linesize);
560
    void (*x8_setup_spatial_compensation)(uint8_t *src, uint8_t *dst, int linesize,
561
           int * range, int * sum,  int edges);
562

    
563
    /**
564
     * Calculate scalar product of two vectors.
565
     * @param len length of vectors, should be multiple of 16
566
     * @param shift number of bits to discard from product
567
     */
568
    int32_t (*scalarproduct_int16)(int16_t *v1, int16_t *v2/*align 16*/, int len, int shift);
569
    /* ape functions */
570
    /**
571
     * Calculate scalar product of v1 and v2,
572
     * and v1[i] += v3[i] * mul
573
     * @param len length of vectors, should be multiple of 16
574
     */
575
    int32_t (*scalarproduct_and_madd_int16)(int16_t *v1/*align 16*/, int16_t *v2, int16_t *v3, int len, int mul);
576

    
577
    /* rv30 functions */
578
    qpel_mc_func put_rv30_tpel_pixels_tab[4][16];
579
    qpel_mc_func avg_rv30_tpel_pixels_tab[4][16];
580

    
581
    /* rv40 functions */
582
    qpel_mc_func put_rv40_qpel_pixels_tab[4][16];
583
    qpel_mc_func avg_rv40_qpel_pixels_tab[4][16];
584
    h264_chroma_mc_func put_rv40_chroma_pixels_tab[3];
585
    h264_chroma_mc_func avg_rv40_chroma_pixels_tab[3];
586
} DSPContext;
587

    
588
void dsputil_static_init(void);
589
void dsputil_init(DSPContext* p, AVCodecContext *avctx);
590

    
591
int ff_check_alignment(void);
592

    
593
/**
594
 * permute block according to permuatation.
595
 * @param last last non zero element in scantable order
596
 */
597
void ff_block_permute(DCTELEM *block, uint8_t *permutation, const uint8_t *scantable, int last);
598

    
599
void ff_set_cmp(DSPContext* c, me_cmp_func *cmp, int type);
600

    
601
#define         BYTE_VEC32(c)   ((c)*0x01010101UL)
602

    
603
static inline uint32_t rnd_avg32(uint32_t a, uint32_t b)
604
{
605
    return (a | b) - (((a ^ b) & ~BYTE_VEC32(0x01)) >> 1);
606
}
607

    
608
static inline uint32_t no_rnd_avg32(uint32_t a, uint32_t b)
609
{
610
    return (a & b) + (((a ^ b) & ~BYTE_VEC32(0x01)) >> 1);
611
}
612

    
613
static inline int get_penalty_factor(int lambda, int lambda2, int type){
614
    switch(type&0xFF){
615
    default:
616
    case FF_CMP_SAD:
617
        return lambda>>FF_LAMBDA_SHIFT;
618
    case FF_CMP_DCT:
619
        return (3*lambda)>>(FF_LAMBDA_SHIFT+1);
620
    case FF_CMP_W53:
621
        return (4*lambda)>>(FF_LAMBDA_SHIFT);
622
    case FF_CMP_W97:
623
        return (2*lambda)>>(FF_LAMBDA_SHIFT);
624
    case FF_CMP_SATD:
625
    case FF_CMP_DCT264:
626
        return (2*lambda)>>FF_LAMBDA_SHIFT;
627
    case FF_CMP_RD:
628
    case FF_CMP_PSNR:
629
    case FF_CMP_SSE:
630
    case FF_CMP_NSSE:
631
        return lambda2>>FF_LAMBDA_SHIFT;
632
    case FF_CMP_BIT:
633
        return 1;
634
    }
635
}
636

    
637
/**
638
 * Empty mmx state.
639
 * this must be called between any dsp function and float/double code.
640
 * for example sin(); dsp->idct_put(); emms_c(); cos()
641
 */
642
#define emms_c()
643

    
644
/* should be defined by architectures supporting
645
   one or more MultiMedia extension */
646
int mm_support(void);
647
extern int mm_flags;
648

    
649
void dsputil_init_alpha(DSPContext* c, AVCodecContext *avctx);
650
void dsputil_init_arm(DSPContext* c, AVCodecContext *avctx);
651
void dsputil_init_bfin(DSPContext* c, AVCodecContext *avctx);
652
void dsputil_init_mlib(DSPContext* c, AVCodecContext *avctx);
653
void dsputil_init_mmi(DSPContext* c, AVCodecContext *avctx);
654
void dsputil_init_mmx(DSPContext* c, AVCodecContext *avctx);
655
void dsputil_init_ppc(DSPContext* c, AVCodecContext *avctx);
656
void dsputil_init_sh4(DSPContext* c, AVCodecContext *avctx);
657
void dsputil_init_vis(DSPContext* c, AVCodecContext *avctx);
658

    
659
#define DECLARE_ALIGNED_16(t, v, ...) DECLARE_ALIGNED(16, t, v)
660
#define DECLARE_ALIGNED_8(t, v, ...)  DECLARE_ALIGNED(8, t, v)
661

    
662
#if HAVE_MMX
663

    
664
#undef emms_c
665

    
666
static inline void emms(void)
667
{
668
    __asm__ volatile ("emms;":::"memory");
669
}
670

    
671

    
672
#define emms_c() \
673
{\
674
    if (mm_flags & FF_MM_MMX)\
675
        emms();\
676
}
677

    
678
#elif ARCH_ARM
679

    
680
#if HAVE_NEON
681
#   define STRIDE_ALIGN 16
682
#endif
683

    
684
#elif ARCH_PPC
685

    
686
#define STRIDE_ALIGN 16
687

    
688
#elif HAVE_MMI
689

    
690
#define STRIDE_ALIGN 16
691

    
692
#else
693

    
694
#define mm_flags 0
695
#define mm_support() 0
696

    
697
#endif
698

    
699
#ifndef STRIDE_ALIGN
700
#   define STRIDE_ALIGN 8
701
#endif
702

    
703
#define LOCAL_ALIGNED(a, t, v, s, ...)                          \
704
    uint8_t la_##v[sizeof(t s __VA_ARGS__) + (a)];              \
705
    t (*v) __VA_ARGS__ = (void *)FFALIGN((uintptr_t)la_##v, a)
706

    
707
#if HAVE_LOCAL_ALIGNED_8
708
#   define LOCAL_ALIGNED_8(t, v, s, ...) DECLARE_ALIGNED_8(t, v) s __VA_ARGS__
709
#else
710
#   define LOCAL_ALIGNED_8(t, v, s, ...) LOCAL_ALIGNED(8, t, v, s, __VA_ARGS__)
711
#endif
712

    
713
#if HAVE_LOCAL_ALIGNED_16
714
#   define LOCAL_ALIGNED_16(t, v, s, ...) DECLARE_ALIGNED_16(t, v) s __VA_ARGS__
715
#else
716
#   define LOCAL_ALIGNED_16(t, v, s, ...) LOCAL_ALIGNED(16, t, v, s, __VA_ARGS__)
717
#endif
718

    
719
/* PSNR */
720
void get_psnr(uint8_t *orig_image[3], uint8_t *coded_image[3],
721
              int orig_linesize[3], int coded_linesize,
722
              AVCodecContext *avctx);
723

    
724
/* FFT computation */
725

    
726
/* NOTE: soon integer code will be added, so you must use the
727
   FFTSample type */
728
typedef float FFTSample;
729

    
730
typedef struct FFTComplex {
731
    FFTSample re, im;
732
} FFTComplex;
733

    
734
typedef struct FFTContext {
735
    int nbits;
736
    int inverse;
737
    uint16_t *revtab;
738
    FFTComplex *exptab;
739
    FFTComplex *exptab1; /* only used by SSE code */
740
    FFTComplex *tmp_buf;
741
    int mdct_size; /* size of MDCT (i.e. number of input data * 2) */
742
    int mdct_bits; /* n = 2^nbits */
743
    /* pre/post rotation tables */
744
    FFTSample *tcos;
745
    FFTSample *tsin;
746
    void (*fft_permute)(struct FFTContext *s, FFTComplex *z);
747
    void (*fft_calc)(struct FFTContext *s, FFTComplex *z);
748
    void (*imdct_calc)(struct FFTContext *s, FFTSample *output, const FFTSample *input);
749
    void (*imdct_half)(struct FFTContext *s, FFTSample *output, const FFTSample *input);
750
    void (*mdct_calc)(struct FFTContext *s, FFTSample *output, const FFTSample *input);
751
    int split_radix;
752
    int permutation;
753
#define FF_MDCT_PERM_NONE       0
754
#define FF_MDCT_PERM_INTERLEAVE 1
755
} FFTContext;
756

    
757
#if CONFIG_HARDCODED_TABLES
758
#define COSTABLE_CONST const
759
#define SINTABLE_CONST const
760
#define SINETABLE_CONST const
761
#else
762
#define COSTABLE_CONST
763
#define SINTABLE_CONST
764
#define SINETABLE_CONST
765
#endif
766

    
767
#define COSTABLE(size) \
768
    COSTABLE_CONST DECLARE_ALIGNED_16(FFTSample, ff_cos_##size)[size/2]
769
#define SINTABLE(size) \
770
    SINTABLE_CONST DECLARE_ALIGNED_16(FFTSample, ff_sin_##size)[size/2]
771
#define SINETABLE(size) \
772
    SINETABLE_CONST DECLARE_ALIGNED_16(float, ff_sine_##size)[size]
773
extern COSTABLE(16);
774
extern COSTABLE(32);
775
extern COSTABLE(64);
776
extern COSTABLE(128);
777
extern COSTABLE(256);
778
extern COSTABLE(512);
779
extern COSTABLE(1024);
780
extern COSTABLE(2048);
781
extern COSTABLE(4096);
782
extern COSTABLE(8192);
783
extern COSTABLE(16384);
784
extern COSTABLE(32768);
785
extern COSTABLE(65536);
786
extern COSTABLE_CONST FFTSample* const ff_cos_tabs[17];
787

    
788
/**
789
 * Initializes the cosine table in ff_cos_tabs[index]
790
 * \param index index in ff_cos_tabs array of the table to initialize
791
 */
792
void ff_init_ff_cos_tabs(int index);
793

    
794
extern SINTABLE(16);
795
extern SINTABLE(32);
796
extern SINTABLE(64);
797
extern SINTABLE(128);
798
extern SINTABLE(256);
799
extern SINTABLE(512);
800
extern SINTABLE(1024);
801
extern SINTABLE(2048);
802
extern SINTABLE(4096);
803
extern SINTABLE(8192);
804
extern SINTABLE(16384);
805
extern SINTABLE(32768);
806
extern SINTABLE(65536);
807

    
808
/**
809
 * Sets up a complex FFT.
810
 * @param nbits           log2 of the length of the input array
811
 * @param inverse         if 0 perform the forward transform, if 1 perform the inverse
812
 */
813
int ff_fft_init(FFTContext *s, int nbits, int inverse);
814
void ff_fft_permute_c(FFTContext *s, FFTComplex *z);
815
void ff_fft_calc_c(FFTContext *s, FFTComplex *z);
816

    
817
void ff_fft_init_altivec(FFTContext *s);
818
void ff_fft_init_mmx(FFTContext *s);
819
void ff_fft_init_arm(FFTContext *s);
820

    
821
/**
822
 * Do the permutation needed BEFORE calling ff_fft_calc().
823
 */
824
static inline void ff_fft_permute(FFTContext *s, FFTComplex *z)
825
{
826
    s->fft_permute(s, z);
827
}
828
/**
829
 * Do a complex FFT with the parameters defined in ff_fft_init(). The
830
 * input data must be permuted before. No 1.0/sqrt(n) normalization is done.
831
 */
832
static inline void ff_fft_calc(FFTContext *s, FFTComplex *z)
833
{
834
    s->fft_calc(s, z);
835
}
836
void ff_fft_end(FFTContext *s);
837

    
838
/* MDCT computation */
839

    
840
static inline void ff_imdct_calc(FFTContext *s, FFTSample *output, const FFTSample *input)
841
{
842
    s->imdct_calc(s, output, input);
843
}
844
static inline void ff_imdct_half(FFTContext *s, FFTSample *output, const FFTSample *input)
845
{
846
    s->imdct_half(s, output, input);
847
}
848

    
849
static inline void ff_mdct_calc(FFTContext *s, FFTSample *output,
850
                                const FFTSample *input)
851
{
852
    s->mdct_calc(s, output, input);
853
}
854

    
855
/**
856
 * Generate a Kaiser-Bessel Derived Window.
857
 * @param   window  pointer to half window
858
 * @param   alpha   determines window shape
859
 * @param   n       size of half window
860
 */
861
void ff_kbd_window_init(float *window, float alpha, int n);
862

    
863
/**
864
 * Generate a sine window.
865
 * @param   window  pointer to half window
866
 * @param   n       size of half window
867
 */
868
void ff_sine_window_init(float *window, int n);
869
/**
870
 * initialize the specified entry of ff_sine_windows
871
 */
872
void ff_init_ff_sine_windows(int index);
873
extern SINETABLE(  32);
874
extern SINETABLE(  64);
875
extern SINETABLE( 128);
876
extern SINETABLE( 256);
877
extern SINETABLE( 512);
878
extern SINETABLE(1024);
879
extern SINETABLE(2048);
880
extern SINETABLE(4096);
881
extern SINETABLE_CONST float * const ff_sine_windows[13];
882

    
883
int ff_mdct_init(FFTContext *s, int nbits, int inverse, double scale);
884
void ff_imdct_calc_c(FFTContext *s, FFTSample *output, const FFTSample *input);
885
void ff_imdct_half_c(FFTContext *s, FFTSample *output, const FFTSample *input);
886
void ff_mdct_calc_c(FFTContext *s, FFTSample *output, const FFTSample *input);
887
void ff_mdct_end(FFTContext *s);
888

    
889
/* Real Discrete Fourier Transform */
890

    
891
enum RDFTransformType {
892
    RDFT,
893
    IRDFT,
894
    RIDFT,
895
    IRIDFT,
896
};
897

    
898
typedef struct {
899
    int nbits;
900
    int inverse;
901
    int sign_convention;
902

    
903
    /* pre/post rotation tables */
904
    const FFTSample *tcos;
905
    SINTABLE_CONST FFTSample *tsin;
906
    FFTContext fft;
907
} RDFTContext;
908

    
909
/**
910
 * Sets up a real FFT.
911
 * @param nbits           log2 of the length of the input array
912
 * @param trans           the type of transform
913
 */
914
int ff_rdft_init(RDFTContext *s, int nbits, enum RDFTransformType trans);
915
void ff_rdft_calc(RDFTContext *s, FFTSample *data);
916
void ff_rdft_end(RDFTContext *s);
917

    
918
/* Discrete Cosine Transform */
919

    
920
typedef struct {
921
    int nbits;
922
    int inverse;
923
    FFTSample *data;
924
    RDFTContext rdft;
925
    const float *costab;
926
    FFTSample *csc2;
927
} DCTContext;
928

    
929
/**
930
 * Sets up (Inverse)DCT.
931
 * @param nbits           log2 of the length of the input array
932
 * @param inverse         >0 forward transform, <0 inverse transform
933
 */
934
int  ff_dct_init(DCTContext *s, int nbits, int inverse);
935
void ff_dct_calc(DCTContext *s, FFTSample *data);
936
void ff_dct_end (DCTContext *s);
937

    
938
#define WRAPPER8_16(name8, name16)\
939
static int name16(void /*MpegEncContext*/ *s, uint8_t *dst, uint8_t *src, int stride, int h){\
940
    return name8(s, dst           , src           , stride, h)\
941
          +name8(s, dst+8         , src+8         , stride, h);\
942
}
943

    
944
#define WRAPPER8_16_SQ(name8, name16)\
945
static int name16(void /*MpegEncContext*/ *s, uint8_t *dst, uint8_t *src, int stride, int h){\
946
    int score=0;\
947
    score +=name8(s, dst           , src           , stride, 8);\
948
    score +=name8(s, dst+8         , src+8         , stride, 8);\
949
    if(h==16){\
950
        dst += 8*stride;\
951
        src += 8*stride;\
952
        score +=name8(s, dst           , src           , stride, 8);\
953
        score +=name8(s, dst+8         , src+8         , stride, 8);\
954
    }\
955
    return score;\
956
}
957

    
958

    
959
static inline void copy_block2(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
960
{
961
    int i;
962
    for(i=0; i<h; i++)
963
    {
964
        AV_WN16(dst   , AV_RN16(src   ));
965
        dst+=dstStride;
966
        src+=srcStride;
967
    }
968
}
969

    
970
static inline void copy_block4(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
971
{
972
    int i;
973
    for(i=0; i<h; i++)
974
    {
975
        AV_WN32(dst   , AV_RN32(src   ));
976
        dst+=dstStride;
977
        src+=srcStride;
978
    }
979
}
980

    
981
static inline void copy_block8(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
982
{
983
    int i;
984
    for(i=0; i<h; i++)
985
    {
986
        AV_WN32(dst   , AV_RN32(src   ));
987
        AV_WN32(dst+4 , AV_RN32(src+4 ));
988
        dst+=dstStride;
989
        src+=srcStride;
990
    }
991
}
992

    
993
static inline void copy_block9(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
994
{
995
    int i;
996
    for(i=0; i<h; i++)
997
    {
998
        AV_WN32(dst   , AV_RN32(src   ));
999
        AV_WN32(dst+4 , AV_RN32(src+4 ));
1000
        dst[8]= src[8];
1001
        dst+=dstStride;
1002
        src+=srcStride;
1003
    }
1004
}
1005

    
1006
static inline void copy_block16(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
1007
{
1008
    int i;
1009
    for(i=0; i<h; i++)
1010
    {
1011
        AV_WN32(dst   , AV_RN32(src   ));
1012
        AV_WN32(dst+4 , AV_RN32(src+4 ));
1013
        AV_WN32(dst+8 , AV_RN32(src+8 ));
1014
        AV_WN32(dst+12, AV_RN32(src+12));
1015
        dst+=dstStride;
1016
        src+=srcStride;
1017
    }
1018
}
1019

    
1020
static inline void copy_block17(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
1021
{
1022
    int i;
1023
    for(i=0; i<h; i++)
1024
    {
1025
        AV_WN32(dst   , AV_RN32(src   ));
1026
        AV_WN32(dst+4 , AV_RN32(src+4 ));
1027
        AV_WN32(dst+8 , AV_RN32(src+8 ));
1028
        AV_WN32(dst+12, AV_RN32(src+12));
1029
        dst[16]= src[16];
1030
        dst+=dstStride;
1031
        src+=srcStride;
1032
    }
1033
}
1034

    
1035
#endif /* AVCODEC_DSPUTIL_H */