Statistics
| Branch: | Revision:

ffmpeg / libavcodec / resample2.c @ 2029f312

History | View | Annotate | Download (10.9 KB)

1
/*
2
 * audio resampling
3
 * Copyright (c) 2004 Michael Niedermayer <michaelni@gmx.at>
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 *
21
 */
22

    
23
/**
24
 * @file resample2.c
25
 * audio resampling
26
 * @author Michael Niedermayer <michaelni@gmx.at>
27
 */
28

    
29
#include "avcodec.h"
30
#include "dsputil.h"
31

    
32
#ifndef CONFIG_RESAMPLE_HP
33
#define FILTER_SHIFT 15
34

    
35
#define FELEM int16_t
36
#define FELEM2 int32_t
37
#define FELEML int64_t
38
#define FELEM_MAX INT16_MAX
39
#define FELEM_MIN INT16_MIN
40
#define WINDOW_TYPE 9
41
#elif !defined(CONFIG_RESAMPLE_AUDIOPHILE_KIDDY_MODE)
42
#define FILTER_SHIFT 30
43

    
44
#define FELEM int32_t
45
#define FELEM2 int64_t
46
#define FELEML int64_t
47
#define FELEM_MAX INT32_MAX
48
#define FELEM_MIN INT32_MIN
49
#define WINDOW_TYPE 12
50
#else
51
#define FILTER_SHIFT 0
52

    
53
#define FELEM double
54
#define FELEM2 double
55
#define FELEML double
56
#define WINDOW_TYPE 24
57
#endif
58

    
59

    
60
typedef struct AVResampleContext{
61
    FELEM *filter_bank;
62
    int filter_length;
63
    int ideal_dst_incr;
64
    int dst_incr;
65
    int index;
66
    int frac;
67
    int src_incr;
68
    int compensation_distance;
69
    int phase_shift;
70
    int phase_mask;
71
    int linear;
72
}AVResampleContext;
73

    
74
/**
75
 * 0th order modified bessel function of the first kind.
76
 */
77
static double bessel(double x){
78
    double v=1;
79
    double t=1;
80
    int i;
81

    
82
    x= x*x/4;
83
    for(i=1; i<50; i++){
84
        t *= x/(i*i);
85
        v += t;
86
    }
87
    return v;
88
}
89

    
90
/**
91
 * builds a polyphase filterbank.
92
 * @param factor resampling factor
93
 * @param scale wanted sum of coefficients for each filter
94
 * @param type 0->cubic, 1->blackman nuttall windowed sinc, 2..16->kaiser windowed sinc beta=2..16
95
 */
96
void av_build_filter(FELEM *filter, double factor, int tap_count, int phase_count, int scale, int type){
97
    int ph, i;
98
    double x, y, w, tab[tap_count];
99
    const int center= (tap_count-1)/2;
100

    
101
    /* if upsampling, only need to interpolate, no filter */
102
    if (factor > 1.0)
103
        factor = 1.0;
104

    
105
    for(ph=0;ph<phase_count;ph++) {
106
        double norm = 0;
107
        for(i=0;i<tap_count;i++) {
108
            x = M_PI * ((double)(i - center) - (double)ph / phase_count) * factor;
109
            if (x == 0) y = 1.0;
110
            else        y = sin(x) / x;
111
            switch(type){
112
            case 0:{
113
                const float d= -0.5; //first order derivative = -0.5
114
                x = fabs(((double)(i - center) - (double)ph / phase_count) * factor);
115
                if(x<1.0) y= 1 - 3*x*x + 2*x*x*x + d*(            -x*x + x*x*x);
116
                else      y=                       d*(-4 + 8*x - 5*x*x + x*x*x);
117
                break;}
118
            case 1:
119
                w = 2.0*x / (factor*tap_count) + M_PI;
120
                y *= 0.3635819 - 0.4891775 * cos(w) + 0.1365995 * cos(2*w) - 0.0106411 * cos(3*w);
121
                break;
122
            default:
123
                w = 2.0*x / (factor*tap_count*M_PI);
124
                y *= bessel(type*sqrt(FFMAX(1-w*w, 0)));
125
                break;
126
            }
127

    
128
            tab[i] = y;
129
            norm += y;
130
        }
131

    
132
        /* normalize so that an uniform color remains the same */
133
        for(i=0;i<tap_count;i++) {
134
#ifdef CONFIG_RESAMPLE_AUDIOPHILE_KIDDY_MODE
135
            filter[ph * tap_count + i] = tab[i] / norm;
136
#else
137
            filter[ph * tap_count + i] = av_clip(lrintf(tab[i] * scale / norm), FELEM_MIN, FELEM_MAX);
138
#endif
139
        }
140
    }
141
#if 0
142
    {
143
#define LEN 1024
144
        int j,k;
145
        double sine[LEN + tap_count];
146
        double filtered[LEN];
147
        double maxff=-2, minff=2, maxsf=-2, minsf=2;
148
        for(i=0; i<LEN; i++){
149
            double ss=0, sf=0, ff=0;
150
            for(j=0; j<LEN+tap_count; j++)
151
                sine[j]= cos(i*j*M_PI/LEN);
152
            for(j=0; j<LEN; j++){
153
                double sum=0;
154
                ph=0;
155
                for(k=0; k<tap_count; k++)
156
                    sum += filter[ph * tap_count + k] * sine[k+j];
157
                filtered[j]= sum / (1<<FILTER_SHIFT);
158
                ss+= sine[j + center] * sine[j + center];
159
                ff+= filtered[j] * filtered[j];
160
                sf+= sine[j + center] * filtered[j];
161
            }
162
            ss= sqrt(2*ss/LEN);
163
            ff= sqrt(2*ff/LEN);
164
            sf= 2*sf/LEN;
165
            maxff= FFMAX(maxff, ff);
166
            minff= FFMIN(minff, ff);
167
            maxsf= FFMAX(maxsf, sf);
168
            minsf= FFMIN(minsf, sf);
169
            if(i%11==0){
170
                av_log(NULL, AV_LOG_ERROR, "i:%4d ss:%f ff:%13.6e-%13.6e sf:%13.6e-%13.6e\n", i, ss, maxff, minff, maxsf, minsf);
171
                minff=minsf= 2;
172
                maxff=maxsf= -2;
173
            }
174
        }
175
    }
176
#endif
177
}
178

    
179
/**
180
 * initalizes a audio resampler.
181
 * note, if either rate is not a integer then simply scale both rates up so they are
182
 */
183
AVResampleContext *av_resample_init(int out_rate, int in_rate, int filter_size, int phase_shift, int linear, double cutoff){
184
    AVResampleContext *c= av_mallocz(sizeof(AVResampleContext));
185
    double factor= FFMIN(out_rate * cutoff / in_rate, 1.0);
186
    int phase_count= 1<<phase_shift;
187

    
188
    c->phase_shift= phase_shift;
189
    c->phase_mask= phase_count-1;
190
    c->linear= linear;
191

    
192
    c->filter_length= FFMAX((int)ceil(filter_size/factor), 1);
193
    c->filter_bank= av_mallocz(c->filter_length*(phase_count+1)*sizeof(FELEM));
194
    av_build_filter(c->filter_bank, factor, c->filter_length, phase_count, 1<<FILTER_SHIFT, WINDOW_TYPE);
195
    memcpy(&c->filter_bank[c->filter_length*phase_count+1], c->filter_bank, (c->filter_length-1)*sizeof(FELEM));
196
    c->filter_bank[c->filter_length*phase_count]= c->filter_bank[c->filter_length - 1];
197

    
198
    c->src_incr= out_rate;
199
    c->ideal_dst_incr= c->dst_incr= in_rate * phase_count;
200
    c->index= -phase_count*((c->filter_length-1)/2);
201

    
202
    return c;
203
}
204

    
205
void av_resample_close(AVResampleContext *c){
206
    av_freep(&c->filter_bank);
207
    av_freep(&c);
208
}
209

    
210
/**
211
 * Compensates samplerate/timestamp drift. The compensation is done by changing
212
 * the resampler parameters, so no audible clicks or similar distortions ocur
213
 * @param compensation_distance distance in output samples over which the compensation should be performed
214
 * @param sample_delta number of output samples which should be output less
215
 *
216
 * example: av_resample_compensate(c, 10, 500)
217
 * here instead of 510 samples only 500 samples would be output
218
 *
219
 * note, due to rounding the actual compensation might be slightly different,
220
 * especially if the compensation_distance is large and the in_rate used during init is small
221
 */
222
void av_resample_compensate(AVResampleContext *c, int sample_delta, int compensation_distance){
223
//    sample_delta += (c->ideal_dst_incr - c->dst_incr)*(int64_t)c->compensation_distance / c->ideal_dst_incr;
224
    c->compensation_distance= compensation_distance;
225
    c->dst_incr = c->ideal_dst_incr - c->ideal_dst_incr * (int64_t)sample_delta / compensation_distance;
226
}
227

    
228
/**
229
 * resamples.
230
 * @param src an array of unconsumed samples
231
 * @param consumed the number of samples of src which have been consumed are returned here
232
 * @param src_size the number of unconsumed samples available
233
 * @param dst_size the amount of space in samples available in dst
234
 * @param update_ctx if this is 0 then the context wont be modified, that way several channels can be resampled with the same context
235
 * @return the number of samples written in dst or -1 if an error occured
236
 */
237
int av_resample(AVResampleContext *c, short *dst, short *src, int *consumed, int src_size, int dst_size, int update_ctx){
238
    int dst_index, i;
239
    int index= c->index;
240
    int frac= c->frac;
241
    int dst_incr_frac= c->dst_incr % c->src_incr;
242
    int dst_incr=      c->dst_incr / c->src_incr;
243
    int compensation_distance= c->compensation_distance;
244

    
245
  if(compensation_distance == 0 && c->filter_length == 1 && c->phase_shift==0){
246
        int64_t index2= ((int64_t)index)<<32;
247
        int64_t incr= (1LL<<32) * c->dst_incr / c->src_incr;
248
        dst_size= FFMIN(dst_size, (src_size-1-index) * (int64_t)c->src_incr / c->dst_incr);
249

    
250
        for(dst_index=0; dst_index < dst_size; dst_index++){
251
            dst[dst_index] = src[index2>>32];
252
            index2 += incr;
253
        }
254
        frac += dst_index * dst_incr_frac;
255
        index += dst_index * dst_incr;
256
        index += frac / c->src_incr;
257
        frac %= c->src_incr;
258
  }else{
259
    for(dst_index=0; dst_index < dst_size; dst_index++){
260
        FELEM *filter= c->filter_bank + c->filter_length*(index & c->phase_mask);
261
        int sample_index= index >> c->phase_shift;
262
        FELEM2 val=0;
263

    
264
        if(sample_index < 0){
265
            for(i=0; i<c->filter_length; i++)
266
                val += src[FFABS(sample_index + i) % src_size] * filter[i];
267
        }else if(sample_index + c->filter_length > src_size){
268
            break;
269
        }else if(c->linear){
270
            FELEM2 v2=0;
271
            for(i=0; i<c->filter_length; i++){
272
                val += src[sample_index + i] * (FELEM2)filter[i];
273
                v2  += src[sample_index + i] * (FELEM2)filter[i + c->filter_length];
274
            }
275
            val+=(v2-val)*(FELEML)frac / c->src_incr;
276
        }else{
277
            for(i=0; i<c->filter_length; i++){
278
                val += src[sample_index + i] * (FELEM2)filter[i];
279
            }
280
        }
281

    
282
#ifdef CONFIG_RESAMPLE_AUDIOPHILE_KIDDY_MODE
283
        dst[dst_index] = av_clip(lrintf(val), -32768, 32767);
284
#else
285
        val = (val + (1<<(FILTER_SHIFT-1)))>>FILTER_SHIFT;
286
        dst[dst_index] = (unsigned)(val + 32768) > 65535 ? (val>>31) ^ 32767 : val;
287
#endif
288

    
289
        frac += dst_incr_frac;
290
        index += dst_incr;
291
        if(frac >= c->src_incr){
292
            frac -= c->src_incr;
293
            index++;
294
        }
295

    
296
        if(dst_index + 1 == compensation_distance){
297
            compensation_distance= 0;
298
            dst_incr_frac= c->ideal_dst_incr % c->src_incr;
299
            dst_incr=      c->ideal_dst_incr / c->src_incr;
300
        }
301
    }
302
  }
303
    *consumed= FFMAX(index, 0) >> c->phase_shift;
304
    if(index>=0) index &= c->phase_mask;
305

    
306
    if(compensation_distance){
307
        compensation_distance -= dst_index;
308
        assert(compensation_distance > 0);
309
    }
310
    if(update_ctx){
311
        c->frac= frac;
312
        c->index= index;
313
        c->dst_incr= dst_incr_frac + c->src_incr*dst_incr;
314
        c->compensation_distance= compensation_distance;
315
    }
316
#if 0
317
    if(update_ctx && !c->compensation_distance){
318
#undef rand
319
        av_resample_compensate(c, rand() % (8000*2) - 8000, 8000*2);
320
av_log(NULL, AV_LOG_DEBUG, "%d %d %d\n", c->dst_incr, c->ideal_dst_incr, c->compensation_distance);
321
    }
322
#endif
323

    
324
    return dst_index;
325
}