Statistics
| Branch: | Revision:

ffmpeg / libavcodec / vc1.c @ 2029f312

History | View | Annotate | Download (144 KB)

1
/*
2
 * VC-1 and WMV3 decoder
3
 * Copyright (c) 2006-2007 Konstantin Shishkov
4
 * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
5
 *
6
 * This file is part of FFmpeg.
7
 *
8
 * FFmpeg is free software; you can redistribute it and/or
9
 * modify it under the terms of the GNU Lesser General Public
10
 * License as published by the Free Software Foundation; either
11
 * version 2.1 of the License, or (at your option) any later version.
12
 *
13
 * FFmpeg is distributed in the hope that it will be useful,
14
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16
 * Lesser General Public License for more details.
17
 *
18
 * You should have received a copy of the GNU Lesser General Public
19
 * License along with FFmpeg; if not, write to the Free Software
20
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21
 *
22
 */
23

    
24
/**
25
 * @file vc1.c
26
 * VC-1 and WMV3 decoder
27
 *
28
 */
29
#include "dsputil.h"
30
#include "avcodec.h"
31
#include "mpegvideo.h"
32
#include "vc1.h"
33
#include "vc1data.h"
34
#include "vc1acdata.h"
35

    
36
#undef NDEBUG
37
#include <assert.h>
38

    
39
extern const uint32_t ff_table0_dc_lum[120][2], ff_table1_dc_lum[120][2];
40
extern const uint32_t ff_table0_dc_chroma[120][2], ff_table1_dc_chroma[120][2];
41
extern VLC ff_msmp4_dc_luma_vlc[2], ff_msmp4_dc_chroma_vlc[2];
42
#define MB_INTRA_VLC_BITS 9
43
extern VLC ff_msmp4_mb_i_vlc;
44
extern const uint16_t ff_msmp4_mb_i_table[64][2];
45
#define DC_VLC_BITS 9
46
#define AC_VLC_BITS 9
47
static const uint16_t table_mb_intra[64][2];
48

    
49

    
50
/**
51
 * Get unary code of limited length
52
 * @fixme FIXME Slow and ugly
53
 * @param gb GetBitContext
54
 * @param[in] stop The bitstop value (unary code of 1's or 0's)
55
 * @param[in] len Maximum length
56
 * @return Unary length/index
57
 */
58
static int get_prefix(GetBitContext *gb, int stop, int len)
59
{
60
#if 1
61
    int i;
62

    
63
    for(i = 0; i < len && get_bits1(gb) != stop; i++);
64
    return i;
65
/*  int i = 0, tmp = !stop;
66

67
  while (i != len && tmp != stop)
68
  {
69
    tmp = get_bits(gb, 1);
70
    i++;
71
  }
72
  if (i == len && tmp != stop) return len+1;
73
  return i;*/
74
#else
75
  unsigned int buf;
76
  int log;
77

    
78
  OPEN_READER(re, gb);
79
  UPDATE_CACHE(re, gb);
80
  buf=GET_CACHE(re, gb); //Still not sure
81
  if (stop) buf = ~buf;
82

    
83
  log= av_log2(-buf); //FIXME: -?
84
  if (log < limit){
85
    LAST_SKIP_BITS(re, gb, log+1);
86
    CLOSE_READER(re, gb);
87
    return log;
88
  }
89

    
90
  LAST_SKIP_BITS(re, gb, limit);
91
  CLOSE_READER(re, gb);
92
  return limit;
93
#endif
94
}
95

    
96
static inline int decode210(GetBitContext *gb){
97
    int n;
98
    n = get_bits1(gb);
99
    if (n == 1)
100
        return 0;
101
    else
102
        return 2 - get_bits1(gb);
103
}
104

    
105
/**
106
 * Init VC-1 specific tables and VC1Context members
107
 * @param v The VC1Context to initialize
108
 * @return Status
109
 */
110
static int vc1_init_common(VC1Context *v)
111
{
112
    static int done = 0;
113
    int i = 0;
114

    
115
    v->hrd_rate = v->hrd_buffer = NULL;
116

    
117
    /* VLC tables */
118
    if(!done)
119
    {
120
        done = 1;
121
        init_vlc(&ff_vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
122
                 ff_vc1_bfraction_bits, 1, 1,
123
                 ff_vc1_bfraction_codes, 1, 1, 1);
124
        init_vlc(&ff_vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
125
                 ff_vc1_norm2_bits, 1, 1,
126
                 ff_vc1_norm2_codes, 1, 1, 1);
127
        init_vlc(&ff_vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
128
                 ff_vc1_norm6_bits, 1, 1,
129
                 ff_vc1_norm6_codes, 2, 2, 1);
130
        init_vlc(&ff_vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
131
                 ff_vc1_imode_bits, 1, 1,
132
                 ff_vc1_imode_codes, 1, 1, 1);
133
        for (i=0; i<3; i++)
134
        {
135
            init_vlc(&ff_vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
136
                     ff_vc1_ttmb_bits[i], 1, 1,
137
                     ff_vc1_ttmb_codes[i], 2, 2, 1);
138
            init_vlc(&ff_vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
139
                     ff_vc1_ttblk_bits[i], 1, 1,
140
                     ff_vc1_ttblk_codes[i], 1, 1, 1);
141
            init_vlc(&ff_vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
142
                     ff_vc1_subblkpat_bits[i], 1, 1,
143
                     ff_vc1_subblkpat_codes[i], 1, 1, 1);
144
        }
145
        for(i=0; i<4; i++)
146
        {
147
            init_vlc(&ff_vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
148
                     ff_vc1_4mv_block_pattern_bits[i], 1, 1,
149
                     ff_vc1_4mv_block_pattern_codes[i], 1, 1, 1);
150
            init_vlc(&ff_vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
151
                     ff_vc1_cbpcy_p_bits[i], 1, 1,
152
                     ff_vc1_cbpcy_p_codes[i], 2, 2, 1);
153
            init_vlc(&ff_vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
154
                     ff_vc1_mv_diff_bits[i], 1, 1,
155
                     ff_vc1_mv_diff_codes[i], 2, 2, 1);
156
        }
157
        for(i=0; i<8; i++)
158
            init_vlc(&ff_vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
159
                     &vc1_ac_tables[i][0][1], 8, 4,
160
                     &vc1_ac_tables[i][0][0], 8, 4, 1);
161
        init_vlc(&ff_msmp4_mb_i_vlc, MB_INTRA_VLC_BITS, 64,
162
                 &ff_msmp4_mb_i_table[0][1], 4, 2,
163
                 &ff_msmp4_mb_i_table[0][0], 4, 2, 1);
164
    }
165

    
166
    /* Other defaults */
167
    v->pq = -1;
168
    v->mvrange = 0; /* 7.1.1.18, p80 */
169

    
170
    return 0;
171
}
172

    
173
/***********************************************************************/
174
/**
175
 * @defgroup bitplane VC9 Bitplane decoding
176
 * @see 8.7, p56
177
 * @{
178
 */
179

    
180
/** @addtogroup bitplane
181
 * Imode types
182
 * @{
183
 */
184
enum Imode {
185
    IMODE_RAW,
186
    IMODE_NORM2,
187
    IMODE_DIFF2,
188
    IMODE_NORM6,
189
    IMODE_DIFF6,
190
    IMODE_ROWSKIP,
191
    IMODE_COLSKIP
192
};
193
/** @} */ //imode defines
194

    
195
/** Decode rows by checking if they are skipped
196
 * @param plane Buffer to store decoded bits
197
 * @param[in] width Width of this buffer
198
 * @param[in] height Height of this buffer
199
 * @param[in] stride of this buffer
200
 */
201
static void decode_rowskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
202
    int x, y;
203

    
204
    for (y=0; y<height; y++){
205
        if (!get_bits(gb, 1)) //rowskip
206
            memset(plane, 0, width);
207
        else
208
            for (x=0; x<width; x++)
209
                plane[x] = get_bits(gb, 1);
210
        plane += stride;
211
    }
212
}
213

    
214
/** Decode columns by checking if they are skipped
215
 * @param plane Buffer to store decoded bits
216
 * @param[in] width Width of this buffer
217
 * @param[in] height Height of this buffer
218
 * @param[in] stride of this buffer
219
 * @fixme FIXME: Optimize
220
 */
221
static void decode_colskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
222
    int x, y;
223

    
224
    for (x=0; x<width; x++){
225
        if (!get_bits(gb, 1)) //colskip
226
            for (y=0; y<height; y++)
227
                plane[y*stride] = 0;
228
        else
229
            for (y=0; y<height; y++)
230
                plane[y*stride] = get_bits(gb, 1);
231
        plane ++;
232
    }
233
}
234

    
235
/** Decode a bitplane's bits
236
 * @param bp Bitplane where to store the decode bits
237
 * @param v VC-1 context for bit reading and logging
238
 * @return Status
239
 * @fixme FIXME: Optimize
240
 */
241
static int bitplane_decoding(uint8_t* data, int *raw_flag, VC1Context *v)
242
{
243
    GetBitContext *gb = &v->s.gb;
244

    
245
    int imode, x, y, code, offset;
246
    uint8_t invert, *planep = data;
247
    int width, height, stride;
248

    
249
    width = v->s.mb_width;
250
    height = v->s.mb_height;
251
    stride = v->s.mb_stride;
252
    invert = get_bits(gb, 1);
253
    imode = get_vlc2(gb, ff_vc1_imode_vlc.table, VC1_IMODE_VLC_BITS, 1);
254

    
255
    *raw_flag = 0;
256
    switch (imode)
257
    {
258
    case IMODE_RAW:
259
        //Data is actually read in the MB layer (same for all tests == "raw")
260
        *raw_flag = 1; //invert ignored
261
        return invert;
262
    case IMODE_DIFF2:
263
    case IMODE_NORM2:
264
        if ((height * width) & 1)
265
        {
266
            *planep++ = get_bits(gb, 1);
267
            offset = 1;
268
        }
269
        else offset = 0;
270
        // decode bitplane as one long line
271
        for (y = offset; y < height * width; y += 2) {
272
            code = get_vlc2(gb, ff_vc1_norm2_vlc.table, VC1_NORM2_VLC_BITS, 1);
273
            *planep++ = code & 1;
274
            offset++;
275
            if(offset == width) {
276
                offset = 0;
277
                planep += stride - width;
278
            }
279
            *planep++ = code >> 1;
280
            offset++;
281
            if(offset == width) {
282
                offset = 0;
283
                planep += stride - width;
284
            }
285
        }
286
        break;
287
    case IMODE_DIFF6:
288
    case IMODE_NORM6:
289
        if(!(height % 3) && (width % 3)) { // use 2x3 decoding
290
            for(y = 0; y < height; y+= 3) {
291
                for(x = width & 1; x < width; x += 2) {
292
                    code = get_vlc2(gb, ff_vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
293
                    if(code < 0){
294
                        av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
295
                        return -1;
296
                    }
297
                    planep[x + 0] = (code >> 0) & 1;
298
                    planep[x + 1] = (code >> 1) & 1;
299
                    planep[x + 0 + stride] = (code >> 2) & 1;
300
                    planep[x + 1 + stride] = (code >> 3) & 1;
301
                    planep[x + 0 + stride * 2] = (code >> 4) & 1;
302
                    planep[x + 1 + stride * 2] = (code >> 5) & 1;
303
                }
304
                planep += stride * 3;
305
            }
306
            if(width & 1) decode_colskip(data, 1, height, stride, &v->s.gb);
307
        } else { // 3x2
308
            planep += (height & 1) * stride;
309
            for(y = height & 1; y < height; y += 2) {
310
                for(x = width % 3; x < width; x += 3) {
311
                    code = get_vlc2(gb, ff_vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
312
                    if(code < 0){
313
                        av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
314
                        return -1;
315
                    }
316
                    planep[x + 0] = (code >> 0) & 1;
317
                    planep[x + 1] = (code >> 1) & 1;
318
                    planep[x + 2] = (code >> 2) & 1;
319
                    planep[x + 0 + stride] = (code >> 3) & 1;
320
                    planep[x + 1 + stride] = (code >> 4) & 1;
321
                    planep[x + 2 + stride] = (code >> 5) & 1;
322
                }
323
                planep += stride * 2;
324
            }
325
            x = width % 3;
326
            if(x) decode_colskip(data  ,             x, height    , stride, &v->s.gb);
327
            if(height & 1) decode_rowskip(data+x, width - x, 1, stride, &v->s.gb);
328
        }
329
        break;
330
    case IMODE_ROWSKIP:
331
        decode_rowskip(data, width, height, stride, &v->s.gb);
332
        break;
333
    case IMODE_COLSKIP:
334
        decode_colskip(data, width, height, stride, &v->s.gb);
335
        break;
336
    default: break;
337
    }
338

    
339
    /* Applying diff operator */
340
    if (imode == IMODE_DIFF2 || imode == IMODE_DIFF6)
341
    {
342
        planep = data;
343
        planep[0] ^= invert;
344
        for (x=1; x<width; x++)
345
            planep[x] ^= planep[x-1];
346
        for (y=1; y<height; y++)
347
        {
348
            planep += stride;
349
            planep[0] ^= planep[-stride];
350
            for (x=1; x<width; x++)
351
            {
352
                if (planep[x-1] != planep[x-stride]) planep[x] ^= invert;
353
                else                                 planep[x] ^= planep[x-1];
354
            }
355
        }
356
    }
357
    else if (invert)
358
    {
359
        planep = data;
360
        for (x=0; x<stride*height; x++) planep[x] = !planep[x]; //FIXME stride
361
    }
362
    return (imode<<1) + invert;
363
}
364

    
365
/** @} */ //Bitplane group
366

    
367
/***********************************************************************/
368
/** VOP Dquant decoding
369
 * @param v VC-1 Context
370
 */
371
static int vop_dquant_decoding(VC1Context *v)
372
{
373
    GetBitContext *gb = &v->s.gb;
374
    int pqdiff;
375

    
376
    //variable size
377
    if (v->dquant == 2)
378
    {
379
        pqdiff = get_bits(gb, 3);
380
        if (pqdiff == 7) v->altpq = get_bits(gb, 5);
381
        else v->altpq = v->pq + pqdiff + 1;
382
    }
383
    else
384
    {
385
        v->dquantfrm = get_bits(gb, 1);
386
        if ( v->dquantfrm )
387
        {
388
            v->dqprofile = get_bits(gb, 2);
389
            switch (v->dqprofile)
390
            {
391
            case DQPROFILE_SINGLE_EDGE:
392
            case DQPROFILE_DOUBLE_EDGES:
393
                v->dqsbedge = get_bits(gb, 2);
394
                break;
395
            case DQPROFILE_ALL_MBS:
396
                v->dqbilevel = get_bits(gb, 1);
397
            default: break; //Forbidden ?
398
            }
399
            if (v->dqbilevel || v->dqprofile != DQPROFILE_ALL_MBS)
400
            {
401
                pqdiff = get_bits(gb, 3);
402
                if (pqdiff == 7) v->altpq = get_bits(gb, 5);
403
                else v->altpq = v->pq + pqdiff + 1;
404
            }
405
        }
406
    }
407
    return 0;
408
}
409

    
410
/** Put block onto picture
411
 */
412
static void vc1_put_block(VC1Context *v, DCTELEM block[6][64])
413
{
414
    uint8_t *Y;
415
    int ys, us, vs;
416
    DSPContext *dsp = &v->s.dsp;
417

    
418
    if(v->rangeredfrm) {
419
        int i, j, k;
420
        for(k = 0; k < 6; k++)
421
            for(j = 0; j < 8; j++)
422
                for(i = 0; i < 8; i++)
423
                    block[k][i + j*8] = ((block[k][i + j*8] - 128) << 1) + 128;
424

    
425
    }
426
    ys = v->s.current_picture.linesize[0];
427
    us = v->s.current_picture.linesize[1];
428
    vs = v->s.current_picture.linesize[2];
429
    Y = v->s.dest[0];
430

    
431
    dsp->put_pixels_clamped(block[0], Y, ys);
432
    dsp->put_pixels_clamped(block[1], Y + 8, ys);
433
    Y += ys * 8;
434
    dsp->put_pixels_clamped(block[2], Y, ys);
435
    dsp->put_pixels_clamped(block[3], Y + 8, ys);
436

    
437
    if(!(v->s.flags & CODEC_FLAG_GRAY)) {
438
        dsp->put_pixels_clamped(block[4], v->s.dest[1], us);
439
        dsp->put_pixels_clamped(block[5], v->s.dest[2], vs);
440
    }
441
}
442

    
443
/** Do motion compensation over 1 macroblock
444
 * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
445
 */
446
static void vc1_mc_1mv(VC1Context *v, int dir)
447
{
448
    MpegEncContext *s = &v->s;
449
    DSPContext *dsp = &v->s.dsp;
450
    uint8_t *srcY, *srcU, *srcV;
451
    int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
452

    
453
    if(!v->s.last_picture.data[0])return;
454

    
455
    mx = s->mv[dir][0][0];
456
    my = s->mv[dir][0][1];
457

    
458
    // store motion vectors for further use in B frames
459
    if(s->pict_type == P_TYPE) {
460
        s->current_picture.motion_val[1][s->block_index[0]][0] = mx;
461
        s->current_picture.motion_val[1][s->block_index[0]][1] = my;
462
    }
463
    uvmx = (mx + ((mx & 3) == 3)) >> 1;
464
    uvmy = (my + ((my & 3) == 3)) >> 1;
465
    if(v->fastuvmc) {
466
        uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
467
        uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
468
    }
469
    if(!dir) {
470
        srcY = s->last_picture.data[0];
471
        srcU = s->last_picture.data[1];
472
        srcV = s->last_picture.data[2];
473
    } else {
474
        srcY = s->next_picture.data[0];
475
        srcU = s->next_picture.data[1];
476
        srcV = s->next_picture.data[2];
477
    }
478

    
479
    src_x = s->mb_x * 16 + (mx >> 2);
480
    src_y = s->mb_y * 16 + (my >> 2);
481
    uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
482
    uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
483

    
484
    if(v->profile != PROFILE_ADVANCED){
485
        src_x   = av_clip(  src_x, -16, s->mb_width  * 16);
486
        src_y   = av_clip(  src_y, -16, s->mb_height * 16);
487
        uvsrc_x = av_clip(uvsrc_x,  -8, s->mb_width  *  8);
488
        uvsrc_y = av_clip(uvsrc_y,  -8, s->mb_height *  8);
489
    }else{
490
        src_x   = av_clip(  src_x, -17, s->avctx->coded_width);
491
        src_y   = av_clip(  src_y, -18, s->avctx->coded_height + 1);
492
        uvsrc_x = av_clip(uvsrc_x,  -8, s->avctx->coded_width  >> 1);
493
        uvsrc_y = av_clip(uvsrc_y,  -8, s->avctx->coded_height >> 1);
494
    }
495

    
496
    srcY += src_y * s->linesize + src_x;
497
    srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
498
    srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
499

    
500
    /* for grayscale we should not try to read from unknown area */
501
    if(s->flags & CODEC_FLAG_GRAY) {
502
        srcU = s->edge_emu_buffer + 18 * s->linesize;
503
        srcV = s->edge_emu_buffer + 18 * s->linesize;
504
    }
505

    
506
    if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
507
       || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
508
       || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
509
        uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
510

    
511
        srcY -= s->mspel * (1 + s->linesize);
512
        ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
513
                            src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
514
        srcY = s->edge_emu_buffer;
515
        ff_emulated_edge_mc(uvbuf     , srcU, s->uvlinesize, 8+1, 8+1,
516
                            uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
517
        ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
518
                            uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
519
        srcU = uvbuf;
520
        srcV = uvbuf + 16;
521
        /* if we deal with range reduction we need to scale source blocks */
522
        if(v->rangeredfrm) {
523
            int i, j;
524
            uint8_t *src, *src2;
525

    
526
            src = srcY;
527
            for(j = 0; j < 17 + s->mspel*2; j++) {
528
                for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
529
                src += s->linesize;
530
            }
531
            src = srcU; src2 = srcV;
532
            for(j = 0; j < 9; j++) {
533
                for(i = 0; i < 9; i++) {
534
                    src[i] = ((src[i] - 128) >> 1) + 128;
535
                    src2[i] = ((src2[i] - 128) >> 1) + 128;
536
                }
537
                src += s->uvlinesize;
538
                src2 += s->uvlinesize;
539
            }
540
        }
541
        /* if we deal with intensity compensation we need to scale source blocks */
542
        if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
543
            int i, j;
544
            uint8_t *src, *src2;
545

    
546
            src = srcY;
547
            for(j = 0; j < 17 + s->mspel*2; j++) {
548
                for(i = 0; i < 17 + s->mspel*2; i++) src[i] = v->luty[src[i]];
549
                src += s->linesize;
550
            }
551
            src = srcU; src2 = srcV;
552
            for(j = 0; j < 9; j++) {
553
                for(i = 0; i < 9; i++) {
554
                    src[i] = v->lutuv[src[i]];
555
                    src2[i] = v->lutuv[src2[i]];
556
                }
557
                src += s->uvlinesize;
558
                src2 += s->uvlinesize;
559
            }
560
        }
561
        srcY += s->mspel * (1 + s->linesize);
562
    }
563

    
564
    if(s->mspel) {
565
        dxy = ((my & 3) << 2) | (mx & 3);
566
        dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0]    , srcY    , s->linesize, v->rnd);
567
        dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
568
        srcY += s->linesize * 8;
569
        dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize    , srcY    , s->linesize, v->rnd);
570
        dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
571
    } else { // hpel mc - always used for luma
572
        dxy = (my & 2) | ((mx & 2) >> 1);
573

    
574
        if(!v->rnd)
575
            dsp->put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
576
        else
577
            dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
578
    }
579

    
580
    if(s->flags & CODEC_FLAG_GRAY) return;
581
    /* Chroma MC always uses qpel bilinear */
582
    uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
583
    uvmx = (uvmx&3)<<1;
584
    uvmy = (uvmy&3)<<1;
585
    if(!v->rnd){
586
        dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
587
        dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
588
    }else{
589
        dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
590
        dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
591
    }
592
}
593

    
594
/** Do motion compensation for 4-MV macroblock - luminance block
595
 */
596
static void vc1_mc_4mv_luma(VC1Context *v, int n)
597
{
598
    MpegEncContext *s = &v->s;
599
    DSPContext *dsp = &v->s.dsp;
600
    uint8_t *srcY;
601
    int dxy, mx, my, src_x, src_y;
602
    int off;
603

    
604
    if(!v->s.last_picture.data[0])return;
605
    mx = s->mv[0][n][0];
606
    my = s->mv[0][n][1];
607
    srcY = s->last_picture.data[0];
608

    
609
    off = s->linesize * 4 * (n&2) + (n&1) * 8;
610

    
611
    src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2);
612
    src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2);
613

    
614
    if(v->profile != PROFILE_ADVANCED){
615
        src_x   = av_clip(  src_x, -16, s->mb_width  * 16);
616
        src_y   = av_clip(  src_y, -16, s->mb_height * 16);
617
    }else{
618
        src_x   = av_clip(  src_x, -17, s->avctx->coded_width);
619
        src_y   = av_clip(  src_y, -18, s->avctx->coded_height + 1);
620
    }
621

    
622
    srcY += src_y * s->linesize + src_x;
623

    
624
    if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
625
       || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 8 - s->mspel*2
626
       || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 8 - s->mspel*2){
627
        srcY -= s->mspel * (1 + s->linesize);
628
        ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 9+s->mspel*2, 9+s->mspel*2,
629
                            src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
630
        srcY = s->edge_emu_buffer;
631
        /* if we deal with range reduction we need to scale source blocks */
632
        if(v->rangeredfrm) {
633
            int i, j;
634
            uint8_t *src;
635

    
636
            src = srcY;
637
            for(j = 0; j < 9 + s->mspel*2; j++) {
638
                for(i = 0; i < 9 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
639
                src += s->linesize;
640
            }
641
        }
642
        /* if we deal with intensity compensation we need to scale source blocks */
643
        if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
644
            int i, j;
645
            uint8_t *src;
646

    
647
            src = srcY;
648
            for(j = 0; j < 9 + s->mspel*2; j++) {
649
                for(i = 0; i < 9 + s->mspel*2; i++) src[i] = v->luty[src[i]];
650
                src += s->linesize;
651
            }
652
        }
653
        srcY += s->mspel * (1 + s->linesize);
654
    }
655

    
656
    if(s->mspel) {
657
        dxy = ((my & 3) << 2) | (mx & 3);
658
        dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, v->rnd);
659
    } else { // hpel mc - always used for luma
660
        dxy = (my & 2) | ((mx & 2) >> 1);
661
        if(!v->rnd)
662
            dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
663
        else
664
            dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
665
    }
666
}
667

    
668
static inline int median4(int a, int b, int c, int d)
669
{
670
    if(a < b) {
671
        if(c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
672
        else      return (FFMIN(b, c) + FFMAX(a, d)) / 2;
673
    } else {
674
        if(c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
675
        else      return (FFMIN(a, c) + FFMAX(b, d)) / 2;
676
    }
677
}
678

    
679

    
680
/** Do motion compensation for 4-MV macroblock - both chroma blocks
681
 */
682
static void vc1_mc_4mv_chroma(VC1Context *v)
683
{
684
    MpegEncContext *s = &v->s;
685
    DSPContext *dsp = &v->s.dsp;
686
    uint8_t *srcU, *srcV;
687
    int uvdxy, uvmx, uvmy, uvsrc_x, uvsrc_y;
688
    int i, idx, tx = 0, ty = 0;
689
    int mvx[4], mvy[4], intra[4];
690
    static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
691

    
692
    if(!v->s.last_picture.data[0])return;
693
    if(s->flags & CODEC_FLAG_GRAY) return;
694

    
695
    for(i = 0; i < 4; i++) {
696
        mvx[i] = s->mv[0][i][0];
697
        mvy[i] = s->mv[0][i][1];
698
        intra[i] = v->mb_type[0][s->block_index[i]];
699
    }
700

    
701
    /* calculate chroma MV vector from four luma MVs */
702
    idx = (intra[3] << 3) | (intra[2] << 2) | (intra[1] << 1) | intra[0];
703
    if(!idx) { // all blocks are inter
704
        tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
705
        ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
706
    } else if(count[idx] == 1) { // 3 inter blocks
707
        switch(idx) {
708
        case 0x1:
709
            tx = mid_pred(mvx[1], mvx[2], mvx[3]);
710
            ty = mid_pred(mvy[1], mvy[2], mvy[3]);
711
            break;
712
        case 0x2:
713
            tx = mid_pred(mvx[0], mvx[2], mvx[3]);
714
            ty = mid_pred(mvy[0], mvy[2], mvy[3]);
715
            break;
716
        case 0x4:
717
            tx = mid_pred(mvx[0], mvx[1], mvx[3]);
718
            ty = mid_pred(mvy[0], mvy[1], mvy[3]);
719
            break;
720
        case 0x8:
721
            tx = mid_pred(mvx[0], mvx[1], mvx[2]);
722
            ty = mid_pred(mvy[0], mvy[1], mvy[2]);
723
            break;
724
        }
725
    } else if(count[idx] == 2) {
726
        int t1 = 0, t2 = 0;
727
        for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;}
728
        for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;}
729
        tx = (mvx[t1] + mvx[t2]) / 2;
730
        ty = (mvy[t1] + mvy[t2]) / 2;
731
    } else {
732
        s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
733
        s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
734
        return; //no need to do MC for inter blocks
735
    }
736

    
737
    s->current_picture.motion_val[1][s->block_index[0]][0] = tx;
738
    s->current_picture.motion_val[1][s->block_index[0]][1] = ty;
739
    uvmx = (tx + ((tx&3) == 3)) >> 1;
740
    uvmy = (ty + ((ty&3) == 3)) >> 1;
741
    if(v->fastuvmc) {
742
        uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
743
        uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
744
    }
745

    
746
    uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
747
    uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
748

    
749
    if(v->profile != PROFILE_ADVANCED){
750
        uvsrc_x = av_clip(uvsrc_x,  -8, s->mb_width  *  8);
751
        uvsrc_y = av_clip(uvsrc_y,  -8, s->mb_height *  8);
752
    }else{
753
        uvsrc_x = av_clip(uvsrc_x,  -8, s->avctx->coded_width  >> 1);
754
        uvsrc_y = av_clip(uvsrc_y,  -8, s->avctx->coded_height >> 1);
755
    }
756

    
757
    srcU = s->last_picture.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
758
    srcV = s->last_picture.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
759
    if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
760
       || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
761
       || (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - 9){
762
        ff_emulated_edge_mc(s->edge_emu_buffer     , srcU, s->uvlinesize, 8+1, 8+1,
763
                            uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
764
        ff_emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1,
765
                            uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
766
        srcU = s->edge_emu_buffer;
767
        srcV = s->edge_emu_buffer + 16;
768

    
769
        /* if we deal with range reduction we need to scale source blocks */
770
        if(v->rangeredfrm) {
771
            int i, j;
772
            uint8_t *src, *src2;
773

    
774
            src = srcU; src2 = srcV;
775
            for(j = 0; j < 9; j++) {
776
                for(i = 0; i < 9; i++) {
777
                    src[i] = ((src[i] - 128) >> 1) + 128;
778
                    src2[i] = ((src2[i] - 128) >> 1) + 128;
779
                }
780
                src += s->uvlinesize;
781
                src2 += s->uvlinesize;
782
            }
783
        }
784
        /* if we deal with intensity compensation we need to scale source blocks */
785
        if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
786
            int i, j;
787
            uint8_t *src, *src2;
788

    
789
            src = srcU; src2 = srcV;
790
            for(j = 0; j < 9; j++) {
791
                for(i = 0; i < 9; i++) {
792
                    src[i] = v->lutuv[src[i]];
793
                    src2[i] = v->lutuv[src2[i]];
794
                }
795
                src += s->uvlinesize;
796
                src2 += s->uvlinesize;
797
            }
798
        }
799
    }
800

    
801
    /* Chroma MC always uses qpel bilinear */
802
    uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
803
    uvmx = (uvmx&3)<<1;
804
    uvmy = (uvmy&3)<<1;
805
    if(!v->rnd){
806
        dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
807
        dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
808
    }else{
809
        dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
810
        dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
811
    }
812
}
813

    
814
static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb);
815

    
816
/**
817
 * Decode Simple/Main Profiles sequence header
818
 * @see Figure 7-8, p16-17
819
 * @param avctx Codec context
820
 * @param gb GetBit context initialized from Codec context extra_data
821
 * @return Status
822
 */
823
static int decode_sequence_header(AVCodecContext *avctx, GetBitContext *gb)
824
{
825
    VC1Context *v = avctx->priv_data;
826

    
827
    av_log(avctx, AV_LOG_DEBUG, "Header: %0X\n", show_bits(gb, 32));
828
    v->profile = get_bits(gb, 2);
829
    if (v->profile == PROFILE_COMPLEX)
830
    {
831
        av_log(avctx, AV_LOG_ERROR, "WMV3 Complex Profile is not fully supported\n");
832
    }
833

    
834
    if (v->profile == PROFILE_ADVANCED)
835
    {
836
        return decode_sequence_header_adv(v, gb);
837
    }
838
    else
839
    {
840
        v->res_sm = get_bits(gb, 2); //reserved
841
        if (v->res_sm)
842
        {
843
            av_log(avctx, AV_LOG_ERROR,
844
                   "Reserved RES_SM=%i is forbidden\n", v->res_sm);
845
            return -1;
846
        }
847
    }
848

    
849
    // (fps-2)/4 (->30)
850
    v->frmrtq_postproc = get_bits(gb, 3); //common
851
    // (bitrate-32kbps)/64kbps
852
    v->bitrtq_postproc = get_bits(gb, 5); //common
853
    v->s.loop_filter = get_bits(gb, 1); //common
854
    if(v->s.loop_filter == 1 && v->profile == PROFILE_SIMPLE)
855
    {
856
        av_log(avctx, AV_LOG_ERROR,
857
               "LOOPFILTER shell not be enabled in simple profile\n");
858
    }
859

    
860
    v->res_x8 = get_bits(gb, 1); //reserved
861
    if (v->res_x8)
862
    {
863
        av_log(avctx, AV_LOG_ERROR,
864
               "1 for reserved RES_X8 is forbidden\n");
865
        //return -1;
866
    }
867
    v->multires = get_bits(gb, 1);
868
    v->res_fasttx = get_bits(gb, 1);
869
    if (!v->res_fasttx)
870
    {
871
        av_log(avctx, AV_LOG_ERROR,
872
               "0 for reserved RES_FASTTX is forbidden\n");
873
        //return -1;
874
    }
875

    
876
    v->fastuvmc =  get_bits(gb, 1); //common
877
    if (!v->profile && !v->fastuvmc)
878
    {
879
        av_log(avctx, AV_LOG_ERROR,
880
               "FASTUVMC unavailable in Simple Profile\n");
881
        return -1;
882
    }
883
    v->extended_mv =  get_bits(gb, 1); //common
884
    if (!v->profile && v->extended_mv)
885
    {
886
        av_log(avctx, AV_LOG_ERROR,
887
               "Extended MVs unavailable in Simple Profile\n");
888
        return -1;
889
    }
890
    v->dquant =  get_bits(gb, 2); //common
891
    v->vstransform =  get_bits(gb, 1); //common
892

    
893
    v->res_transtab = get_bits(gb, 1);
894
    if (v->res_transtab)
895
    {
896
        av_log(avctx, AV_LOG_ERROR,
897
               "1 for reserved RES_TRANSTAB is forbidden\n");
898
        return -1;
899
    }
900

    
901
    v->overlap = get_bits(gb, 1); //common
902

    
903
    v->s.resync_marker = get_bits(gb, 1);
904
    v->rangered = get_bits(gb, 1);
905
    if (v->rangered && v->profile == PROFILE_SIMPLE)
906
    {
907
        av_log(avctx, AV_LOG_INFO,
908
               "RANGERED should be set to 0 in simple profile\n");
909
    }
910

    
911
    v->s.max_b_frames = avctx->max_b_frames = get_bits(gb, 3); //common
912
    v->quantizer_mode = get_bits(gb, 2); //common
913

    
914
    v->finterpflag = get_bits(gb, 1); //common
915
    v->res_rtm_flag = get_bits(gb, 1); //reserved
916
    if (!v->res_rtm_flag)
917
    {
918
//            av_log(avctx, AV_LOG_ERROR,
919
//                   "0 for reserved RES_RTM_FLAG is forbidden\n");
920
        av_log(avctx, AV_LOG_ERROR,
921
               "Old WMV3 version detected, only I-frames will be decoded\n");
922
        //return -1;
923
    }
924
    //TODO: figure out what they mean (always 0x402F)
925
    if(!v->res_fasttx) skip_bits(gb, 16);
926
    av_log(avctx, AV_LOG_DEBUG,
927
               "Profile %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
928
               "LoopFilter=%i, MultiRes=%i, FastUVMC=%i, Extended MV=%i\n"
929
               "Rangered=%i, VSTransform=%i, Overlap=%i, SyncMarker=%i\n"
930
               "DQuant=%i, Quantizer mode=%i, Max B frames=%i\n",
931
               v->profile, v->frmrtq_postproc, v->bitrtq_postproc,
932
               v->s.loop_filter, v->multires, v->fastuvmc, v->extended_mv,
933
               v->rangered, v->vstransform, v->overlap, v->s.resync_marker,
934
               v->dquant, v->quantizer_mode, avctx->max_b_frames
935
               );
936
    return 0;
937
}
938

    
939
static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb)
940
{
941
    v->res_rtm_flag = 1;
942
    v->level = get_bits(gb, 3);
943
    if(v->level >= 5)
944
    {
945
        av_log(v->s.avctx, AV_LOG_ERROR, "Reserved LEVEL %i\n",v->level);
946
    }
947
    v->chromaformat = get_bits(gb, 2);
948
    if (v->chromaformat != 1)
949
    {
950
        av_log(v->s.avctx, AV_LOG_ERROR,
951
               "Only 4:2:0 chroma format supported\n");
952
        return -1;
953
    }
954

    
955
    // (fps-2)/4 (->30)
956
    v->frmrtq_postproc = get_bits(gb, 3); //common
957
    // (bitrate-32kbps)/64kbps
958
    v->bitrtq_postproc = get_bits(gb, 5); //common
959
    v->postprocflag = get_bits(gb, 1); //common
960

    
961
    v->s.avctx->coded_width = (get_bits(gb, 12) + 1) << 1;
962
    v->s.avctx->coded_height = (get_bits(gb, 12) + 1) << 1;
963
    v->s.avctx->width = v->s.avctx->coded_width;
964
    v->s.avctx->height = v->s.avctx->coded_height;
965
    v->broadcast = get_bits1(gb);
966
    v->interlace = get_bits1(gb);
967
    v->tfcntrflag = get_bits1(gb);
968
    v->finterpflag = get_bits1(gb);
969
    get_bits1(gb); // reserved
970

    
971
    v->s.h_edge_pos = v->s.avctx->coded_width;
972
    v->s.v_edge_pos = v->s.avctx->coded_height;
973

    
974
    av_log(v->s.avctx, AV_LOG_DEBUG,
975
               "Advanced Profile level %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
976
               "LoopFilter=%i, ChromaFormat=%i, Pulldown=%i, Interlace: %i\n"
977
               "TFCTRflag=%i, FINTERPflag=%i\n",
978
               v->level, v->frmrtq_postproc, v->bitrtq_postproc,
979
               v->s.loop_filter, v->chromaformat, v->broadcast, v->interlace,
980
               v->tfcntrflag, v->finterpflag
981
               );
982

    
983
    v->psf = get_bits1(gb);
984
    if(v->psf) { //PsF, 6.1.13
985
        av_log(v->s.avctx, AV_LOG_ERROR, "Progressive Segmented Frame mode: not supported (yet)\n");
986
        return -1;
987
    }
988
    v->s.max_b_frames = v->s.avctx->max_b_frames = 7;
989
    if(get_bits1(gb)) { //Display Info - decoding is not affected by it
990
        int w, h, ar = 0;
991
        av_log(v->s.avctx, AV_LOG_DEBUG, "Display extended info:\n");
992
        v->s.avctx->width  = v->s.width  = w = get_bits(gb, 14) + 1;
993
        v->s.avctx->height = v->s.height = h = get_bits(gb, 14) + 1;
994
        av_log(v->s.avctx, AV_LOG_DEBUG, "Display dimensions: %ix%i\n", w, h);
995
        if(get_bits1(gb))
996
            ar = get_bits(gb, 4);
997
        if(ar && ar < 14){
998
            v->s.avctx->sample_aspect_ratio = ff_vc1_pixel_aspect[ar];
999
        }else if(ar == 15){
1000
            w = get_bits(gb, 8);
1001
            h = get_bits(gb, 8);
1002
            v->s.avctx->sample_aspect_ratio = (AVRational){w, h};
1003
        }
1004

    
1005
        if(get_bits1(gb)){ //framerate stuff
1006
            if(get_bits1(gb)) {
1007
                v->s.avctx->time_base.num = 32;
1008
                v->s.avctx->time_base.den = get_bits(gb, 16) + 1;
1009
            } else {
1010
                int nr, dr;
1011
                nr = get_bits(gb, 8);
1012
                dr = get_bits(gb, 4);
1013
                if(nr && nr < 8 && dr && dr < 3){
1014
                    v->s.avctx->time_base.num = ff_vc1_fps_dr[dr - 1];
1015
                    v->s.avctx->time_base.den = ff_vc1_fps_nr[nr - 1] * 1000;
1016
                }
1017
            }
1018
        }
1019

    
1020
        if(get_bits1(gb)){
1021
            v->color_prim = get_bits(gb, 8);
1022
            v->transfer_char = get_bits(gb, 8);
1023
            v->matrix_coef = get_bits(gb, 8);
1024
        }
1025
    }
1026

    
1027
    v->hrd_param_flag = get_bits1(gb);
1028
    if(v->hrd_param_flag) {
1029
        int i;
1030
        v->hrd_num_leaky_buckets = get_bits(gb, 5);
1031
        get_bits(gb, 4); //bitrate exponent
1032
        get_bits(gb, 4); //buffer size exponent
1033
        for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
1034
            get_bits(gb, 16); //hrd_rate[n]
1035
            get_bits(gb, 16); //hrd_buffer[n]
1036
        }
1037
    }
1038
    return 0;
1039
}
1040

    
1041
static int decode_entry_point(AVCodecContext *avctx, GetBitContext *gb)
1042
{
1043
    VC1Context *v = avctx->priv_data;
1044
    int i, blink, clentry, refdist;
1045

    
1046
    av_log(avctx, AV_LOG_DEBUG, "Entry point: %08X\n", show_bits_long(gb, 32));
1047
    blink = get_bits1(gb); // broken link
1048
    clentry = get_bits1(gb); // closed entry
1049
    v->panscanflag = get_bits1(gb);
1050
    refdist = get_bits1(gb); // refdist flag
1051
    v->s.loop_filter = get_bits1(gb);
1052
    v->fastuvmc = get_bits1(gb);
1053
    v->extended_mv = get_bits1(gb);
1054
    v->dquant = get_bits(gb, 2);
1055
    v->vstransform = get_bits1(gb);
1056
    v->overlap = get_bits1(gb);
1057
    v->quantizer_mode = get_bits(gb, 2);
1058

    
1059
    if(v->hrd_param_flag){
1060
        for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
1061
            get_bits(gb, 8); //hrd_full[n]
1062
        }
1063
    }
1064

    
1065
    if(get_bits1(gb)){
1066
        avctx->coded_width = (get_bits(gb, 12)+1)<<1;
1067
        avctx->coded_height = (get_bits(gb, 12)+1)<<1;
1068
    }
1069
    if(v->extended_mv)
1070
        v->extended_dmv = get_bits1(gb);
1071
    if(get_bits1(gb)) {
1072
        av_log(avctx, AV_LOG_ERROR, "Luma scaling is not supported, expect wrong picture\n");
1073
        skip_bits(gb, 3); // Y range, ignored for now
1074
    }
1075
    if(get_bits1(gb)) {
1076
        av_log(avctx, AV_LOG_ERROR, "Chroma scaling is not supported, expect wrong picture\n");
1077
        skip_bits(gb, 3); // UV range, ignored for now
1078
    }
1079

    
1080
    av_log(avctx, AV_LOG_DEBUG, "Entry point info:\n"
1081
        "BrokenLink=%i, ClosedEntry=%i, PanscanFlag=%i\n"
1082
        "RefDist=%i, Postproc=%i, FastUVMC=%i, ExtMV=%i\n"
1083
        "DQuant=%i, VSTransform=%i, Overlap=%i, Qmode=%i\n",
1084
        blink, clentry, v->panscanflag, refdist, v->s.loop_filter,
1085
        v->fastuvmc, v->extended_mv, v->dquant, v->vstransform, v->overlap, v->quantizer_mode);
1086

    
1087
    return 0;
1088
}
1089

    
1090
static int vc1_parse_frame_header(VC1Context *v, GetBitContext* gb)
1091
{
1092
    int pqindex, lowquant, status;
1093

    
1094
    if(v->finterpflag) v->interpfrm = get_bits(gb, 1);
1095
    skip_bits(gb, 2); //framecnt unused
1096
    v->rangeredfrm = 0;
1097
    if (v->rangered) v->rangeredfrm = get_bits(gb, 1);
1098
    v->s.pict_type = get_bits(gb, 1);
1099
    if (v->s.avctx->max_b_frames) {
1100
        if (!v->s.pict_type) {
1101
            if (get_bits(gb, 1)) v->s.pict_type = I_TYPE;
1102
            else v->s.pict_type = B_TYPE;
1103
        } else v->s.pict_type = P_TYPE;
1104
    } else v->s.pict_type = v->s.pict_type ? P_TYPE : I_TYPE;
1105

    
1106
    v->bi_type = 0;
1107
    if(v->s.pict_type == B_TYPE) {
1108
        v->bfraction = get_vlc2(gb, ff_vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
1109
        v->bfraction = ff_vc1_bfraction_lut[v->bfraction];
1110
        if(v->bfraction == 0) {
1111
            v->s.pict_type = BI_TYPE;
1112
        }
1113
    }
1114
    if(v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
1115
        get_bits(gb, 7); // skip buffer fullness
1116

    
1117
    /* calculate RND */
1118
    if(v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
1119
        v->rnd = 1;
1120
    if(v->s.pict_type == P_TYPE)
1121
        v->rnd ^= 1;
1122

    
1123
    /* Quantizer stuff */
1124
    pqindex = get_bits(gb, 5);
1125
    if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
1126
        v->pq = ff_vc1_pquant_table[0][pqindex];
1127
    else
1128
        v->pq = ff_vc1_pquant_table[1][pqindex];
1129

    
1130
    v->pquantizer = 1;
1131
    if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
1132
        v->pquantizer = pqindex < 9;
1133
    if (v->quantizer_mode == QUANT_NON_UNIFORM)
1134
        v->pquantizer = 0;
1135
    v->pqindex = pqindex;
1136
    if (pqindex < 9) v->halfpq = get_bits(gb, 1);
1137
    else v->halfpq = 0;
1138
    if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
1139
        v->pquantizer = get_bits(gb, 1);
1140
    v->dquantfrm = 0;
1141
    if (v->extended_mv == 1) v->mvrange = get_prefix(gb, 0, 3);
1142
    v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
1143
    v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
1144
    v->range_x = 1 << (v->k_x - 1);
1145
    v->range_y = 1 << (v->k_y - 1);
1146
    if (v->profile == PROFILE_ADVANCED)
1147
    {
1148
        if (v->postprocflag) v->postproc = get_bits(gb, 1);
1149
    }
1150
    else
1151
        if (v->multires && v->s.pict_type != B_TYPE) v->respic = get_bits(gb, 2);
1152

    
1153
    if(v->res_x8 && (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)){
1154
        if(get_bits1(gb))return -1;
1155
    }
1156
//av_log(v->s.avctx, AV_LOG_INFO, "%c Frame: QP=[%i]%i (+%i/2) %i\n",
1157
//        (v->s.pict_type == P_TYPE) ? 'P' : ((v->s.pict_type == I_TYPE) ? 'I' : 'B'), pqindex, v->pq, v->halfpq, v->rangeredfrm);
1158

    
1159
    if(v->s.pict_type == I_TYPE || v->s.pict_type == P_TYPE) v->use_ic = 0;
1160

    
1161
    switch(v->s.pict_type) {
1162
    case P_TYPE:
1163
        if (v->pq < 5) v->tt_index = 0;
1164
        else if(v->pq < 13) v->tt_index = 1;
1165
        else v->tt_index = 2;
1166

    
1167
        lowquant = (v->pq > 12) ? 0 : 1;
1168
        v->mv_mode = ff_vc1_mv_pmode_table[lowquant][get_prefix(gb, 1, 4)];
1169
        if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
1170
        {
1171
            int scale, shift, i;
1172
            v->mv_mode2 = ff_vc1_mv_pmode_table2[lowquant][get_prefix(gb, 1, 3)];
1173
            v->lumscale = get_bits(gb, 6);
1174
            v->lumshift = get_bits(gb, 6);
1175
            v->use_ic = 1;
1176
            /* fill lookup tables for intensity compensation */
1177
            if(!v->lumscale) {
1178
                scale = -64;
1179
                shift = (255 - v->lumshift * 2) << 6;
1180
                if(v->lumshift > 31)
1181
                    shift += 128 << 6;
1182
            } else {
1183
                scale = v->lumscale + 32;
1184
                if(v->lumshift > 31)
1185
                    shift = (v->lumshift - 64) << 6;
1186
                else
1187
                    shift = v->lumshift << 6;
1188
            }
1189
            for(i = 0; i < 256; i++) {
1190
                v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
1191
                v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
1192
            }
1193
        }
1194
        if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
1195
            v->s.quarter_sample = 0;
1196
        else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
1197
            if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
1198
                v->s.quarter_sample = 0;
1199
            else
1200
                v->s.quarter_sample = 1;
1201
        } else
1202
            v->s.quarter_sample = 1;
1203
        v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
1204

    
1205
        if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
1206
                 v->mv_mode2 == MV_PMODE_MIXED_MV)
1207
                || v->mv_mode == MV_PMODE_MIXED_MV)
1208
        {
1209
            status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
1210
            if (status < 0) return -1;
1211
            av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
1212
                   "Imode: %i, Invert: %i\n", status>>1, status&1);
1213
        } else {
1214
            v->mv_type_is_raw = 0;
1215
            memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
1216
        }
1217
        status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
1218
        if (status < 0) return -1;
1219
        av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
1220
               "Imode: %i, Invert: %i\n", status>>1, status&1);
1221

    
1222
        /* Hopefully this is correct for P frames */
1223
        v->s.mv_table_index = get_bits(gb, 2); //but using ff_vc1_ tables
1224
        v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
1225

    
1226
        if (v->dquant)
1227
        {
1228
            av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
1229
            vop_dquant_decoding(v);
1230
        }
1231

    
1232
        v->ttfrm = 0; //FIXME Is that so ?
1233
        if (v->vstransform)
1234
        {
1235
            v->ttmbf = get_bits(gb, 1);
1236
            if (v->ttmbf)
1237
            {
1238
                v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
1239
            }
1240
        } else {
1241
            v->ttmbf = 1;
1242
            v->ttfrm = TT_8X8;
1243
        }
1244
        break;
1245
    case B_TYPE:
1246
        if (v->pq < 5) v->tt_index = 0;
1247
        else if(v->pq < 13) v->tt_index = 1;
1248
        else v->tt_index = 2;
1249

    
1250
        lowquant = (v->pq > 12) ? 0 : 1;
1251
        v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
1252
        v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
1253
        v->s.mspel = v->s.quarter_sample;
1254

    
1255
        status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
1256
        if (status < 0) return -1;
1257
        av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
1258
               "Imode: %i, Invert: %i\n", status>>1, status&1);
1259
        status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
1260
        if (status < 0) return -1;
1261
        av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
1262
               "Imode: %i, Invert: %i\n", status>>1, status&1);
1263

    
1264
        v->s.mv_table_index = get_bits(gb, 2);
1265
        v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
1266

    
1267
        if (v->dquant)
1268
        {
1269
            av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
1270
            vop_dquant_decoding(v);
1271
        }
1272

    
1273
        v->ttfrm = 0;
1274
        if (v->vstransform)
1275
        {
1276
            v->ttmbf = get_bits(gb, 1);
1277
            if (v->ttmbf)
1278
            {
1279
                v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
1280
            }
1281
        } else {
1282
            v->ttmbf = 1;
1283
            v->ttfrm = TT_8X8;
1284
        }
1285
        break;
1286
    }
1287

    
1288
    /* AC Syntax */
1289
    v->c_ac_table_index = decode012(gb);
1290
    if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
1291
    {
1292
        v->y_ac_table_index = decode012(gb);
1293
    }
1294
    /* DC Syntax */
1295
    v->s.dc_table_index = get_bits(gb, 1);
1296

    
1297
    if(v->s.pict_type == BI_TYPE) {
1298
        v->s.pict_type = B_TYPE;
1299
        v->bi_type = 1;
1300
    }
1301
    return 0;
1302
}
1303

    
1304
static int vc1_parse_frame_header_adv(VC1Context *v, GetBitContext* gb)
1305
{
1306
    int pqindex, lowquant;
1307
    int status;
1308

    
1309
    v->p_frame_skipped = 0;
1310

    
1311
    if(v->interlace){
1312
        v->fcm = decode012(gb);
1313
        if(v->fcm) return -1; // interlaced frames/fields are not implemented
1314
    }
1315
    switch(get_prefix(gb, 0, 4)) {
1316
    case 0:
1317
        v->s.pict_type = P_TYPE;
1318
        break;
1319
    case 1:
1320
        v->s.pict_type = B_TYPE;
1321
        break;
1322
    case 2:
1323
        v->s.pict_type = I_TYPE;
1324
        break;
1325
    case 3:
1326
        v->s.pict_type = BI_TYPE;
1327
        break;
1328
    case 4:
1329
        v->s.pict_type = P_TYPE; // skipped pic
1330
        v->p_frame_skipped = 1;
1331
        return 0;
1332
    }
1333
    if(v->tfcntrflag)
1334
        get_bits(gb, 8);
1335
    if(v->broadcast) {
1336
        if(!v->interlace || v->psf) {
1337
            v->rptfrm = get_bits(gb, 2);
1338
        } else {
1339
            v->tff = get_bits1(gb);
1340
            v->rptfrm = get_bits1(gb);
1341
        }
1342
    }
1343
    if(v->panscanflag) {
1344
        //...
1345
    }
1346
    v->rnd = get_bits1(gb);
1347
    if(v->interlace)
1348
        v->uvsamp = get_bits1(gb);
1349
    if(v->finterpflag) v->interpfrm = get_bits(gb, 1);
1350
    if(v->s.pict_type == B_TYPE) {
1351
        v->bfraction = get_vlc2(gb, ff_vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
1352
        v->bfraction = ff_vc1_bfraction_lut[v->bfraction];
1353
        if(v->bfraction == 0) {
1354
            v->s.pict_type = BI_TYPE; /* XXX: should not happen here */
1355
        }
1356
    }
1357
    pqindex = get_bits(gb, 5);
1358
    v->pqindex = pqindex;
1359
    if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
1360
        v->pq = ff_vc1_pquant_table[0][pqindex];
1361
    else
1362
        v->pq = ff_vc1_pquant_table[1][pqindex];
1363

    
1364
    v->pquantizer = 1;
1365
    if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
1366
        v->pquantizer = pqindex < 9;
1367
    if (v->quantizer_mode == QUANT_NON_UNIFORM)
1368
        v->pquantizer = 0;
1369
    v->pqindex = pqindex;
1370
    if (pqindex < 9) v->halfpq = get_bits(gb, 1);
1371
    else v->halfpq = 0;
1372
    if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
1373
        v->pquantizer = get_bits(gb, 1);
1374

    
1375
    if(v->s.pict_type == I_TYPE || v->s.pict_type == P_TYPE) v->use_ic = 0;
1376

    
1377
    switch(v->s.pict_type) {
1378
    case I_TYPE:
1379
    case BI_TYPE:
1380
        status = bitplane_decoding(v->acpred_plane, &v->acpred_is_raw, v);
1381
        if (status < 0) return -1;
1382
        av_log(v->s.avctx, AV_LOG_DEBUG, "ACPRED plane encoding: "
1383
                "Imode: %i, Invert: %i\n", status>>1, status&1);
1384
        v->condover = CONDOVER_NONE;
1385
        if(v->overlap && v->pq <= 8) {
1386
            v->condover = decode012(gb);
1387
            if(v->condover == CONDOVER_SELECT) {
1388
                status = bitplane_decoding(v->over_flags_plane, &v->overflg_is_raw, v);
1389
                if (status < 0) return -1;
1390
                av_log(v->s.avctx, AV_LOG_DEBUG, "CONDOVER plane encoding: "
1391
                        "Imode: %i, Invert: %i\n", status>>1, status&1);
1392
            }
1393
        }
1394
        break;
1395
    case P_TYPE:
1396
        if(v->postprocflag)
1397
            v->postproc = get_bits1(gb);
1398
        if (v->extended_mv) v->mvrange = get_prefix(gb, 0, 3);
1399
        else v->mvrange = 0;
1400
        v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
1401
        v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
1402
        v->range_x = 1 << (v->k_x - 1);
1403
        v->range_y = 1 << (v->k_y - 1);
1404

    
1405
        if (v->pq < 5) v->tt_index = 0;
1406
        else if(v->pq < 13) v->tt_index = 1;
1407
        else v->tt_index = 2;
1408

    
1409
        lowquant = (v->pq > 12) ? 0 : 1;
1410
        v->mv_mode = ff_vc1_mv_pmode_table[lowquant][get_prefix(gb, 1, 4)];
1411
        if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
1412
        {
1413
            int scale, shift, i;
1414
            v->mv_mode2 = ff_vc1_mv_pmode_table2[lowquant][get_prefix(gb, 1, 3)];
1415
            v->lumscale = get_bits(gb, 6);
1416
            v->lumshift = get_bits(gb, 6);
1417
            /* fill lookup tables for intensity compensation */
1418
            if(!v->lumscale) {
1419
                scale = -64;
1420
                shift = (255 - v->lumshift * 2) << 6;
1421
                if(v->lumshift > 31)
1422
                    shift += 128 << 6;
1423
            } else {
1424
                scale = v->lumscale + 32;
1425
                if(v->lumshift > 31)
1426
                    shift = (v->lumshift - 64) << 6;
1427
                else
1428
                    shift = v->lumshift << 6;
1429
            }
1430
            for(i = 0; i < 256; i++) {
1431
                v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
1432
                v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
1433
            }
1434
            v->use_ic = 1;
1435
        }
1436
        if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
1437
            v->s.quarter_sample = 0;
1438
        else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
1439
            if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
1440
                v->s.quarter_sample = 0;
1441
            else
1442
                v->s.quarter_sample = 1;
1443
        } else
1444
            v->s.quarter_sample = 1;
1445
        v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
1446

    
1447
        if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
1448
                 v->mv_mode2 == MV_PMODE_MIXED_MV)
1449
                || v->mv_mode == MV_PMODE_MIXED_MV)
1450
        {
1451
            status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
1452
            if (status < 0) return -1;
1453
            av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
1454
                   "Imode: %i, Invert: %i\n", status>>1, status&1);
1455
        } else {
1456
            v->mv_type_is_raw = 0;
1457
            memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
1458
        }
1459
        status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
1460
        if (status < 0) return -1;
1461
        av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
1462
               "Imode: %i, Invert: %i\n", status>>1, status&1);
1463

    
1464
        /* Hopefully this is correct for P frames */
1465
        v->s.mv_table_index = get_bits(gb, 2); //but using ff_vc1_ tables
1466
        v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
1467
        if (v->dquant)
1468
        {
1469
            av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
1470
            vop_dquant_decoding(v);
1471
        }
1472

    
1473
        v->ttfrm = 0; //FIXME Is that so ?
1474
        if (v->vstransform)
1475
        {
1476
            v->ttmbf = get_bits(gb, 1);
1477
            if (v->ttmbf)
1478
            {
1479
                v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
1480
            }
1481
        } else {
1482
            v->ttmbf = 1;
1483
            v->ttfrm = TT_8X8;
1484
        }
1485
        break;
1486
    case B_TYPE:
1487
        if(v->postprocflag)
1488
            v->postproc = get_bits1(gb);
1489
        if (v->extended_mv) v->mvrange = get_prefix(gb, 0, 3);
1490
        else v->mvrange = 0;
1491
        v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
1492
        v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
1493
        v->range_x = 1 << (v->k_x - 1);
1494
        v->range_y = 1 << (v->k_y - 1);
1495

    
1496
        if (v->pq < 5) v->tt_index = 0;
1497
        else if(v->pq < 13) v->tt_index = 1;
1498
        else v->tt_index = 2;
1499

    
1500
        lowquant = (v->pq > 12) ? 0 : 1;
1501
        v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
1502
        v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
1503
        v->s.mspel = v->s.quarter_sample;
1504

    
1505
        status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
1506
        if (status < 0) return -1;
1507
        av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
1508
               "Imode: %i, Invert: %i\n", status>>1, status&1);
1509
        status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
1510
        if (status < 0) return -1;
1511
        av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
1512
               "Imode: %i, Invert: %i\n", status>>1, status&1);
1513

    
1514
        v->s.mv_table_index = get_bits(gb, 2);
1515
        v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
1516

    
1517
        if (v->dquant)
1518
        {
1519
            av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
1520
            vop_dquant_decoding(v);
1521
        }
1522

    
1523
        v->ttfrm = 0;
1524
        if (v->vstransform)
1525
        {
1526
            v->ttmbf = get_bits(gb, 1);
1527
            if (v->ttmbf)
1528
            {
1529
                v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
1530
            }
1531
        } else {
1532
            v->ttmbf = 1;
1533
            v->ttfrm = TT_8X8;
1534
        }
1535
        break;
1536
    }
1537

    
1538
    /* AC Syntax */
1539
    v->c_ac_table_index = decode012(gb);
1540
    if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
1541
    {
1542
        v->y_ac_table_index = decode012(gb);
1543
    }
1544
    /* DC Syntax */
1545
    v->s.dc_table_index = get_bits(gb, 1);
1546
    if ((v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE) && v->dquant) {
1547
        av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
1548
        vop_dquant_decoding(v);
1549
    }
1550

    
1551
    v->bi_type = 0;
1552
    if(v->s.pict_type == BI_TYPE) {
1553
        v->s.pict_type = B_TYPE;
1554
        v->bi_type = 1;
1555
    }
1556
    return 0;
1557
}
1558

    
1559
/***********************************************************************/
1560
/**
1561
 * @defgroup block VC-1 Block-level functions
1562
 * @see 7.1.4, p91 and 8.1.1.7, p(1)04
1563
 * @{
1564
 */
1565

    
1566
/**
1567
 * @def GET_MQUANT
1568
 * @brief Get macroblock-level quantizer scale
1569
 */
1570
#define GET_MQUANT()                                           \
1571
  if (v->dquantfrm)                                            \
1572
  {                                                            \
1573
    int edges = 0;                                             \
1574
    if (v->dqprofile == DQPROFILE_ALL_MBS)                     \
1575
    {                                                          \
1576
      if (v->dqbilevel)                                        \
1577
      {                                                        \
1578
        mquant = (get_bits(gb, 1)) ? v->altpq : v->pq;         \
1579
      }                                                        \
1580
      else                                                     \
1581
      {                                                        \
1582
        mqdiff = get_bits(gb, 3);                              \
1583
        if (mqdiff != 7) mquant = v->pq + mqdiff;              \
1584
        else mquant = get_bits(gb, 5);                         \
1585
      }                                                        \
1586
    }                                                          \
1587
    if(v->dqprofile == DQPROFILE_SINGLE_EDGE)                  \
1588
        edges = 1 << v->dqsbedge;                              \
1589
    else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES)            \
1590
        edges = (3 << v->dqsbedge) % 15;                       \
1591
    else if(v->dqprofile == DQPROFILE_FOUR_EDGES)              \
1592
        edges = 15;                                            \
1593
    if((edges&1) && !s->mb_x)                                  \
1594
        mquant = v->altpq;                                     \
1595
    if((edges&2) && s->first_slice_line)                       \
1596
        mquant = v->altpq;                                     \
1597
    if((edges&4) && s->mb_x == (s->mb_width - 1))              \
1598
        mquant = v->altpq;                                     \
1599
    if((edges&8) && s->mb_y == (s->mb_height - 1))             \
1600
        mquant = v->altpq;                                     \
1601
  }
1602

    
1603
/**
1604
 * @def GET_MVDATA(_dmv_x, _dmv_y)
1605
 * @brief Get MV differentials
1606
 * @see MVDATA decoding from 8.3.5.2, p(1)20
1607
 * @param _dmv_x Horizontal differential for decoded MV
1608
 * @param _dmv_y Vertical differential for decoded MV
1609
 */
1610
#define GET_MVDATA(_dmv_x, _dmv_y)                                  \
1611
  index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index].table,\
1612
                       VC1_MV_DIFF_VLC_BITS, 2);                    \
1613
  if (index > 36)                                                   \
1614
  {                                                                 \
1615
    mb_has_coeffs = 1;                                              \
1616
    index -= 37;                                                    \
1617
  }                                                                 \
1618
  else mb_has_coeffs = 0;                                           \
1619
  s->mb_intra = 0;                                                  \
1620
  if (!index) { _dmv_x = _dmv_y = 0; }                              \
1621
  else if (index == 35)                                             \
1622
  {                                                                 \
1623
    _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample);          \
1624
    _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample);          \
1625
  }                                                                 \
1626
  else if (index == 36)                                             \
1627
  {                                                                 \
1628
    _dmv_x = 0;                                                     \
1629
    _dmv_y = 0;                                                     \
1630
    s->mb_intra = 1;                                                \
1631
  }                                                                 \
1632
  else                                                              \
1633
  {                                                                 \
1634
    index1 = index%6;                                               \
1635
    if (!s->quarter_sample && index1 == 5) val = 1;                 \
1636
    else                                   val = 0;                 \
1637
    if(size_table[index1] - val > 0)                                \
1638
        val = get_bits(gb, size_table[index1] - val);               \
1639
    else                                   val = 0;                 \
1640
    sign = 0 - (val&1);                                             \
1641
    _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign;     \
1642
                                                                    \
1643
    index1 = index/6;                                               \
1644
    if (!s->quarter_sample && index1 == 5) val = 1;                 \
1645
    else                                   val = 0;                 \
1646
    if(size_table[index1] - val > 0)                                \
1647
        val = get_bits(gb, size_table[index1] - val);               \
1648
    else                                   val = 0;                 \
1649
    sign = 0 - (val&1);                                             \
1650
    _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign;     \
1651
  }
1652

    
1653
/** Predict and set motion vector
1654
 */
1655
static inline void vc1_pred_mv(MpegEncContext *s, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra)
1656
{
1657
    int xy, wrap, off = 0;
1658
    int16_t *A, *B, *C;
1659
    int px, py;
1660
    int sum;
1661

    
1662
    /* scale MV difference to be quad-pel */
1663
    dmv_x <<= 1 - s->quarter_sample;
1664
    dmv_y <<= 1 - s->quarter_sample;
1665

    
1666
    wrap = s->b8_stride;
1667
    xy = s->block_index[n];
1668

    
1669
    if(s->mb_intra){
1670
        s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
1671
        s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
1672
        s->current_picture.motion_val[1][xy][0] = 0;
1673
        s->current_picture.motion_val[1][xy][1] = 0;
1674
        if(mv1) { /* duplicate motion data for 1-MV block */
1675
            s->current_picture.motion_val[0][xy + 1][0] = 0;
1676
            s->current_picture.motion_val[0][xy + 1][1] = 0;
1677
            s->current_picture.motion_val[0][xy + wrap][0] = 0;
1678
            s->current_picture.motion_val[0][xy + wrap][1] = 0;
1679
            s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
1680
            s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
1681
            s->current_picture.motion_val[1][xy + 1][0] = 0;
1682
            s->current_picture.motion_val[1][xy + 1][1] = 0;
1683
            s->current_picture.motion_val[1][xy + wrap][0] = 0;
1684
            s->current_picture.motion_val[1][xy + wrap][1] = 0;
1685
            s->current_picture.motion_val[1][xy + wrap + 1][0] = 0;
1686
            s->current_picture.motion_val[1][xy + wrap + 1][1] = 0;
1687
        }
1688
        return;
1689
    }
1690

    
1691
    C = s->current_picture.motion_val[0][xy - 1];
1692
    A = s->current_picture.motion_val[0][xy - wrap];
1693
    if(mv1)
1694
        off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
1695
    else {
1696
        //in 4-MV mode different blocks have different B predictor position
1697
        switch(n){
1698
        case 0:
1699
            off = (s->mb_x > 0) ? -1 : 1;
1700
            break;
1701
        case 1:
1702
            off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
1703
            break;
1704
        case 2:
1705
            off = 1;
1706
            break;
1707
        case 3:
1708
            off = -1;
1709
        }
1710
    }
1711
    B = s->current_picture.motion_val[0][xy - wrap + off];
1712

    
1713
    if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds
1714
        if(s->mb_width == 1) {
1715
            px = A[0];
1716
            py = A[1];
1717
        } else {
1718
            px = mid_pred(A[0], B[0], C[0]);
1719
            py = mid_pred(A[1], B[1], C[1]);
1720
        }
1721
    } else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds
1722
        px = C[0];
1723
        py = C[1];
1724
    } else {
1725
        px = py = 0;
1726
    }
1727
    /* Pullback MV as specified in 8.3.5.3.4 */
1728
    {
1729
        int qx, qy, X, Y;
1730
        qx = (s->mb_x << 6) + ((n==1 || n==3) ? 32 : 0);
1731
        qy = (s->mb_y << 6) + ((n==2 || n==3) ? 32 : 0);
1732
        X = (s->mb_width << 6) - 4;
1733
        Y = (s->mb_height << 6) - 4;
1734
        if(mv1) {
1735
            if(qx + px < -60) px = -60 - qx;
1736
            if(qy + py < -60) py = -60 - qy;
1737
        } else {
1738
            if(qx + px < -28) px = -28 - qx;
1739
            if(qy + py < -28) py = -28 - qy;
1740
        }
1741
        if(qx + px > X) px = X - qx;
1742
        if(qy + py > Y) py = Y - qy;
1743
    }
1744
    /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
1745
    if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) {
1746
        if(is_intra[xy - wrap])
1747
            sum = FFABS(px) + FFABS(py);
1748
        else
1749
            sum = FFABS(px - A[0]) + FFABS(py - A[1]);
1750
        if(sum > 32) {
1751
            if(get_bits1(&s->gb)) {
1752
                px = A[0];
1753
                py = A[1];
1754
            } else {
1755
                px = C[0];
1756
                py = C[1];
1757
            }
1758
        } else {
1759
            if(is_intra[xy - 1])
1760
                sum = FFABS(px) + FFABS(py);
1761
            else
1762
                sum = FFABS(px - C[0]) + FFABS(py - C[1]);
1763
            if(sum > 32) {
1764
                if(get_bits1(&s->gb)) {
1765
                    px = A[0];
1766
                    py = A[1];
1767
                } else {
1768
                    px = C[0];
1769
                    py = C[1];
1770
                }
1771
            }
1772
        }
1773
    }
1774
    /* store MV using signed modulus of MV range defined in 4.11 */
1775
    s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
1776
    s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
1777
    if(mv1) { /* duplicate motion data for 1-MV block */
1778
        s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0];
1779
        s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1];
1780
        s->current_picture.motion_val[0][xy + wrap][0] = s->current_picture.motion_val[0][xy][0];
1781
        s->current_picture.motion_val[0][xy + wrap][1] = s->current_picture.motion_val[0][xy][1];
1782
        s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0];
1783
        s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1];
1784
    }
1785
}
1786

    
1787
/** Motion compensation for direct or interpolated blocks in B-frames
1788
 */
1789
static void vc1_interp_mc(VC1Context *v)
1790
{
1791
    MpegEncContext *s = &v->s;
1792
    DSPContext *dsp = &v->s.dsp;
1793
    uint8_t *srcY, *srcU, *srcV;
1794
    int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
1795

    
1796
    if(!v->s.next_picture.data[0])return;
1797

    
1798
    mx = s->mv[1][0][0];
1799
    my = s->mv[1][0][1];
1800
    uvmx = (mx + ((mx & 3) == 3)) >> 1;
1801
    uvmy = (my + ((my & 3) == 3)) >> 1;
1802
    if(v->fastuvmc) {
1803
        uvmx = uvmx + ((uvmx<0)?-(uvmx&1):(uvmx&1));
1804
        uvmy = uvmy + ((uvmy<0)?-(uvmy&1):(uvmy&1));
1805
    }
1806
    srcY = s->next_picture.data[0];
1807
    srcU = s->next_picture.data[1];
1808
    srcV = s->next_picture.data[2];
1809

    
1810
    src_x = s->mb_x * 16 + (mx >> 2);
1811
    src_y = s->mb_y * 16 + (my >> 2);
1812
    uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
1813
    uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
1814

    
1815
    if(v->profile != PROFILE_ADVANCED){
1816
        src_x   = av_clip(  src_x, -16, s->mb_width  * 16);
1817
        src_y   = av_clip(  src_y, -16, s->mb_height * 16);
1818
        uvsrc_x = av_clip(uvsrc_x,  -8, s->mb_width  *  8);
1819
        uvsrc_y = av_clip(uvsrc_y,  -8, s->mb_height *  8);
1820
    }else{
1821
        src_x   = av_clip(  src_x, -17, s->avctx->coded_width);
1822
        src_y   = av_clip(  src_y, -18, s->avctx->coded_height + 1);
1823
        uvsrc_x = av_clip(uvsrc_x,  -8, s->avctx->coded_width  >> 1);
1824
        uvsrc_y = av_clip(uvsrc_y,  -8, s->avctx->coded_height >> 1);
1825
    }
1826

    
1827
    srcY += src_y * s->linesize + src_x;
1828
    srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
1829
    srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
1830

    
1831
    /* for grayscale we should not try to read from unknown area */
1832
    if(s->flags & CODEC_FLAG_GRAY) {
1833
        srcU = s->edge_emu_buffer + 18 * s->linesize;
1834
        srcV = s->edge_emu_buffer + 18 * s->linesize;
1835
    }
1836

    
1837
    if(v->rangeredfrm
1838
       || (unsigned)src_x > s->h_edge_pos - (mx&3) - 16
1839
       || (unsigned)src_y > s->v_edge_pos - (my&3) - 16){
1840
        uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
1841

    
1842
        srcY -= s->mspel * (1 + s->linesize);
1843
        ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
1844
                            src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
1845
        srcY = s->edge_emu_buffer;
1846
        ff_emulated_edge_mc(uvbuf     , srcU, s->uvlinesize, 8+1, 8+1,
1847
                            uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
1848
        ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
1849
                            uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
1850
        srcU = uvbuf;
1851
        srcV = uvbuf + 16;
1852
        /* if we deal with range reduction we need to scale source blocks */
1853
        if(v->rangeredfrm) {
1854
            int i, j;
1855
            uint8_t *src, *src2;
1856

    
1857
            src = srcY;
1858
            for(j = 0; j < 17 + s->mspel*2; j++) {
1859
                for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
1860
                src += s->linesize;
1861
            }
1862
            src = srcU; src2 = srcV;
1863
            for(j = 0; j < 9; j++) {
1864
                for(i = 0; i < 9; i++) {
1865
                    src[i] = ((src[i] - 128) >> 1) + 128;
1866
                    src2[i] = ((src2[i] - 128) >> 1) + 128;
1867
                }
1868
                src += s->uvlinesize;
1869
                src2 += s->uvlinesize;
1870
            }
1871
        }
1872
        srcY += s->mspel * (1 + s->linesize);
1873
    }
1874

    
1875
    mx >>= 1;
1876
    my >>= 1;
1877
    dxy = ((my & 1) << 1) | (mx & 1);
1878

    
1879
    dsp->avg_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
1880

    
1881
    if(s->flags & CODEC_FLAG_GRAY) return;
1882
    /* Chroma MC always uses qpel blilinear */
1883
    uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
1884
    uvmx = (uvmx&3)<<1;
1885
    uvmy = (uvmy&3)<<1;
1886
    dsp->avg_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
1887
    dsp->avg_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
1888
}
1889

    
1890
static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs)
1891
{
1892
    int n = bfrac;
1893

    
1894
#if B_FRACTION_DEN==256
1895
    if(inv)
1896
        n -= 256;
1897
    if(!qs)
1898
        return 2 * ((value * n + 255) >> 9);
1899
    return (value * n + 128) >> 8;
1900
#else
1901
    if(inv)
1902
        n -= B_FRACTION_DEN;
1903
    if(!qs)
1904
        return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN));
1905
    return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN;
1906
#endif
1907
}
1908

    
1909
/** Reconstruct motion vector for B-frame and do motion compensation
1910
 */
1911
static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode)
1912
{
1913
    if(v->use_ic) {
1914
        v->mv_mode2 = v->mv_mode;
1915
        v->mv_mode = MV_PMODE_INTENSITY_COMP;
1916
    }
1917
    if(direct) {
1918
        vc1_mc_1mv(v, 0);
1919
        vc1_interp_mc(v);
1920
        if(v->use_ic) v->mv_mode = v->mv_mode2;
1921
        return;
1922
    }
1923
    if(mode == BMV_TYPE_INTERPOLATED) {
1924
        vc1_mc_1mv(v, 0);
1925
        vc1_interp_mc(v);
1926
        if(v->use_ic) v->mv_mode = v->mv_mode2;
1927
        return;
1928
    }
1929

    
1930
    if(v->use_ic && (mode == BMV_TYPE_BACKWARD)) v->mv_mode = v->mv_mode2;
1931
    vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
1932
    if(v->use_ic) v->mv_mode = v->mv_mode2;
1933
}
1934

    
1935
static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mvtype)
1936
{
1937
    MpegEncContext *s = &v->s;
1938
    int xy, wrap, off = 0;
1939
    int16_t *A, *B, *C;
1940
    int px, py;
1941
    int sum;
1942
    int r_x, r_y;
1943
    const uint8_t *is_intra = v->mb_type[0];
1944

    
1945
    r_x = v->range_x;
1946
    r_y = v->range_y;
1947
    /* scale MV difference to be quad-pel */
1948
    dmv_x[0] <<= 1 - s->quarter_sample;
1949
    dmv_y[0] <<= 1 - s->quarter_sample;
1950
    dmv_x[1] <<= 1 - s->quarter_sample;
1951
    dmv_y[1] <<= 1 - s->quarter_sample;
1952

    
1953
    wrap = s->b8_stride;
1954
    xy = s->block_index[0];
1955

    
1956
    if(s->mb_intra) {
1957
        s->current_picture.motion_val[0][xy][0] =
1958
        s->current_picture.motion_val[0][xy][1] =
1959
        s->current_picture.motion_val[1][xy][0] =
1960
        s->current_picture.motion_val[1][xy][1] = 0;
1961
        return;
1962
    }
1963
    s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
1964
    s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
1965
    s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
1966
    s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
1967

    
1968
    /* Pullback predicted motion vectors as specified in 8.4.5.4 */
1969
    s->mv[0][0][0] = av_clip(s->mv[0][0][0], -60 - (s->mb_x << 6), (s->mb_width  << 6) - 4 - (s->mb_x << 6));
1970
    s->mv[0][0][1] = av_clip(s->mv[0][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
1971
    s->mv[1][0][0] = av_clip(s->mv[1][0][0], -60 - (s->mb_x << 6), (s->mb_width  << 6) - 4 - (s->mb_x << 6));
1972
    s->mv[1][0][1] = av_clip(s->mv[1][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
1973
    if(direct) {
1974
        s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
1975
        s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
1976
        s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
1977
        s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
1978
        return;
1979
    }
1980

    
1981
    if((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
1982
        C = s->current_picture.motion_val[0][xy - 2];
1983
        A = s->current_picture.motion_val[0][xy - wrap*2];
1984
        off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
1985
        B = s->current_picture.motion_val[0][xy - wrap*2 + off];
1986

    
1987
        if(!s->mb_x) C[0] = C[1] = 0;
1988
        if(!s->first_slice_line) { // predictor A is not out of bounds
1989
            if(s->mb_width == 1) {
1990
                px = A[0];
1991
                py = A[1];
1992
            } else {
1993
                px = mid_pred(A[0], B[0], C[0]);
1994
                py = mid_pred(A[1], B[1], C[1]);
1995
            }
1996
        } else if(s->mb_x) { // predictor C is not out of bounds
1997
            px = C[0];
1998
            py = C[1];
1999
        } else {
2000
            px = py = 0;
2001
        }
2002
        /* Pullback MV as specified in 8.3.5.3.4 */
2003
        {
2004
            int qx, qy, X, Y;
2005
            if(v->profile < PROFILE_ADVANCED) {
2006
                qx = (s->mb_x << 5);
2007
                qy = (s->mb_y << 5);
2008
                X = (s->mb_width << 5) - 4;
2009
                Y = (s->mb_height << 5) - 4;
2010
                if(qx + px < -28) px = -28 - qx;
2011
                if(qy + py < -28) py = -28 - qy;
2012
                if(qx + px > X) px = X - qx;
2013
                if(qy + py > Y) py = Y - qy;
2014
            } else {
2015
                qx = (s->mb_x << 6);
2016
                qy = (s->mb_y << 6);
2017
                X = (s->mb_width << 6) - 4;
2018
                Y = (s->mb_height << 6) - 4;
2019
                if(qx + px < -60) px = -60 - qx;
2020
                if(qy + py < -60) py = -60 - qy;
2021
                if(qx + px > X) px = X - qx;
2022
                if(qy + py > Y) py = Y - qy;
2023
            }
2024
        }
2025
        /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
2026
        if(0 && !s->first_slice_line && s->mb_x) {
2027
            if(is_intra[xy - wrap])
2028
                sum = FFABS(px) + FFABS(py);
2029
            else
2030
                sum = FFABS(px - A[0]) + FFABS(py - A[1]);
2031
            if(sum > 32) {
2032
                if(get_bits1(&s->gb)) {
2033
                    px = A[0];
2034
                    py = A[1];
2035
                } else {
2036
                    px = C[0];
2037
                    py = C[1];
2038
                }
2039
            } else {
2040
                if(is_intra[xy - 2])
2041
                    sum = FFABS(px) + FFABS(py);
2042
                else
2043
                    sum = FFABS(px - C[0]) + FFABS(py - C[1]);
2044
                if(sum > 32) {
2045
                    if(get_bits1(&s->gb)) {
2046
                        px = A[0];
2047
                        py = A[1];
2048
                    } else {
2049
                        px = C[0];
2050
                        py = C[1];
2051
                    }
2052
                }
2053
            }
2054
        }
2055
        /* store MV using signed modulus of MV range defined in 4.11 */
2056
        s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
2057
        s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
2058
    }
2059
    if((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
2060
        C = s->current_picture.motion_val[1][xy - 2];
2061
        A = s->current_picture.motion_val[1][xy - wrap*2];
2062
        off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
2063
        B = s->current_picture.motion_val[1][xy - wrap*2 + off];
2064

    
2065
        if(!s->mb_x) C[0] = C[1] = 0;
2066
        if(!s->first_slice_line) { // predictor A is not out of bounds
2067
            if(s->mb_width == 1) {
2068
                px = A[0];
2069
                py = A[1];
2070
            } else {
2071
                px = mid_pred(A[0], B[0], C[0]);
2072
                py = mid_pred(A[1], B[1], C[1]);
2073
            }
2074
        } else if(s->mb_x) { // predictor C is not out of bounds
2075
            px = C[0];
2076
            py = C[1];
2077
        } else {
2078
            px = py = 0;
2079
        }
2080
        /* Pullback MV as specified in 8.3.5.3.4 */
2081
        {
2082
            int qx, qy, X, Y;
2083
            if(v->profile < PROFILE_ADVANCED) {
2084
                qx = (s->mb_x << 5);
2085
                qy = (s->mb_y << 5);
2086
                X = (s->mb_width << 5) - 4;
2087
                Y = (s->mb_height << 5) - 4;
2088
                if(qx + px < -28) px = -28 - qx;
2089
                if(qy + py < -28) py = -28 - qy;
2090
                if(qx + px > X) px = X - qx;
2091
                if(qy + py > Y) py = Y - qy;
2092
            } else {
2093
                qx = (s->mb_x << 6);
2094
                qy = (s->mb_y << 6);
2095
                X = (s->mb_width << 6) - 4;
2096
                Y = (s->mb_height << 6) - 4;
2097
                if(qx + px < -60) px = -60 - qx;
2098
                if(qy + py < -60) py = -60 - qy;
2099
                if(qx + px > X) px = X - qx;
2100
                if(qy + py > Y) py = Y - qy;
2101
            }
2102
        }
2103
        /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
2104
        if(0 && !s->first_slice_line && s->mb_x) {
2105
            if(is_intra[xy - wrap])
2106
                sum = FFABS(px) + FFABS(py);
2107
            else
2108
                sum = FFABS(px - A[0]) + FFABS(py - A[1]);
2109
            if(sum > 32) {
2110
                if(get_bits1(&s->gb)) {
2111
                    px = A[0];
2112
                    py = A[1];
2113
                } else {
2114
                    px = C[0];
2115
                    py = C[1];
2116
                }
2117
            } else {
2118
                if(is_intra[xy - 2])
2119
                    sum = FFABS(px) + FFABS(py);
2120
                else
2121
                    sum = FFABS(px - C[0]) + FFABS(py - C[1]);
2122
                if(sum > 32) {
2123
                    if(get_bits1(&s->gb)) {
2124
                        px = A[0];
2125
                        py = A[1];
2126
                    } else {
2127
                        px = C[0];
2128
                        py = C[1];
2129
                    }
2130
                }
2131
            }
2132
        }
2133
        /* store MV using signed modulus of MV range defined in 4.11 */
2134

    
2135
        s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
2136
        s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
2137
    }
2138
    s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
2139
    s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
2140
    s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
2141
    s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
2142
}
2143

    
2144
/** Get predicted DC value for I-frames only
2145
 * prediction dir: left=0, top=1
2146
 * @param s MpegEncContext
2147
 * @param[in] n block index in the current MB
2148
 * @param dc_val_ptr Pointer to DC predictor
2149
 * @param dir_ptr Prediction direction for use in AC prediction
2150
 */
2151
static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
2152
                              int16_t **dc_val_ptr, int *dir_ptr)
2153
{
2154
    int a, b, c, wrap, pred, scale;
2155
    int16_t *dc_val;
2156
    static const uint16_t dcpred[32] = {
2157
    -1, 1024,  512,  341,  256,  205,  171,  146,  128,
2158
         114,  102,   93,   85,   79,   73,   68,   64,
2159
          60,   57,   54,   51,   49,   47,   45,   43,
2160
          41,   39,   38,   37,   35,   34,   33
2161
    };
2162

    
2163
    /* find prediction - wmv3_dc_scale always used here in fact */
2164
    if (n < 4)     scale = s->y_dc_scale;
2165
    else           scale = s->c_dc_scale;
2166

    
2167
    wrap = s->block_wrap[n];
2168
    dc_val= s->dc_val[0] + s->block_index[n];
2169

    
2170
    /* B A
2171
     * C X
2172
     */
2173
    c = dc_val[ - 1];
2174
    b = dc_val[ - 1 - wrap];
2175
    a = dc_val[ - wrap];
2176

    
2177
    if (pq < 9 || !overlap)
2178
    {
2179
        /* Set outer values */
2180
        if (s->first_slice_line && (n!=2 && n!=3)) b=a=dcpred[scale];
2181
        if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale];
2182
    }
2183
    else
2184
    {
2185
        /* Set outer values */
2186
        if (s->first_slice_line && (n!=2 && n!=3)) b=a=0;
2187
        if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0;
2188
    }
2189

    
2190
    if (abs(a - b) <= abs(b - c)) {
2191
        pred = c;
2192
        *dir_ptr = 1;//left
2193
    } else {
2194
        pred = a;
2195
        *dir_ptr = 0;//top
2196
    }
2197

    
2198
    /* update predictor */
2199
    *dc_val_ptr = &dc_val[0];
2200
    return pred;
2201
}
2202

    
2203

    
2204
/** Get predicted DC value
2205
 * prediction dir: left=0, top=1
2206
 * @param s MpegEncContext
2207
 * @param[in] n block index in the current MB
2208
 * @param dc_val_ptr Pointer to DC predictor
2209
 * @param dir_ptr Prediction direction for use in AC prediction
2210
 */
2211
static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
2212
                              int a_avail, int c_avail,
2213
                              int16_t **dc_val_ptr, int *dir_ptr)
2214
{
2215
    int a, b, c, wrap, pred, scale;
2216
    int16_t *dc_val;
2217
    int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
2218
    int q1, q2 = 0;
2219

    
2220
    /* find prediction - wmv3_dc_scale always used here in fact */
2221
    if (n < 4)     scale = s->y_dc_scale;
2222
    else           scale = s->c_dc_scale;
2223

    
2224
    wrap = s->block_wrap[n];
2225
    dc_val= s->dc_val[0] + s->block_index[n];
2226

    
2227
    /* B A
2228
     * C X
2229
     */
2230
    c = dc_val[ - 1];
2231
    b = dc_val[ - 1 - wrap];
2232
    a = dc_val[ - wrap];
2233
    /* scale predictors if needed */
2234
    q1 = s->current_picture.qscale_table[mb_pos];
2235
    if(c_avail && (n!= 1 && n!=3)) {
2236
        q2 = s->current_picture.qscale_table[mb_pos - 1];
2237
        if(q2 && q2 != q1)
2238
            c = (c * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
2239
    }
2240
    if(a_avail && (n!= 2 && n!=3)) {
2241
        q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
2242
        if(q2 && q2 != q1)
2243
            a = (a * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
2244
    }
2245
    if(a_avail && c_avail && (n!=3)) {
2246
        int off = mb_pos;
2247
        if(n != 1) off--;
2248
        if(n != 2) off -= s->mb_stride;
2249
        q2 = s->current_picture.qscale_table[off];
2250
        if(q2 && q2 != q1)
2251
            b = (b * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
2252
    }
2253

    
2254
    if(a_avail && c_avail) {
2255
        if(abs(a - b) <= abs(b - c)) {
2256
            pred = c;
2257
            *dir_ptr = 1;//left
2258
        } else {
2259
            pred = a;
2260
            *dir_ptr = 0;//top
2261
        }
2262
    } else if(a_avail) {
2263
        pred = a;
2264
        *dir_ptr = 0;//top
2265
    } else if(c_avail) {
2266
        pred = c;
2267
        *dir_ptr = 1;//left
2268
    } else {
2269
        pred = 0;
2270
        *dir_ptr = 1;//left
2271
    }
2272

    
2273
    /* update predictor */
2274
    *dc_val_ptr = &dc_val[0];
2275
    return pred;
2276
}
2277

    
2278

    
2279
/**
2280
 * @defgroup std_mb VC1 Macroblock-level functions in Simple/Main Profiles
2281
 * @see 7.1.4, p91 and 8.1.1.7, p(1)04
2282
 * @{
2283
 */
2284

    
2285
static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
2286
{
2287
    int xy, wrap, pred, a, b, c;
2288

    
2289
    xy = s->block_index[n];
2290
    wrap = s->b8_stride;
2291

    
2292
    /* B C
2293
     * A X
2294
     */
2295
    a = s->coded_block[xy - 1       ];
2296
    b = s->coded_block[xy - 1 - wrap];
2297
    c = s->coded_block[xy     - wrap];
2298

    
2299
    if (b == c) {
2300
        pred = a;
2301
    } else {
2302
        pred = c;
2303
    }
2304

    
2305
    /* store value */
2306
    *coded_block_ptr = &s->coded_block[xy];
2307

    
2308
    return pred;
2309
}
2310

    
2311
/**
2312
 * Decode one AC coefficient
2313
 * @param v The VC1 context
2314
 * @param last Last coefficient
2315
 * @param skip How much zero coefficients to skip
2316
 * @param value Decoded AC coefficient value
2317
 * @see 8.1.3.4
2318
 */
2319
static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
2320
{
2321
    GetBitContext *gb = &v->s.gb;
2322
    int index, escape, run = 0, level = 0, lst = 0;
2323

    
2324
    index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
2325
    if (index != vc1_ac_sizes[codingset] - 1) {
2326
        run = vc1_index_decode_table[codingset][index][0];
2327
        level = vc1_index_decode_table[codingset][index][1];
2328
        lst = index >= vc1_last_decode_table[codingset];
2329
        if(get_bits(gb, 1))
2330
            level = -level;
2331
    } else {
2332
        escape = decode210(gb);
2333
        if (escape != 2) {
2334
            index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
2335
            run = vc1_index_decode_table[codingset][index][0];
2336
            level = vc1_index_decode_table[codingset][index][1];
2337
            lst = index >= vc1_last_decode_table[codingset];
2338
            if(escape == 0) {
2339
                if(lst)
2340
                    level += vc1_last_delta_level_table[codingset][run];
2341
                else
2342
                    level += vc1_delta_level_table[codingset][run];
2343
            } else {
2344
                if(lst)
2345
                    run += vc1_last_delta_run_table[codingset][level] + 1;
2346
                else
2347
                    run += vc1_delta_run_table[codingset][level] + 1;
2348
            }
2349
            if(get_bits(gb, 1))
2350
                level = -level;
2351
        } else {
2352
            int sign;
2353
            lst = get_bits(gb, 1);
2354
            if(v->s.esc3_level_length == 0) {
2355
                if(v->pq < 8 || v->dquantfrm) { // table 59
2356
                    v->s.esc3_level_length = get_bits(gb, 3);
2357
                    if(!v->s.esc3_level_length)
2358
                        v->s.esc3_level_length = get_bits(gb, 2) + 8;
2359
                } else { //table 60
2360
                    v->s.esc3_level_length = get_prefix(gb, 1, 6) + 2;
2361
                }
2362
                v->s.esc3_run_length = 3 + get_bits(gb, 2);
2363
            }
2364
            run = get_bits(gb, v->s.esc3_run_length);
2365
            sign = get_bits(gb, 1);
2366
            level = get_bits(gb, v->s.esc3_level_length);
2367
            if(sign)
2368
                level = -level;
2369
        }
2370
    }
2371

    
2372
    *last = lst;
2373
    *skip = run;
2374
    *value = level;
2375
}
2376

    
2377
/** Decode intra block in intra frames - should be faster than decode_intra_block
2378
 * @param v VC1Context
2379
 * @param block block to decode
2380
 * @param coded are AC coeffs present or not
2381
 * @param codingset set of VLC to decode data
2382
 */
2383
static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset)
2384
{
2385
    GetBitContext *gb = &v->s.gb;
2386
    MpegEncContext *s = &v->s;
2387
    int dc_pred_dir = 0; /* Direction of the DC prediction used */
2388
    int run_diff, i;
2389
    int16_t *dc_val;
2390
    int16_t *ac_val, *ac_val2;
2391
    int dcdiff;
2392

    
2393
    /* Get DC differential */
2394
    if (n < 4) {
2395
        dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
2396
    } else {
2397
        dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
2398
    }
2399
    if (dcdiff < 0){
2400
        av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
2401
        return -1;
2402
    }
2403
    if (dcdiff)
2404
    {
2405
        if (dcdiff == 119 /* ESC index value */)
2406
        {
2407
            /* TODO: Optimize */
2408
            if (v->pq == 1) dcdiff = get_bits(gb, 10);
2409
            else if (v->pq == 2) dcdiff = get_bits(gb, 9);
2410
            else dcdiff = get_bits(gb, 8);
2411
        }
2412
        else
2413
        {
2414
            if (v->pq == 1)
2415
                dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
2416
            else if (v->pq == 2)
2417
                dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
2418
        }
2419
        if (get_bits(gb, 1))
2420
            dcdiff = -dcdiff;
2421
    }
2422

    
2423
    /* Prediction */
2424
    dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
2425
    *dc_val = dcdiff;
2426

    
2427
    /* Store the quantized DC coeff, used for prediction */
2428
    if (n < 4) {
2429
        block[0] = dcdiff * s->y_dc_scale;
2430
    } else {
2431
        block[0] = dcdiff * s->c_dc_scale;
2432
    }
2433
    /* Skip ? */
2434
    run_diff = 0;
2435
    i = 0;
2436
    if (!coded) {
2437
        goto not_coded;
2438
    }
2439

    
2440
    //AC Decoding
2441
    i = 1;
2442

    
2443
    {
2444
        int last = 0, skip, value;
2445
        const int8_t *zz_table;
2446
        int scale;
2447
        int k;
2448

    
2449
        scale = v->pq * 2 + v->halfpq;
2450

    
2451
        if(v->s.ac_pred) {
2452
            if(!dc_pred_dir)
2453
                zz_table = ff_vc1_horizontal_zz;
2454
            else
2455
                zz_table = ff_vc1_vertical_zz;
2456
        } else
2457
            zz_table = ff_vc1_normal_zz;
2458

    
2459
        ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
2460
        ac_val2 = ac_val;
2461
        if(dc_pred_dir) //left
2462
            ac_val -= 16;
2463
        else //top
2464
            ac_val -= 16 * s->block_wrap[n];
2465

    
2466
        while (!last) {
2467
            vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
2468
            i += skip;
2469
            if(i > 63)
2470
                break;
2471
            block[zz_table[i++]] = value;
2472
        }
2473

    
2474
        /* apply AC prediction if needed */
2475
        if(s->ac_pred) {
2476
            if(dc_pred_dir) { //left
2477
                for(k = 1; k < 8; k++)
2478
                    block[k << 3] += ac_val[k];
2479
            } else { //top
2480
                for(k = 1; k < 8; k++)
2481
                    block[k] += ac_val[k + 8];
2482
            }
2483
        }
2484
        /* save AC coeffs for further prediction */
2485
        for(k = 1; k < 8; k++) {
2486
            ac_val2[k] = block[k << 3];
2487
            ac_val2[k + 8] = block[k];
2488
        }
2489

    
2490
        /* scale AC coeffs */
2491
        for(k = 1; k < 64; k++)
2492
            if(block[k]) {
2493
                block[k] *= scale;
2494
                if(!v->pquantizer)
2495
                    block[k] += (block[k] < 0) ? -v->pq : v->pq;
2496
            }
2497

    
2498
        if(s->ac_pred) i = 63;
2499
    }
2500

    
2501
not_coded:
2502
    if(!coded) {
2503
        int k, scale;
2504
        ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
2505
        ac_val2 = ac_val;
2506

    
2507
        scale = v->pq * 2 + v->halfpq;
2508
        memset(ac_val2, 0, 16 * 2);
2509
        if(dc_pred_dir) {//left
2510
            ac_val -= 16;
2511
            if(s->ac_pred)
2512
                memcpy(ac_val2, ac_val, 8 * 2);
2513
        } else {//top
2514
            ac_val -= 16 * s->block_wrap[n];
2515
            if(s->ac_pred)
2516
                memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
2517
        }
2518

    
2519
        /* apply AC prediction if needed */
2520
        if(s->ac_pred) {
2521
            if(dc_pred_dir) { //left
2522
                for(k = 1; k < 8; k++) {
2523
                    block[k << 3] = ac_val[k] * scale;
2524
                    if(!v->pquantizer && block[k << 3])
2525
                        block[k << 3] += (block[k << 3] < 0) ? -v->pq : v->pq;
2526
                }
2527
            } else { //top
2528
                for(k = 1; k < 8; k++) {
2529
                    block[k] = ac_val[k + 8] * scale;
2530
                    if(!v->pquantizer && block[k])
2531
                        block[k] += (block[k] < 0) ? -v->pq : v->pq;
2532
                }
2533
            }
2534
            i = 63;
2535
        }
2536
    }
2537
    s->block_last_index[n] = i;
2538

    
2539
    return 0;
2540
}
2541

    
2542
/** Decode intra block in intra frames - should be faster than decode_intra_block
2543
 * @param v VC1Context
2544
 * @param block block to decode
2545
 * @param coded are AC coeffs present or not
2546
 * @param codingset set of VLC to decode data
2547
 */
2548
static int vc1_decode_i_block_adv(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset, int mquant)
2549
{
2550
    GetBitContext *gb = &v->s.gb;
2551
    MpegEncContext *s = &v->s;
2552
    int dc_pred_dir = 0; /* Direction of the DC prediction used */
2553
    int run_diff, i;
2554
    int16_t *dc_val;
2555
    int16_t *ac_val, *ac_val2;
2556
    int dcdiff;
2557
    int a_avail = v->a_avail, c_avail = v->c_avail;
2558
    int use_pred = s->ac_pred;
2559
    int scale;
2560
    int q1, q2 = 0;
2561
    int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
2562

    
2563
    /* Get DC differential */
2564
    if (n < 4) {
2565
        dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
2566
    } else {
2567
        dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
2568
    }
2569
    if (dcdiff < 0){
2570
        av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
2571
        return -1;
2572
    }
2573
    if (dcdiff)
2574
    {
2575
        if (dcdiff == 119 /* ESC index value */)
2576
        {
2577
            /* TODO: Optimize */
2578
            if (mquant == 1) dcdiff = get_bits(gb, 10);
2579
            else if (mquant == 2) dcdiff = get_bits(gb, 9);
2580
            else dcdiff = get_bits(gb, 8);
2581
        }
2582
        else
2583
        {
2584
            if (mquant == 1)
2585
                dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
2586
            else if (mquant == 2)
2587
                dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
2588
        }
2589
        if (get_bits(gb, 1))
2590
            dcdiff = -dcdiff;
2591
    }
2592

    
2593
    /* Prediction */
2594
    dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
2595
    *dc_val = dcdiff;
2596

    
2597
    /* Store the quantized DC coeff, used for prediction */
2598
    if (n < 4) {
2599
        block[0] = dcdiff * s->y_dc_scale;
2600
    } else {
2601
        block[0] = dcdiff * s->c_dc_scale;
2602
    }
2603
    /* Skip ? */
2604
    run_diff = 0;
2605
    i = 0;
2606

    
2607
    //AC Decoding
2608
    i = 1;
2609

    
2610
    /* check if AC is needed at all and adjust direction if needed */
2611
    if(!a_avail) dc_pred_dir = 1;
2612
    if(!c_avail) dc_pred_dir = 0;
2613
    if(!a_avail && !c_avail) use_pred = 0;
2614
    ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
2615
    ac_val2 = ac_val;
2616

    
2617
    scale = mquant * 2 + v->halfpq;
2618

    
2619
    if(dc_pred_dir) //left
2620
        ac_val -= 16;
2621
    else //top
2622
        ac_val -= 16 * s->block_wrap[n];
2623

    
2624
    q1 = s->current_picture.qscale_table[mb_pos];
2625
    if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
2626
    if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
2627
    if(dc_pred_dir && n==1) q2 = q1;
2628
    if(!dc_pred_dir && n==2) q2 = q1;
2629
    if(n==3) q2 = q1;
2630

    
2631
    if(coded) {
2632
        int last = 0, skip, value;
2633
        const int8_t *zz_table;
2634
        int k;
2635

    
2636
        if(v->s.ac_pred) {
2637
            if(!dc_pred_dir)
2638
                zz_table = ff_vc1_horizontal_zz;
2639
            else
2640
                zz_table = ff_vc1_vertical_zz;
2641
        } else
2642
            zz_table = ff_vc1_normal_zz;
2643

    
2644
        while (!last) {
2645
            vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
2646
            i += skip;
2647
            if(i > 63)
2648
                break;
2649
            block[zz_table[i++]] = value;
2650
        }
2651

    
2652
        /* apply AC prediction if needed */
2653
        if(use_pred) {
2654
            /* scale predictors if needed*/
2655
            if(q2 && q1!=q2) {
2656
                q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
2657
                q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
2658

    
2659
                if(dc_pred_dir) { //left
2660
                    for(k = 1; k < 8; k++)
2661
                        block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2662
                } else { //top
2663
                    for(k = 1; k < 8; k++)
2664
                        block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2665
                }
2666
            } else {
2667
                if(dc_pred_dir) { //left
2668
                    for(k = 1; k < 8; k++)
2669
                        block[k << 3] += ac_val[k];
2670
                } else { //top
2671
                    for(k = 1; k < 8; k++)
2672
                        block[k] += ac_val[k + 8];
2673
                }
2674
            }
2675
        }
2676
        /* save AC coeffs for further prediction */
2677
        for(k = 1; k < 8; k++) {
2678
            ac_val2[k] = block[k << 3];
2679
            ac_val2[k + 8] = block[k];
2680
        }
2681

    
2682
        /* scale AC coeffs */
2683
        for(k = 1; k < 64; k++)
2684
            if(block[k]) {
2685
                block[k] *= scale;
2686
                if(!v->pquantizer)
2687
                    block[k] += (block[k] < 0) ? -mquant : mquant;
2688
            }
2689

    
2690
        if(use_pred) i = 63;
2691
    } else { // no AC coeffs
2692
        int k;
2693

    
2694
        memset(ac_val2, 0, 16 * 2);
2695
        if(dc_pred_dir) {//left
2696
            if(use_pred) {
2697
                memcpy(ac_val2, ac_val, 8 * 2);
2698
                if(q2 && q1!=q2) {
2699
                    q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
2700
                    q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
2701
                    for(k = 1; k < 8; k++)
2702
                        ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2703
                }
2704
            }
2705
        } else {//top
2706
            if(use_pred) {
2707
                memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
2708
                if(q2 && q1!=q2) {
2709
                    q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
2710
                    q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
2711
                    for(k = 1; k < 8; k++)
2712
                        ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2713
                }
2714
            }
2715
        }
2716

    
2717
        /* apply AC prediction if needed */
2718
        if(use_pred) {
2719
            if(dc_pred_dir) { //left
2720
                for(k = 1; k < 8; k++) {
2721
                    block[k << 3] = ac_val2[k] * scale;
2722
                    if(!v->pquantizer && block[k << 3])
2723
                        block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
2724
                }
2725
            } else { //top
2726
                for(k = 1; k < 8; k++) {
2727
                    block[k] = ac_val2[k + 8] * scale;
2728
                    if(!v->pquantizer && block[k])
2729
                        block[k] += (block[k] < 0) ? -mquant : mquant;
2730
                }
2731
            }
2732
            i = 63;
2733
        }
2734
    }
2735
    s->block_last_index[n] = i;
2736

    
2737
    return 0;
2738
}
2739

    
2740
/** Decode intra block in inter frames - more generic version than vc1_decode_i_block
2741
 * @param v VC1Context
2742
 * @param block block to decode
2743
 * @param coded are AC coeffs present or not
2744
 * @param mquant block quantizer
2745
 * @param codingset set of VLC to decode data
2746
 */
2747
static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset)
2748
{
2749
    GetBitContext *gb = &v->s.gb;
2750
    MpegEncContext *s = &v->s;
2751
    int dc_pred_dir = 0; /* Direction of the DC prediction used */
2752
    int run_diff, i;
2753
    int16_t *dc_val;
2754
    int16_t *ac_val, *ac_val2;
2755
    int dcdiff;
2756
    int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
2757
    int a_avail = v->a_avail, c_avail = v->c_avail;
2758
    int use_pred = s->ac_pred;
2759
    int scale;
2760
    int q1, q2 = 0;
2761

    
2762
    /* XXX: Guard against dumb values of mquant */
2763
    mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
2764

    
2765
    /* Set DC scale - y and c use the same */
2766
    s->y_dc_scale = s->y_dc_scale_table[mquant];
2767
    s->c_dc_scale = s->c_dc_scale_table[mquant];
2768

    
2769
    /* Get DC differential */
2770
    if (n < 4) {
2771
        dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
2772
    } else {
2773
        dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
2774
    }
2775
    if (dcdiff < 0){
2776
        av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
2777
        return -1;
2778
    }
2779
    if (dcdiff)
2780
    {
2781
        if (dcdiff == 119 /* ESC index value */)
2782
        {
2783
            /* TODO: Optimize */
2784
            if (mquant == 1) dcdiff = get_bits(gb, 10);
2785
            else if (mquant == 2) dcdiff = get_bits(gb, 9);
2786
            else dcdiff = get_bits(gb, 8);
2787
        }
2788
        else
2789
        {
2790
            if (mquant == 1)
2791
                dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
2792
            else if (mquant == 2)
2793
                dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
2794
        }
2795
        if (get_bits(gb, 1))
2796
            dcdiff = -dcdiff;
2797
    }
2798

    
2799
    /* Prediction */
2800
    dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
2801
    *dc_val = dcdiff;
2802

    
2803
    /* Store the quantized DC coeff, used for prediction */
2804

    
2805
    if (n < 4) {
2806
        block[0] = dcdiff * s->y_dc_scale;
2807
    } else {
2808
        block[0] = dcdiff * s->c_dc_scale;
2809
    }
2810
    /* Skip ? */
2811
    run_diff = 0;
2812
    i = 0;
2813

    
2814
    //AC Decoding
2815
    i = 1;
2816

    
2817
    /* check if AC is needed at all and adjust direction if needed */
2818
    if(!a_avail) dc_pred_dir = 1;
2819
    if(!c_avail) dc_pred_dir = 0;
2820
    if(!a_avail && !c_avail) use_pred = 0;
2821
    ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
2822
    ac_val2 = ac_val;
2823

    
2824
    scale = mquant * 2 + v->halfpq;
2825

    
2826
    if(dc_pred_dir) //left
2827
        ac_val -= 16;
2828
    else //top
2829
        ac_val -= 16 * s->block_wrap[n];
2830

    
2831
    q1 = s->current_picture.qscale_table[mb_pos];
2832
    if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
2833
    if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
2834
    if(dc_pred_dir && n==1) q2 = q1;
2835
    if(!dc_pred_dir && n==2) q2 = q1;
2836
    if(n==3) q2 = q1;
2837

    
2838
    if(coded) {
2839
        int last = 0, skip, value;
2840
        const int8_t *zz_table;
2841
        int k;
2842

    
2843
        zz_table = ff_vc1_simple_progressive_8x8_zz;
2844

    
2845
        while (!last) {
2846
            vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
2847
            i += skip;
2848
            if(i > 63)
2849
                break;
2850
            block[zz_table[i++]] = value;
2851
        }
2852

    
2853
        /* apply AC prediction if needed */
2854
        if(use_pred) {
2855
            /* scale predictors if needed*/
2856
            if(q2 && q1!=q2) {
2857
                q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
2858
                q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
2859

    
2860
                if(dc_pred_dir) { //left
2861
                    for(k = 1; k < 8; k++)
2862
                        block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2863
                } else { //top
2864
                    for(k = 1; k < 8; k++)
2865
                        block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2866
                }
2867
            } else {
2868
                if(dc_pred_dir) { //left
2869
                    for(k = 1; k < 8; k++)
2870
                        block[k << 3] += ac_val[k];
2871
                } else { //top
2872
                    for(k = 1; k < 8; k++)
2873
                        block[k] += ac_val[k + 8];
2874
                }
2875
            }
2876
        }
2877
        /* save AC coeffs for further prediction */
2878
        for(k = 1; k < 8; k++) {
2879
            ac_val2[k] = block[k << 3];
2880
            ac_val2[k + 8] = block[k];
2881
        }
2882

    
2883
        /* scale AC coeffs */
2884
        for(k = 1; k < 64; k++)
2885
            if(block[k]) {
2886
                block[k] *= scale;
2887
                if(!v->pquantizer)
2888
                    block[k] += (block[k] < 0) ? -mquant : mquant;
2889
            }
2890

    
2891
        if(use_pred) i = 63;
2892
    } else { // no AC coeffs
2893
        int k;
2894

    
2895
        memset(ac_val2, 0, 16 * 2);
2896
        if(dc_pred_dir) {//left
2897
            if(use_pred) {
2898
                memcpy(ac_val2, ac_val, 8 * 2);
2899
                if(q2 && q1!=q2) {
2900
                    q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
2901
                    q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
2902
                    for(k = 1; k < 8; k++)
2903
                        ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2904
                }
2905
            }
2906
        } else {//top
2907
            if(use_pred) {
2908
                memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
2909
                if(q2 && q1!=q2) {
2910
                    q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
2911
                    q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
2912
                    for(k = 1; k < 8; k++)
2913
                        ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2914
                }
2915
            }
2916
        }
2917

    
2918
        /* apply AC prediction if needed */
2919
        if(use_pred) {
2920
            if(dc_pred_dir) { //left
2921
                for(k = 1; k < 8; k++) {
2922
                    block[k << 3] = ac_val2[k] * scale;
2923
                    if(!v->pquantizer && block[k << 3])
2924
                        block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
2925
                }
2926
            } else { //top
2927
                for(k = 1; k < 8; k++) {
2928
                    block[k] = ac_val2[k + 8] * scale;
2929
                    if(!v->pquantizer && block[k])
2930
                        block[k] += (block[k] < 0) ? -mquant : mquant;
2931
                }
2932
            }
2933
            i = 63;
2934
        }
2935
    }
2936
    s->block_last_index[n] = i;
2937

    
2938
    return 0;
2939
}
2940

    
2941
/** Decode P block
2942
 */
2943
static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block)
2944
{
2945
    MpegEncContext *s = &v->s;
2946
    GetBitContext *gb = &s->gb;
2947
    int i, j;
2948
    int subblkpat = 0;
2949
    int scale, off, idx, last, skip, value;
2950
    int ttblk = ttmb & 7;
2951

    
2952
    if(ttmb == -1) {
2953
        ttblk = ff_vc1_ttblk_to_tt[v->tt_index][get_vlc2(gb, ff_vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
2954
    }
2955
    if(ttblk == TT_4X4) {
2956
        subblkpat = ~(get_vlc2(gb, ff_vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
2957
    }
2958
    if((ttblk != TT_8X8 && ttblk != TT_4X4) && (v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))) {
2959
        subblkpat = decode012(gb);
2960
        if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits
2961
        if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4;
2962
        if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8;
2963
    }
2964
    scale = 2 * mquant + ((v->pq == mquant) ? v->halfpq : 0);
2965

    
2966
    // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
2967
    if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
2968
        subblkpat = 2 - (ttblk == TT_8X4_TOP);
2969
        ttblk = TT_8X4;
2970
    }
2971
    if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
2972
        subblkpat = 2 - (ttblk == TT_4X8_LEFT);
2973
        ttblk = TT_4X8;
2974
    }
2975
    switch(ttblk) {
2976
    case TT_8X8:
2977
        i = 0;
2978
        last = 0;
2979
        while (!last) {
2980
            vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
2981
            i += skip;
2982
            if(i > 63)
2983
                break;
2984
            idx = ff_vc1_simple_progressive_8x8_zz[i++];
2985
            block[idx] = value * scale;
2986
            if(!v->pquantizer)
2987
                block[idx] += (block[idx] < 0) ? -mquant : mquant;
2988
        }
2989
        s->dsp.vc1_inv_trans_8x8(block);
2990
        break;
2991
    case TT_4X4:
2992
        for(j = 0; j < 4; j++) {
2993
            last = subblkpat & (1 << (3 - j));
2994
            i = 0;
2995
            off = (j & 1) * 4 + (j & 2) * 16;
2996
            while (!last) {
2997
                vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
2998
                i += skip;
2999
                if(i > 15)
3000
                    break;
3001
                idx = ff_vc1_simple_progressive_4x4_zz[i++];
3002
                block[idx + off] = value * scale;
3003
                if(!v->pquantizer)
3004
                    block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
3005
            }
3006
            if(!(subblkpat & (1 << (3 - j))))
3007
                s->dsp.vc1_inv_trans_4x4(block, j);
3008
        }
3009
        break;
3010
    case TT_8X4:
3011
        for(j = 0; j < 2; j++) {
3012
            last = subblkpat & (1 << (1 - j));
3013
            i = 0;
3014
            off = j * 32;
3015
            while (!last) {
3016
                vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
3017
                i += skip;
3018
                if(i > 31)
3019
                    break;
3020
                if(v->profile < PROFILE_ADVANCED)
3021
                    idx = ff_vc1_simple_progressive_8x4_zz[i++];
3022
                else
3023
                    idx = ff_vc1_adv_progressive_8x4_zz[i++];
3024
                block[idx + off] = value * scale;
3025
                if(!v->pquantizer)
3026
                    block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
3027
            }
3028
            if(!(subblkpat & (1 << (1 - j))))
3029
                s->dsp.vc1_inv_trans_8x4(block, j);
3030
        }
3031
        break;
3032
    case TT_4X8:
3033
        for(j = 0; j < 2; j++) {
3034
            last = subblkpat & (1 << (1 - j));
3035
            i = 0;
3036
            off = j * 4;
3037
            while (!last) {
3038
                vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
3039
                i += skip;
3040
                if(i > 31)
3041
                    break;
3042
                if(v->profile < PROFILE_ADVANCED)
3043
                    idx = ff_vc1_simple_progressive_4x8_zz[i++];
3044
                else
3045
                    idx = ff_vc1_adv_progressive_4x8_zz[i++];
3046
                block[idx + off] = value * scale;
3047
                if(!v->pquantizer)
3048
                    block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
3049
            }
3050
            if(!(subblkpat & (1 << (1 - j))))
3051
                s->dsp.vc1_inv_trans_4x8(block, j);
3052
        }
3053
        break;
3054
    }
3055
    return 0;
3056
}
3057

    
3058

    
3059
/** Decode one P-frame MB (in Simple/Main profile)
3060
 */
3061
static int vc1_decode_p_mb(VC1Context *v)
3062
{
3063
    MpegEncContext *s = &v->s;
3064
    GetBitContext *gb = &s->gb;
3065
    int i, j;
3066
    int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
3067
    int cbp; /* cbp decoding stuff */
3068
    int mqdiff, mquant; /* MB quantization */
3069
    int ttmb = v->ttfrm; /* MB Transform type */
3070
    int status;
3071

    
3072
    static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
3073
      offset_table[6] = { 0, 1, 3, 7, 15, 31 };
3074
    int mb_has_coeffs = 1; /* last_flag */
3075
    int dmv_x, dmv_y; /* Differential MV components */
3076
    int index, index1; /* LUT indices */
3077
    int val, sign; /* temp values */
3078
    int first_block = 1;
3079
    int dst_idx, off;
3080
    int skipped, fourmv;
3081

    
3082
    mquant = v->pq; /* Loosy initialization */
3083

    
3084
    if (v->mv_type_is_raw)
3085
        fourmv = get_bits1(gb);
3086
    else
3087
        fourmv = v->mv_type_mb_plane[mb_pos];
3088
    if (v->skip_is_raw)
3089
        skipped = get_bits1(gb);
3090
    else
3091
        skipped = v->s.mbskip_table[mb_pos];
3092

    
3093
    s->dsp.clear_blocks(s->block[0]);
3094

    
3095
    if (!fourmv) /* 1MV mode */
3096
    {
3097
        if (!skipped)
3098
        {
3099
            GET_MVDATA(dmv_x, dmv_y);
3100

    
3101
            if (s->mb_intra) {
3102
                s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
3103
                s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
3104
            }
3105
            s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
3106
            vc1_pred_mv(s, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
3107

    
3108
            /* FIXME Set DC val for inter block ? */
3109
            if (s->mb_intra && !mb_has_coeffs)
3110
            {
3111
                GET_MQUANT();
3112
                s->ac_pred = get_bits(gb, 1);
3113
                cbp = 0;
3114
            }
3115
            else if (mb_has_coeffs)
3116
            {
3117
                if (s->mb_intra) s->ac_pred = get_bits(gb, 1);
3118
                cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
3119
                GET_MQUANT();
3120
            }
3121
            else
3122
            {
3123
                mquant = v->pq;
3124
                cbp = 0;
3125
            }
3126
            s->current_picture.qscale_table[mb_pos] = mquant;
3127

    
3128
            if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
3129
                ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table,
3130
                                VC1_TTMB_VLC_BITS, 2);
3131
            if(!s->mb_intra) vc1_mc_1mv(v, 0);
3132
            dst_idx = 0;
3133
            for (i=0; i<6; i++)
3134
            {
3135
                s->dc_val[0][s->block_index[i]] = 0;
3136
                dst_idx += i >> 2;
3137
                val = ((cbp >> (5 - i)) & 1);
3138
                off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
3139
                v->mb_type[0][s->block_index[i]] = s->mb_intra;
3140
                if(s->mb_intra) {
3141
                    /* check if prediction blocks A and C are available */
3142
                    v->a_avail = v->c_avail = 0;
3143
                    if(i == 2 || i == 3 || !s->first_slice_line)
3144
                        v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
3145
                    if(i == 1 || i == 3 || s->mb_x)
3146
                        v->c_avail = v->mb_type[0][s->block_index[i] - 1];
3147

    
3148
                    vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
3149
                    if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
3150
                    s->dsp.vc1_inv_trans_8x8(s->block[i]);
3151
                    if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
3152
                    for(j = 0; j < 64; j++) s->block[i][j] += 128;
3153
                    if(!v->res_fasttx && v->res_x8) for(j = 0; j < 64; j++) s->block[i][j] += 16;
3154
                    s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
3155
                    if(v->pq >= 9 && v->overlap) {
3156
                        if(v->c_avail)
3157
                            s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
3158
                        if(v->a_avail)
3159
                            s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
3160
                    }
3161
                } else if(val) {
3162
                    vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
3163
                    if(!v->ttmbf && ttmb < 8) ttmb = -1;
3164
                    first_block = 0;
3165
                    if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
3166
                        s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
3167
                }
3168
            }
3169
        }
3170
        else //Skipped
3171
        {
3172
            s->mb_intra = 0;
3173
            for(i = 0; i < 6; i++) {
3174
                v->mb_type[0][s->block_index[i]] = 0;
3175
                s->dc_val[0][s->block_index[i]] = 0;
3176
            }
3177
            s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
3178
            s->current_picture.qscale_table[mb_pos] = 0;
3179
            vc1_pred_mv(s, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
3180
            vc1_mc_1mv(v, 0);
3181
            return 0;
3182
        }
3183
    } //1MV mode
3184
    else //4MV mode
3185
    {
3186
        if (!skipped /* unskipped MB */)
3187
        {
3188
            int intra_count = 0, coded_inter = 0;
3189
            int is_intra[6], is_coded[6];
3190
            /* Get CBPCY */
3191
            cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
3192
            for (i=0; i<6; i++)
3193
            {
3194
                val = ((cbp >> (5 - i)) & 1);
3195
                s->dc_val[0][s->block_index[i]] = 0;
3196
                s->mb_intra = 0;
3197
                if(i < 4) {
3198
                    dmv_x = dmv_y = 0;
3199
                    s->mb_intra = 0;
3200
                    mb_has_coeffs = 0;
3201
                    if(val) {
3202
                        GET_MVDATA(dmv_x, dmv_y);
3203
                    }
3204
                    vc1_pred_mv(s, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
3205
                    if(!s->mb_intra) vc1_mc_4mv_luma(v, i);
3206
                    intra_count += s->mb_intra;
3207
                    is_intra[i] = s->mb_intra;
3208
                    is_coded[i] = mb_has_coeffs;
3209
                }
3210
                if(i&4){
3211
                    is_intra[i] = (intra_count >= 3);
3212
                    is_coded[i] = val;
3213
                }
3214
                if(i == 4) vc1_mc_4mv_chroma(v);
3215
                v->mb_type[0][s->block_index[i]] = is_intra[i];
3216
                if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i];
3217
            }
3218
            // if there are no coded blocks then don't do anything more
3219
            if(!intra_count && !coded_inter) return 0;
3220
            dst_idx = 0;
3221
            GET_MQUANT();
3222
            s->current_picture.qscale_table[mb_pos] = mquant;
3223
            /* test if block is intra and has pred */
3224
            {
3225
                int intrapred = 0;
3226
                for(i=0; i<6; i++)
3227
                    if(is_intra[i]) {
3228
                        if(((!s->first_slice_line || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
3229
                            || ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) {
3230
                            intrapred = 1;
3231
                            break;
3232
                        }
3233
                    }
3234
                if(intrapred)s->ac_pred = get_bits(gb, 1);
3235
                else s->ac_pred = 0;
3236
            }
3237
            if (!v->ttmbf && coded_inter)
3238
                ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
3239
            for (i=0; i<6; i++)
3240
            {
3241
                dst_idx += i >> 2;
3242
                off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
3243
                s->mb_intra = is_intra[i];
3244
                if (is_intra[i]) {
3245
                    /* check if prediction blocks A and C are available */
3246
                    v->a_avail = v->c_avail = 0;
3247
                    if(i == 2 || i == 3 || !s->first_slice_line)
3248
                        v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
3249
                    if(i == 1 || i == 3 || s->mb_x)
3250
                        v->c_avail = v->mb_type[0][s->block_index[i] - 1];
3251

    
3252
                    vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset);
3253
                    if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
3254
                    s->dsp.vc1_inv_trans_8x8(s->block[i]);
3255
                    if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
3256
                    for(j = 0; j < 64; j++) s->block[i][j] += 128;
3257
                    if(!v->res_fasttx && v->res_x8) for(j = 0; j < 64; j++) s->block[i][j] += 16;
3258
                    s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
3259
                    if(v->pq >= 9 && v->overlap) {
3260
                        if(v->c_avail)
3261
                            s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
3262
                        if(v->a_avail)
3263
                            s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
3264
                    }
3265
                } else if(is_coded[i]) {
3266
                    status = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
3267
                    if(!v->ttmbf && ttmb < 8) ttmb = -1;
3268
                    first_block = 0;
3269
                    if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
3270
                        s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
3271
                }
3272
            }
3273
            return status;
3274
        }
3275
        else //Skipped MB
3276
        {
3277
            s->mb_intra = 0;
3278
            s->current_picture.qscale_table[mb_pos] = 0;
3279
            for (i=0; i<6; i++) {
3280
                v->mb_type[0][s->block_index[i]] = 0;
3281
                s->dc_val[0][s->block_index[i]] = 0;
3282
            }
3283
            for (i=0; i<4; i++)
3284
            {
3285
                vc1_pred_mv(s, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]);
3286
                vc1_mc_4mv_luma(v, i);
3287
            }
3288
            vc1_mc_4mv_chroma(v);
3289
            s->current_picture.qscale_table[mb_pos] = 0;
3290
            return 0;
3291
        }
3292
    }
3293

    
3294
    /* Should never happen */
3295
    return -1;
3296
}
3297

    
3298
/** Decode one B-frame MB (in Main profile)
3299
 */
3300
static void vc1_decode_b_mb(VC1Context *v)
3301
{
3302
    MpegEncContext *s = &v->s;
3303
    GetBitContext *gb = &s->gb;
3304
    int i, j;
3305
    int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
3306
    int cbp = 0; /* cbp decoding stuff */
3307
    int mqdiff, mquant; /* MB quantization */
3308
    int ttmb = v->ttfrm; /* MB Transform type */
3309

    
3310
    static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
3311
      offset_table[6] = { 0, 1, 3, 7, 15, 31 };
3312
    int mb_has_coeffs = 0; /* last_flag */
3313
    int index, index1; /* LUT indices */
3314
    int val, sign; /* temp values */
3315
    int first_block = 1;
3316
    int dst_idx, off;
3317
    int skipped, direct;
3318
    int dmv_x[2], dmv_y[2];
3319
    int bmvtype = BMV_TYPE_BACKWARD;
3320

    
3321
    mquant = v->pq; /* Loosy initialization */
3322
    s->mb_intra = 0;
3323

    
3324
    if (v->dmb_is_raw)
3325
        direct = get_bits1(gb);
3326
    else
3327
        direct = v->direct_mb_plane[mb_pos];
3328
    if (v->skip_is_raw)
3329
        skipped = get_bits1(gb);
3330
    else
3331
        skipped = v->s.mbskip_table[mb_pos];
3332

    
3333
    s->dsp.clear_blocks(s->block[0]);
3334
    dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
3335
    for(i = 0; i < 6; i++) {
3336
        v->mb_type[0][s->block_index[i]] = 0;
3337
        s->dc_val[0][s->block_index[i]] = 0;
3338
    }
3339
    s->current_picture.qscale_table[mb_pos] = 0;
3340

    
3341
    if (!direct) {
3342
        if (!skipped) {
3343
            GET_MVDATA(dmv_x[0], dmv_y[0]);
3344
            dmv_x[1] = dmv_x[0];
3345
            dmv_y[1] = dmv_y[0];
3346
        }
3347
        if(skipped || !s->mb_intra) {
3348
            bmvtype = decode012(gb);
3349
            switch(bmvtype) {
3350
            case 0:
3351
                bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
3352
                break;
3353
            case 1:
3354
                bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
3355
                break;
3356
            case 2:
3357
                bmvtype = BMV_TYPE_INTERPOLATED;
3358
                dmv_x[0] = dmv_y[0] = 0;
3359
            }
3360
        }
3361
    }
3362
    for(i = 0; i < 6; i++)
3363
        v->mb_type[0][s->block_index[i]] = s->mb_intra;
3364

    
3365
    if (skipped) {
3366
        if(direct) bmvtype = BMV_TYPE_INTERPOLATED;
3367
        vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
3368
        vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
3369
        return;
3370
    }
3371
    if (direct) {
3372
        cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
3373
        GET_MQUANT();
3374
        s->mb_intra = 0;
3375
        mb_has_coeffs = 0;
3376
        s->current_picture.qscale_table[mb_pos] = mquant;
3377
        if(!v->ttmbf)
3378
            ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
3379
        dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
3380
        vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
3381
        vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
3382
    } else {
3383
        if(!mb_has_coeffs && !s->mb_intra) {
3384
            /* no coded blocks - effectively skipped */
3385
            vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
3386
            vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
3387
            return;
3388
        }
3389
        if(s->mb_intra && !mb_has_coeffs) {
3390
            GET_MQUANT();
3391
            s->current_picture.qscale_table[mb_pos] = mquant;
3392
            s->ac_pred = get_bits1(gb);
3393
            cbp = 0;
3394
            vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
3395
        } else {
3396
            if(bmvtype == BMV_TYPE_INTERPOLATED) {
3397
                GET_MVDATA(dmv_x[0], dmv_y[0]);
3398
                if(!mb_has_coeffs) {
3399
                    /* interpolated skipped block */
3400
                    vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
3401
                    vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
3402
                    return;
3403
                }
3404
            }
3405
            vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
3406
            if(!s->mb_intra) {
3407
                vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
3408
            }
3409
            if(s->mb_intra)
3410
                s->ac_pred = get_bits1(gb);
3411
            cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
3412
            GET_MQUANT();
3413
            s->current_picture.qscale_table[mb_pos] = mquant;
3414
            if(!v->ttmbf && !s->mb_intra && mb_has_coeffs)
3415
                ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
3416
        }
3417
    }
3418
    dst_idx = 0;
3419
    for (i=0; i<6; i++)
3420
    {
3421
        s->dc_val[0][s->block_index[i]] = 0;
3422
        dst_idx += i >> 2;
3423
        val = ((cbp >> (5 - i)) & 1);
3424
        off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
3425
        v->mb_type[0][s->block_index[i]] = s->mb_intra;
3426
        if(s->mb_intra) {
3427
            /* check if prediction blocks A and C are available */
3428
            v->a_avail = v->c_avail = 0;
3429
            if(i == 2 || i == 3 || !s->first_slice_line)
3430
                v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
3431
            if(i == 1 || i == 3 || s->mb_x)
3432
                v->c_avail = v->mb_type[0][s->block_index[i] - 1];
3433

    
3434
            vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
3435
            if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
3436
            s->dsp.vc1_inv_trans_8x8(s->block[i]);
3437
            if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
3438
            for(j = 0; j < 64; j++) s->block[i][j] += 128;
3439
            s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
3440
        } else if(val) {
3441
            vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
3442
            if(!v->ttmbf && ttmb < 8) ttmb = -1;
3443
            first_block = 0;
3444
            if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
3445
                s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
3446
        }
3447
    }
3448
}
3449

    
3450
/** Decode blocks of I-frame
3451
 */
3452
static void vc1_decode_i_blocks(VC1Context *v)
3453
{
3454
    int k, j;
3455
    MpegEncContext *s = &v->s;
3456
    int cbp, val;
3457
    uint8_t *coded_val;
3458
    int mb_pos;
3459

    
3460
    /* select codingmode used for VLC tables selection */
3461
    switch(v->y_ac_table_index){
3462
    case 0:
3463
        v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
3464
        break;
3465
    case 1:
3466
        v->codingset = CS_HIGH_MOT_INTRA;
3467
        break;
3468
    case 2:
3469
        v->codingset = CS_MID_RATE_INTRA;
3470
        break;
3471
    }
3472

    
3473
    switch(v->c_ac_table_index){
3474
    case 0:
3475
        v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
3476
        break;
3477
    case 1:
3478
        v->codingset2 = CS_HIGH_MOT_INTER;
3479
        break;
3480
    case 2:
3481
        v->codingset2 = CS_MID_RATE_INTER;
3482
        break;
3483
    }
3484

    
3485
    /* Set DC scale - y and c use the same */
3486
    s->y_dc_scale = s->y_dc_scale_table[v->pq];
3487
    s->c_dc_scale = s->c_dc_scale_table[v->pq];
3488

    
3489
    //do frame decode
3490
    s->mb_x = s->mb_y = 0;
3491
    s->mb_intra = 1;
3492
    s->first_slice_line = 1;
3493
    ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
3494
    for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
3495
        for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
3496
            ff_init_block_index(s);
3497
            ff_update_block_index(s);
3498
            s->dsp.clear_blocks(s->block[0]);
3499
            mb_pos = s->mb_x + s->mb_y * s->mb_width;
3500
            s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
3501
            s->current_picture.qscale_table[mb_pos] = v->pq;
3502
            s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
3503
            s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
3504

    
3505
            // do actual MB decoding and displaying
3506
            cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
3507
            v->s.ac_pred = get_bits(&v->s.gb, 1);
3508

    
3509
            for(k = 0; k < 6; k++) {
3510
                val = ((cbp >> (5 - k)) & 1);
3511

    
3512
                if (k < 4) {
3513
                    int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
3514
                    val = val ^ pred;
3515
                    *coded_val = val;
3516
                }
3517
                cbp |= val << (5 - k);
3518

    
3519
                vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2);
3520

    
3521
                s->dsp.vc1_inv_trans_8x8(s->block[k]);
3522
                if(!v->res_fasttx && !v->res_x8) for(j = 0; j < 64; j++) s->block[k][j] -= 16;
3523
                if(v->pq >= 9 && v->overlap) {
3524
                    for(j = 0; j < 64; j++) s->block[k][j] += 128;
3525
                }
3526
            }
3527

    
3528
            vc1_put_block(v, s->block);
3529
            if(v->pq >= 9 && v->overlap) {
3530
                if(s->mb_x) {
3531
                    s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
3532
                    s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
3533
                    if(!(s->flags & CODEC_FLAG_GRAY)) {
3534
                        s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
3535
                        s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
3536
                    }
3537
                }
3538
                s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
3539
                s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
3540
                if(!s->first_slice_line) {
3541
                    s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
3542
                    s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
3543
                    if(!(s->flags & CODEC_FLAG_GRAY)) {
3544
                        s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
3545
                        s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
3546
                    }
3547
                }
3548
                s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
3549
                s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
3550
            }
3551

    
3552
            if(get_bits_count(&s->gb) > v->bits) {
3553
                av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
3554
                return;
3555
            }
3556
        }
3557
        ff_draw_horiz_band(s, s->mb_y * 16, 16);
3558
        s->first_slice_line = 0;
3559
    }
3560
}
3561

    
3562
/** Decode blocks of I-frame for advanced profile
3563
 */
3564
static void vc1_decode_i_blocks_adv(VC1Context *v)
3565
{
3566
    int k, j;
3567
    MpegEncContext *s = &v->s;
3568
    int cbp, val;
3569
    uint8_t *coded_val;
3570
    int mb_pos;
3571
    int mquant = v->pq;
3572
    int mqdiff;
3573
    int overlap;
3574
    GetBitContext *gb = &s->gb;
3575

    
3576
    /* select codingmode used for VLC tables selection */
3577
    switch(v->y_ac_table_index){
3578
    case 0:
3579
        v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
3580
        break;
3581
    case 1:
3582
        v->codingset = CS_HIGH_MOT_INTRA;
3583
        break;
3584
    case 2:
3585
        v->codingset = CS_MID_RATE_INTRA;
3586
        break;
3587
    }
3588

    
3589
    switch(v->c_ac_table_index){
3590
    case 0:
3591
        v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
3592
        break;
3593
    case 1:
3594
        v->codingset2 = CS_HIGH_MOT_INTER;
3595
        break;
3596
    case 2:
3597
        v->codingset2 = CS_MID_RATE_INTER;
3598
        break;
3599
    }
3600

    
3601
    //do frame decode
3602
    s->mb_x = s->mb_y = 0;
3603
    s->mb_intra = 1;
3604
    s->first_slice_line = 1;
3605
    ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
3606
    for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
3607
        for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
3608
            ff_init_block_index(s);
3609
            ff_update_block_index(s);
3610
            s->dsp.clear_blocks(s->block[0]);
3611
            mb_pos = s->mb_x + s->mb_y * s->mb_stride;
3612
            s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
3613
            s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
3614
            s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
3615

    
3616
            // do actual MB decoding and displaying
3617
            cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
3618
            if(v->acpred_is_raw)
3619
                v->s.ac_pred = get_bits(&v->s.gb, 1);
3620
            else
3621
                v->s.ac_pred = v->acpred_plane[mb_pos];
3622

    
3623
            if(v->condover == CONDOVER_SELECT) {
3624
                if(v->overflg_is_raw)
3625
                    overlap = get_bits(&v->s.gb, 1);
3626
                else
3627
                    overlap = v->over_flags_plane[mb_pos];
3628
            } else
3629
                overlap = (v->condover == CONDOVER_ALL);
3630

    
3631
            GET_MQUANT();
3632

    
3633
            s->current_picture.qscale_table[mb_pos] = mquant;
3634
            /* Set DC scale - y and c use the same */
3635
            s->y_dc_scale = s->y_dc_scale_table[mquant];
3636
            s->c_dc_scale = s->c_dc_scale_table[mquant];
3637

    
3638
            for(k = 0; k < 6; k++) {
3639
                val = ((cbp >> (5 - k)) & 1);
3640

    
3641
                if (k < 4) {
3642
                    int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
3643
                    val = val ^ pred;
3644
                    *coded_val = val;
3645
                }
3646
                cbp |= val << (5 - k);
3647

    
3648
                v->a_avail = !s->first_slice_line || (k==2 || k==3);
3649
                v->c_avail = !!s->mb_x || (k==1 || k==3);
3650

    
3651
                vc1_decode_i_block_adv(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2, mquant);
3652

    
3653
                s->dsp.vc1_inv_trans_8x8(s->block[k]);
3654
                for(j = 0; j < 64; j++) s->block[k][j] += 128;
3655
            }
3656

    
3657
            vc1_put_block(v, s->block);
3658
            if(overlap) {
3659
                if(s->mb_x) {
3660
                    s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
3661
                    s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
3662
                    if(!(s->flags & CODEC_FLAG_GRAY)) {
3663
                        s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
3664
                        s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
3665
                    }
3666
                }
3667
                s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
3668
                s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
3669
                if(!s->first_slice_line) {
3670
                    s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
3671
                    s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
3672
                    if(!(s->flags & CODEC_FLAG_GRAY)) {
3673
                        s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
3674
                        s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
3675
                    }
3676
                }
3677
                s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
3678
                s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
3679
            }
3680

    
3681
            if(get_bits_count(&s->gb) > v->bits) {
3682
                av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
3683
                return;
3684
            }
3685
        }
3686
        ff_draw_horiz_band(s, s->mb_y * 16, 16);
3687
        s->first_slice_line = 0;
3688
    }
3689
}
3690

    
3691
static void vc1_decode_p_blocks(VC1Context *v)
3692
{
3693
    MpegEncContext *s = &v->s;
3694

    
3695
    /* select codingmode used for VLC tables selection */
3696
    switch(v->c_ac_table_index){
3697
    case 0:
3698
        v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
3699
        break;
3700
    case 1:
3701
        v->codingset = CS_HIGH_MOT_INTRA;
3702
        break;
3703
    case 2:
3704
        v->codingset = CS_MID_RATE_INTRA;
3705
        break;
3706
    }
3707

    
3708
    switch(v->c_ac_table_index){
3709
    case 0:
3710
        v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
3711
        break;
3712
    case 1:
3713
        v->codingset2 = CS_HIGH_MOT_INTER;
3714
        break;
3715
    case 2:
3716
        v->codingset2 = CS_MID_RATE_INTER;
3717
        break;
3718
    }
3719

    
3720
    ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
3721
    s->first_slice_line = 1;
3722
    for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
3723
        for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
3724
            ff_init_block_index(s);
3725
            ff_update_block_index(s);
3726
            s->dsp.clear_blocks(s->block[0]);
3727

    
3728
            vc1_decode_p_mb(v);
3729
            if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
3730
                av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
3731
                return;
3732
            }
3733
        }
3734
        ff_draw_horiz_band(s, s->mb_y * 16, 16);
3735
        s->first_slice_line = 0;
3736
    }
3737
}
3738

    
3739
static void vc1_decode_b_blocks(VC1Context *v)
3740
{
3741
    MpegEncContext *s = &v->s;
3742

    
3743
    /* select codingmode used for VLC tables selection */
3744
    switch(v->c_ac_table_index){
3745
    case 0:
3746
        v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
3747
        break;
3748
    case 1:
3749
        v->codingset = CS_HIGH_MOT_INTRA;
3750
        break;
3751
    case 2:
3752
        v->codingset = CS_MID_RATE_INTRA;
3753
        break;
3754
    }
3755

    
3756
    switch(v->c_ac_table_index){
3757
    case 0:
3758
        v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
3759
        break;
3760
    case 1:
3761
        v->codingset2 = CS_HIGH_MOT_INTER;
3762
        break;
3763
    case 2:
3764
        v->codingset2 = CS_MID_RATE_INTER;
3765
        break;
3766
    }
3767

    
3768
    ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
3769
    s->first_slice_line = 1;
3770
    for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
3771
        for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
3772
            ff_init_block_index(s);
3773
            ff_update_block_index(s);
3774
            s->dsp.clear_blocks(s->block[0]);
3775

    
3776
            vc1_decode_b_mb(v);
3777
            if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
3778
                av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
3779
                return;
3780
            }
3781
        }
3782
        ff_draw_horiz_band(s, s->mb_y * 16, 16);
3783
        s->first_slice_line = 0;
3784
    }
3785
}
3786

    
3787
static void vc1_decode_skip_blocks(VC1Context *v)
3788
{
3789
    MpegEncContext *s = &v->s;
3790

    
3791
    ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
3792
    s->first_slice_line = 1;
3793
    for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
3794
        s->mb_x = 0;
3795
        ff_init_block_index(s);
3796
        ff_update_block_index(s);
3797
        memcpy(s->dest[0], s->last_picture.data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
3798
        memcpy(s->dest[1], s->last_picture.data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
3799
        memcpy(s->dest[2], s->last_picture.data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
3800
        ff_draw_horiz_band(s, s->mb_y * 16, 16);
3801
        s->first_slice_line = 0;
3802
    }
3803
    s->pict_type = P_TYPE;
3804
}
3805

    
3806
static void vc1_decode_blocks(VC1Context *v)
3807
{
3808

    
3809
    v->s.esc3_level_length = 0;
3810

    
3811
    switch(v->s.pict_type) {
3812
    case I_TYPE:
3813
        if(v->profile == PROFILE_ADVANCED)
3814
            vc1_decode_i_blocks_adv(v);
3815
        else
3816
            vc1_decode_i_blocks(v);
3817
        break;
3818
    case P_TYPE:
3819
        if(v->p_frame_skipped)
3820
            vc1_decode_skip_blocks(v);
3821
        else
3822
            vc1_decode_p_blocks(v);
3823
        break;
3824
    case B_TYPE:
3825
        if(v->bi_type){
3826
            if(v->profile == PROFILE_ADVANCED)
3827
                vc1_decode_i_blocks_adv(v);
3828
            else
3829
                vc1_decode_i_blocks(v);
3830
        }else
3831
            vc1_decode_b_blocks(v);
3832
        break;
3833
    }
3834
}
3835

    
3836
/** Find VC-1 marker in buffer
3837
 * @return position where next marker starts or end of buffer if no marker found
3838
 */
3839
static av_always_inline uint8_t* find_next_marker(uint8_t *src, uint8_t *end)
3840
{
3841
    uint32_t mrk = 0xFFFFFFFF;
3842

    
3843
    if(end-src < 4) return end;
3844
    while(src < end){
3845
        mrk = (mrk << 8) | *src++;
3846
        if(IS_MARKER(mrk))
3847
            return src-4;
3848
    }
3849
    return end;
3850
}
3851

    
3852
static av_always_inline int vc1_unescape_buffer(uint8_t *src, int size, uint8_t *dst)
3853
{
3854
    int dsize = 0, i;
3855

    
3856
    if(size < 4){
3857
        for(dsize = 0; dsize < size; dsize++) *dst++ = *src++;
3858
        return size;
3859
    }
3860
    for(i = 0; i < size; i++, src++) {
3861
        if(src[0] == 3 && i >= 2 && !src[-1] && !src[-2] && i < size-1 && src[1] < 4) {
3862
            dst[dsize++] = src[1];
3863
            src++;
3864
            i++;
3865
        } else
3866
            dst[dsize++] = *src;
3867
    }
3868
    return dsize;
3869
}
3870

    
3871
/** Initialize a VC1/WMV3 decoder
3872
 * @todo TODO: Handle VC-1 IDUs (Transport level?)
3873
 * @todo TODO: Decypher remaining bits in extra_data
3874
 */
3875
static int vc1_decode_init(AVCodecContext *avctx)
3876
{
3877
    VC1Context *v = avctx->priv_data;
3878
    MpegEncContext *s = &v->s;
3879
    GetBitContext gb;
3880

    
3881
    if (!avctx->extradata_size || !avctx->extradata) return -1;
3882
    if (!(avctx->flags & CODEC_FLAG_GRAY))
3883
        avctx->pix_fmt = PIX_FMT_YUV420P;
3884
    else
3885
        avctx->pix_fmt = PIX_FMT_GRAY8;
3886
    v->s.avctx = avctx;
3887
    avctx->flags |= CODEC_FLAG_EMU_EDGE;
3888
    v->s.flags |= CODEC_FLAG_EMU_EDGE;
3889

    
3890
    if(ff_h263_decode_init(avctx) < 0)
3891
        return -1;
3892
    if (vc1_init_common(v) < 0) return -1;
3893

    
3894
    avctx->coded_width = avctx->width;
3895
    avctx->coded_height = avctx->height;
3896
    if (avctx->codec_id == CODEC_ID_WMV3)
3897
    {
3898
        int count = 0;
3899

    
3900
        // looks like WMV3 has a sequence header stored in the extradata
3901
        // advanced sequence header may be before the first frame
3902
        // the last byte of the extradata is a version number, 1 for the
3903
        // samples we can decode
3904

    
3905
        init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
3906

    
3907
        if (decode_sequence_header(avctx, &gb) < 0)
3908
          return -1;
3909

    
3910
        count = avctx->extradata_size*8 - get_bits_count(&gb);
3911
        if (count>0)
3912
        {
3913
            av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
3914
                   count, get_bits(&gb, count));
3915
        }
3916
        else if (count < 0)
3917
        {
3918
            av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
3919
        }
3920
    } else { // VC1/WVC1
3921
        uint8_t *start = avctx->extradata, *end = avctx->extradata + avctx->extradata_size;
3922
        uint8_t *next; int size, buf2_size;
3923
        uint8_t *buf2 = NULL;
3924
        int seq_inited = 0, ep_inited = 0;
3925

    
3926
        if(avctx->extradata_size < 16) {
3927
            av_log(avctx, AV_LOG_ERROR, "Extradata size too small: %i\n", avctx->extradata_size);
3928
            return -1;
3929
        }
3930

    
3931
        buf2 = av_mallocz(avctx->extradata_size + FF_INPUT_BUFFER_PADDING_SIZE);
3932
        if(start[0]) start++; // in WVC1 extradata first byte is its size
3933
        next = start;
3934
        for(; next < end; start = next){
3935
            next = find_next_marker(start + 4, end);
3936
            size = next - start - 4;
3937
            if(size <= 0) continue;
3938
            buf2_size = vc1_unescape_buffer(start + 4, size, buf2);
3939
            init_get_bits(&gb, buf2, buf2_size * 8);
3940
            switch(AV_RB32(start)){
3941
            case VC1_CODE_SEQHDR:
3942
                if(decode_sequence_header(avctx, &gb) < 0){
3943
                    av_free(buf2);
3944
                    return -1;
3945
                }
3946
                seq_inited = 1;
3947
                break;
3948
            case VC1_CODE_ENTRYPOINT:
3949
                if(decode_entry_point(avctx, &gb) < 0){
3950
                    av_free(buf2);
3951
                    return -1;
3952
                }
3953
                ep_inited = 1;
3954
                break;
3955
            }
3956
        }
3957
        av_free(buf2);
3958
        if(!seq_inited || !ep_inited){
3959
            av_log(avctx, AV_LOG_ERROR, "Incomplete extradata\n");
3960
            return -1;
3961
        }
3962
    }
3963
    avctx->has_b_frames= !!(avctx->max_b_frames);
3964
    s->low_delay = !avctx->has_b_frames;
3965

    
3966
    s->mb_width = (avctx->coded_width+15)>>4;
3967
    s->mb_height = (avctx->coded_height+15)>>4;
3968

    
3969
    /* Allocate mb bitplanes */
3970
    v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height);
3971
    v->direct_mb_plane = av_malloc(s->mb_stride * s->mb_height);
3972
    v->acpred_plane = av_malloc(s->mb_stride * s->mb_height);
3973
    v->over_flags_plane = av_malloc(s->mb_stride * s->mb_height);
3974

    
3975
    /* allocate block type info in that way so it could be used with s->block_index[] */
3976
    v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
3977
    v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
3978
    v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
3979
    v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
3980

    
3981
    /* Init coded blocks info */
3982
    if (v->profile == PROFILE_ADVANCED)
3983
    {
3984
//        if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
3985
//            return -1;
3986
//        if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
3987
//            return -1;
3988
    }
3989

    
3990
    return 0;
3991
}
3992

    
3993

    
3994
/** Decode a VC1/WMV3 frame
3995
 * @todo TODO: Handle VC-1 IDUs (Transport level?)
3996
 */
3997
static int vc1_decode_frame(AVCodecContext *avctx,
3998
                            void *data, int *data_size,
3999
                            uint8_t *buf, int buf_size)
4000
{
4001
    VC1Context *v = avctx->priv_data;
4002
    MpegEncContext *s = &v->s;
4003
    AVFrame *pict = data;
4004
    uint8_t *buf2 = NULL;
4005

    
4006
    /* no supplementary picture */
4007
    if (buf_size == 0) {
4008
        /* special case for last picture */
4009
        if (s->low_delay==0 && s->next_picture_ptr) {
4010
            *pict= *(AVFrame*)s->next_picture_ptr;
4011
            s->next_picture_ptr= NULL;
4012

    
4013
            *data_size = sizeof(AVFrame);
4014
        }
4015

    
4016
        return 0;
4017
    }
4018

    
4019
    //we need to set current_picture_ptr before reading the header, otherwise we cant store anyting im there
4020
    if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){
4021
        int i= ff_find_unused_picture(s, 0);
4022
        s->current_picture_ptr= &s->picture[i];
4023
    }
4024

    
4025
    //for advanced profile we may need to parse and unescape data
4026
    if (avctx->codec_id == CODEC_ID_VC1) {
4027
        int buf_size2 = 0;
4028
        buf2 = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
4029

    
4030
        if(IS_MARKER(AV_RB32(buf))){ /* frame starts with marker and needs to be parsed */
4031
            uint8_t *start, *end, *next;
4032
            int size;
4033

    
4034
            next = buf;
4035
            for(start = buf, end = buf + buf_size; next < end; start = next){
4036
                next = find_next_marker(start + 4, end);
4037
                size = next - start - 4;
4038
                if(size <= 0) continue;
4039
                switch(AV_RB32(start)){
4040
                case VC1_CODE_FRAME:
4041
                    buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
4042
                    break;
4043
                case VC1_CODE_ENTRYPOINT: /* it should be before frame data */
4044
                    buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
4045
                    init_get_bits(&s->gb, buf2, buf_size2*8);
4046
                    decode_entry_point(avctx, &s->gb);
4047
                    break;
4048
                case VC1_CODE_SLICE:
4049
                    av_log(avctx, AV_LOG_ERROR, "Sliced decoding is not implemented (yet)\n");
4050
                    av_free(buf2);
4051
                    return -1;
4052
                }
4053
            }
4054
        }else if(v->interlace && ((buf[0] & 0xC0) == 0xC0)){ /* WVC1 interlaced stores both fields divided by marker */
4055
            uint8_t *divider;
4056

    
4057
            divider = find_next_marker(buf, buf + buf_size);
4058
            if((divider == (buf + buf_size)) || AV_RB32(divider) != VC1_CODE_FIELD){
4059
                av_log(avctx, AV_LOG_ERROR, "Error in WVC1 interlaced frame\n");
4060
                return -1;
4061
            }
4062

    
4063
            buf_size2 = vc1_unescape_buffer(buf, divider - buf, buf2);
4064
            // TODO
4065
            av_free(buf2);return -1;
4066
        }else{
4067
            buf_size2 = vc1_unescape_buffer(buf, buf_size, buf2);
4068
        }
4069
        init_get_bits(&s->gb, buf2, buf_size2*8);
4070
    } else
4071
        init_get_bits(&s->gb, buf, buf_size*8);
4072
    // do parse frame header
4073
    if(v->profile < PROFILE_ADVANCED) {
4074
        if(vc1_parse_frame_header(v, &s->gb) == -1) {
4075
            av_free(buf2);
4076
            return -1;
4077
        }
4078
    } else {
4079
        if(vc1_parse_frame_header_adv(v, &s->gb) == -1) {
4080
            av_free(buf2);
4081
            return -1;
4082
        }
4083
    }
4084

    
4085
    if(s->pict_type != I_TYPE && !v->res_rtm_flag){
4086
        av_free(buf2);
4087
        return -1;
4088
    }
4089

    
4090
    // for hurry_up==5
4091
    s->current_picture.pict_type= s->pict_type;
4092
    s->current_picture.key_frame= s->pict_type == I_TYPE;
4093

    
4094
    /* skip B-frames if we don't have reference frames */
4095
    if(s->last_picture_ptr==NULL && (s->pict_type==B_TYPE || s->dropable)){
4096
        av_free(buf2);
4097
        return -1;//buf_size;
4098
    }
4099
    /* skip b frames if we are in a hurry */
4100
    if(avctx->hurry_up && s->pict_type==B_TYPE) return -1;//buf_size;
4101
    if(   (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==B_TYPE)
4102
       || (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=I_TYPE)
4103
       ||  avctx->skip_frame >= AVDISCARD_ALL) {
4104
        av_free(buf2);
4105
        return buf_size;
4106
    }
4107
    /* skip everything if we are in a hurry>=5 */
4108
    if(avctx->hurry_up>=5) {
4109
        av_free(buf2);
4110
        return -1;//buf_size;
4111
    }
4112

    
4113
    if(s->next_p_frame_damaged){
4114
        if(s->pict_type==B_TYPE)
4115
            return buf_size;
4116
        else
4117
            s->next_p_frame_damaged=0;
4118
    }
4119

    
4120
    if(MPV_frame_start(s, avctx) < 0) {
4121
        av_free(buf2);
4122
        return -1;
4123
    }
4124

    
4125
    ff_er_frame_start(s);
4126

    
4127
    v->bits = buf_size * 8;
4128
    vc1_decode_blocks(v);
4129
//av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), buf_size*8);
4130
//  if(get_bits_count(&s->gb) > buf_size * 8)
4131
//      return -1;
4132
    ff_er_frame_end(s);
4133

    
4134
    MPV_frame_end(s);
4135

    
4136
assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type);
4137
assert(s->current_picture.pict_type == s->pict_type);
4138
    if (s->pict_type == B_TYPE || s->low_delay) {
4139
        *pict= *(AVFrame*)s->current_picture_ptr;
4140
    } else if (s->last_picture_ptr != NULL) {
4141
        *pict= *(AVFrame*)s->last_picture_ptr;
4142
    }
4143

    
4144
    if(s->last_picture_ptr || s->low_delay){
4145
        *data_size = sizeof(AVFrame);
4146
        ff_print_debug_info(s, pict);
4147
    }
4148

    
4149
    /* Return the Picture timestamp as the frame number */
4150
    /* we substract 1 because it is added on utils.c    */
4151
    avctx->frame_number = s->picture_number - 1;
4152

    
4153
    av_free(buf2);
4154
    return buf_size;
4155
}
4156

    
4157

    
4158
/** Close a VC1/WMV3 decoder
4159
 * @warning Initial try at using MpegEncContext stuff
4160
 */
4161
static int vc1_decode_end(AVCodecContext *avctx)
4162
{
4163
    VC1Context *v = avctx->priv_data;
4164

    
4165
    av_freep(&v->hrd_rate);
4166
    av_freep(&v->hrd_buffer);
4167
    MPV_common_end(&v->s);
4168
    av_freep(&v->mv_type_mb_plane);
4169
    av_freep(&v->direct_mb_plane);
4170
    av_freep(&v->acpred_plane);
4171
    av_freep(&v->over_flags_plane);
4172
    av_freep(&v->mb_type_base);
4173
    return 0;
4174
}
4175

    
4176

    
4177
AVCodec vc1_decoder = {
4178
    "vc1",
4179
    CODEC_TYPE_VIDEO,
4180
    CODEC_ID_VC1,
4181
    sizeof(VC1Context),
4182
    vc1_decode_init,
4183
    NULL,
4184
    vc1_decode_end,
4185
    vc1_decode_frame,
4186
    CODEC_CAP_DELAY,
4187
    NULL
4188
};
4189

    
4190
AVCodec wmv3_decoder = {
4191
    "wmv3",
4192
    CODEC_TYPE_VIDEO,
4193
    CODEC_ID_WMV3,
4194
    sizeof(VC1Context),
4195
    vc1_decode_init,
4196
    NULL,
4197
    vc1_decode_end,
4198
    vc1_decode_frame,
4199
    CODEC_CAP_DELAY,
4200
    NULL
4201
};