Statistics
| Branch: | Revision:

ffmpeg / postproc / swscale.c @ 247d2c96

History | View | Annotate | Download (76.7 KB)

1
/*
2
    Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
3

4
    This program is free software; you can redistribute it and/or modify
5
    it under the terms of the GNU General Public License as published by
6
    the Free Software Foundation; either version 2 of the License, or
7
    (at your option) any later version.
8

9
    This program is distributed in the hope that it will be useful,
10
    but WITHOUT ANY WARRANTY; without even the implied warranty of
11
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12
    GNU General Public License for more details.
13

14
    You should have received a copy of the GNU General Public License
15
    along with this program; if not, write to the Free Software
16
    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17
*/
18

    
19
/*
20
  supported Input formats: YV12, I420/IYUV, YUY2, UYVY, BGR32, BGR24, BGR16, BGR15, RGB32, RGB24, Y8/Y800, YVU9/IF09
21
  supported output formats: YV12, I420/IYUV, YUY2, UYVY, {BGR,RGB}{1,4,8,15,16,24,32}, Y8/Y800, YVU9/IF09
22
  {BGR,RGB}{1,4,8,15,16} support dithering
23
  
24
  unscaled special converters (YV12=I420=IYUV, Y800=Y8)
25
  YV12 -> {BGR,RGB}{1,4,8,15,16,24,32}
26
  x -> x
27
  YUV9 -> YV12
28
  YUV9/YV12 -> Y800
29
  Y800 -> YUV9/YV12
30
  BGR24 -> BGR32 & RGB24 -> RGB32
31
  BGR32 -> BGR24 & RGB32 -> RGB24
32
  BGR15 -> BGR16
33
*/
34

    
35
/* 
36
tested special converters (most are tested actually but i didnt write it down ...)
37
 YV12 -> BGR16
38
 YV12 -> YV12
39
 BGR15 -> BGR16
40
 BGR16 -> BGR16
41
 YVU9 -> YV12
42

43
untested special converters
44
  YV12/I420 -> BGR15/BGR24/BGR32 (its the yuv2rgb stuff, so it should be ok)
45
  YV12/I420 -> YV12/I420
46
  YUY2/BGR15/BGR24/BGR32/RGB24/RGB32 -> same format
47
  BGR24 -> BGR32 & RGB24 -> RGB32
48
  BGR32 -> BGR24 & RGB32 -> RGB24
49
  BGR24 -> YV12
50
*/
51

    
52
#include <inttypes.h>
53
#include <string.h>
54
#include <math.h>
55
#include <stdio.h>
56
#include <unistd.h>
57
#include "config.h"
58
#include "mangle.h"
59
#include <assert.h>
60
#ifdef HAVE_MALLOC_H
61
#include <malloc.h>
62
#else
63
#include <stdlib.h>
64
#endif
65
#ifdef HAVE_SYS_MMAN_H
66
#include <sys/mman.h>
67
#if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
68
#define MAP_ANONYMOUS MAP_ANON
69
#endif
70
#endif
71
#include "swscale.h"
72
#include "swscale_internal.h"
73
#include "cpudetect.h"
74
#include "bswap.h"
75
#include "libvo/img_format.h"
76
#include "rgb2rgb.h"
77
#include "libvo/fastmemcpy.h"
78

    
79
#undef MOVNTQ
80
#undef PAVGB
81

    
82
//#undef HAVE_MMX2
83
//#define HAVE_3DNOW
84
//#undef HAVE_MMX
85
//#undef ARCH_X86
86
//#define WORDS_BIGENDIAN
87
#define DITHER1XBPP
88

    
89
#define FAST_BGR2YV12 // use 7 bit coeffs instead of 15bit
90

    
91
#define RET 0xC3 //near return opcode for X86
92

    
93
#ifdef MP_DEBUG
94
#define ASSERT(x) assert(x);
95
#else
96
#define ASSERT(x) ;
97
#endif
98

    
99
#ifdef M_PI
100
#define PI M_PI
101
#else
102
#define PI 3.14159265358979323846
103
#endif
104

    
105
//FIXME replace this with something faster
106
#define isPlanarYUV(x) ((x)==IMGFMT_YV12 || (x)==IMGFMT_YVU9 \
107
                        || (x)==IMGFMT_NV12 || (x)==IMGFMT_NV21 \
108
                        || (x)==IMGFMT_444P || (x)==IMGFMT_422P || (x)==IMGFMT_411P)
109
#define isYUV(x)       ((x)==IMGFMT_UYVY || (x)==IMGFMT_YUY2 || isPlanarYUV(x))
110
#define isGray(x)      ((x)==IMGFMT_Y800)
111
#define isRGB(x)       (((x)&IMGFMT_RGB_MASK)==IMGFMT_RGB)
112
#define isBGR(x)       (((x)&IMGFMT_BGR_MASK)==IMGFMT_BGR)
113
#define isSupportedIn(x)  ((x)==IMGFMT_YV12 || (x)==IMGFMT_YUY2 || (x)==IMGFMT_UYVY\
114
                        || (x)==IMGFMT_BGR32|| (x)==IMGFMT_BGR24|| (x)==IMGFMT_BGR16|| (x)==IMGFMT_BGR15\
115
                        || (x)==IMGFMT_RGB32|| (x)==IMGFMT_RGB24\
116
                        || (x)==IMGFMT_Y800 || (x)==IMGFMT_YVU9\
117
                        || (x)==IMGFMT_444P || (x)==IMGFMT_422P || (x)==IMGFMT_411P)
118
#define isSupportedOut(x) ((x)==IMGFMT_YV12 || (x)==IMGFMT_YUY2 || (x)==IMGFMT_UYVY\
119
                        || (x)==IMGFMT_444P || (x)==IMGFMT_422P || (x)==IMGFMT_411P\
120
                        || isRGB(x) || isBGR(x)\
121
                        || (x)==IMGFMT_NV12 || (x)==IMGFMT_NV21\
122
                        || (x)==IMGFMT_Y800 || (x)==IMGFMT_YVU9)
123
#define isPacked(x)    ((x)==IMGFMT_YUY2 || (x)==IMGFMT_UYVY ||isRGB(x) || isBGR(x))
124

    
125
#define RGB2YUV_SHIFT 16
126
#define BY ((int)( 0.098*(1<<RGB2YUV_SHIFT)+0.5))
127
#define BV ((int)(-0.071*(1<<RGB2YUV_SHIFT)+0.5))
128
#define BU ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5))
129
#define GY ((int)( 0.504*(1<<RGB2YUV_SHIFT)+0.5))
130
#define GV ((int)(-0.368*(1<<RGB2YUV_SHIFT)+0.5))
131
#define GU ((int)(-0.291*(1<<RGB2YUV_SHIFT)+0.5))
132
#define RY ((int)( 0.257*(1<<RGB2YUV_SHIFT)+0.5))
133
#define RV ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5))
134
#define RU ((int)(-0.148*(1<<RGB2YUV_SHIFT)+0.5))
135

    
136
extern const int32_t Inverse_Table_6_9[8][4];
137

    
138
/*
139
NOTES
140
Special versions: fast Y 1:1 scaling (no interpolation in y direction)
141

142
TODO
143
more intelligent missalignment avoidance for the horizontal scaler
144
write special vertical cubic upscale version
145
Optimize C code (yv12 / minmax)
146
add support for packed pixel yuv input & output
147
add support for Y8 output
148
optimize bgr24 & bgr32
149
add BGR4 output support
150
write special BGR->BGR scaler
151
*/
152

    
153
#define ABS(a) ((a) > 0 ? (a) : (-(a)))
154
#define MIN(a,b) ((a) > (b) ? (b) : (a))
155
#define MAX(a,b) ((a) < (b) ? (b) : (a))
156

    
157
#if defined(ARCH_X86) || defined(ARCH_X86_64)
158
static uint64_t attribute_used __attribute__((aligned(8))) bF8=       0xF8F8F8F8F8F8F8F8LL;
159
static uint64_t attribute_used __attribute__((aligned(8))) bFC=       0xFCFCFCFCFCFCFCFCLL;
160
static uint64_t __attribute__((aligned(8))) w10=       0x0010001000100010LL;
161
static uint64_t attribute_used __attribute__((aligned(8))) w02=       0x0002000200020002LL;
162
static uint64_t attribute_used __attribute__((aligned(8))) bm00001111=0x00000000FFFFFFFFLL;
163
static uint64_t attribute_used __attribute__((aligned(8))) bm00000111=0x0000000000FFFFFFLL;
164
static uint64_t attribute_used __attribute__((aligned(8))) bm11111000=0xFFFFFFFFFF000000LL;
165
static uint64_t attribute_used __attribute__((aligned(8))) bm01010101=0x00FF00FF00FF00FFLL;
166

    
167
static volatile uint64_t attribute_used __attribute__((aligned(8))) b5Dither;
168
static volatile uint64_t attribute_used __attribute__((aligned(8))) g5Dither;
169
static volatile uint64_t attribute_used __attribute__((aligned(8))) g6Dither;
170
static volatile uint64_t attribute_used __attribute__((aligned(8))) r5Dither;
171

    
172
static uint64_t __attribute__((aligned(8))) dither4[2]={
173
        0x0103010301030103LL,
174
        0x0200020002000200LL,};
175

    
176
static uint64_t __attribute__((aligned(8))) dither8[2]={
177
        0x0602060206020602LL,
178
        0x0004000400040004LL,};
179

    
180
static uint64_t __attribute__((aligned(8))) b16Mask=   0x001F001F001F001FLL;
181
static uint64_t attribute_used __attribute__((aligned(8))) g16Mask=   0x07E007E007E007E0LL;
182
static uint64_t attribute_used __attribute__((aligned(8))) r16Mask=   0xF800F800F800F800LL;
183
static uint64_t __attribute__((aligned(8))) b15Mask=   0x001F001F001F001FLL;
184
static uint64_t attribute_used __attribute__((aligned(8))) g15Mask=   0x03E003E003E003E0LL;
185
static uint64_t attribute_used __attribute__((aligned(8))) r15Mask=   0x7C007C007C007C00LL;
186

    
187
static uint64_t attribute_used __attribute__((aligned(8))) M24A=   0x00FF0000FF0000FFLL;
188
static uint64_t attribute_used __attribute__((aligned(8))) M24B=   0xFF0000FF0000FF00LL;
189
static uint64_t attribute_used __attribute__((aligned(8))) M24C=   0x0000FF0000FF0000LL;
190

    
191
#ifdef FAST_BGR2YV12
192
static const uint64_t bgr2YCoeff  attribute_used __attribute__((aligned(8))) = 0x000000210041000DULL;
193
static const uint64_t bgr2UCoeff  attribute_used __attribute__((aligned(8))) = 0x0000FFEEFFDC0038ULL;
194
static const uint64_t bgr2VCoeff  attribute_used __attribute__((aligned(8))) = 0x00000038FFD2FFF8ULL;
195
#else
196
static const uint64_t bgr2YCoeff  attribute_used __attribute__((aligned(8))) = 0x000020E540830C8BULL;
197
static const uint64_t bgr2UCoeff  attribute_used __attribute__((aligned(8))) = 0x0000ED0FDAC23831ULL;
198
static const uint64_t bgr2VCoeff  attribute_used __attribute__((aligned(8))) = 0x00003831D0E6F6EAULL;
199
#endif
200
static const uint64_t bgr2YOffset attribute_used __attribute__((aligned(8))) = 0x1010101010101010ULL;
201
static const uint64_t bgr2UVOffset attribute_used __attribute__((aligned(8)))= 0x8080808080808080ULL;
202
static const uint64_t w1111       attribute_used __attribute__((aligned(8))) = 0x0001000100010001ULL;
203
#endif
204

    
205
// clipping helper table for C implementations:
206
static unsigned char clip_table[768];
207

    
208
static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b);
209
                  
210
extern const uint8_t dither_2x2_4[2][8];
211
extern const uint8_t dither_2x2_8[2][8];
212
extern const uint8_t dither_8x8_32[8][8];
213
extern const uint8_t dither_8x8_73[8][8];
214
extern const uint8_t dither_8x8_220[8][8];
215

    
216
#if defined(ARCH_X86) || defined(ARCH_X86_64)
217
void in_asm_used_var_warning_killer()
218
{
219
 volatile int i= bF8+bFC+w10+
220
 bm00001111+bm00000111+bm11111000+b16Mask+g16Mask+r16Mask+b15Mask+g15Mask+r15Mask+
221
 M24A+M24B+M24C+w02 + b5Dither+g5Dither+r5Dither+g6Dither+dither4[0]+dither8[0]+bm01010101;
222
 if(i) i=0;
223
}
224
#endif
225

    
226
static inline void yuv2yuvXinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
227
                                    int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
228
                                    uint8_t *dest, uint8_t *uDest, uint8_t *vDest, int dstW, int chrDstW)
229
{
230
        //FIXME Optimize (just quickly writen not opti..)
231
        int i;
232
        for(i=0; i<dstW; i++)
233
        {
234
                int val=1<<18;
235
                int j;
236
                for(j=0; j<lumFilterSize; j++)
237
                        val += lumSrc[j][i] * lumFilter[j];
238

    
239
                dest[i]= MIN(MAX(val>>19, 0), 255);
240
        }
241

    
242
        if(uDest != NULL)
243
                for(i=0; i<chrDstW; i++)
244
                {
245
                        int u=1<<18;
246
                        int v=1<<18;
247
                        int j;
248
                        for(j=0; j<chrFilterSize; j++)
249
                        {
250
                                u += chrSrc[j][i] * chrFilter[j];
251
                                v += chrSrc[j][i + 2048] * chrFilter[j];
252
                        }
253

    
254
                        uDest[i]= MIN(MAX(u>>19, 0), 255);
255
                        vDest[i]= MIN(MAX(v>>19, 0), 255);
256
                }
257
}
258

    
259
static inline void yuv2nv12XinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
260
                                int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
261
                                uint8_t *dest, uint8_t *uDest, int dstW, int chrDstW, int dstFormat)
262
{
263
        //FIXME Optimize (just quickly writen not opti..)
264
        int i;
265
        for(i=0; i<dstW; i++)
266
        {
267
                int val=1<<18;
268
                int j;
269
                for(j=0; j<lumFilterSize; j++)
270
                        val += lumSrc[j][i] * lumFilter[j];
271

    
272
                dest[i]= MIN(MAX(val>>19, 0), 255);
273
        }
274

    
275
        if(uDest == NULL)
276
                return;
277

    
278
        if(dstFormat == IMGFMT_NV12)
279
                for(i=0; i<chrDstW; i++)
280
                {
281
                        int u=1<<18;
282
                        int v=1<<18;
283
                        int j;
284
                        for(j=0; j<chrFilterSize; j++)
285
                        {
286
                                u += chrSrc[j][i] * chrFilter[j];
287
                                v += chrSrc[j][i + 2048] * chrFilter[j];
288
                        }
289

    
290
                        uDest[2*i]= MIN(MAX(u>>19, 0), 255);
291
                        uDest[2*i+1]= MIN(MAX(v>>19, 0), 255);
292
                }
293
        else
294
                for(i=0; i<chrDstW; i++)
295
                {
296
                        int u=1<<18;
297
                        int v=1<<18;
298
                        int j;
299
                        for(j=0; j<chrFilterSize; j++)
300
                        {
301
                                u += chrSrc[j][i] * chrFilter[j];
302
                                v += chrSrc[j][i + 2048] * chrFilter[j];
303
                        }
304

    
305
                        uDest[2*i]= MIN(MAX(v>>19, 0), 255);
306
                        uDest[2*i+1]= MIN(MAX(u>>19, 0), 255);
307
                }
308
}
309

    
310
#define YSCALE_YUV_2_PACKEDX_C(type) \
311
                for(i=0; i<(dstW>>1); i++){\
312
                        int j;\
313
                        int Y1=1<<18;\
314
                        int Y2=1<<18;\
315
                        int U=1<<18;\
316
                        int V=1<<18;\
317
                        type *r, *b, *g;\
318
                        const int i2= 2*i;\
319
                        \
320
                        for(j=0; j<lumFilterSize; j++)\
321
                        {\
322
                                Y1 += lumSrc[j][i2] * lumFilter[j];\
323
                                Y2 += lumSrc[j][i2+1] * lumFilter[j];\
324
                        }\
325
                        for(j=0; j<chrFilterSize; j++)\
326
                        {\
327
                                U += chrSrc[j][i] * chrFilter[j];\
328
                                V += chrSrc[j][i+2048] * chrFilter[j];\
329
                        }\
330
                        Y1>>=19;\
331
                        Y2>>=19;\
332
                        U >>=19;\
333
                        V >>=19;\
334
                        if((Y1|Y2|U|V)&256)\
335
                        {\
336
                                if(Y1>255)   Y1=255;\
337
                                else if(Y1<0)Y1=0;\
338
                                if(Y2>255)   Y2=255;\
339
                                else if(Y2<0)Y2=0;\
340
                                if(U>255)    U=255;\
341
                                else if(U<0) U=0;\
342
                                if(V>255)    V=255;\
343
                                else if(V<0) V=0;\
344
                        }
345
                        
346
#define YSCALE_YUV_2_RGBX_C(type) \
347
                        YSCALE_YUV_2_PACKEDX_C(type)\
348
                        r = c->table_rV[V];\
349
                        g = c->table_gU[U] + c->table_gV[V];\
350
                        b = c->table_bU[U];\
351

    
352
#define YSCALE_YUV_2_PACKED2_C \
353
                for(i=0; i<(dstW>>1); i++){\
354
                        const int i2= 2*i;\
355
                        int Y1= (buf0[i2  ]*yalpha1+buf1[i2  ]*yalpha)>>19;\
356
                        int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>19;\
357
                        int U= (uvbuf0[i     ]*uvalpha1+uvbuf1[i     ]*uvalpha)>>19;\
358
                        int V= (uvbuf0[i+2048]*uvalpha1+uvbuf1[i+2048]*uvalpha)>>19;\
359

    
360
#define YSCALE_YUV_2_RGB2_C(type) \
361
                        YSCALE_YUV_2_PACKED2_C\
362
                        type *r, *b, *g;\
363
                        r = c->table_rV[V];\
364
                        g = c->table_gU[U] + c->table_gV[V];\
365
                        b = c->table_bU[U];\
366

    
367
#define YSCALE_YUV_2_PACKED1_C \
368
                for(i=0; i<(dstW>>1); i++){\
369
                        const int i2= 2*i;\
370
                        int Y1= buf0[i2  ]>>7;\
371
                        int Y2= buf0[i2+1]>>7;\
372
                        int U= (uvbuf1[i     ])>>7;\
373
                        int V= (uvbuf1[i+2048])>>7;\
374

    
375
#define YSCALE_YUV_2_RGB1_C(type) \
376
                        YSCALE_YUV_2_PACKED1_C\
377
                        type *r, *b, *g;\
378
                        r = c->table_rV[V];\
379
                        g = c->table_gU[U] + c->table_gV[V];\
380
                        b = c->table_bU[U];\
381

    
382
#define YSCALE_YUV_2_PACKED1B_C \
383
                for(i=0; i<(dstW>>1); i++){\
384
                        const int i2= 2*i;\
385
                        int Y1= buf0[i2  ]>>7;\
386
                        int Y2= buf0[i2+1]>>7;\
387
                        int U= (uvbuf0[i     ] + uvbuf1[i     ])>>8;\
388
                        int V= (uvbuf0[i+2048] + uvbuf1[i+2048])>>8;\
389

    
390
#define YSCALE_YUV_2_RGB1B_C(type) \
391
                        YSCALE_YUV_2_PACKED1B_C\
392
                        type *r, *b, *g;\
393
                        r = c->table_rV[V];\
394
                        g = c->table_gU[U] + c->table_gV[V];\
395
                        b = c->table_bU[U];\
396

    
397
#define YSCALE_YUV_2_ANYRGB_C(func, func2)\
398
        switch(c->dstFormat)\
399
        {\
400
        case IMGFMT_BGR32:\
401
        case IMGFMT_RGB32:\
402
                func(uint32_t)\
403
                        ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];\
404
                        ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];\
405
                }                \
406
                break;\
407
        case IMGFMT_RGB24:\
408
                func(uint8_t)\
409
                        ((uint8_t*)dest)[0]= r[Y1];\
410
                        ((uint8_t*)dest)[1]= g[Y1];\
411
                        ((uint8_t*)dest)[2]= b[Y1];\
412
                        ((uint8_t*)dest)[3]= r[Y2];\
413
                        ((uint8_t*)dest)[4]= g[Y2];\
414
                        ((uint8_t*)dest)[5]= b[Y2];\
415
                        dest+=6;\
416
                }\
417
                break;\
418
        case IMGFMT_BGR24:\
419
                func(uint8_t)\
420
                        ((uint8_t*)dest)[0]= b[Y1];\
421
                        ((uint8_t*)dest)[1]= g[Y1];\
422
                        ((uint8_t*)dest)[2]= r[Y1];\
423
                        ((uint8_t*)dest)[3]= b[Y2];\
424
                        ((uint8_t*)dest)[4]= g[Y2];\
425
                        ((uint8_t*)dest)[5]= r[Y2];\
426
                        dest+=6;\
427
                }\
428
                break;\
429
        case IMGFMT_RGB16:\
430
        case IMGFMT_BGR16:\
431
                {\
432
                        const int dr1= dither_2x2_8[y&1    ][0];\
433
                        const int dg1= dither_2x2_4[y&1    ][0];\
434
                        const int db1= dither_2x2_8[(y&1)^1][0];\
435
                        const int dr2= dither_2x2_8[y&1    ][1];\
436
                        const int dg2= dither_2x2_4[y&1    ][1];\
437
                        const int db2= dither_2x2_8[(y&1)^1][1];\
438
                        func(uint16_t)\
439
                                ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
440
                                ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
441
                        }\
442
                }\
443
                break;\
444
        case IMGFMT_RGB15:\
445
        case IMGFMT_BGR15:\
446
                {\
447
                        const int dr1= dither_2x2_8[y&1    ][0];\
448
                        const int dg1= dither_2x2_8[y&1    ][1];\
449
                        const int db1= dither_2x2_8[(y&1)^1][0];\
450
                        const int dr2= dither_2x2_8[y&1    ][1];\
451
                        const int dg2= dither_2x2_8[y&1    ][0];\
452
                        const int db2= dither_2x2_8[(y&1)^1][1];\
453
                        func(uint16_t)\
454
                                ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
455
                                ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
456
                        }\
457
                }\
458
                break;\
459
        case IMGFMT_RGB8:\
460
        case IMGFMT_BGR8:\
461
                {\
462
                        const uint8_t * const d64= dither_8x8_73[y&7];\
463
                        const uint8_t * const d32= dither_8x8_32[y&7];\
464
                        func(uint8_t)\
465
                                ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];\
466
                                ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];\
467
                        }\
468
                }\
469
                break;\
470
        case IMGFMT_RGB4:\
471
        case IMGFMT_BGR4:\
472
                {\
473
                        const uint8_t * const d64= dither_8x8_73 [y&7];\
474
                        const uint8_t * const d128=dither_8x8_220[y&7];\
475
                        func(uint8_t)\
476
                                ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]\
477
                                                 + ((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);\
478
                        }\
479
                }\
480
                break;\
481
        case IMGFMT_RG4B:\
482
        case IMGFMT_BG4B:\
483
                {\
484
                        const uint8_t * const d64= dither_8x8_73 [y&7];\
485
                        const uint8_t * const d128=dither_8x8_220[y&7];\
486
                        func(uint8_t)\
487
                                ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];\
488
                                ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];\
489
                        }\
490
                }\
491
                break;\
492
        case IMGFMT_RGB1:\
493
        case IMGFMT_BGR1:\
494
                {\
495
                        const uint8_t * const d128=dither_8x8_220[y&7];\
496
                        uint8_t *g= c->table_gU[128] + c->table_gV[128];\
497
                        for(i=0; i<dstW-7; i+=8){\
498
                                int acc;\
499
                                acc =       g[((buf0[i  ]*yalpha1+buf1[i  ]*yalpha)>>19) + d128[0]];\
500
                                acc+= acc + g[((buf0[i+1]*yalpha1+buf1[i+1]*yalpha)>>19) + d128[1]];\
501
                                acc+= acc + g[((buf0[i+2]*yalpha1+buf1[i+2]*yalpha)>>19) + d128[2]];\
502
                                acc+= acc + g[((buf0[i+3]*yalpha1+buf1[i+3]*yalpha)>>19) + d128[3]];\
503
                                acc+= acc + g[((buf0[i+4]*yalpha1+buf1[i+4]*yalpha)>>19) + d128[4]];\
504
                                acc+= acc + g[((buf0[i+5]*yalpha1+buf1[i+5]*yalpha)>>19) + d128[5]];\
505
                                acc+= acc + g[((buf0[i+6]*yalpha1+buf1[i+6]*yalpha)>>19) + d128[6]];\
506
                                acc+= acc + g[((buf0[i+7]*yalpha1+buf1[i+7]*yalpha)>>19) + d128[7]];\
507
                                ((uint8_t*)dest)[0]= acc;\
508
                                dest++;\
509
                        }\
510
\
511
/*\
512
((uint8_t*)dest)-= dstW>>4;\
513
{\
514
                        int acc=0;\
515
                        int left=0;\
516
                        static int top[1024];\
517
                        static int last_new[1024][1024];\
518
                        static int last_in3[1024][1024];\
519
                        static int drift[1024][1024];\
520
                        int topLeft=0;\
521
                        int shift=0;\
522
                        int count=0;\
523
                        const uint8_t * const d128=dither_8x8_220[y&7];\
524
                        int error_new=0;\
525
                        int error_in3=0;\
526
                        int f=0;\
527
                        \
528
                        for(i=dstW>>1; i<dstW; i++){\
529
                                int in= ((buf0[i  ]*yalpha1+buf1[i  ]*yalpha)>>19);\
530
                                int in2 = (76309 * (in - 16) + 32768) >> 16;\
531
                                int in3 = (in2 < 0) ? 0 : ((in2 > 255) ? 255 : in2);\
532
                                int old= (left*7 + topLeft + top[i]*5 + top[i+1]*3)/20 + in3\
533
                                        + (last_new[y][i] - in3)*f/256;\
534
                                int new= old> 128 ? 255 : 0;\
535
\
536
                                error_new+= ABS(last_new[y][i] - new);\
537
                                error_in3+= ABS(last_in3[y][i] - in3);\
538
                                f= error_new - error_in3*4;\
539
                                if(f<0) f=0;\
540
                                if(f>256) f=256;\
541
\
542
                                topLeft= top[i];\
543
                                left= top[i]= old - new;\
544
                                last_new[y][i]= new;\
545
                                last_in3[y][i]= in3;\
546
\
547
                                acc+= acc + (new&1);\
548
                                if((i&7)==6){\
549
                                        ((uint8_t*)dest)[0]= acc;\
550
                                        ((uint8_t*)dest)++;\
551
                                }\
552
                        }\
553
}\
554
*/\
555
                }\
556
                break;\
557
        case IMGFMT_YUY2:\
558
                func2\
559
                        ((uint8_t*)dest)[2*i2+0]= Y1;\
560
                        ((uint8_t*)dest)[2*i2+1]= U;\
561
                        ((uint8_t*)dest)[2*i2+2]= Y2;\
562
                        ((uint8_t*)dest)[2*i2+3]= V;\
563
                }                \
564
                break;\
565
        case IMGFMT_UYVY:\
566
                func2\
567
                        ((uint8_t*)dest)[2*i2+0]= U;\
568
                        ((uint8_t*)dest)[2*i2+1]= Y1;\
569
                        ((uint8_t*)dest)[2*i2+2]= V;\
570
                        ((uint8_t*)dest)[2*i2+3]= Y2;\
571
                }                \
572
                break;\
573
        }\
574

    
575

    
576
static inline void yuv2packedXinC(SwsContext *c, int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
577
                                    int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
578
                                    uint8_t *dest, int dstW, int y)
579
{
580
        int i;
581
        switch(c->dstFormat)
582
        {
583
        case IMGFMT_RGB32:
584
        case IMGFMT_BGR32:
585
                YSCALE_YUV_2_RGBX_C(uint32_t)
586
                        ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];
587
                        ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];
588
                }
589
                break;
590
        case IMGFMT_RGB24:
591
                YSCALE_YUV_2_RGBX_C(uint8_t)
592
                        ((uint8_t*)dest)[0]= r[Y1];
593
                        ((uint8_t*)dest)[1]= g[Y1];
594
                        ((uint8_t*)dest)[2]= b[Y1];
595
                        ((uint8_t*)dest)[3]= r[Y2];
596
                        ((uint8_t*)dest)[4]= g[Y2];
597
                        ((uint8_t*)dest)[5]= b[Y2];
598
                        dest+=6;
599
                }
600
                break;
601
        case IMGFMT_BGR24:
602
                YSCALE_YUV_2_RGBX_C(uint8_t)
603
                        ((uint8_t*)dest)[0]= b[Y1];
604
                        ((uint8_t*)dest)[1]= g[Y1];
605
                        ((uint8_t*)dest)[2]= r[Y1];
606
                        ((uint8_t*)dest)[3]= b[Y2];
607
                        ((uint8_t*)dest)[4]= g[Y2];
608
                        ((uint8_t*)dest)[5]= r[Y2];
609
                        dest+=6;
610
                }
611
                break;
612
        case IMGFMT_RGB16:
613
        case IMGFMT_BGR16:
614
                {
615
                        const int dr1= dither_2x2_8[y&1    ][0];
616
                        const int dg1= dither_2x2_4[y&1    ][0];
617
                        const int db1= dither_2x2_8[(y&1)^1][0];
618
                        const int dr2= dither_2x2_8[y&1    ][1];
619
                        const int dg2= dither_2x2_4[y&1    ][1];
620
                        const int db2= dither_2x2_8[(y&1)^1][1];
621
                        YSCALE_YUV_2_RGBX_C(uint16_t)
622
                                ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];
623
                                ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];
624
                        }
625
                }
626
                break;
627
        case IMGFMT_RGB15:
628
        case IMGFMT_BGR15:
629
                {
630
                        const int dr1= dither_2x2_8[y&1    ][0];
631
                        const int dg1= dither_2x2_8[y&1    ][1];
632
                        const int db1= dither_2x2_8[(y&1)^1][0];
633
                        const int dr2= dither_2x2_8[y&1    ][1];
634
                        const int dg2= dither_2x2_8[y&1    ][0];
635
                        const int db2= dither_2x2_8[(y&1)^1][1];
636
                        YSCALE_YUV_2_RGBX_C(uint16_t)
637
                                ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];
638
                                ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];
639
                        }
640
                }
641
                break;
642
        case IMGFMT_RGB8:
643
        case IMGFMT_BGR8:
644
                {
645
                        const uint8_t * const d64= dither_8x8_73[y&7];
646
                        const uint8_t * const d32= dither_8x8_32[y&7];
647
                        YSCALE_YUV_2_RGBX_C(uint8_t)
648
                                ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];
649
                                ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];
650
                        }
651
                }
652
                break;
653
        case IMGFMT_RGB4:
654
        case IMGFMT_BGR4:
655
                {
656
                        const uint8_t * const d64= dither_8x8_73 [y&7];
657
                        const uint8_t * const d128=dither_8x8_220[y&7];
658
                        YSCALE_YUV_2_RGBX_C(uint8_t)
659
                                ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]
660
                                                  +((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);
661
                        }
662
                }
663
                break;
664
        case IMGFMT_RG4B:
665
        case IMGFMT_BG4B:
666
                {
667
                        const uint8_t * const d64= dither_8x8_73 [y&7];
668
                        const uint8_t * const d128=dither_8x8_220[y&7];
669
                        YSCALE_YUV_2_RGBX_C(uint8_t)
670
                                ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];
671
                                ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];
672
                        }
673
                }
674
                break;
675
        case IMGFMT_RGB1:
676
        case IMGFMT_BGR1:
677
                {
678
                        const uint8_t * const d128=dither_8x8_220[y&7];
679
                        uint8_t *g= c->table_gU[128] + c->table_gV[128];
680
                        int acc=0;
681
                        for(i=0; i<dstW-1; i+=2){
682
                                int j;
683
                                int Y1=1<<18;
684
                                int Y2=1<<18;
685

    
686
                                for(j=0; j<lumFilterSize; j++)
687
                                {
688
                                        Y1 += lumSrc[j][i] * lumFilter[j];
689
                                        Y2 += lumSrc[j][i+1] * lumFilter[j];
690
                                }
691
                                Y1>>=19;
692
                                Y2>>=19;
693
                                if((Y1|Y2)&256)
694
                                {
695
                                        if(Y1>255)   Y1=255;
696
                                        else if(Y1<0)Y1=0;
697
                                        if(Y2>255)   Y2=255;
698
                                        else if(Y2<0)Y2=0;
699
                                }
700
                                acc+= acc + g[Y1+d128[(i+0)&7]];
701
                                acc+= acc + g[Y2+d128[(i+1)&7]];
702
                                if((i&7)==6){
703
                                        ((uint8_t*)dest)[0]= acc;
704
                                        dest++;
705
                                }
706
                        }
707
                }
708
                break;
709
        case IMGFMT_YUY2:
710
                YSCALE_YUV_2_PACKEDX_C(void)
711
                        ((uint8_t*)dest)[2*i2+0]= Y1;
712
                        ((uint8_t*)dest)[2*i2+1]= U;
713
                        ((uint8_t*)dest)[2*i2+2]= Y2;
714
                        ((uint8_t*)dest)[2*i2+3]= V;
715
                }
716
                break;
717
        case IMGFMT_UYVY:
718
                YSCALE_YUV_2_PACKEDX_C(void)
719
                        ((uint8_t*)dest)[2*i2+0]= U;
720
                        ((uint8_t*)dest)[2*i2+1]= Y1;
721
                        ((uint8_t*)dest)[2*i2+2]= V;
722
                        ((uint8_t*)dest)[2*i2+3]= Y2;
723
                }
724
                break;
725
        }
726
}
727

    
728

    
729
//Note: we have C, X86, MMX, MMX2, 3DNOW version therse no 3DNOW+MMX2 one
730
//Plain C versions
731
#if !defined (HAVE_MMX) || defined (RUNTIME_CPUDETECT)
732
#define COMPILE_C
733
#endif
734

    
735
#ifdef ARCH_POWERPC
736
#if defined (HAVE_ALTIVEC) || defined (RUNTIME_CPUDETECT)
737
#define COMPILE_ALTIVEC
738
#endif //HAVE_ALTIVEC
739
#endif //ARCH_POWERPC
740

    
741
#if defined(ARCH_X86) || defined(ARCH_X86_64)
742

    
743
#if (defined (HAVE_MMX) && !defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)
744
#define COMPILE_MMX
745
#endif
746

    
747
#if defined (HAVE_MMX2) || defined (RUNTIME_CPUDETECT)
748
#define COMPILE_MMX2
749
#endif
750

    
751
#if (defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)
752
#define COMPILE_3DNOW
753
#endif
754
#endif //ARCH_X86 || ARCH_X86_64
755

    
756
#undef HAVE_MMX
757
#undef HAVE_MMX2
758
#undef HAVE_3DNOW
759

    
760
#ifdef COMPILE_C
761
#undef HAVE_MMX
762
#undef HAVE_MMX2
763
#undef HAVE_3DNOW
764
#undef HAVE_ALTIVEC
765
#define RENAME(a) a ## _C
766
#include "swscale_template.c"
767
#endif
768

    
769
#ifdef ARCH_POWERPC
770
#ifdef COMPILE_ALTIVEC
771
#undef RENAME
772
#define HAVE_ALTIVEC
773
#define RENAME(a) a ## _altivec
774
#include "swscale_template.c"
775
#endif
776
#endif //ARCH_POWERPC
777

    
778
#if defined(ARCH_X86) || defined(ARCH_X86_64)
779

    
780
//X86 versions
781
/*
782
#undef RENAME
783
#undef HAVE_MMX
784
#undef HAVE_MMX2
785
#undef HAVE_3DNOW
786
#define ARCH_X86
787
#define RENAME(a) a ## _X86
788
#include "swscale_template.c"
789
*/
790
//MMX versions
791
#ifdef COMPILE_MMX
792
#undef RENAME
793
#define HAVE_MMX
794
#undef HAVE_MMX2
795
#undef HAVE_3DNOW
796
#define RENAME(a) a ## _MMX
797
#include "swscale_template.c"
798
#endif
799

    
800
//MMX2 versions
801
#ifdef COMPILE_MMX2
802
#undef RENAME
803
#define HAVE_MMX
804
#define HAVE_MMX2
805
#undef HAVE_3DNOW
806
#define RENAME(a) a ## _MMX2
807
#include "swscale_template.c"
808
#endif
809

    
810
//3DNOW versions
811
#ifdef COMPILE_3DNOW
812
#undef RENAME
813
#define HAVE_MMX
814
#undef HAVE_MMX2
815
#define HAVE_3DNOW
816
#define RENAME(a) a ## _3DNow
817
#include "swscale_template.c"
818
#endif
819

    
820
#endif //ARCH_X86 || ARCH_X86_64
821

    
822
// minor note: the HAVE_xyz is messed up after that line so don't use it
823

    
824
static double getSplineCoeff(double a, double b, double c, double d, double dist)
825
{
826
//        printf("%f %f %f %f %f\n", a,b,c,d,dist);
827
        if(dist<=1.0)         return ((d*dist + c)*dist + b)*dist +a;
828
        else                return getSplineCoeff(        0.0, 
829
                                                 b+ 2.0*c + 3.0*d,
830
                                                        c + 3.0*d,
831
                                                -b- 3.0*c - 6.0*d,
832
                                                dist-1.0);
833
}
834

    
835
static inline void initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc,
836
                              int srcW, int dstW, int filterAlign, int one, int flags,
837
                              SwsVector *srcFilter, SwsVector *dstFilter, double param[2])
838
{
839
        int i;
840
        int filterSize;
841
        int filter2Size;
842
        int minFilterSize;
843
        double *filter=NULL;
844
        double *filter2=NULL;
845
#if defined(ARCH_X86) || defined(ARCH_X86_64)
846
        if(flags & SWS_CPU_CAPS_MMX)
847
                asm volatile("emms\n\t"::: "memory"); //FIXME this shouldnt be required but it IS (even for non mmx versions)
848
#endif
849

    
850
        // Note the +1 is for the MMXscaler which reads over the end
851
        *filterPos = (int16_t*)memalign(8, (dstW+1)*sizeof(int16_t));
852

    
853
        if(ABS(xInc - 0x10000) <10) // unscaled
854
        {
855
                int i;
856
                filterSize= 1;
857
                filter= (double*)memalign(8, dstW*sizeof(double)*filterSize);
858
                for(i=0; i<dstW*filterSize; i++) filter[i]=0;
859

    
860
                for(i=0; i<dstW; i++)
861
                {
862
                        filter[i*filterSize]=1;
863
                        (*filterPos)[i]=i;
864
                }
865

    
866
        }
867
        else if(flags&SWS_POINT) // lame looking point sampling mode
868
        {
869
                int i;
870
                int xDstInSrc;
871
                filterSize= 1;
872
                filter= (double*)memalign(8, dstW*sizeof(double)*filterSize);
873
                
874
                xDstInSrc= xInc/2 - 0x8000;
875
                for(i=0; i<dstW; i++)
876
                {
877
                        int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
878

    
879
                        (*filterPos)[i]= xx;
880
                        filter[i]= 1.0;
881
                        xDstInSrc+= xInc;
882
                }
883
        }
884
        else if((xInc <= (1<<16) && (flags&SWS_AREA)) || (flags&SWS_FAST_BILINEAR)) // bilinear upscale
885
        {
886
                int i;
887
                int xDstInSrc;
888
                if     (flags&SWS_BICUBIC) filterSize= 4;
889
                else if(flags&SWS_X      ) filterSize= 4;
890
                else                           filterSize= 2; // SWS_BILINEAR / SWS_AREA 
891
                filter= (double*)memalign(8, dstW*sizeof(double)*filterSize);
892

    
893
                xDstInSrc= xInc/2 - 0x8000;
894
                for(i=0; i<dstW; i++)
895
                {
896
                        int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
897
                        int j;
898

    
899
                        (*filterPos)[i]= xx;
900
                                //Bilinear upscale / linear interpolate / Area averaging
901
                                for(j=0; j<filterSize; j++)
902
                                {
903
                                        double d= ABS((xx<<16) - xDstInSrc)/(double)(1<<16);
904
                                        double coeff= 1.0 - d;
905
                                        if(coeff<0) coeff=0;
906
                                        filter[i*filterSize + j]= coeff;
907
                                        xx++;
908
                                }
909
                        xDstInSrc+= xInc;
910
                }
911
        }
912
        else
913
        {
914
                double xDstInSrc;
915
                double sizeFactor, filterSizeInSrc;
916
                const double xInc1= (double)xInc / (double)(1<<16);
917

    
918
                if     (flags&SWS_BICUBIC)        sizeFactor= 4.0;
919
                else if(flags&SWS_X)                sizeFactor= 8.0;
920
                else if(flags&SWS_AREA)                sizeFactor= 1.0; //downscale only, for upscale it is bilinear
921
                else if(flags&SWS_GAUSS)        sizeFactor= 8.0;   // infinite ;)
922
                else if(flags&SWS_LANCZOS)        sizeFactor= param[0] != SWS_PARAM_DEFAULT ? 2.0*param[0] : 6.0;
923
                else if(flags&SWS_SINC)                sizeFactor= 20.0; // infinite ;)
924
                else if(flags&SWS_SPLINE)        sizeFactor= 20.0;  // infinite ;)
925
                else if(flags&SWS_BILINEAR)        sizeFactor= 2.0;
926
                else {
927
                        sizeFactor= 0.0; //GCC warning killer
928
                        ASSERT(0)
929
                }
930
                
931
                if(xInc1 <= 1.0)        filterSizeInSrc= sizeFactor; // upscale
932
                else                        filterSizeInSrc= sizeFactor*srcW / (double)dstW;
933

    
934
                filterSize= (int)ceil(1 + filterSizeInSrc); // will be reduced later if possible
935
                if(filterSize > srcW-2) filterSize=srcW-2;
936

    
937
                filter= (double*)memalign(16, dstW*sizeof(double)*filterSize);
938

    
939
                xDstInSrc= xInc1 / 2.0 - 0.5;
940
                for(i=0; i<dstW; i++)
941
                {
942
                        int xx= (int)(xDstInSrc - (filterSize-1)*0.5 + 0.5);
943
                        int j;
944
                        (*filterPos)[i]= xx;
945
                        for(j=0; j<filterSize; j++)
946
                        {
947
                                double d= ABS(xx - xDstInSrc)/filterSizeInSrc*sizeFactor;
948
                                double coeff;
949
                                if(flags & SWS_BICUBIC)
950
                                {
951
                                        double B= param[0] != SWS_PARAM_DEFAULT ? param[0] : 0.0;
952
                                        double C= param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6;
953

    
954
                                        if(d<1.0) 
955
                                                coeff = (12-9*B-6*C)*d*d*d + (-18+12*B+6*C)*d*d + 6-2*B;
956
                                        else if(d<2.0)
957
                                                coeff = (-B-6*C)*d*d*d + (6*B+30*C)*d*d + (-12*B-48*C)*d +8*B+24*C;
958
                                        else
959
                                                coeff=0.0;
960
                                }
961
/*                                else if(flags & SWS_X)
962
                                {
963
                                        double p= param ? param*0.01 : 0.3;
964
                                        coeff = d ? sin(d*PI)/(d*PI) : 1.0;
965
                                        coeff*= pow(2.0, - p*d*d);
966
                                }*/
967
                                else if(flags & SWS_X)
968
                                {
969
                                        double A= param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
970
                                        
971
                                        if(d<1.0)
972
                                                coeff = cos(d*PI);
973
                                        else
974
                                                coeff=-1.0;
975
                                        if(coeff<0.0)         coeff= -pow(-coeff, A);
976
                                        else                coeff=  pow( coeff, A);
977
                                        coeff= coeff*0.5 + 0.5;
978
                                }
979
                                else if(flags & SWS_AREA)
980
                                {
981
                                        double srcPixelSize= 1.0/xInc1;
982
                                        if(d + srcPixelSize/2 < 0.5) coeff= 1.0;
983
                                        else if(d - srcPixelSize/2 < 0.5) coeff= (0.5-d)/srcPixelSize + 0.5;
984
                                        else coeff=0.0;
985
                                }
986
                                else if(flags & SWS_GAUSS)
987
                                {
988
                                        double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
989
                                        coeff = pow(2.0, - p*d*d);
990
                                }
991
                                else if(flags & SWS_SINC)
992
                                {
993
                                        coeff = d ? sin(d*PI)/(d*PI) : 1.0;
994
                                }
995
                                else if(flags & SWS_LANCZOS)
996
                                {
997
                                        double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0; 
998
                                        coeff = d ? sin(d*PI)*sin(d*PI/p)/(d*d*PI*PI/p) : 1.0;
999
                                        if(d>p) coeff=0;
1000
                                }
1001
                                else if(flags & SWS_BILINEAR)
1002
                                {
1003
                                        coeff= 1.0 - d;
1004
                                        if(coeff<0) coeff=0;
1005
                                }
1006
                                else if(flags & SWS_SPLINE)
1007
                                {
1008
                                        double p=-2.196152422706632;
1009
                                        coeff = getSplineCoeff(1.0, 0.0, p, -p-1.0, d);
1010
                                }
1011
                                else {
1012
                                        coeff= 0.0; //GCC warning killer
1013
                                        ASSERT(0)
1014
                                }
1015

    
1016
                                filter[i*filterSize + j]= coeff;
1017
                                xx++;
1018
                        }
1019
                        xDstInSrc+= xInc1;
1020
                }
1021
        }
1022

    
1023
        /* apply src & dst Filter to filter -> filter2
1024
           free(filter);
1025
        */
1026
        ASSERT(filterSize>0)
1027
        filter2Size= filterSize;
1028
        if(srcFilter) filter2Size+= srcFilter->length - 1;
1029
        if(dstFilter) filter2Size+= dstFilter->length - 1;
1030
        ASSERT(filter2Size>0)
1031
        filter2= (double*)memalign(8, filter2Size*dstW*sizeof(double));
1032

    
1033
        for(i=0; i<dstW; i++)
1034
        {
1035
                int j;
1036
                SwsVector scaleFilter;
1037
                SwsVector *outVec;
1038

    
1039
                scaleFilter.coeff= filter + i*filterSize;
1040
                scaleFilter.length= filterSize;
1041

    
1042
                if(srcFilter) outVec= sws_getConvVec(srcFilter, &scaleFilter);
1043
                else              outVec= &scaleFilter;
1044

    
1045
                ASSERT(outVec->length == filter2Size)
1046
                //FIXME dstFilter
1047

    
1048
                for(j=0; j<outVec->length; j++)
1049
                {
1050
                        filter2[i*filter2Size + j]= outVec->coeff[j];
1051
                }
1052

    
1053
                (*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2;
1054

    
1055
                if(outVec != &scaleFilter) sws_freeVec(outVec);
1056
        }
1057
        free(filter); filter=NULL;
1058

    
1059
        /* try to reduce the filter-size (step1 find size and shift left) */
1060
        // Assume its near normalized (*0.5 or *2.0 is ok but * 0.001 is not)
1061
        minFilterSize= 0;
1062
        for(i=dstW-1; i>=0; i--)
1063
        {
1064
                int min= filter2Size;
1065
                int j;
1066
                double cutOff=0.0;
1067

    
1068
                /* get rid off near zero elements on the left by shifting left */
1069
                for(j=0; j<filter2Size; j++)
1070
                {
1071
                        int k;
1072
                        cutOff += ABS(filter2[i*filter2Size]);
1073

    
1074
                        if(cutOff > SWS_MAX_REDUCE_CUTOFF) break;
1075

    
1076
                        /* preserve Monotonicity because the core can't handle the filter otherwise */
1077
                        if(i<dstW-1 && (*filterPos)[i] >= (*filterPos)[i+1]) break;
1078

    
1079
                        // Move filter coeffs left
1080
                        for(k=1; k<filter2Size; k++)
1081
                                filter2[i*filter2Size + k - 1]= filter2[i*filter2Size + k];
1082
                        filter2[i*filter2Size + k - 1]= 0.0;
1083
                        (*filterPos)[i]++;
1084
                }
1085

    
1086
                cutOff=0.0;
1087
                /* count near zeros on the right */
1088
                for(j=filter2Size-1; j>0; j--)
1089
                {
1090
                        cutOff += ABS(filter2[i*filter2Size + j]);
1091

    
1092
                        if(cutOff > SWS_MAX_REDUCE_CUTOFF) break;
1093
                        min--;
1094
                }
1095

    
1096
                if(min>minFilterSize) minFilterSize= min;
1097
        }
1098

    
1099
        if (flags & SWS_CPU_CAPS_ALTIVEC) {
1100
          // we can handle the special case 4,
1101
          // so we don't want to go to the full 8
1102
          if (minFilterSize < 5)
1103
            filterAlign = 4;
1104

    
1105
          // we really don't want to waste our time
1106
          // doing useless computation, so fall-back on
1107
          // the scalar C code for very small filter.
1108
          // vectorizing is worth it only if you have
1109
          // decent-sized vector.
1110
          if (minFilterSize < 3)
1111
            filterAlign = 1;
1112
        }
1113

    
1114
        ASSERT(minFilterSize > 0)
1115
        filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1));
1116
        ASSERT(filterSize > 0)
1117
        filter= (double*)memalign(8, filterSize*dstW*sizeof(double));
1118
        *outFilterSize= filterSize;
1119

    
1120
        if(flags&SWS_PRINT_INFO)
1121
                MSG_V("SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize);
1122
        /* try to reduce the filter-size (step2 reduce it) */
1123
        for(i=0; i<dstW; i++)
1124
        {
1125
                int j;
1126

    
1127
                for(j=0; j<filterSize; j++)
1128
                {
1129
                        if(j>=filter2Size) filter[i*filterSize + j]= 0.0;
1130
                        else                   filter[i*filterSize + j]= filter2[i*filter2Size + j];
1131
                }
1132
        }
1133
        free(filter2); filter2=NULL;
1134
        
1135

    
1136
        //FIXME try to align filterpos if possible
1137

    
1138
        //fix borders
1139
        for(i=0; i<dstW; i++)
1140
        {
1141
                int j;
1142
                if((*filterPos)[i] < 0)
1143
                {
1144
                        // Move filter coeffs left to compensate for filterPos
1145
                        for(j=1; j<filterSize; j++)
1146
                        {
1147
                                int left= MAX(j + (*filterPos)[i], 0);
1148
                                filter[i*filterSize + left] += filter[i*filterSize + j];
1149
                                filter[i*filterSize + j]=0;
1150
                        }
1151
                        (*filterPos)[i]= 0;
1152
                }
1153

    
1154
                if((*filterPos)[i] + filterSize > srcW)
1155
                {
1156
                        int shift= (*filterPos)[i] + filterSize - srcW;
1157
                        // Move filter coeffs right to compensate for filterPos
1158
                        for(j=filterSize-2; j>=0; j--)
1159
                        {
1160
                                int right= MIN(j + shift, filterSize-1);
1161
                                filter[i*filterSize +right] += filter[i*filterSize +j];
1162
                                filter[i*filterSize +j]=0;
1163
                        }
1164
                        (*filterPos)[i]= srcW - filterSize;
1165
                }
1166
        }
1167

    
1168
        // Note the +1 is for the MMXscaler which reads over the end
1169
        /* align at 16 for AltiVec (needed by hScale_altivec_real) */
1170
        *outFilter= (int16_t*)memalign(16, *outFilterSize*(dstW+1)*sizeof(int16_t));
1171
        memset(*outFilter, 0, *outFilterSize*(dstW+1)*sizeof(int16_t));
1172

    
1173
        /* Normalize & Store in outFilter */
1174
        for(i=0; i<dstW; i++)
1175
        {
1176
                int j;
1177
                double error=0;
1178
                double sum=0;
1179
                double scale= one;
1180

    
1181
                for(j=0; j<filterSize; j++)
1182
                {
1183
                        sum+= filter[i*filterSize + j];
1184
                }
1185
                scale/= sum;
1186
                for(j=0; j<*outFilterSize; j++)
1187
                {
1188
                        double v= filter[i*filterSize + j]*scale + error;
1189
                        int intV= floor(v + 0.5);
1190
                        (*outFilter)[i*(*outFilterSize) + j]= intV;
1191
                        error = v - intV;
1192
                }
1193
        }
1194
        
1195
        (*filterPos)[dstW]= (*filterPos)[dstW-1]; // the MMX scaler will read over the end
1196
        for(i=0; i<*outFilterSize; i++)
1197
        {
1198
                int j= dstW*(*outFilterSize);
1199
                (*outFilter)[j + i]= (*outFilter)[j + i - (*outFilterSize)];
1200
        }
1201

    
1202
        free(filter);
1203
}
1204

    
1205
#if defined(ARCH_X86) || defined(ARCH_X86_64)
1206
static void initMMX2HScaler(int dstW, int xInc, uint8_t *funnyCode, int16_t *filter, int32_t *filterPos, int numSplits)
1207
{
1208
        uint8_t *fragmentA;
1209
        long imm8OfPShufW1A;
1210
        long imm8OfPShufW2A;
1211
        long fragmentLengthA;
1212
        uint8_t *fragmentB;
1213
        long imm8OfPShufW1B;
1214
        long imm8OfPShufW2B;
1215
        long fragmentLengthB;
1216
        int fragmentPos;
1217

    
1218
        int xpos, i;
1219

    
1220
        // create an optimized horizontal scaling routine
1221

    
1222
        //code fragment
1223

    
1224
        asm volatile(
1225
                "jmp 9f                                \n\t"
1226
        // Begin
1227
                "0:                                \n\t"
1228
                "movq (%%"REG_d", %%"REG_a"), %%mm3\n\t" 
1229
                "movd (%%"REG_c", %%"REG_S"), %%mm0\n\t" 
1230
                "movd 1(%%"REG_c", %%"REG_S"), %%mm1\n\t"
1231
                "punpcklbw %%mm7, %%mm1                \n\t"
1232
                "punpcklbw %%mm7, %%mm0                \n\t"
1233
                "pshufw $0xFF, %%mm1, %%mm1        \n\t"
1234
                "1:                                \n\t"
1235
                "pshufw $0xFF, %%mm0, %%mm0        \n\t"
1236
                "2:                                \n\t"
1237
                "psubw %%mm1, %%mm0                \n\t"
1238
                "movl 8(%%"REG_b", %%"REG_a"), %%esi\n\t"
1239
                "pmullw %%mm3, %%mm0                \n\t"
1240
                "psllw $7, %%mm1                \n\t"
1241
                "paddw %%mm1, %%mm0                \n\t"
1242

    
1243
                "movq %%mm0, (%%"REG_D", %%"REG_a")\n\t"
1244

    
1245
                "add $8, %%"REG_a"                \n\t"
1246
        // End
1247
                "9:                                \n\t"
1248
//                "int $3\n\t"
1249
                "lea 0b, %0                        \n\t"
1250
                "lea 1b, %1                        \n\t"
1251
                "lea 2b, %2                        \n\t"
1252
                "dec %1                                \n\t"
1253
                "dec %2                                \n\t"
1254
                "sub %0, %1                        \n\t"
1255
                "sub %0, %2                        \n\t"
1256
                "lea 9b, %3                        \n\t"
1257
                "sub %0, %3                        \n\t"
1258

    
1259

    
1260
                :"=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
1261
                "=r" (fragmentLengthA)
1262
        );
1263

    
1264
        asm volatile(
1265
                "jmp 9f                                \n\t"
1266
        // Begin
1267
                "0:                                \n\t"
1268
                "movq (%%"REG_d", %%"REG_a"), %%mm3\n\t" 
1269
                "movd (%%"REG_c", %%"REG_S"), %%mm0\n\t" 
1270
                "punpcklbw %%mm7, %%mm0                \n\t"
1271
                "pshufw $0xFF, %%mm0, %%mm1        \n\t"
1272
                "1:                                \n\t"
1273
                "pshufw $0xFF, %%mm0, %%mm0        \n\t"
1274
                "2:                                \n\t"
1275
                "psubw %%mm1, %%mm0                \n\t"
1276
                "movl 8(%%"REG_b", %%"REG_a"), %%esi\n\t"
1277
                "pmullw %%mm3, %%mm0                \n\t"
1278
                "psllw $7, %%mm1                \n\t"
1279
                "paddw %%mm1, %%mm0                \n\t"
1280

    
1281
                "movq %%mm0, (%%"REG_D", %%"REG_a")\n\t"
1282

    
1283
                "add $8, %%"REG_a"                \n\t"
1284
        // End
1285
                "9:                                \n\t"
1286
//                "int $3\n\t"
1287
                "lea 0b, %0                        \n\t"
1288
                "lea 1b, %1                        \n\t"
1289
                "lea 2b, %2                        \n\t"
1290
                "dec %1                                \n\t"
1291
                "dec %2                                \n\t"
1292
                "sub %0, %1                        \n\t"
1293
                "sub %0, %2                        \n\t"
1294
                "lea 9b, %3                        \n\t"
1295
                "sub %0, %3                        \n\t"
1296

    
1297

    
1298
                :"=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
1299
                "=r" (fragmentLengthB)
1300
        );
1301

    
1302
        xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
1303
        fragmentPos=0;
1304
        
1305
        for(i=0; i<dstW/numSplits; i++)
1306
        {
1307
                int xx=xpos>>16;
1308

    
1309
                if((i&3) == 0)
1310
                {
1311
                        int a=0;
1312
                        int b=((xpos+xInc)>>16) - xx;
1313
                        int c=((xpos+xInc*2)>>16) - xx;
1314
                        int d=((xpos+xInc*3)>>16) - xx;
1315

    
1316
                        filter[i  ] = (( xpos         & 0xFFFF) ^ 0xFFFF)>>9;
1317
                        filter[i+1] = (((xpos+xInc  ) & 0xFFFF) ^ 0xFFFF)>>9;
1318
                        filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9;
1319
                        filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9;
1320
                        filterPos[i/2]= xx;
1321

    
1322
                        if(d+1<4)
1323
                        {
1324
                                int maxShift= 3-(d+1);
1325
                                int shift=0;
1326

    
1327
                                memcpy(funnyCode + fragmentPos, fragmentB, fragmentLengthB);
1328

    
1329
                                funnyCode[fragmentPos + imm8OfPShufW1B]=
1330
                                        (a+1) | ((b+1)<<2) | ((c+1)<<4) | ((d+1)<<6);
1331
                                funnyCode[fragmentPos + imm8OfPShufW2B]=
1332
                                        a | (b<<2) | (c<<4) | (d<<6);
1333

    
1334
                                if(i+3>=dstW) shift=maxShift; //avoid overread
1335
                                else if((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align
1336

    
1337
                                if(shift && i>=shift)
1338
                                {
1339
                                        funnyCode[fragmentPos + imm8OfPShufW1B]+= 0x55*shift;
1340
                                        funnyCode[fragmentPos + imm8OfPShufW2B]+= 0x55*shift;
1341
                                        filterPos[i/2]-=shift;
1342
                                }
1343

    
1344
                                fragmentPos+= fragmentLengthB;
1345
                        }
1346
                        else
1347
                        {
1348
                                int maxShift= 3-d;
1349
                                int shift=0;
1350

    
1351
                                memcpy(funnyCode + fragmentPos, fragmentA, fragmentLengthA);
1352

    
1353
                                funnyCode[fragmentPos + imm8OfPShufW1A]=
1354
                                funnyCode[fragmentPos + imm8OfPShufW2A]=
1355
                                        a | (b<<2) | (c<<4) | (d<<6);
1356

    
1357
                                if(i+4>=dstW) shift=maxShift; //avoid overread
1358
                                else if((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //partial align
1359

    
1360
                                if(shift && i>=shift)
1361
                                {
1362
                                        funnyCode[fragmentPos + imm8OfPShufW1A]+= 0x55*shift;
1363
                                        funnyCode[fragmentPos + imm8OfPShufW2A]+= 0x55*shift;
1364
                                        filterPos[i/2]-=shift;
1365
                                }
1366

    
1367
                                fragmentPos+= fragmentLengthA;
1368
                        }
1369

    
1370
                        funnyCode[fragmentPos]= RET;
1371
                }
1372
                xpos+=xInc;
1373
        }
1374
        filterPos[i/2]= xpos>>16; // needed to jump to the next part
1375
}
1376
#endif // ARCH_X86 || ARCH_X86_64
1377

    
1378
static void globalInit(void){
1379
    // generating tables:
1380
    int i;
1381
    for(i=0; i<768; i++){
1382
        int c= MIN(MAX(i-256, 0), 255);
1383
        clip_table[i]=c;
1384
    }
1385
}
1386

    
1387
static SwsFunc getSwsFunc(int flags){
1388
    
1389
#ifdef RUNTIME_CPUDETECT
1390
#if defined(ARCH_X86) || defined(ARCH_X86_64)
1391
        // ordered per speed fasterst first
1392
        if(flags & SWS_CPU_CAPS_MMX2)
1393
                return swScale_MMX2;
1394
        else if(flags & SWS_CPU_CAPS_3DNOW)
1395
                return swScale_3DNow;
1396
        else if(flags & SWS_CPU_CAPS_MMX)
1397
                return swScale_MMX;
1398
        else
1399
                return swScale_C;
1400

    
1401
#else
1402
#ifdef ARCH_POWERPC
1403
        if(flags & SWS_CPU_CAPS_ALTIVEC)
1404
          return swScale_altivec;
1405
        else
1406
          return swScale_C;
1407
#endif
1408
        return swScale_C;
1409
#endif
1410
#else //RUNTIME_CPUDETECT
1411
#ifdef HAVE_MMX2
1412
        return swScale_MMX2;
1413
#elif defined (HAVE_3DNOW)
1414
        return swScale_3DNow;
1415
#elif defined (HAVE_MMX)
1416
        return swScale_MMX;
1417
#elif defined (HAVE_ALTIVEC)
1418
        return swScale_altivec;
1419
#else
1420
        return swScale_C;
1421
#endif
1422
#endif //!RUNTIME_CPUDETECT
1423
}
1424

    
1425
static int PlanarToNV12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1426
             int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1427
        uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1428
        /* Copy Y plane */
1429
        if(dstStride[0]==srcStride[0] && srcStride[0] > 0)
1430
                memcpy(dst, src[0], srcSliceH*dstStride[0]);
1431
        else
1432
        {
1433
                int i;
1434
                uint8_t *srcPtr= src[0];
1435
                uint8_t *dstPtr= dst;
1436
                for(i=0; i<srcSliceH; i++)
1437
                {
1438
                        memcpy(dstPtr, srcPtr, c->srcW);
1439
                        srcPtr+= srcStride[0];
1440
                        dstPtr+= dstStride[0];
1441
                }
1442
        }
1443
        dst = dstParam[1] + dstStride[1]*srcSliceY/2;
1444
        if (c->dstFormat == IMGFMT_NV12)
1445
                interleaveBytes( src[1],src[2],dst,c->srcW/2,srcSliceH/2,srcStride[1],srcStride[2],dstStride[0] );
1446
        else
1447
                interleaveBytes( src[2],src[1],dst,c->srcW/2,srcSliceH/2,srcStride[2],srcStride[1],dstStride[0] );
1448

    
1449
        return srcSliceH;
1450
}
1451

    
1452
static int PlanarToYuy2Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1453
             int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1454
        uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1455

    
1456
        yv12toyuy2( src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0] );
1457

    
1458
        return srcSliceH;
1459
}
1460

    
1461
static int PlanarToUyvyWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1462
             int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1463
        uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1464

    
1465
        yv12touyvy( src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0] );
1466

    
1467
        return srcSliceH;
1468
}
1469

    
1470
/* {RGB,BGR}{15,16,24,32} -> {RGB,BGR}{15,16,24,32} */
1471
static int rgb2rgbWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1472
                           int srcSliceH, uint8_t* dst[], int dstStride[]){
1473
        const int srcFormat= c->srcFormat;
1474
        const int dstFormat= c->dstFormat;
1475
        const int srcBpp= ((srcFormat&0xFF) + 7)>>3;
1476
        const int dstBpp= ((dstFormat&0xFF) + 7)>>3;
1477
        const int srcId= (srcFormat&0xFF)>>2; // 1:0, 4:1, 8:2, 15:3, 16:4, 24:6, 32:8 
1478
        const int dstId= (dstFormat&0xFF)>>2;
1479
        void (*conv)(const uint8_t *src, uint8_t *dst, long src_size)=NULL;
1480

    
1481
        /* BGR -> BGR */
1482
        if(   (isBGR(srcFormat) && isBGR(dstFormat))
1483
           || (isRGB(srcFormat) && isRGB(dstFormat))){
1484
                switch(srcId | (dstId<<4)){
1485
                case 0x34: conv= rgb16to15; break;
1486
                case 0x36: conv= rgb24to15; break;
1487
                case 0x38: conv= rgb32to15; break;
1488
                case 0x43: conv= rgb15to16; break;
1489
                case 0x46: conv= rgb24to16; break;
1490
                case 0x48: conv= rgb32to16; break;
1491
                case 0x63: conv= rgb15to24; break;
1492
                case 0x64: conv= rgb16to24; break;
1493
                case 0x68: conv= rgb32to24; break;
1494
                case 0x83: conv= rgb15to32; break;
1495
                case 0x84: conv= rgb16to32; break;
1496
                case 0x86: conv= rgb24to32; break;
1497
                default: MSG_ERR("swScaler: internal error %s -> %s converter\n", 
1498
                                 vo_format_name(srcFormat), vo_format_name(dstFormat)); break;
1499
                }
1500
        }else if(   (isBGR(srcFormat) && isRGB(dstFormat))
1501
                 || (isRGB(srcFormat) && isBGR(dstFormat))){
1502
                switch(srcId | (dstId<<4)){
1503
                case 0x33: conv= rgb15tobgr15; break;
1504
                case 0x34: conv= rgb16tobgr15; break;
1505
                case 0x36: conv= rgb24tobgr15; break;
1506
                case 0x38: conv= rgb32tobgr15; break;
1507
                case 0x43: conv= rgb15tobgr16; break;
1508
                case 0x44: conv= rgb16tobgr16; break;
1509
                case 0x46: conv= rgb24tobgr16; break;
1510
                case 0x48: conv= rgb32tobgr16; break;
1511
                case 0x63: conv= rgb15tobgr24; break;
1512
                case 0x64: conv= rgb16tobgr24; break;
1513
                case 0x66: conv= rgb24tobgr24; break;
1514
                case 0x68: conv= rgb32tobgr24; break;
1515
                case 0x83: conv= rgb15tobgr32; break;
1516
                case 0x84: conv= rgb16tobgr32; break;
1517
                case 0x86: conv= rgb24tobgr32; break;
1518
                case 0x88: conv= rgb32tobgr32; break;
1519
                default: MSG_ERR("swScaler: internal error %s -> %s converter\n", 
1520
                                 vo_format_name(srcFormat), vo_format_name(dstFormat)); break;
1521
                }
1522
        }else{
1523
                MSG_ERR("swScaler: internal error %s -> %s converter\n", 
1524
                         vo_format_name(srcFormat), vo_format_name(dstFormat));
1525
        }
1526

    
1527
        if(dstStride[0]*srcBpp == srcStride[0]*dstBpp)
1528
                conv(src[0], dst[0] + dstStride[0]*srcSliceY, srcSliceH*srcStride[0]);
1529
        else
1530
        {
1531
                int i;
1532
                uint8_t *srcPtr= src[0];
1533
                uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1534

    
1535
                for(i=0; i<srcSliceH; i++)
1536
                {
1537
                        conv(srcPtr, dstPtr, c->srcW*srcBpp);
1538
                        srcPtr+= srcStride[0];
1539
                        dstPtr+= dstStride[0];
1540
                }
1541
        }     
1542
        return srcSliceH;
1543
}
1544

    
1545
static int bgr24toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1546
             int srcSliceH, uint8_t* dst[], int dstStride[]){
1547

    
1548
        rgb24toyv12(
1549
                src[0], 
1550
                dst[0]+ srcSliceY    *dstStride[0], 
1551
                dst[1]+(srcSliceY>>1)*dstStride[1], 
1552
                dst[2]+(srcSliceY>>1)*dstStride[2],
1553
                c->srcW, srcSliceH, 
1554
                dstStride[0], dstStride[1], srcStride[0]);
1555
        return srcSliceH;
1556
}
1557

    
1558
static int yvu9toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1559
             int srcSliceH, uint8_t* dst[], int dstStride[]){
1560
        int i;
1561

    
1562
        /* copy Y */
1563
        if(srcStride[0]==dstStride[0] && srcStride[0] > 0) 
1564
                memcpy(dst[0]+ srcSliceY*dstStride[0], src[0], srcStride[0]*srcSliceH);
1565
        else{
1566
                uint8_t *srcPtr= src[0];
1567
                uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1568

    
1569
                for(i=0; i<srcSliceH; i++)
1570
                {
1571
                        memcpy(dstPtr, srcPtr, c->srcW);
1572
                        srcPtr+= srcStride[0];
1573
                        dstPtr+= dstStride[0];
1574
                }
1575
        }
1576

    
1577
        if(c->dstFormat==IMGFMT_YV12){
1578
                planar2x(src[1], dst[1], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[1]);
1579
                planar2x(src[2], dst[2], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[2]);
1580
        }else{
1581
                planar2x(src[1], dst[2], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[2]);
1582
                planar2x(src[2], dst[1], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[1]);
1583
        }
1584
        return srcSliceH;
1585
}
1586

    
1587
/**
1588
 * bring pointers in YUV order instead of YVU
1589
 */
1590
static inline void sws_orderYUV(int format, uint8_t * sortedP[], int sortedStride[], uint8_t * p[], int stride[]){
1591
        if(format == IMGFMT_YV12 || format == IMGFMT_YVU9
1592
           || format == IMGFMT_444P || format == IMGFMT_422P || format == IMGFMT_411P){
1593
                sortedP[0]= p[0];
1594
                sortedP[1]= p[2];
1595
                sortedP[2]= p[1];
1596
                sortedStride[0]= stride[0];
1597
                sortedStride[1]= stride[2];
1598
                sortedStride[2]= stride[1];
1599
        }
1600
        else if(isPacked(format) || isGray(format) || format == IMGFMT_Y8)
1601
        {
1602
                sortedP[0]= p[0];
1603
                sortedP[1]= 
1604
                sortedP[2]= NULL;
1605
                sortedStride[0]= stride[0];
1606
                sortedStride[1]= 
1607
                sortedStride[2]= 0;
1608
        }
1609
        else if(format == IMGFMT_I420 || format == IMGFMT_IYUV)
1610
        {
1611
                sortedP[0]= p[0];
1612
                sortedP[1]= p[1];
1613
                sortedP[2]= p[2];
1614
                sortedStride[0]= stride[0];
1615
                sortedStride[1]= stride[1];
1616
                sortedStride[2]= stride[2];
1617
        }
1618
        else if(format == IMGFMT_NV12 || format == IMGFMT_NV21)
1619
        {
1620
                sortedP[0]= p[0];
1621
                sortedP[1]= p[1];
1622
                sortedP[2]= NULL;
1623
                sortedStride[0]= stride[0];
1624
                sortedStride[1]= stride[1];
1625
                sortedStride[2]= 0;
1626
        }else{
1627
                MSG_ERR("internal error in orderYUV\n");
1628
        }
1629
}
1630

    
1631
/* unscaled copy like stuff (assumes nearly identical formats) */
1632
static int simpleCopy(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1633
             int srcSliceH, uint8_t* dst[], int dstStride[]){
1634

    
1635
        if(isPacked(c->srcFormat))
1636
        {
1637
                if(dstStride[0]==srcStride[0] && srcStride[0] > 0)
1638
                        memcpy(dst[0] + dstStride[0]*srcSliceY, src[0], srcSliceH*dstStride[0]);
1639
                else
1640
                {
1641
                        int i;
1642
                        uint8_t *srcPtr= src[0];
1643
                        uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1644
                        int length=0;
1645

    
1646
                        /* universal length finder */
1647
                        while(length+c->srcW <= ABS(dstStride[0]) 
1648
                           && length+c->srcW <= ABS(srcStride[0])) length+= c->srcW;
1649
                        ASSERT(length!=0);
1650

    
1651
                        for(i=0; i<srcSliceH; i++)
1652
                        {
1653
                                memcpy(dstPtr, srcPtr, length);
1654
                                srcPtr+= srcStride[0];
1655
                                dstPtr+= dstStride[0];
1656
                        }
1657
                }
1658
        }
1659
        else 
1660
        { /* Planar YUV or gray */
1661
                int plane;
1662
                for(plane=0; plane<3; plane++)
1663
                {
1664
                        int length= plane==0 ? c->srcW  : -((-c->srcW  )>>c->chrDstHSubSample);
1665
                        int y=      plane==0 ? srcSliceY: -((-srcSliceY)>>c->chrDstVSubSample);
1666
                        int height= plane==0 ? srcSliceH: -((-srcSliceH)>>c->chrDstVSubSample);
1667

    
1668
                        if((isGray(c->srcFormat) || isGray(c->dstFormat)) && plane>0)
1669
                        {
1670
                                if(!isGray(c->dstFormat))
1671
                                        memset(dst[plane], 128, dstStride[plane]*height);
1672
                        }
1673
                        else
1674
                        {
1675
                                if(dstStride[plane]==srcStride[plane] && srcStride[plane] > 0)
1676
                                        memcpy(dst[plane] + dstStride[plane]*y, src[plane], height*dstStride[plane]);
1677
                                else
1678
                                {
1679
                                        int i;
1680
                                        uint8_t *srcPtr= src[plane];
1681
                                        uint8_t *dstPtr= dst[plane] + dstStride[plane]*y;
1682
                                        for(i=0; i<height; i++)
1683
                                        {
1684
                                                memcpy(dstPtr, srcPtr, length);
1685
                                                srcPtr+= srcStride[plane];
1686
                                                dstPtr+= dstStride[plane];
1687
                                        }
1688
                                }
1689
                        }
1690
                }
1691
        }
1692
        return srcSliceH;
1693
}
1694

    
1695
static int remove_dup_fourcc(int fourcc)
1696
{
1697
        switch(fourcc)
1698
        {
1699
            case IMGFMT_I420:
1700
            case IMGFMT_IYUV: return IMGFMT_YV12;
1701
            case IMGFMT_Y8  : return IMGFMT_Y800;
1702
            case IMGFMT_IF09: return IMGFMT_YVU9;
1703
            default: return fourcc;
1704
        }
1705
}
1706

    
1707
static void getSubSampleFactors(int *h, int *v, int format){
1708
        switch(format){
1709
        case IMGFMT_UYVY:
1710
        case IMGFMT_YUY2:
1711
                *h=1;
1712
                *v=0;
1713
                break;
1714
        case IMGFMT_YV12:
1715
        case IMGFMT_Y800: //FIXME remove after different subsamplings are fully implemented
1716
        case IMGFMT_NV12:
1717
        case IMGFMT_NV21:
1718
                *h=1;
1719
                *v=1;
1720
                break;
1721
        case IMGFMT_YVU9:
1722
                *h=2;
1723
                *v=2;
1724
                break;
1725
        case IMGFMT_444P:
1726
                *h=0;
1727
                *v=0;
1728
                break;
1729
        case IMGFMT_422P:
1730
                *h=1;
1731
                *v=0;
1732
                break;
1733
        case IMGFMT_411P:
1734
                *h=2;
1735
                *v=0;
1736
                break;
1737
        default:
1738
                *h=0;
1739
                *v=0;
1740
                break;
1741
        }
1742
}
1743

    
1744
static uint16_t roundToInt16(int64_t f){
1745
        int r= (f + (1<<15))>>16;
1746
             if(r<-0x7FFF) return 0x8000;
1747
        else if(r> 0x7FFF) return 0x7FFF;
1748
        else               return r;
1749
}
1750

    
1751
/**
1752
 * @param inv_table the yuv2rgb coeffs, normally Inverse_Table_6_9[x]
1753
 * @param fullRange if 1 then the luma range is 0..255 if 0 its 16..235
1754
 * @return -1 if not supported
1755
 */
1756
int sws_setColorspaceDetails(SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation){
1757
        int64_t crv =  inv_table[0];
1758
        int64_t cbu =  inv_table[1];
1759
        int64_t cgu = -inv_table[2];
1760
        int64_t cgv = -inv_table[3];
1761
        int64_t cy  = 1<<16;
1762
        int64_t oy  = 0;
1763

    
1764
        if(isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
1765
        memcpy(c->srcColorspaceTable, inv_table, sizeof(int)*4);
1766
        memcpy(c->dstColorspaceTable,     table, sizeof(int)*4);
1767

    
1768
        c->brightness= brightness;
1769
        c->contrast  = contrast;
1770
        c->saturation= saturation;
1771
        c->srcRange  = srcRange;
1772
        c->dstRange  = dstRange;
1773

    
1774
        c->uOffset=   0x0400040004000400LL;
1775
        c->vOffset=   0x0400040004000400LL;
1776

    
1777
        if(!srcRange){
1778
                cy= (cy*255) / 219;
1779
                oy= 16<<16;
1780
        }
1781

    
1782
        cy = (cy *contrast             )>>16;
1783
        crv= (crv*contrast * saturation)>>32;
1784
        cbu= (cbu*contrast * saturation)>>32;
1785
        cgu= (cgu*contrast * saturation)>>32;
1786
        cgv= (cgv*contrast * saturation)>>32;
1787

    
1788
        oy -= 256*brightness;
1789

    
1790
        c->yCoeff=    roundToInt16(cy *8192) * 0x0001000100010001ULL;
1791
        c->vrCoeff=   roundToInt16(crv*8192) * 0x0001000100010001ULL;
1792
        c->ubCoeff=   roundToInt16(cbu*8192) * 0x0001000100010001ULL;
1793
        c->vgCoeff=   roundToInt16(cgv*8192) * 0x0001000100010001ULL;
1794
        c->ugCoeff=   roundToInt16(cgu*8192) * 0x0001000100010001ULL;
1795
        c->yOffset=   roundToInt16(oy *   8) * 0x0001000100010001ULL;
1796

    
1797
        yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness, contrast, saturation);
1798
        //FIXME factorize
1799

    
1800
#ifdef COMPILE_ALTIVEC
1801
        if (c->flags & SWS_CPU_CAPS_ALTIVEC)
1802
            yuv2rgb_altivec_init_tables (c, inv_table, brightness, contrast, saturation);
1803
#endif        
1804
        return 0;
1805
}
1806

    
1807
/**
1808
 * @return -1 if not supported
1809
 */
1810
int sws_getColorspaceDetails(SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation){
1811
        if(isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
1812

    
1813
        *inv_table = c->srcColorspaceTable;
1814
        *table     = c->dstColorspaceTable;
1815
        *srcRange  = c->srcRange;
1816
        *dstRange  = c->dstRange;
1817
        *brightness= c->brightness;
1818
        *contrast  = c->contrast;
1819
        *saturation= c->saturation;
1820
        
1821
        return 0;        
1822
}
1823

    
1824
SwsContext *sws_getContext(int srcW, int srcH, int origSrcFormat, int dstW, int dstH, int origDstFormat, int flags,
1825
                         SwsFilter *srcFilter, SwsFilter *dstFilter, double *param){
1826

    
1827
        SwsContext *c;
1828
        int i;
1829
        int usesVFilter, usesHFilter;
1830
        int unscaled, needsDither;
1831
        int srcFormat, dstFormat;
1832
        SwsFilter dummyFilter= {NULL, NULL, NULL, NULL};
1833
#if defined(ARCH_X86) || defined(ARCH_X86_64)
1834
        if(flags & SWS_CPU_CAPS_MMX)
1835
                asm volatile("emms\n\t"::: "memory");
1836
#endif
1837

    
1838
#ifndef RUNTIME_CPUDETECT //ensure that the flags match the compiled variant if cpudetect is off
1839
        flags &= ~(SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2|SWS_CPU_CAPS_3DNOW|SWS_CPU_CAPS_ALTIVEC);
1840
#ifdef HAVE_MMX2
1841
        flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2;
1842
#elif defined (HAVE_3DNOW)
1843
        flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_3DNOW;
1844
#elif defined (HAVE_MMX)
1845
        flags |= SWS_CPU_CAPS_MMX;
1846
#elif defined (HAVE_ALTIVEC)
1847
        flags |= SWS_CPU_CAPS_ALTIVEC;
1848
#endif
1849
#endif
1850
        if(clip_table[512] != 255) globalInit();
1851
        if(rgb15to16 == NULL) sws_rgb2rgb_init(flags);
1852

    
1853
        /* avoid duplicate Formats, so we don't need to check to much */
1854
        srcFormat = remove_dup_fourcc(origSrcFormat);
1855
        dstFormat = remove_dup_fourcc(origDstFormat);
1856

    
1857
        unscaled = (srcW == dstW && srcH == dstH);
1858
        needsDither= (isBGR(dstFormat) || isRGB(dstFormat)) 
1859
                     && (dstFormat&0xFF)<24
1860
                     && ((dstFormat&0xFF)<(srcFormat&0xFF) || (!(isRGB(srcFormat) || isBGR(srcFormat))));
1861

    
1862
        if(!isSupportedIn(srcFormat)) 
1863
        {
1864
                MSG_ERR("swScaler: %s is not supported as input format\n", vo_format_name(srcFormat));
1865
                return NULL;
1866
        }
1867
        if(!isSupportedOut(dstFormat))
1868
        {
1869
                MSG_ERR("swScaler: %s is not supported as output format\n", vo_format_name(dstFormat));
1870
                return NULL;
1871
        }
1872

    
1873
        /* sanity check */
1874
        if(srcW<4 || srcH<1 || dstW<8 || dstH<1) //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
1875
        {
1876
                 MSG_ERR("swScaler: %dx%d -> %dx%d is invalid scaling dimension\n", 
1877
                        srcW, srcH, dstW, dstH);
1878
                return NULL;
1879
        }
1880

    
1881
        if(!dstFilter) dstFilter= &dummyFilter;
1882
        if(!srcFilter) srcFilter= &dummyFilter;
1883

    
1884
        c= memalign(64, sizeof(SwsContext));
1885
        memset(c, 0, sizeof(SwsContext));
1886

    
1887
        c->srcW= srcW;
1888
        c->srcH= srcH;
1889
        c->dstW= dstW;
1890
        c->dstH= dstH;
1891
        c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW;
1892
        c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH;
1893
        c->flags= flags;
1894
        c->dstFormat= dstFormat;
1895
        c->srcFormat= srcFormat;
1896
        c->origDstFormat= origDstFormat;
1897
        c->origSrcFormat= origSrcFormat;
1898
        c->vRounder= 4* 0x0001000100010001ULL;
1899

    
1900
        usesHFilter= usesVFilter= 0;
1901
        if(dstFilter->lumV!=NULL && dstFilter->lumV->length>1) usesVFilter=1;
1902
        if(dstFilter->lumH!=NULL && dstFilter->lumH->length>1) usesHFilter=1;
1903
        if(dstFilter->chrV!=NULL && dstFilter->chrV->length>1) usesVFilter=1;
1904
        if(dstFilter->chrH!=NULL && dstFilter->chrH->length>1) usesHFilter=1;
1905
        if(srcFilter->lumV!=NULL && srcFilter->lumV->length>1) usesVFilter=1;
1906
        if(srcFilter->lumH!=NULL && srcFilter->lumH->length>1) usesHFilter=1;
1907
        if(srcFilter->chrV!=NULL && srcFilter->chrV->length>1) usesVFilter=1;
1908
        if(srcFilter->chrH!=NULL && srcFilter->chrH->length>1) usesHFilter=1;
1909

    
1910
        getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
1911
        getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
1912

    
1913
        // reuse chroma for 2 pixles rgb/bgr unless user wants full chroma interpolation
1914
        if((isBGR(dstFormat) || isRGB(dstFormat)) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1;
1915

    
1916
        // drop some chroma lines if the user wants it
1917
        c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT;
1918
        c->chrSrcVSubSample+= c->vChrDrop;
1919

    
1920
        // drop every 2. pixel for chroma calculation unless user wants full chroma
1921
        if((isBGR(srcFormat) || isRGB(srcFormat)) && !(flags&SWS_FULL_CHR_H_INP)) 
1922
                c->chrSrcHSubSample=1;
1923

    
1924
        if(param){
1925
                c->param[0] = param[0];
1926
                c->param[1] = param[1];
1927
        }else{
1928
                c->param[0] =
1929
                c->param[1] = SWS_PARAM_DEFAULT;
1930
        }
1931

    
1932
        c->chrIntHSubSample= c->chrDstHSubSample;
1933
        c->chrIntVSubSample= c->chrSrcVSubSample;
1934

    
1935
        // note the -((-x)>>y) is so that we allways round toward +inf
1936
        c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample);
1937
        c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample);
1938
        c->chrDstW= -((-dstW) >> c->chrDstHSubSample);
1939
        c->chrDstH= -((-dstH) >> c->chrDstVSubSample);
1940

    
1941
        sws_setColorspaceDetails(c, Inverse_Table_6_9[SWS_CS_DEFAULT], 0, Inverse_Table_6_9[SWS_CS_DEFAULT] /* FIXME*/, 0, 0, 1<<16, 1<<16); 
1942

    
1943
        /* unscaled special Cases */
1944
        if(unscaled && !usesHFilter && !usesVFilter)
1945
        {
1946
                /* yv12_to_nv12 */
1947
                if(srcFormat == IMGFMT_YV12 && (dstFormat == IMGFMT_NV12 || dstFormat == IMGFMT_NV21))
1948
                {
1949
                        c->swScale= PlanarToNV12Wrapper;
1950
                }
1951
                /* yuv2bgr */
1952
                if((srcFormat==IMGFMT_YV12 || srcFormat==IMGFMT_422P) && (isBGR(dstFormat) || isRGB(dstFormat)))
1953
                {
1954
                        c->swScale= yuv2rgb_get_func_ptr(c);
1955
                }
1956
                
1957
                if( srcFormat==IMGFMT_YVU9 && dstFormat==IMGFMT_YV12 )
1958
                {
1959
                        c->swScale= yvu9toyv12Wrapper;
1960
                }
1961

    
1962
                /* bgr24toYV12 */
1963
                if(srcFormat==IMGFMT_BGR24 && dstFormat==IMGFMT_YV12)
1964
                        c->swScale= bgr24toyv12Wrapper;
1965
                
1966
                /* rgb/bgr -> rgb/bgr (no dither needed forms) */
1967
                if(   (isBGR(srcFormat) || isRGB(srcFormat))
1968
                   && (isBGR(dstFormat) || isRGB(dstFormat)) 
1969
                   && !needsDither)
1970
                        c->swScale= rgb2rgbWrapper;
1971

    
1972
                /* LQ converters if -sws 0 or -sws 4*/
1973
                if(c->flags&(SWS_FAST_BILINEAR|SWS_POINT)){
1974
                        /* rgb/bgr -> rgb/bgr (dither needed forms) */
1975
                        if(  (isBGR(srcFormat) || isRGB(srcFormat))
1976
                          && (isBGR(dstFormat) || isRGB(dstFormat)) 
1977
                          && needsDither)
1978
                                c->swScale= rgb2rgbWrapper;
1979

    
1980
                        /* yv12_to_yuy2 */
1981
                        if(srcFormat == IMGFMT_YV12 && 
1982
                            (dstFormat == IMGFMT_YUY2 || dstFormat == IMGFMT_UYVY))
1983
                        {
1984
                                if (dstFormat == IMGFMT_YUY2)
1985
                                    c->swScale= PlanarToYuy2Wrapper;
1986
                                else
1987
                                    c->swScale= PlanarToUyvyWrapper;
1988
                        }
1989
                }
1990

    
1991
#ifdef COMPILE_ALTIVEC
1992
                if ((c->flags & SWS_CPU_CAPS_ALTIVEC) &&
1993
                    ((srcFormat == IMGFMT_YV12 && 
1994
                      (dstFormat == IMGFMT_YUY2 || dstFormat == IMGFMT_UYVY)))) {
1995
                  // unscaled YV12 -> packed YUV, we want speed
1996
                  if (dstFormat == IMGFMT_YUY2)
1997
                    c->swScale= yv12toyuy2_unscaled_altivec;
1998
                  else
1999
                    c->swScale= yv12touyvy_unscaled_altivec;
2000
                }
2001
#endif
2002

    
2003
                /* simple copy */
2004
                if(   srcFormat == dstFormat
2005
                   || (isPlanarYUV(srcFormat) && isGray(dstFormat))
2006
                   || (isPlanarYUV(dstFormat) && isGray(srcFormat))
2007
                  )
2008
                {
2009
                        c->swScale= simpleCopy;
2010
                }
2011

    
2012
                if(c->swScale){
2013
                        if(flags&SWS_PRINT_INFO)
2014
                                MSG_INFO("SwScaler: using unscaled %s -> %s special converter\n", 
2015
                                        vo_format_name(srcFormat), vo_format_name(dstFormat));
2016
                        return c;
2017
                }
2018
        }
2019

    
2020
        if(flags & SWS_CPU_CAPS_MMX2)
2021
        {
2022
                c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0;
2023
                if(!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR))
2024
                {
2025
                        if(flags&SWS_PRINT_INFO)
2026
                                MSG_INFO("SwScaler: output Width is not a multiple of 32 -> no MMX2 scaler\n");
2027
                }
2028
                if(usesHFilter) c->canMMX2BeUsed=0;
2029
        }
2030
        else
2031
                c->canMMX2BeUsed=0;
2032

    
2033
        c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW;
2034
        c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH;
2035

    
2036
        // match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
2037
        // but only for the FAST_BILINEAR mode otherwise do correct scaling
2038
        // n-2 is the last chrominance sample available
2039
        // this is not perfect, but noone shuld notice the difference, the more correct variant
2040
        // would be like the vertical one, but that would require some special code for the
2041
        // first and last pixel
2042
        if(flags&SWS_FAST_BILINEAR)
2043
        {
2044
                if(c->canMMX2BeUsed)
2045
                {
2046
                        c->lumXInc+= 20;
2047
                        c->chrXInc+= 20;
2048
                }
2049
                //we don't use the x86asm scaler if mmx is available
2050
                else if(flags & SWS_CPU_CAPS_MMX)
2051
                {
2052
                        c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20;
2053
                        c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20;
2054
                }
2055
        }
2056

    
2057
        /* precalculate horizontal scaler filter coefficients */
2058
        {
2059
                const int filterAlign=
2060
                  (flags & SWS_CPU_CAPS_MMX) ? 4 :
2061
                  (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
2062
                  1;
2063

    
2064
                initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc,
2065
                                 srcW      ,       dstW, filterAlign, 1<<14,
2066
                                 (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC)  : flags,
2067
                                 srcFilter->lumH, dstFilter->lumH, c->param);
2068
                initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc,
2069
                                 c->chrSrcW, c->chrDstW, filterAlign, 1<<14,
2070
                                 (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
2071
                                 srcFilter->chrH, dstFilter->chrH, c->param);
2072

    
2073
#if defined(ARCH_X86) || defined(ARCH_X86_64)
2074
// can't downscale !!!
2075
                if(c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR))
2076
                {
2077
#define MAX_FUNNY_CODE_SIZE 10000
2078
#ifdef MAP_ANONYMOUS
2079
                        c->funnyYCode = (uint8_t*)mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
2080
                        c->funnyUVCode = (uint8_t*)mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
2081
#else
2082
                        c->funnyYCode = (uint8_t*)memalign(32, MAX_FUNNY_CODE_SIZE);
2083
                        c->funnyUVCode = (uint8_t*)memalign(32, MAX_FUNNY_CODE_SIZE);
2084
#endif
2085

    
2086
                        c->lumMmx2Filter   = (int16_t*)memalign(8, (dstW        /8+8)*sizeof(int16_t));
2087
                        c->chrMmx2Filter   = (int16_t*)memalign(8, (c->chrDstW  /4+8)*sizeof(int16_t));
2088
                        c->lumMmx2FilterPos= (int32_t*)memalign(8, (dstW      /2/8+8)*sizeof(int32_t));
2089
                        c->chrMmx2FilterPos= (int32_t*)memalign(8, (c->chrDstW/2/4+8)*sizeof(int32_t));
2090

    
2091
                        initMMX2HScaler(      dstW, c->lumXInc, c->funnyYCode , c->lumMmx2Filter, c->lumMmx2FilterPos, 8);
2092
                        initMMX2HScaler(c->chrDstW, c->chrXInc, c->funnyUVCode, c->chrMmx2Filter, c->chrMmx2FilterPos, 4);
2093
                }
2094
#endif
2095
        } // Init Horizontal stuff
2096

    
2097

    
2098

    
2099
        /* precalculate vertical scaler filter coefficients */
2100
        {
2101
                const int filterAlign=
2102
                  (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
2103
                  1;
2104

    
2105
                initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc,
2106
                                srcH      ,        dstH, filterAlign, (1<<12)-4,
2107
                                (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC)  : flags,
2108
                                srcFilter->lumV, dstFilter->lumV, c->param);
2109
                initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc,
2110
                                c->chrSrcH, c->chrDstH, filterAlign, (1<<12)-4,
2111
                                (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
2112
                                srcFilter->chrV, dstFilter->chrV, c->param);
2113

    
2114
#ifdef HAVE_ALTIVEC
2115
                c->vYCoeffsBank = memalign (16, sizeof (vector signed short)*c->vLumFilterSize*c->dstH);
2116
                c->vCCoeffsBank = memalign (16, sizeof (vector signed short)*c->vChrFilterSize*c->chrDstH);
2117

    
2118
                for (i=0;i<c->vLumFilterSize*c->dstH;i++) {
2119
                  int j;
2120
                  short *p = (short *)&c->vYCoeffsBank[i];
2121
                  for (j=0;j<8;j++)
2122
                    p[j] = c->vLumFilter[i];
2123
                }
2124

    
2125
                for (i=0;i<c->vChrFilterSize*c->chrDstH;i++) {
2126
                  int j;
2127
                  short *p = (short *)&c->vCCoeffsBank[i];
2128
                  for (j=0;j<8;j++)
2129
                    p[j] = c->vChrFilter[i];
2130
                }
2131
#endif
2132
        }
2133

    
2134
        // Calculate Buffer Sizes so that they won't run out while handling these damn slices
2135
        c->vLumBufSize= c->vLumFilterSize;
2136
        c->vChrBufSize= c->vChrFilterSize;
2137
        for(i=0; i<dstH; i++)
2138
        {
2139
                int chrI= i*c->chrDstH / dstH;
2140
                int nextSlice= MAX(c->vLumFilterPos[i   ] + c->vLumFilterSize - 1,
2141
                                 ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<<c->chrSrcVSubSample));
2142

    
2143
                nextSlice>>= c->chrSrcVSubSample;
2144
                nextSlice<<= c->chrSrcVSubSample;
2145
                if(c->vLumFilterPos[i   ] + c->vLumBufSize < nextSlice)
2146
                        c->vLumBufSize= nextSlice - c->vLumFilterPos[i   ];
2147
                if(c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>c->chrSrcVSubSample))
2148
                        c->vChrBufSize= (nextSlice>>c->chrSrcVSubSample) - c->vChrFilterPos[chrI];
2149
        }
2150

    
2151
        // allocate pixbufs (we use dynamic allocation because otherwise we would need to
2152
        c->lumPixBuf= (int16_t**)memalign(4, c->vLumBufSize*2*sizeof(int16_t*));
2153
        c->chrPixBuf= (int16_t**)memalign(4, c->vChrBufSize*2*sizeof(int16_t*));
2154
        //Note we need at least one pixel more at the end because of the mmx code (just in case someone wanna replace the 4000/8000)
2155
        /* align at 16 bytes for AltiVec */
2156
        for(i=0; i<c->vLumBufSize; i++)
2157
                c->lumPixBuf[i]= c->lumPixBuf[i+c->vLumBufSize]= (uint16_t*)memalign(16, 4000);
2158
        for(i=0; i<c->vChrBufSize; i++)
2159
                c->chrPixBuf[i]= c->chrPixBuf[i+c->vChrBufSize]= (uint16_t*)memalign(16, 8000);
2160

    
2161
        //try to avoid drawing green stuff between the right end and the stride end
2162
        for(i=0; i<c->vLumBufSize; i++) memset(c->lumPixBuf[i], 0, 4000);
2163
        for(i=0; i<c->vChrBufSize; i++) memset(c->chrPixBuf[i], 64, 8000);
2164

    
2165
        ASSERT(c->chrDstH <= dstH)
2166

    
2167
        if(flags&SWS_PRINT_INFO)
2168
        {
2169
#ifdef DITHER1XBPP
2170
                char *dither= " dithered";
2171
#else
2172
                char *dither= "";
2173
#endif
2174
                if(flags&SWS_FAST_BILINEAR)
2175
                        MSG_INFO("\nSwScaler: FAST_BILINEAR scaler, ");
2176
                else if(flags&SWS_BILINEAR)
2177
                        MSG_INFO("\nSwScaler: BILINEAR scaler, ");
2178
                else if(flags&SWS_BICUBIC)
2179
                        MSG_INFO("\nSwScaler: BICUBIC scaler, ");
2180
                else if(flags&SWS_X)
2181
                        MSG_INFO("\nSwScaler: Experimental scaler, ");
2182
                else if(flags&SWS_POINT)
2183
                        MSG_INFO("\nSwScaler: Nearest Neighbor / POINT scaler, ");
2184
                else if(flags&SWS_AREA)
2185
                        MSG_INFO("\nSwScaler: Area Averageing scaler, ");
2186
                else if(flags&SWS_BICUBLIN)
2187
                        MSG_INFO("\nSwScaler: luma BICUBIC / chroma BILINEAR scaler, ");
2188
                else if(flags&SWS_GAUSS)
2189
                        MSG_INFO("\nSwScaler: Gaussian scaler, ");
2190
                else if(flags&SWS_SINC)
2191
                        MSG_INFO("\nSwScaler: Sinc scaler, ");
2192
                else if(flags&SWS_LANCZOS)
2193
                        MSG_INFO("\nSwScaler: Lanczos scaler, ");
2194
                else if(flags&SWS_SPLINE)
2195
                        MSG_INFO("\nSwScaler: Bicubic spline scaler, ");
2196
                else
2197
                        MSG_INFO("\nSwScaler: ehh flags invalid?! ");
2198

    
2199
                if(dstFormat==IMGFMT_BGR15 || dstFormat==IMGFMT_BGR16)
2200
                        MSG_INFO("from %s to%s %s ", 
2201
                                vo_format_name(srcFormat), dither, vo_format_name(dstFormat));
2202
                else
2203
                        MSG_INFO("from %s to %s ", 
2204
                                vo_format_name(srcFormat), vo_format_name(dstFormat));
2205

    
2206
                if(flags & SWS_CPU_CAPS_MMX2)
2207
                        MSG_INFO("using MMX2\n");
2208
                else if(flags & SWS_CPU_CAPS_3DNOW)
2209
                        MSG_INFO("using 3DNOW\n");
2210
                else if(flags & SWS_CPU_CAPS_MMX)
2211
                        MSG_INFO("using MMX\n");
2212
                else if(flags & SWS_CPU_CAPS_ALTIVEC)
2213
                        MSG_INFO("using AltiVec\n");
2214
                else 
2215
                        MSG_INFO("using C\n");
2216
        }
2217

    
2218
        if(flags & SWS_PRINT_INFO)
2219
        {
2220
                if(flags & SWS_CPU_CAPS_MMX)
2221
                {
2222
                        if(c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR))
2223
                                MSG_V("SwScaler: using FAST_BILINEAR MMX2 scaler for horizontal scaling\n");
2224
                        else
2225
                        {
2226
                                if(c->hLumFilterSize==4)
2227
                                        MSG_V("SwScaler: using 4-tap MMX scaler for horizontal luminance scaling\n");
2228
                                else if(c->hLumFilterSize==8)
2229
                                        MSG_V("SwScaler: using 8-tap MMX scaler for horizontal luminance scaling\n");
2230
                                else
2231
                                        MSG_V("SwScaler: using n-tap MMX scaler for horizontal luminance scaling\n");
2232

    
2233
                                if(c->hChrFilterSize==4)
2234
                                        MSG_V("SwScaler: using 4-tap MMX scaler for horizontal chrominance scaling\n");
2235
                                else if(c->hChrFilterSize==8)
2236
                                        MSG_V("SwScaler: using 8-tap MMX scaler for horizontal chrominance scaling\n");
2237
                                else
2238
                                        MSG_V("SwScaler: using n-tap MMX scaler for horizontal chrominance scaling\n");
2239
                        }
2240
                }
2241
                else
2242
                {
2243
#if defined(ARCH_X86) || defined(ARCH_X86_64)
2244
                        MSG_V("SwScaler: using X86-Asm scaler for horizontal scaling\n");
2245
#else
2246
                        if(flags & SWS_FAST_BILINEAR)
2247
                                MSG_V("SwScaler: using FAST_BILINEAR C scaler for horizontal scaling\n");
2248
                        else
2249
                                MSG_V("SwScaler: using C scaler for horizontal scaling\n");
2250
#endif
2251
                }
2252
                if(isPlanarYUV(dstFormat))
2253
                {
2254
                        if(c->vLumFilterSize==1)
2255
                                MSG_V("SwScaler: using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2256
                        else
2257
                                MSG_V("SwScaler: using n-tap %s scaler for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2258
                }
2259
                else
2260
                {
2261
                        if(c->vLumFilterSize==1 && c->vChrFilterSize==2)
2262
                                MSG_V("SwScaler: using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n"
2263
                                       "SwScaler:       2-tap scaler for vertical chrominance scaling (BGR)\n",(flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2264
                        else if(c->vLumFilterSize==2 && c->vChrFilterSize==2)
2265
                                MSG_V("SwScaler: using 2-tap linear %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2266
                        else
2267
                                MSG_V("SwScaler: using n-tap %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2268
                }
2269

    
2270
                if(dstFormat==IMGFMT_BGR24)
2271
                        MSG_V("SwScaler: using %s YV12->BGR24 Converter\n",
2272
                                (flags & SWS_CPU_CAPS_MMX2) ? "MMX2" : ((flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"));
2273
                else if(dstFormat==IMGFMT_BGR32)
2274
                        MSG_V("SwScaler: using %s YV12->BGR32 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2275
                else if(dstFormat==IMGFMT_BGR16)
2276
                        MSG_V("SwScaler: using %s YV12->BGR16 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2277
                else if(dstFormat==IMGFMT_BGR15)
2278
                        MSG_V("SwScaler: using %s YV12->BGR15 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2279

    
2280
                MSG_V("SwScaler: %dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
2281
        }
2282
        if(flags & SWS_PRINT_INFO)
2283
        {
2284
                MSG_DBG2("SwScaler:Lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
2285
                        c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
2286
                MSG_DBG2("SwScaler:Chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
2287
                        c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc);
2288
        }
2289

    
2290
        c->swScale= getSwsFunc(flags);
2291
        return c;
2292
}
2293

    
2294
/**
2295
 * swscale warper, so we don't need to export the SwsContext.
2296
 * assumes planar YUV to be in YUV order instead of YVU
2297
 */
2298
int sws_scale_ordered(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
2299
                           int srcSliceH, uint8_t* dst[], int dstStride[]){
2300
        if (c->sliceDir == 0 && srcSliceY != 0 && srcSliceY + srcSliceH != c->srcH) {
2301
            MSG_ERR("swScaler: slices start in the middle!\n");
2302
            return 0;
2303
        }
2304
        if (c->sliceDir == 0) {
2305
            if (srcSliceY == 0) c->sliceDir = 1; else c->sliceDir = -1;
2306
        }
2307

    
2308
        // copy strides, so they can safely be modified
2309
        if (c->sliceDir == 1) {
2310
            // slices go from top to bottom
2311
            int srcStride2[3]= {srcStride[0], srcStride[1], srcStride[2]};
2312
            int dstStride2[3]= {dstStride[0], dstStride[1], dstStride[2]};
2313
            return c->swScale(c, src, srcStride2, srcSliceY, srcSliceH, dst, dstStride2);
2314
        } else {
2315
            // slices go from bottom to top => we flip the image internally
2316
            uint8_t* src2[3]= {src[0] + (srcSliceH-1)*srcStride[0],
2317
                               src[1] + ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[1],
2318
                               src[2] + ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[2]
2319
            };
2320
            uint8_t* dst2[3]= {dst[0] + (c->dstH-1)*dstStride[0],
2321
                               dst[1] + ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[1],
2322
                               dst[2] + ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[2]};
2323
            int srcStride2[3]= {-srcStride[0], -srcStride[1], -srcStride[2]};
2324
            int dstStride2[3]= {-dstStride[0], -dstStride[1], -dstStride[2]};
2325
            
2326
            return c->swScale(c, src2, srcStride2, c->srcH-srcSliceY-srcSliceH, srcSliceH, dst2, dstStride2);
2327
        }
2328
}
2329

    
2330
/**
2331
 * swscale warper, so we don't need to export the SwsContext
2332
 */
2333
int sws_scale(SwsContext *c, uint8_t* srcParam[], int srcStrideParam[], int srcSliceY,
2334
                           int srcSliceH, uint8_t* dstParam[], int dstStrideParam[]){
2335
        int srcStride[3];
2336
        int dstStride[3];
2337
        uint8_t *src[3];
2338
        uint8_t *dst[3];
2339
        sws_orderYUV(c->origSrcFormat, src, srcStride, srcParam, srcStrideParam);
2340
        sws_orderYUV(c->origDstFormat, dst, dstStride, dstParam, dstStrideParam);
2341
//printf("sws: slice %d %d\n", srcSliceY, srcSliceH);
2342

    
2343
        return c->swScale(c, src, srcStride, srcSliceY, srcSliceH, dst, dstStride);
2344
}
2345

    
2346
SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur, 
2347
                                float lumaSharpen, float chromaSharpen,
2348
                                float chromaHShift, float chromaVShift,
2349
                                int verbose)
2350
{
2351
        SwsFilter *filter= malloc(sizeof(SwsFilter));
2352

    
2353
        if(lumaGBlur!=0.0){
2354
                filter->lumH= sws_getGaussianVec(lumaGBlur, 3.0);
2355
                filter->lumV= sws_getGaussianVec(lumaGBlur, 3.0);
2356
        }else{
2357
                filter->lumH= sws_getIdentityVec();
2358
                filter->lumV= sws_getIdentityVec();
2359
        }
2360

    
2361
        if(chromaGBlur!=0.0){
2362
                filter->chrH= sws_getGaussianVec(chromaGBlur, 3.0);
2363
                filter->chrV= sws_getGaussianVec(chromaGBlur, 3.0);
2364
        }else{
2365
                filter->chrH= sws_getIdentityVec();
2366
                filter->chrV= sws_getIdentityVec();
2367
        }
2368

    
2369
        if(chromaSharpen!=0.0){
2370
                SwsVector *id= sws_getIdentityVec();
2371
                sws_scaleVec(filter->chrH, -chromaSharpen);
2372
                sws_scaleVec(filter->chrV, -chromaSharpen);
2373
                sws_addVec(filter->chrH, id);
2374
                sws_addVec(filter->chrV, id);
2375
                sws_freeVec(id);
2376
        }
2377

    
2378
        if(lumaSharpen!=0.0){
2379
                SwsVector *id= sws_getIdentityVec();
2380
                sws_scaleVec(filter->lumH, -lumaSharpen);
2381
                sws_scaleVec(filter->lumV, -lumaSharpen);
2382
                sws_addVec(filter->lumH, id);
2383
                sws_addVec(filter->lumV, id);
2384
                sws_freeVec(id);
2385
        }
2386

    
2387
        if(chromaHShift != 0.0)
2388
                sws_shiftVec(filter->chrH, (int)(chromaHShift+0.5));
2389

    
2390
        if(chromaVShift != 0.0)
2391
                sws_shiftVec(filter->chrV, (int)(chromaVShift+0.5));
2392

    
2393
        sws_normalizeVec(filter->chrH, 1.0);
2394
        sws_normalizeVec(filter->chrV, 1.0);
2395
        sws_normalizeVec(filter->lumH, 1.0);
2396
        sws_normalizeVec(filter->lumV, 1.0);
2397

    
2398
        if(verbose) sws_printVec(filter->chrH);
2399
        if(verbose) sws_printVec(filter->lumH);
2400

    
2401
        return filter;
2402
}
2403

    
2404
/**
2405
 * returns a normalized gaussian curve used to filter stuff
2406
 * quality=3 is high quality, lowwer is lowwer quality
2407
 */
2408
SwsVector *sws_getGaussianVec(double variance, double quality){
2409
        const int length= (int)(variance*quality + 0.5) | 1;
2410
        int i;
2411
        double *coeff= memalign(sizeof(double), length*sizeof(double));
2412
        double middle= (length-1)*0.5;
2413
        SwsVector *vec= malloc(sizeof(SwsVector));
2414

    
2415
        vec->coeff= coeff;
2416
        vec->length= length;
2417

    
2418
        for(i=0; i<length; i++)
2419
        {
2420
                double dist= i-middle;
2421
                coeff[i]= exp( -dist*dist/(2*variance*variance) ) / sqrt(2*variance*PI);
2422
        }
2423

    
2424
        sws_normalizeVec(vec, 1.0);
2425

    
2426
        return vec;
2427
}
2428

    
2429
SwsVector *sws_getConstVec(double c, int length){
2430
        int i;
2431
        double *coeff= memalign(sizeof(double), length*sizeof(double));
2432
        SwsVector *vec= malloc(sizeof(SwsVector));
2433

    
2434
        vec->coeff= coeff;
2435
        vec->length= length;
2436

    
2437
        for(i=0; i<length; i++)
2438
                coeff[i]= c;
2439

    
2440
        return vec;
2441
}
2442

    
2443

    
2444
SwsVector *sws_getIdentityVec(void){
2445
        return sws_getConstVec(1.0, 1);
2446
}
2447

    
2448
double sws_dcVec(SwsVector *a){
2449
        int i;
2450
        double sum=0;
2451

    
2452
        for(i=0; i<a->length; i++)
2453
                sum+= a->coeff[i];
2454

    
2455
        return sum;
2456
}
2457

    
2458
void sws_scaleVec(SwsVector *a, double scalar){
2459
        int i;
2460

    
2461
        for(i=0; i<a->length; i++)
2462
                a->coeff[i]*= scalar;
2463
}
2464

    
2465
void sws_normalizeVec(SwsVector *a, double height){
2466
        sws_scaleVec(a, height/sws_dcVec(a));
2467
}
2468

    
2469
static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b){
2470
        int length= a->length + b->length - 1;
2471
        double *coeff= memalign(sizeof(double), length*sizeof(double));
2472
        int i, j;
2473
        SwsVector *vec= malloc(sizeof(SwsVector));
2474

    
2475
        vec->coeff= coeff;
2476
        vec->length= length;
2477

    
2478
        for(i=0; i<length; i++) coeff[i]= 0.0;
2479

    
2480
        for(i=0; i<a->length; i++)
2481
        {
2482
                for(j=0; j<b->length; j++)
2483
                {
2484
                        coeff[i+j]+= a->coeff[i]*b->coeff[j];
2485
                }
2486
        }
2487

    
2488
        return vec;
2489
}
2490

    
2491
static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b){
2492
        int length= MAX(a->length, b->length);
2493
        double *coeff= memalign(sizeof(double), length*sizeof(double));
2494
        int i;
2495
        SwsVector *vec= malloc(sizeof(SwsVector));
2496

    
2497
        vec->coeff= coeff;
2498
        vec->length= length;
2499

    
2500
        for(i=0; i<length; i++) coeff[i]= 0.0;
2501

    
2502
        for(i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
2503
        for(i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i];
2504

    
2505
        return vec;
2506
}
2507

    
2508
static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b){
2509
        int length= MAX(a->length, b->length);
2510
        double *coeff= memalign(sizeof(double), length*sizeof(double));
2511
        int i;
2512
        SwsVector *vec= malloc(sizeof(SwsVector));
2513

    
2514
        vec->coeff= coeff;
2515
        vec->length= length;
2516

    
2517
        for(i=0; i<length; i++) coeff[i]= 0.0;
2518

    
2519
        for(i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
2520
        for(i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]-= b->coeff[i];
2521

    
2522
        return vec;
2523
}
2524

    
2525
/* shift left / or right if "shift" is negative */
2526
static SwsVector *sws_getShiftedVec(SwsVector *a, int shift){
2527
        int length= a->length + ABS(shift)*2;
2528
        double *coeff= memalign(sizeof(double), length*sizeof(double));
2529
        int i;
2530
        SwsVector *vec= malloc(sizeof(SwsVector));
2531

    
2532
        vec->coeff= coeff;
2533
        vec->length= length;
2534

    
2535
        for(i=0; i<length; i++) coeff[i]= 0.0;
2536

    
2537
        for(i=0; i<a->length; i++)
2538
        {
2539
                coeff[i + (length-1)/2 - (a->length-1)/2 - shift]= a->coeff[i];
2540
        }
2541

    
2542
        return vec;
2543
}
2544

    
2545
void sws_shiftVec(SwsVector *a, int shift){
2546
        SwsVector *shifted= sws_getShiftedVec(a, shift);
2547
        free(a->coeff);
2548
        a->coeff= shifted->coeff;
2549
        a->length= shifted->length;
2550
        free(shifted);
2551
}
2552

    
2553
void sws_addVec(SwsVector *a, SwsVector *b){
2554
        SwsVector *sum= sws_sumVec(a, b);
2555
        free(a->coeff);
2556
        a->coeff= sum->coeff;
2557
        a->length= sum->length;
2558
        free(sum);
2559
}
2560

    
2561
void sws_subVec(SwsVector *a, SwsVector *b){
2562
        SwsVector *diff= sws_diffVec(a, b);
2563
        free(a->coeff);
2564
        a->coeff= diff->coeff;
2565
        a->length= diff->length;
2566
        free(diff);
2567
}
2568

    
2569
void sws_convVec(SwsVector *a, SwsVector *b){
2570
        SwsVector *conv= sws_getConvVec(a, b);
2571
        free(a->coeff);  
2572
        a->coeff= conv->coeff;
2573
        a->length= conv->length;
2574
        free(conv);
2575
}
2576

    
2577
SwsVector *sws_cloneVec(SwsVector *a){
2578
        double *coeff= memalign(sizeof(double), a->length*sizeof(double));
2579
        int i;
2580
        SwsVector *vec= malloc(sizeof(SwsVector));
2581

    
2582
        vec->coeff= coeff;
2583
        vec->length= a->length;
2584

    
2585
        for(i=0; i<a->length; i++) coeff[i]= a->coeff[i];
2586

    
2587
        return vec;
2588
}
2589

    
2590
void sws_printVec(SwsVector *a){
2591
        int i;
2592
        double max=0;
2593
        double min=0;
2594
        double range;
2595

    
2596
        for(i=0; i<a->length; i++)
2597
                if(a->coeff[i]>max) max= a->coeff[i];
2598

    
2599
        for(i=0; i<a->length; i++)
2600
                if(a->coeff[i]<min) min= a->coeff[i];
2601

    
2602
        range= max - min;
2603

    
2604
        for(i=0; i<a->length; i++)
2605
        {
2606
                int x= (int)((a->coeff[i]-min)*60.0/range +0.5);
2607
                MSG_DBG2("%1.3f ", a->coeff[i]);
2608
                for(;x>0; x--) MSG_DBG2(" ");
2609
                MSG_DBG2("|\n");
2610
        }
2611
}
2612

    
2613
void sws_freeVec(SwsVector *a){
2614
        if(!a) return;
2615
        if(a->coeff) free(a->coeff);
2616
        a->coeff=NULL;
2617
        a->length=0;
2618
        free(a);
2619
}
2620

    
2621
void sws_freeFilter(SwsFilter *filter){
2622
        if(!filter) return;
2623

    
2624
        if(filter->lumH) sws_freeVec(filter->lumH);
2625
        if(filter->lumV) sws_freeVec(filter->lumV);
2626
        if(filter->chrH) sws_freeVec(filter->chrH);
2627
        if(filter->chrV) sws_freeVec(filter->chrV);
2628
        free(filter);
2629
}
2630

    
2631

    
2632
void sws_freeContext(SwsContext *c){
2633
        int i;
2634
        if(!c) return;
2635

    
2636
        if(c->lumPixBuf)
2637
        {
2638
                for(i=0; i<c->vLumBufSize; i++)
2639
                {
2640
                        if(c->lumPixBuf[i]) free(c->lumPixBuf[i]);
2641
                        c->lumPixBuf[i]=NULL;
2642
                }
2643
                free(c->lumPixBuf);
2644
                c->lumPixBuf=NULL;
2645
        }
2646

    
2647
        if(c->chrPixBuf)
2648
        {
2649
                for(i=0; i<c->vChrBufSize; i++)
2650
                {
2651
                        if(c->chrPixBuf[i]) free(c->chrPixBuf[i]);
2652
                        c->chrPixBuf[i]=NULL;
2653
                }
2654
                free(c->chrPixBuf);
2655
                c->chrPixBuf=NULL;
2656
        }
2657

    
2658
        if(c->vLumFilter) free(c->vLumFilter);
2659
        c->vLumFilter = NULL;
2660
        if(c->vChrFilter) free(c->vChrFilter);
2661
        c->vChrFilter = NULL;
2662
        if(c->hLumFilter) free(c->hLumFilter);
2663
        c->hLumFilter = NULL;
2664
        if(c->hChrFilter) free(c->hChrFilter);
2665
        c->hChrFilter = NULL;
2666
#ifdef HAVE_ALTIVEC
2667
        if(c->vYCoeffsBank) free(c->vYCoeffsBank);
2668
        c->vYCoeffsBank = NULL;
2669
        if(c->vCCoeffsBank) free(c->vCCoeffsBank);
2670
        c->vCCoeffsBank = NULL;
2671
#endif
2672

    
2673
        if(c->vLumFilterPos) free(c->vLumFilterPos);
2674
        c->vLumFilterPos = NULL;
2675
        if(c->vChrFilterPos) free(c->vChrFilterPos);
2676
        c->vChrFilterPos = NULL;
2677
        if(c->hLumFilterPos) free(c->hLumFilterPos);
2678
        c->hLumFilterPos = NULL;
2679
        if(c->hChrFilterPos) free(c->hChrFilterPos);
2680
        c->hChrFilterPos = NULL;
2681

    
2682
#if defined(ARCH_X86) || defined(ARCH_X86_64)
2683
#ifdef MAP_ANONYMOUS
2684
        if(c->funnyYCode) munmap(c->funnyYCode, MAX_FUNNY_CODE_SIZE);
2685
        if(c->funnyUVCode) munmap(c->funnyUVCode, MAX_FUNNY_CODE_SIZE);
2686
#else
2687
        if(c->funnyYCode) free(c->funnyYCode);
2688
        if(c->funnyUVCode) free(c->funnyUVCode);
2689
#endif
2690
        c->funnyYCode=NULL;
2691
        c->funnyUVCode=NULL;
2692
#endif
2693

    
2694
        if(c->lumMmx2Filter) free(c->lumMmx2Filter);
2695
        c->lumMmx2Filter=NULL;
2696
        if(c->chrMmx2Filter) free(c->chrMmx2Filter);
2697
        c->chrMmx2Filter=NULL;
2698
        if(c->lumMmx2FilterPos) free(c->lumMmx2FilterPos);
2699
        c->lumMmx2FilterPos=NULL;
2700
        if(c->chrMmx2FilterPos) free(c->chrMmx2FilterPos);
2701
        c->chrMmx2FilterPos=NULL;
2702
        if(c->yuvTable) free(c->yuvTable);
2703
        c->yuvTable=NULL;
2704

    
2705
        free(c);
2706
}
2707