Statistics
| Branch: | Revision:

ffmpeg / libavcodec / cook.c @ 26f548bb

History | View | Annotate | Download (43.3 KB)

1
/*
2
 * COOK compatible decoder
3
 * Copyright (c) 2003 Sascha Sommer
4
 * Copyright (c) 2005 Benjamin Larsson
5
 *
6
 * This file is part of Libav.
7
 *
8
 * Libav is free software; you can redistribute it and/or
9
 * modify it under the terms of the GNU Lesser General Public
10
 * License as published by the Free Software Foundation; either
11
 * version 2.1 of the License, or (at your option) any later version.
12
 *
13
 * Libav is distributed in the hope that it will be useful,
14
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16
 * Lesser General Public License for more details.
17
 *
18
 * You should have received a copy of the GNU Lesser General Public
19
 * License along with Libav; if not, write to the Free Software
20
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21
 */
22

    
23
/**
24
 * @file
25
 * Cook compatible decoder. Bastardization of the G.722.1 standard.
26
 * This decoder handles RealNetworks, RealAudio G2 data.
27
 * Cook is identified by the codec name cook in RM files.
28
 *
29
 * To use this decoder, a calling application must supply the extradata
30
 * bytes provided from the RM container; 8+ bytes for mono streams and
31
 * 16+ for stereo streams (maybe more).
32
 *
33
 * Codec technicalities (all this assume a buffer length of 1024):
34
 * Cook works with several different techniques to achieve its compression.
35
 * In the timedomain the buffer is divided into 8 pieces and quantized. If
36
 * two neighboring pieces have different quantization index a smooth
37
 * quantization curve is used to get a smooth overlap between the different
38
 * pieces.
39
 * To get to the transformdomain Cook uses a modulated lapped transform.
40
 * The transform domain has 50 subbands with 20 elements each. This
41
 * means only a maximum of 50*20=1000 coefficients are used out of the 1024
42
 * available.
43
 */
44

    
45
#include <math.h>
46
#include <stddef.h>
47
#include <stdio.h>
48

    
49
#include "libavutil/lfg.h"
50
#include "libavutil/random_seed.h"
51
#include "avcodec.h"
52
#include "get_bits.h"
53
#include "dsputil.h"
54
#include "bytestream.h"
55
#include "fft.h"
56
#include "libavutil/audioconvert.h"
57

    
58
#include "cookdata.h"
59

    
60
/* the different Cook versions */
61
#define MONO            0x1000001
62
#define STEREO          0x1000002
63
#define JOINT_STEREO    0x1000003
64
#define MC_COOK         0x2000000   //multichannel Cook, not supported
65

    
66
#define SUBBAND_SIZE    20
67
#define MAX_SUBPACKETS   5
68
//#define COOKDEBUG
69

    
70
typedef struct {
71
    int *now;
72
    int *previous;
73
} cook_gains;
74

    
75
typedef struct {
76
    int                 ch_idx;
77
    int                 size;
78
    int                 num_channels;
79
    int                 cookversion;
80
    int                 samples_per_frame;
81
    int                 subbands;
82
    int                 js_subband_start;
83
    int                 js_vlc_bits;
84
    int                 samples_per_channel;
85
    int                 log2_numvector_size;
86
    unsigned int        channel_mask;
87
    VLC                 ccpl;                 ///< channel coupling
88
    int                 joint_stereo;
89
    int                 bits_per_subpacket;
90
    int                 bits_per_subpdiv;
91
    int                 total_subbands;
92
    int                 numvector_size;       ///< 1 << log2_numvector_size;
93

    
94
    float               mono_previous_buffer1[1024];
95
    float               mono_previous_buffer2[1024];
96
    /** gain buffers */
97
    cook_gains          gains1;
98
    cook_gains          gains2;
99
    int                 gain_1[9];
100
    int                 gain_2[9];
101
    int                 gain_3[9];
102
    int                 gain_4[9];
103
} COOKSubpacket;
104

    
105
typedef struct cook {
106
    /*
107
     * The following 5 functions provide the lowlevel arithmetic on
108
     * the internal audio buffers.
109
     */
110
    void (* scalar_dequant)(struct cook *q, int index, int quant_index,
111
                            int* subband_coef_index, int* subband_coef_sign,
112
                            float* mlt_p);
113

    
114
    void (* decouple) (struct cook *q,
115
                       COOKSubpacket *p,
116
                       int subband,
117
                       float f1, float f2,
118
                       float *decode_buffer,
119
                       float *mlt_buffer1, float *mlt_buffer2);
120

    
121
    void (* imlt_window) (struct cook *q, float *buffer1,
122
                          cook_gains *gains_ptr, float *previous_buffer);
123

    
124
    void (* interpolate) (struct cook *q, float* buffer,
125
                          int gain_index, int gain_index_next);
126

    
127
    void (* saturate_output) (struct cook *q, int chan, int16_t *out);
128

    
129
    AVCodecContext*     avctx;
130
    GetBitContext       gb;
131
    /* stream data */
132
    int                 nb_channels;
133
    int                 bit_rate;
134
    int                 sample_rate;
135
    int                 num_vectors;
136
    int                 samples_per_channel;
137
    /* states */
138
    AVLFG               random_state;
139

    
140
    /* transform data */
141
    FFTContext          mdct_ctx;
142
    float*              mlt_window;
143

    
144
    /* VLC data */
145
    VLC                 envelope_quant_index[13];
146
    VLC                 sqvh[7];          //scalar quantization
147

    
148
    /* generatable tables and related variables */
149
    int                 gain_size_factor;
150
    float               gain_table[23];
151

    
152
    /* data buffers */
153

    
154
    uint8_t*            decoded_bytes_buffer;
155
    DECLARE_ALIGNED(16, float,mono_mdct_output)[2048];
156
    float               decode_buffer_1[1024];
157
    float               decode_buffer_2[1024];
158
    float               decode_buffer_0[1060]; /* static allocation for joint decode */
159

    
160
    const float         *cplscales[5];
161
    int                 num_subpackets;
162
    COOKSubpacket       subpacket[MAX_SUBPACKETS];
163
} COOKContext;
164

    
165
static float     pow2tab[127];
166
static float rootpow2tab[127];
167

    
168
/* debug functions */
169

    
170
#ifdef COOKDEBUG
171
static void dump_float_table(float* table, int size, int delimiter) {
172
    int i=0;
173
    av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
174
    for (i=0 ; i<size ; i++) {
175
        av_log(NULL, AV_LOG_ERROR, "%5.1f, ", table[i]);
176
        if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
177
    }
178
}
179

    
180
static void dump_int_table(int* table, int size, int delimiter) {
181
    int i=0;
182
    av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
183
    for (i=0 ; i<size ; i++) {
184
        av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
185
        if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
186
    }
187
}
188

    
189
static void dump_short_table(short* table, int size, int delimiter) {
190
    int i=0;
191
    av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
192
    for (i=0 ; i<size ; i++) {
193
        av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
194
        if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
195
    }
196
}
197

    
198
#endif
199

    
200
/*************** init functions ***************/
201

    
202
/* table generator */
203
static av_cold void init_pow2table(void){
204
    int i;
205
    for (i=-63 ; i<64 ; i++){
206
            pow2tab[63+i]=     pow(2, i);
207
        rootpow2tab[63+i]=sqrt(pow(2, i));
208
    }
209
}
210

    
211
/* table generator */
212
static av_cold void init_gain_table(COOKContext *q) {
213
    int i;
214
    q->gain_size_factor = q->samples_per_channel/8;
215
    for (i=0 ; i<23 ; i++) {
216
        q->gain_table[i] = pow(pow2tab[i+52] ,
217
                               (1.0/(double)q->gain_size_factor));
218
    }
219
}
220

    
221

    
222
static av_cold int init_cook_vlc_tables(COOKContext *q) {
223
    int i, result;
224

    
225
    result = 0;
226
    for (i=0 ; i<13 ; i++) {
227
        result |= init_vlc (&q->envelope_quant_index[i], 9, 24,
228
            envelope_quant_index_huffbits[i], 1, 1,
229
            envelope_quant_index_huffcodes[i], 2, 2, 0);
230
    }
231
    av_log(q->avctx,AV_LOG_DEBUG,"sqvh VLC init\n");
232
    for (i=0 ; i<7 ; i++) {
233
        result |= init_vlc (&q->sqvh[i], vhvlcsize_tab[i], vhsize_tab[i],
234
            cvh_huffbits[i], 1, 1,
235
            cvh_huffcodes[i], 2, 2, 0);
236
    }
237

    
238
    for(i=0;i<q->num_subpackets;i++){
239
        if (q->subpacket[i].joint_stereo==1){
240
            result |= init_vlc (&q->subpacket[i].ccpl, 6, (1<<q->subpacket[i].js_vlc_bits)-1,
241
                ccpl_huffbits[q->subpacket[i].js_vlc_bits-2], 1, 1,
242
                ccpl_huffcodes[q->subpacket[i].js_vlc_bits-2], 2, 2, 0);
243
            av_log(q->avctx,AV_LOG_DEBUG,"subpacket %i Joint-stereo VLC used.\n",i);
244
        }
245
    }
246

    
247
    av_log(q->avctx,AV_LOG_DEBUG,"VLC tables initialized.\n");
248
    return result;
249
}
250

    
251
static av_cold int init_cook_mlt(COOKContext *q) {
252
    int j;
253
    int mlt_size = q->samples_per_channel;
254

    
255
    if ((q->mlt_window = av_malloc(sizeof(float)*mlt_size)) == 0)
256
      return -1;
257

    
258
    /* Initialize the MLT window: simple sine window. */
259
    ff_sine_window_init(q->mlt_window, mlt_size);
260
    for(j=0 ; j<mlt_size ; j++)
261
        q->mlt_window[j] *= sqrt(2.0 / q->samples_per_channel);
262

    
263
    /* Initialize the MDCT. */
264
    if (ff_mdct_init(&q->mdct_ctx, av_log2(mlt_size)+1, 1, 1.0)) {
265
      av_free(q->mlt_window);
266
      return -1;
267
    }
268
    av_log(q->avctx,AV_LOG_DEBUG,"MDCT initialized, order = %d.\n",
269
           av_log2(mlt_size)+1);
270

    
271
    return 0;
272
}
273

    
274
static const float *maybe_reformat_buffer32 (COOKContext *q, const float *ptr, int n)
275
{
276
    if (1)
277
        return ptr;
278
}
279

    
280
static av_cold void init_cplscales_table (COOKContext *q) {
281
    int i;
282
    for (i=0;i<5;i++)
283
        q->cplscales[i] = maybe_reformat_buffer32 (q, cplscales[i], (1<<(i+2))-1);
284
}
285

    
286
/*************** init functions end ***********/
287

    
288
#define DECODE_BYTES_PAD1(bytes) (3 - ((bytes)+3) % 4)
289
#define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes)))
290

    
291
/**
292
 * Cook indata decoding, every 32 bits are XORed with 0x37c511f2.
293
 * Why? No idea, some checksum/error detection method maybe.
294
 *
295
 * Out buffer size: extra bytes are needed to cope with
296
 * padding/misalignment.
297
 * Subpackets passed to the decoder can contain two, consecutive
298
 * half-subpackets, of identical but arbitrary size.
299
 *          1234 1234 1234 1234  extraA extraB
300
 * Case 1:  AAAA BBBB              0      0
301
 * Case 2:  AAAA ABBB BB--         3      3
302
 * Case 3:  AAAA AABB BBBB         2      2
303
 * Case 4:  AAAA AAAB BBBB BB--    1      5
304
 *
305
 * Nice way to waste CPU cycles.
306
 *
307
 * @param inbuffer  pointer to byte array of indata
308
 * @param out       pointer to byte array of outdata
309
 * @param bytes     number of bytes
310
 */
311

    
312
static inline int decode_bytes(const uint8_t* inbuffer, uint8_t* out, int bytes){
313
    int i, off;
314
    uint32_t c;
315
    const uint32_t* buf;
316
    uint32_t* obuf = (uint32_t*) out;
317
    /* FIXME: 64 bit platforms would be able to do 64 bits at a time.
318
     * I'm too lazy though, should be something like
319
     * for(i=0 ; i<bitamount/64 ; i++)
320
     *     (int64_t)out[i] = 0x37c511f237c511f2^av_be2ne64(int64_t)in[i]);
321
     * Buffer alignment needs to be checked. */
322

    
323
    off = (intptr_t)inbuffer & 3;
324
    buf = (const uint32_t*) (inbuffer - off);
325
    c = av_be2ne32((0x37c511f2 >> (off*8)) | (0x37c511f2 << (32-(off*8))));
326
    bytes += 3 + off;
327
    for (i = 0; i < bytes/4; i++)
328
        obuf[i] = c ^ buf[i];
329

    
330
    return off;
331
}
332

    
333
/**
334
 * Cook uninit
335
 */
336

    
337
static av_cold int cook_decode_close(AVCodecContext *avctx)
338
{
339
    int i;
340
    COOKContext *q = avctx->priv_data;
341
    av_log(avctx,AV_LOG_DEBUG, "Deallocating memory.\n");
342

    
343
    /* Free allocated memory buffers. */
344
    av_free(q->mlt_window);
345
    av_free(q->decoded_bytes_buffer);
346

    
347
    /* Free the transform. */
348
    ff_mdct_end(&q->mdct_ctx);
349

    
350
    /* Free the VLC tables. */
351
    for (i=0 ; i<13 ; i++) {
352
        free_vlc(&q->envelope_quant_index[i]);
353
    }
354
    for (i=0 ; i<7 ; i++) {
355
        free_vlc(&q->sqvh[i]);
356
    }
357
    for (i=0 ; i<q->num_subpackets ; i++) {
358
        free_vlc(&q->subpacket[i].ccpl);
359
    }
360

    
361
    av_log(avctx,AV_LOG_DEBUG,"Memory deallocated.\n");
362

    
363
    return 0;
364
}
365

    
366
/**
367
 * Fill the gain array for the timedomain quantization.
368
 *
369
 * @param gb          pointer to the GetBitContext
370
 * @param gaininfo[9] array of gain indexes
371
 */
372

    
373
static void decode_gain_info(GetBitContext *gb, int *gaininfo)
374
{
375
    int i, n;
376

    
377
    while (get_bits1(gb)) {}
378
    n = get_bits_count(gb) - 1;     //amount of elements*2 to update
379

    
380
    i = 0;
381
    while (n--) {
382
        int index = get_bits(gb, 3);
383
        int gain = get_bits1(gb) ? get_bits(gb, 4) - 7 : -1;
384

    
385
        while (i <= index) gaininfo[i++] = gain;
386
    }
387
    while (i <= 8) gaininfo[i++] = 0;
388
}
389

    
390
/**
391
 * Create the quant index table needed for the envelope.
392
 *
393
 * @param q                 pointer to the COOKContext
394
 * @param quant_index_table pointer to the array
395
 */
396

    
397
static void decode_envelope(COOKContext *q, COOKSubpacket *p, int* quant_index_table) {
398
    int i,j, vlc_index;
399

    
400
    quant_index_table[0]= get_bits(&q->gb,6) - 6;       //This is used later in categorize
401

    
402
    for (i=1 ; i < p->total_subbands ; i++){
403
        vlc_index=i;
404
        if (i >= p->js_subband_start * 2) {
405
            vlc_index-=p->js_subband_start;
406
        } else {
407
            vlc_index/=2;
408
            if(vlc_index < 1) vlc_index = 1;
409
        }
410
        if (vlc_index>13) vlc_index = 13;           //the VLC tables >13 are identical to No. 13
411

    
412
        j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index-1].table,
413
                     q->envelope_quant_index[vlc_index-1].bits,2);
414
        quant_index_table[i] = quant_index_table[i-1] + j - 12;    //differential encoding
415
    }
416
}
417

    
418
/**
419
 * Calculate the category and category_index vector.
420
 *
421
 * @param q                     pointer to the COOKContext
422
 * @param quant_index_table     pointer to the array
423
 * @param category              pointer to the category array
424
 * @param category_index        pointer to the category_index array
425
 */
426

    
427
static void categorize(COOKContext *q, COOKSubpacket *p, int* quant_index_table,
428
                       int* category, int* category_index){
429
    int exp_idx, bias, tmpbias1, tmpbias2, bits_left, num_bits, index, v, i, j;
430
    int exp_index2[102];
431
    int exp_index1[102];
432

    
433
    int tmp_categorize_array[128*2];
434
    int tmp_categorize_array1_idx=p->numvector_size;
435
    int tmp_categorize_array2_idx=p->numvector_size;
436

    
437
    bits_left =  p->bits_per_subpacket - get_bits_count(&q->gb);
438

    
439
    if(bits_left > q->samples_per_channel) {
440
        bits_left = q->samples_per_channel +
441
                    ((bits_left - q->samples_per_channel)*5)/8;
442
        //av_log(q->avctx, AV_LOG_ERROR, "bits_left = %d\n",bits_left);
443
    }
444

    
445
    memset(&exp_index1,0,102*sizeof(int));
446
    memset(&exp_index2,0,102*sizeof(int));
447
    memset(&tmp_categorize_array,0,128*2*sizeof(int));
448

    
449
    bias=-32;
450

    
451
    /* Estimate bias. */
452
    for (i=32 ; i>0 ; i=i/2){
453
        num_bits = 0;
454
        index = 0;
455
        for (j=p->total_subbands ; j>0 ; j--){
456
            exp_idx = av_clip((i - quant_index_table[index] + bias) / 2, 0, 7);
457
            index++;
458
            num_bits+=expbits_tab[exp_idx];
459
        }
460
        if(num_bits >= bits_left - 32){
461
            bias+=i;
462
        }
463
    }
464

    
465
    /* Calculate total number of bits. */
466
    num_bits=0;
467
    for (i=0 ; i<p->total_subbands ; i++) {
468
        exp_idx = av_clip((bias - quant_index_table[i]) / 2, 0, 7);
469
        num_bits += expbits_tab[exp_idx];
470
        exp_index1[i] = exp_idx;
471
        exp_index2[i] = exp_idx;
472
    }
473
    tmpbias1 = tmpbias2 = num_bits;
474

    
475
    for (j = 1 ; j < p->numvector_size ; j++) {
476
        if (tmpbias1 + tmpbias2 > 2*bits_left) {  /* ---> */
477
            int max = -999999;
478
            index=-1;
479
            for (i=0 ; i<p->total_subbands ; i++){
480
                if (exp_index1[i] < 7) {
481
                    v = (-2*exp_index1[i]) - quant_index_table[i] + bias;
482
                    if ( v >= max) {
483
                        max = v;
484
                        index = i;
485
                    }
486
                }
487
            }
488
            if(index==-1)break;
489
            tmp_categorize_array[tmp_categorize_array1_idx++] = index;
490
            tmpbias1 -= expbits_tab[exp_index1[index]] -
491
                        expbits_tab[exp_index1[index]+1];
492
            ++exp_index1[index];
493
        } else {  /* <--- */
494
            int min = 999999;
495
            index=-1;
496
            for (i=0 ; i<p->total_subbands ; i++){
497
                if(exp_index2[i] > 0){
498
                    v = (-2*exp_index2[i])-quant_index_table[i]+bias;
499
                    if ( v < min) {
500
                        min = v;
501
                        index = i;
502
                    }
503
                }
504
            }
505
            if(index == -1)break;
506
            tmp_categorize_array[--tmp_categorize_array2_idx] = index;
507
            tmpbias2 -= expbits_tab[exp_index2[index]] -
508
                        expbits_tab[exp_index2[index]-1];
509
            --exp_index2[index];
510
        }
511
    }
512

    
513
    for(i=0 ; i<p->total_subbands ; i++)
514
        category[i] = exp_index2[i];
515

    
516
    for(i=0 ; i<p->numvector_size-1 ; i++)
517
        category_index[i] = tmp_categorize_array[tmp_categorize_array2_idx++];
518

    
519
}
520

    
521

    
522
/**
523
 * Expand the category vector.
524
 *
525
 * @param q                     pointer to the COOKContext
526
 * @param category              pointer to the category array
527
 * @param category_index        pointer to the category_index array
528
 */
529

    
530
static inline void expand_category(COOKContext *q, int* category,
531
                                   int* category_index){
532
    int i;
533
    for(i=0 ; i<q->num_vectors ; i++){
534
        ++category[category_index[i]];
535
    }
536
}
537

    
538
/**
539
 * The real requantization of the mltcoefs
540
 *
541
 * @param q                     pointer to the COOKContext
542
 * @param index                 index
543
 * @param quant_index           quantisation index
544
 * @param subband_coef_index    array of indexes to quant_centroid_tab
545
 * @param subband_coef_sign     signs of coefficients
546
 * @param mlt_p                 pointer into the mlt buffer
547
 */
548

    
549
static void scalar_dequant_float(COOKContext *q, int index, int quant_index,
550
                           int* subband_coef_index, int* subband_coef_sign,
551
                           float* mlt_p){
552
    int i;
553
    float f1;
554

    
555
    for(i=0 ; i<SUBBAND_SIZE ; i++) {
556
        if (subband_coef_index[i]) {
557
            f1 = quant_centroid_tab[index][subband_coef_index[i]];
558
            if (subband_coef_sign[i]) f1 = -f1;
559
        } else {
560
            /* noise coding if subband_coef_index[i] == 0 */
561
            f1 = dither_tab[index];
562
            if (av_lfg_get(&q->random_state) < 0x80000000) f1 = -f1;
563
        }
564
        mlt_p[i] = f1 * rootpow2tab[quant_index+63];
565
    }
566
}
567
/**
568
 * Unpack the subband_coef_index and subband_coef_sign vectors.
569
 *
570
 * @param q                     pointer to the COOKContext
571
 * @param category              pointer to the category array
572
 * @param subband_coef_index    array of indexes to quant_centroid_tab
573
 * @param subband_coef_sign     signs of coefficients
574
 */
575

    
576
static int unpack_SQVH(COOKContext *q, COOKSubpacket *p, int category, int* subband_coef_index,
577
                       int* subband_coef_sign) {
578
    int i,j;
579
    int vlc, vd ,tmp, result;
580

    
581
    vd = vd_tab[category];
582
    result = 0;
583
    for(i=0 ; i<vpr_tab[category] ; i++){
584
        vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3);
585
        if (p->bits_per_subpacket < get_bits_count(&q->gb)){
586
            vlc = 0;
587
            result = 1;
588
        }
589
        for(j=vd-1 ; j>=0 ; j--){
590
            tmp = (vlc * invradix_tab[category])/0x100000;
591
            subband_coef_index[vd*i+j] = vlc - tmp * (kmax_tab[category]+1);
592
            vlc = tmp;
593
        }
594
        for(j=0 ; j<vd ; j++){
595
            if (subband_coef_index[i*vd + j]) {
596
                if(get_bits_count(&q->gb) < p->bits_per_subpacket){
597
                    subband_coef_sign[i*vd+j] = get_bits1(&q->gb);
598
                } else {
599
                    result=1;
600
                    subband_coef_sign[i*vd+j]=0;
601
                }
602
            } else {
603
                subband_coef_sign[i*vd+j]=0;
604
            }
605
        }
606
    }
607
    return result;
608
}
609

    
610

    
611
/**
612
 * Fill the mlt_buffer with mlt coefficients.
613
 *
614
 * @param q                 pointer to the COOKContext
615
 * @param category          pointer to the category array
616
 * @param quant_index_table pointer to the array
617
 * @param mlt_buffer        pointer to mlt coefficients
618
 */
619

    
620

    
621
static void decode_vectors(COOKContext* q, COOKSubpacket* p, int* category,
622
                           int *quant_index_table, float* mlt_buffer){
623
    /* A zero in this table means that the subband coefficient is
624
       random noise coded. */
625
    int subband_coef_index[SUBBAND_SIZE];
626
    /* A zero in this table means that the subband coefficient is a
627
       positive multiplicator. */
628
    int subband_coef_sign[SUBBAND_SIZE];
629
    int band, j;
630
    int index=0;
631

    
632
    for(band=0 ; band<p->total_subbands ; band++){
633
        index = category[band];
634
        if(category[band] < 7){
635
            if(unpack_SQVH(q, p, category[band], subband_coef_index, subband_coef_sign)){
636
                index=7;
637
                for(j=0 ; j<p->total_subbands ; j++) category[band+j]=7;
638
            }
639
        }
640
        if(index>=7) {
641
            memset(subband_coef_index, 0, sizeof(subband_coef_index));
642
            memset(subband_coef_sign, 0, sizeof(subband_coef_sign));
643
        }
644
        q->scalar_dequant(q, index, quant_index_table[band],
645
                          subband_coef_index, subband_coef_sign,
646
                          &mlt_buffer[band * SUBBAND_SIZE]);
647
    }
648

    
649
    if(p->total_subbands*SUBBAND_SIZE >= q->samples_per_channel){
650
        return;
651
    } /* FIXME: should this be removed, or moved into loop above? */
652
}
653

    
654

    
655
/**
656
 * function for decoding mono data
657
 *
658
 * @param q                 pointer to the COOKContext
659
 * @param mlt_buffer        pointer to mlt coefficients
660
 */
661

    
662
static void mono_decode(COOKContext *q, COOKSubpacket *p, float* mlt_buffer) {
663

    
664
    int category_index[128];
665
    int quant_index_table[102];
666
    int category[128];
667

    
668
    memset(&category, 0, 128*sizeof(int));
669
    memset(&category_index, 0, 128*sizeof(int));
670

    
671
    decode_envelope(q, p, quant_index_table);
672
    q->num_vectors = get_bits(&q->gb,p->log2_numvector_size);
673
    categorize(q, p, quant_index_table, category, category_index);
674
    expand_category(q, category, category_index);
675
    decode_vectors(q, p, category, quant_index_table, mlt_buffer);
676
}
677

    
678

    
679
/**
680
 * the actual requantization of the timedomain samples
681
 *
682
 * @param q                 pointer to the COOKContext
683
 * @param buffer            pointer to the timedomain buffer
684
 * @param gain_index        index for the block multiplier
685
 * @param gain_index_next   index for the next block multiplier
686
 */
687

    
688
static void interpolate_float(COOKContext *q, float* buffer,
689
                        int gain_index, int gain_index_next){
690
    int i;
691
    float fc1, fc2;
692
    fc1 = pow2tab[gain_index+63];
693

    
694
    if(gain_index == gain_index_next){              //static gain
695
        for(i=0 ; i<q->gain_size_factor ; i++){
696
            buffer[i]*=fc1;
697
        }
698
        return;
699
    } else {                                        //smooth gain
700
        fc2 = q->gain_table[11 + (gain_index_next-gain_index)];
701
        for(i=0 ; i<q->gain_size_factor ; i++){
702
            buffer[i]*=fc1;
703
            fc1*=fc2;
704
        }
705
        return;
706
    }
707
}
708

    
709
/**
710
 * Apply transform window, overlap buffers.
711
 *
712
 * @param q                 pointer to the COOKContext
713
 * @param inbuffer          pointer to the mltcoefficients
714
 * @param gains_ptr         current and previous gains
715
 * @param previous_buffer   pointer to the previous buffer to be used for overlapping
716
 */
717

    
718
static void imlt_window_float (COOKContext *q, float *inbuffer,
719
                               cook_gains *gains_ptr, float *previous_buffer)
720
{
721
    const float fc = pow2tab[gains_ptr->previous[0] + 63];
722
    int i;
723
    /* The weird thing here, is that the two halves of the time domain
724
     * buffer are swapped. Also, the newest data, that we save away for
725
     * next frame, has the wrong sign. Hence the subtraction below.
726
     * Almost sounds like a complex conjugate/reverse data/FFT effect.
727
     */
728

    
729
    /* Apply window and overlap */
730
    for(i = 0; i < q->samples_per_channel; i++){
731
        inbuffer[i] = inbuffer[i] * fc * q->mlt_window[i] -
732
          previous_buffer[i] * q->mlt_window[q->samples_per_channel - 1 - i];
733
    }
734
}
735

    
736
/**
737
 * The modulated lapped transform, this takes transform coefficients
738
 * and transforms them into timedomain samples.
739
 * Apply transform window, overlap buffers, apply gain profile
740
 * and buffer management.
741
 *
742
 * @param q                 pointer to the COOKContext
743
 * @param inbuffer          pointer to the mltcoefficients
744
 * @param gains_ptr         current and previous gains
745
 * @param previous_buffer   pointer to the previous buffer to be used for overlapping
746
 */
747

    
748
static void imlt_gain(COOKContext *q, float *inbuffer,
749
                      cook_gains *gains_ptr, float* previous_buffer)
750
{
751
    float *buffer0 = q->mono_mdct_output;
752
    float *buffer1 = q->mono_mdct_output + q->samples_per_channel;
753
    int i;
754

    
755
    /* Inverse modified discrete cosine transform */
756
    q->mdct_ctx.imdct_calc(&q->mdct_ctx, q->mono_mdct_output, inbuffer);
757

    
758
    q->imlt_window (q, buffer1, gains_ptr, previous_buffer);
759

    
760
    /* Apply gain profile */
761
    for (i = 0; i < 8; i++) {
762
        if (gains_ptr->now[i] || gains_ptr->now[i + 1])
763
            q->interpolate(q, &buffer1[q->gain_size_factor * i],
764
                           gains_ptr->now[i], gains_ptr->now[i + 1]);
765
    }
766

    
767
    /* Save away the current to be previous block. */
768
    memcpy(previous_buffer, buffer0, sizeof(float)*q->samples_per_channel);
769
}
770

    
771

    
772
/**
773
 * function for getting the jointstereo coupling information
774
 *
775
 * @param q                 pointer to the COOKContext
776
 * @param decouple_tab      decoupling array
777
 *
778
 */
779

    
780
static void decouple_info(COOKContext *q, COOKSubpacket *p, int* decouple_tab){
781
    int length, i;
782

    
783
    if(get_bits1(&q->gb)) {
784
        if(cplband[p->js_subband_start] > cplband[p->subbands-1]) return;
785

    
786
        length = cplband[p->subbands-1] - cplband[p->js_subband_start] + 1;
787
        for (i=0 ; i<length ; i++) {
788
            decouple_tab[cplband[p->js_subband_start] + i] = get_vlc2(&q->gb, p->ccpl.table, p->ccpl.bits, 2);
789
        }
790
        return;
791
    }
792

    
793
    if(cplband[p->js_subband_start] > cplband[p->subbands-1]) return;
794

    
795
    length = cplband[p->subbands-1] - cplband[p->js_subband_start] + 1;
796
    for (i=0 ; i<length ; i++) {
797
       decouple_tab[cplband[p->js_subband_start] + i] = get_bits(&q->gb, p->js_vlc_bits);
798
    }
799
    return;
800
}
801

    
802
/*
803
 * function decouples a pair of signals from a single signal via multiplication.
804
 *
805
 * @param q                 pointer to the COOKContext
806
 * @param subband           index of the current subband
807
 * @param f1                multiplier for channel 1 extraction
808
 * @param f2                multiplier for channel 2 extraction
809
 * @param decode_buffer     input buffer
810
 * @param mlt_buffer1       pointer to left channel mlt coefficients
811
 * @param mlt_buffer2       pointer to right channel mlt coefficients
812
 */
813
static void decouple_float (COOKContext *q,
814
                            COOKSubpacket *p,
815
                            int subband,
816
                            float f1, float f2,
817
                            float *decode_buffer,
818
                            float *mlt_buffer1, float *mlt_buffer2)
819
{
820
    int j, tmp_idx;
821
    for (j=0 ; j<SUBBAND_SIZE ; j++) {
822
        tmp_idx = ((p->js_subband_start + subband)*SUBBAND_SIZE)+j;
823
        mlt_buffer1[SUBBAND_SIZE*subband + j] = f1 * decode_buffer[tmp_idx];
824
        mlt_buffer2[SUBBAND_SIZE*subband + j] = f2 * decode_buffer[tmp_idx];
825
    }
826
}
827

    
828
/**
829
 * function for decoding joint stereo data
830
 *
831
 * @param q                 pointer to the COOKContext
832
 * @param mlt_buffer1       pointer to left channel mlt coefficients
833
 * @param mlt_buffer2       pointer to right channel mlt coefficients
834
 */
835

    
836
static void joint_decode(COOKContext *q, COOKSubpacket *p, float* mlt_buffer1,
837
                         float* mlt_buffer2) {
838
    int i,j;
839
    int decouple_tab[SUBBAND_SIZE];
840
    float *decode_buffer = q->decode_buffer_0;
841
    int idx, cpl_tmp;
842
    float f1,f2;
843
    const float* cplscale;
844

    
845
    memset(decouple_tab, 0, sizeof(decouple_tab));
846
    memset(decode_buffer, 0, sizeof(decode_buffer));
847

    
848
    /* Make sure the buffers are zeroed out. */
849
    memset(mlt_buffer1,0, 1024*sizeof(float));
850
    memset(mlt_buffer2,0, 1024*sizeof(float));
851
    decouple_info(q, p, decouple_tab);
852
    mono_decode(q, p, decode_buffer);
853

    
854
    /* The two channels are stored interleaved in decode_buffer. */
855
    for (i=0 ; i<p->js_subband_start ; i++) {
856
        for (j=0 ; j<SUBBAND_SIZE ; j++) {
857
            mlt_buffer1[i*20+j] = decode_buffer[i*40+j];
858
            mlt_buffer2[i*20+j] = decode_buffer[i*40+20+j];
859
        }
860
    }
861

    
862
    /* When we reach js_subband_start (the higher frequencies)
863
       the coefficients are stored in a coupling scheme. */
864
    idx = (1 << p->js_vlc_bits) - 1;
865
    for (i=p->js_subband_start ; i<p->subbands ; i++) {
866
        cpl_tmp = cplband[i];
867
        idx -=decouple_tab[cpl_tmp];
868
        cplscale = q->cplscales[p->js_vlc_bits-2];  //choose decoupler table
869
        f1 = cplscale[decouple_tab[cpl_tmp]];
870
        f2 = cplscale[idx-1];
871
        q->decouple (q, p, i, f1, f2, decode_buffer, mlt_buffer1, mlt_buffer2);
872
        idx = (1 << p->js_vlc_bits) - 1;
873
    }
874
}
875

    
876
/**
877
 * First part of subpacket decoding:
878
 *  decode raw stream bytes and read gain info.
879
 *
880
 * @param q                 pointer to the COOKContext
881
 * @param inbuffer          pointer to raw stream data
882
 * @param gains_ptr         array of current/prev gain pointers
883
 */
884

    
885
static inline void
886
decode_bytes_and_gain(COOKContext *q, COOKSubpacket *p, const uint8_t *inbuffer,
887
                      cook_gains *gains_ptr)
888
{
889
    int offset;
890

    
891
    offset = decode_bytes(inbuffer, q->decoded_bytes_buffer,
892
                          p->bits_per_subpacket/8);
893
    init_get_bits(&q->gb, q->decoded_bytes_buffer + offset,
894
                  p->bits_per_subpacket);
895
    decode_gain_info(&q->gb, gains_ptr->now);
896

    
897
    /* Swap current and previous gains */
898
    FFSWAP(int *, gains_ptr->now, gains_ptr->previous);
899
}
900

    
901
 /**
902
 * Saturate the output signal to signed 16bit integers.
903
 *
904
 * @param q                 pointer to the COOKContext
905
 * @param chan              channel to saturate
906
 * @param out               pointer to the output vector
907
 */
908
static void
909
saturate_output_float (COOKContext *q, int chan, int16_t *out)
910
{
911
    int j;
912
    float *output = q->mono_mdct_output + q->samples_per_channel;
913
    /* Clip and convert floats to 16 bits.
914
     */
915
    for (j = 0; j < q->samples_per_channel; j++) {
916
        out[chan + q->nb_channels * j] =
917
          av_clip_int16(lrintf(output[j]));
918
    }
919
}
920

    
921
/**
922
 * Final part of subpacket decoding:
923
 *  Apply modulated lapped transform, gain compensation,
924
 *  clip and convert to integer.
925
 *
926
 * @param q                 pointer to the COOKContext
927
 * @param decode_buffer     pointer to the mlt coefficients
928
 * @param gains_ptr         array of current/prev gain pointers
929
 * @param previous_buffer   pointer to the previous buffer to be used for overlapping
930
 * @param out               pointer to the output buffer
931
 * @param chan              0: left or single channel, 1: right channel
932
 */
933

    
934
static inline void
935
mlt_compensate_output(COOKContext *q, float *decode_buffer,
936
                      cook_gains *gains_ptr, float *previous_buffer,
937
                      int16_t *out, int chan)
938
{
939
    imlt_gain(q, decode_buffer, gains_ptr, previous_buffer);
940
    q->saturate_output (q, chan, out);
941
}
942

    
943

    
944
/**
945
 * Cook subpacket decoding. This function returns one decoded subpacket,
946
 * usually 1024 samples per channel.
947
 *
948
 * @param q                 pointer to the COOKContext
949
 * @param inbuffer          pointer to the inbuffer
950
 * @param outbuffer         pointer to the outbuffer
951
 */
952
static void decode_subpacket(COOKContext *q, COOKSubpacket* p, const uint8_t *inbuffer, int16_t *outbuffer) {
953
    int sub_packet_size = p->size;
954
    /* packet dump */
955
//    for (i=0 ; i<sub_packet_size ; i++) {
956
//        av_log(q->avctx, AV_LOG_ERROR, "%02x", inbuffer[i]);
957
//    }
958
//    av_log(q->avctx, AV_LOG_ERROR, "\n");
959
    memset(q->decode_buffer_1,0,sizeof(q->decode_buffer_1));
960
    decode_bytes_and_gain(q, p, inbuffer, &p->gains1);
961

    
962
    if (p->joint_stereo) {
963
        joint_decode(q, p, q->decode_buffer_1, q->decode_buffer_2);
964
    } else {
965
        mono_decode(q, p, q->decode_buffer_1);
966

    
967
        if (p->num_channels == 2) {
968
            decode_bytes_and_gain(q, p, inbuffer + sub_packet_size/2, &p->gains2);
969
            mono_decode(q, p, q->decode_buffer_2);
970
        }
971
    }
972

    
973
    mlt_compensate_output(q, q->decode_buffer_1, &p->gains1,
974
                          p->mono_previous_buffer1, outbuffer, p->ch_idx);
975

    
976
    if (p->num_channels == 2) {
977
        if (p->joint_stereo) {
978
            mlt_compensate_output(q, q->decode_buffer_2, &p->gains1,
979
                                  p->mono_previous_buffer2, outbuffer, p->ch_idx + 1);
980
         } else {
981
            mlt_compensate_output(q, q->decode_buffer_2, &p->gains2,
982
                                  p->mono_previous_buffer2, outbuffer, p->ch_idx + 1);
983
         }
984
     }
985

    
986
}
987

    
988

    
989
/**
990
 * Cook frame decoding
991
 *
992
 * @param avctx     pointer to the AVCodecContext
993
 */
994

    
995
static int cook_decode_frame(AVCodecContext *avctx,
996
            void *data, int *data_size,
997
            AVPacket *avpkt) {
998
    const uint8_t *buf = avpkt->data;
999
    int buf_size = avpkt->size;
1000
    COOKContext *q = avctx->priv_data;
1001
    int i;
1002
    int offset = 0;
1003
    int chidx = 0;
1004

    
1005
    if (buf_size < avctx->block_align)
1006
        return buf_size;
1007

    
1008
    /* estimate subpacket sizes */
1009
    q->subpacket[0].size = avctx->block_align;
1010

    
1011
    for(i=1;i<q->num_subpackets;i++){
1012
        q->subpacket[i].size = 2 * buf[avctx->block_align - q->num_subpackets + i];
1013
        q->subpacket[0].size -= q->subpacket[i].size + 1;
1014
        if (q->subpacket[0].size < 0) {
1015
            av_log(avctx,AV_LOG_DEBUG,"frame subpacket size total > avctx->block_align!\n");
1016
            return -1;
1017
        }
1018
    }
1019

    
1020
    /* decode supbackets */
1021
    *data_size = 0;
1022
    for(i=0;i<q->num_subpackets;i++){
1023
        q->subpacket[i].bits_per_subpacket = (q->subpacket[i].size*8)>>q->subpacket[i].bits_per_subpdiv;
1024
        q->subpacket[i].ch_idx = chidx;
1025
        av_log(avctx,AV_LOG_DEBUG,"subpacket[%i] size %i js %i %i block_align %i\n",i,q->subpacket[i].size,q->subpacket[i].joint_stereo,offset,avctx->block_align);
1026
        decode_subpacket(q, &q->subpacket[i], buf + offset, (int16_t*)data);
1027
        offset += q->subpacket[i].size;
1028
        chidx += q->subpacket[i].num_channels;
1029
        av_log(avctx,AV_LOG_DEBUG,"subpacket[%i] %i %i\n",i,q->subpacket[i].size * 8,get_bits_count(&q->gb));
1030
    }
1031
    *data_size = sizeof(int16_t) * q->nb_channels * q->samples_per_channel;
1032

    
1033
    /* Discard the first two frames: no valid audio. */
1034
    if (avctx->frame_number < 2) *data_size = 0;
1035

    
1036
    return avctx->block_align;
1037
}
1038

    
1039
#ifdef COOKDEBUG
1040
static void dump_cook_context(COOKContext *q)
1041
{
1042
    //int i=0;
1043
#define PRINT(a,b) av_log(q->avctx,AV_LOG_ERROR," %s = %d\n", a, b);
1044
    av_log(q->avctx,AV_LOG_ERROR,"COOKextradata\n");
1045
    av_log(q->avctx,AV_LOG_ERROR,"cookversion=%x\n",q->subpacket[0].cookversion);
1046
    if (q->subpacket[0].cookversion > STEREO) {
1047
        PRINT("js_subband_start",q->subpacket[0].js_subband_start);
1048
        PRINT("js_vlc_bits",q->subpacket[0].js_vlc_bits);
1049
    }
1050
    av_log(q->avctx,AV_LOG_ERROR,"COOKContext\n");
1051
    PRINT("nb_channels",q->nb_channels);
1052
    PRINT("bit_rate",q->bit_rate);
1053
    PRINT("sample_rate",q->sample_rate);
1054
    PRINT("samples_per_channel",q->subpacket[0].samples_per_channel);
1055
    PRINT("samples_per_frame",q->subpacket[0].samples_per_frame);
1056
    PRINT("subbands",q->subpacket[0].subbands);
1057
    PRINT("random_state",q->random_state);
1058
    PRINT("js_subband_start",q->subpacket[0].js_subband_start);
1059
    PRINT("log2_numvector_size",q->subpacket[0].log2_numvector_size);
1060
    PRINT("numvector_size",q->subpacket[0].numvector_size);
1061
    PRINT("total_subbands",q->subpacket[0].total_subbands);
1062
}
1063
#endif
1064

    
1065
static av_cold int cook_count_channels(unsigned int mask){
1066
    int i;
1067
    int channels = 0;
1068
    for(i = 0;i<32;i++){
1069
        if(mask & (1<<i))
1070
            ++channels;
1071
    }
1072
    return channels;
1073
}
1074

    
1075
/**
1076
 * Cook initialization
1077
 *
1078
 * @param avctx     pointer to the AVCodecContext
1079
 */
1080

    
1081
static av_cold int cook_decode_init(AVCodecContext *avctx)
1082
{
1083
    COOKContext *q = avctx->priv_data;
1084
    const uint8_t *edata_ptr = avctx->extradata;
1085
    const uint8_t *edata_ptr_end = edata_ptr + avctx->extradata_size;
1086
    int extradata_size = avctx->extradata_size;
1087
    int s = 0;
1088
    unsigned int channel_mask = 0;
1089
    q->avctx = avctx;
1090

    
1091
    /* Take care of the codec specific extradata. */
1092
    if (extradata_size <= 0) {
1093
        av_log(avctx,AV_LOG_ERROR,"Necessary extradata missing!\n");
1094
        return -1;
1095
    }
1096
    av_log(avctx,AV_LOG_DEBUG,"codecdata_length=%d\n",avctx->extradata_size);
1097

    
1098
    /* Take data from the AVCodecContext (RM container). */
1099
    q->sample_rate = avctx->sample_rate;
1100
    q->nb_channels = avctx->channels;
1101
    q->bit_rate = avctx->bit_rate;
1102

    
1103
    /* Initialize RNG. */
1104
    av_lfg_init(&q->random_state, 0);
1105

    
1106
    while(edata_ptr < edata_ptr_end){
1107
        /* 8 for mono, 16 for stereo, ? for multichannel
1108
           Swap to right endianness so we don't need to care later on. */
1109
        if (extradata_size >= 8){
1110
            q->subpacket[s].cookversion = bytestream_get_be32(&edata_ptr);
1111
            q->subpacket[s].samples_per_frame =  bytestream_get_be16(&edata_ptr);
1112
            q->subpacket[s].subbands = bytestream_get_be16(&edata_ptr);
1113
            extradata_size -= 8;
1114
        }
1115
        if (avctx->extradata_size >= 8){
1116
            bytestream_get_be32(&edata_ptr);    //Unknown unused
1117
            q->subpacket[s].js_subband_start = bytestream_get_be16(&edata_ptr);
1118
            q->subpacket[s].js_vlc_bits = bytestream_get_be16(&edata_ptr);
1119
            extradata_size -= 8;
1120
        }
1121

    
1122
        /* Initialize extradata related variables. */
1123
        q->subpacket[s].samples_per_channel = q->subpacket[s].samples_per_frame / q->nb_channels;
1124
        q->subpacket[s].bits_per_subpacket = avctx->block_align * 8;
1125

    
1126
        /* Initialize default data states. */
1127
        q->subpacket[s].log2_numvector_size = 5;
1128
        q->subpacket[s].total_subbands = q->subpacket[s].subbands;
1129
        q->subpacket[s].num_channels = 1;
1130

    
1131
        /* Initialize version-dependent variables */
1132

    
1133
        av_log(avctx,AV_LOG_DEBUG,"subpacket[%i].cookversion=%x\n",s,q->subpacket[s].cookversion);
1134
        q->subpacket[s].joint_stereo = 0;
1135
        switch (q->subpacket[s].cookversion) {
1136
            case MONO:
1137
                if (q->nb_channels != 1) {
1138
                    av_log(avctx,AV_LOG_ERROR,"Container channels != 1, report sample!\n");
1139
                    return -1;
1140
                }
1141
                av_log(avctx,AV_LOG_DEBUG,"MONO\n");
1142
                break;
1143
            case STEREO:
1144
                if (q->nb_channels != 1) {
1145
                    q->subpacket[s].bits_per_subpdiv = 1;
1146
                    q->subpacket[s].num_channels = 2;
1147
                }
1148
                av_log(avctx,AV_LOG_DEBUG,"STEREO\n");
1149
                break;
1150
            case JOINT_STEREO:
1151
                if (q->nb_channels != 2) {
1152
                    av_log(avctx,AV_LOG_ERROR,"Container channels != 2, report sample!\n");
1153
                    return -1;
1154
                }
1155
                av_log(avctx,AV_LOG_DEBUG,"JOINT_STEREO\n");
1156
                if (avctx->extradata_size >= 16){
1157
                    q->subpacket[s].total_subbands = q->subpacket[s].subbands + q->subpacket[s].js_subband_start;
1158
                    q->subpacket[s].joint_stereo = 1;
1159
                    q->subpacket[s].num_channels = 2;
1160
                }
1161
                if (q->subpacket[s].samples_per_channel > 256) {
1162
                    q->subpacket[s].log2_numvector_size  = 6;
1163
                }
1164
                if (q->subpacket[s].samples_per_channel > 512) {
1165
                    q->subpacket[s].log2_numvector_size  = 7;
1166
                }
1167
                break;
1168
            case MC_COOK:
1169
                av_log(avctx,AV_LOG_DEBUG,"MULTI_CHANNEL\n");
1170
                if(extradata_size >= 4)
1171
                    channel_mask |= q->subpacket[s].channel_mask = bytestream_get_be32(&edata_ptr);
1172

    
1173
                if(cook_count_channels(q->subpacket[s].channel_mask) > 1){
1174
                    q->subpacket[s].total_subbands = q->subpacket[s].subbands + q->subpacket[s].js_subband_start;
1175
                    q->subpacket[s].joint_stereo = 1;
1176
                    q->subpacket[s].num_channels = 2;
1177
                    q->subpacket[s].samples_per_channel = q->subpacket[s].samples_per_frame >> 1;
1178

    
1179
                    if (q->subpacket[s].samples_per_channel > 256) {
1180
                        q->subpacket[s].log2_numvector_size  = 6;
1181
                    }
1182
                    if (q->subpacket[s].samples_per_channel > 512) {
1183
                        q->subpacket[s].log2_numvector_size  = 7;
1184
                    }
1185
                }else
1186
                    q->subpacket[s].samples_per_channel = q->subpacket[s].samples_per_frame;
1187

    
1188
                break;
1189
            default:
1190
                av_log(avctx,AV_LOG_ERROR,"Unknown Cook version, report sample!\n");
1191
                return -1;
1192
                break;
1193
        }
1194

    
1195
        if(s > 1 && q->subpacket[s].samples_per_channel != q->samples_per_channel) {
1196
            av_log(avctx,AV_LOG_ERROR,"different number of samples per channel!\n");
1197
            return -1;
1198
        } else
1199
            q->samples_per_channel = q->subpacket[0].samples_per_channel;
1200

    
1201

    
1202
        /* Initialize variable relations */
1203
        q->subpacket[s].numvector_size = (1 << q->subpacket[s].log2_numvector_size);
1204

    
1205
        /* Try to catch some obviously faulty streams, othervise it might be exploitable */
1206
        if (q->subpacket[s].total_subbands > 53) {
1207
            av_log(avctx,AV_LOG_ERROR,"total_subbands > 53, report sample!\n");
1208
            return -1;
1209
        }
1210

    
1211
        if ((q->subpacket[s].js_vlc_bits > 6) || (q->subpacket[s].js_vlc_bits < 0)) {
1212
            av_log(avctx,AV_LOG_ERROR,"js_vlc_bits = %d, only >= 0 and <= 6 allowed!\n",q->subpacket[s].js_vlc_bits);
1213
            return -1;
1214
        }
1215

    
1216
        if (q->subpacket[s].subbands > 50) {
1217
            av_log(avctx,AV_LOG_ERROR,"subbands > 50, report sample!\n");
1218
            return -1;
1219
        }
1220
        q->subpacket[s].gains1.now      = q->subpacket[s].gain_1;
1221
        q->subpacket[s].gains1.previous = q->subpacket[s].gain_2;
1222
        q->subpacket[s].gains2.now      = q->subpacket[s].gain_3;
1223
        q->subpacket[s].gains2.previous = q->subpacket[s].gain_4;
1224

    
1225
        q->num_subpackets++;
1226
        s++;
1227
        if (s > MAX_SUBPACKETS) {
1228
            av_log(avctx,AV_LOG_ERROR,"Too many subpackets > 5, report file!\n");
1229
            return -1;
1230
        }
1231
    }
1232
    /* Generate tables */
1233
    init_pow2table();
1234
    init_gain_table(q);
1235
    init_cplscales_table(q);
1236

    
1237
    if (init_cook_vlc_tables(q) != 0)
1238
        return -1;
1239

    
1240

    
1241
    if(avctx->block_align >= UINT_MAX/2)
1242
        return -1;
1243

    
1244
    /* Pad the databuffer with:
1245
       DECODE_BYTES_PAD1 or DECODE_BYTES_PAD2 for decode_bytes(),
1246
       FF_INPUT_BUFFER_PADDING_SIZE, for the bitstreamreader. */
1247
        q->decoded_bytes_buffer =
1248
          av_mallocz(avctx->block_align
1249
                     + DECODE_BYTES_PAD1(avctx->block_align)
1250
                     + FF_INPUT_BUFFER_PADDING_SIZE);
1251
    if (q->decoded_bytes_buffer == NULL)
1252
        return -1;
1253

    
1254
    /* Initialize transform. */
1255
    if ( init_cook_mlt(q) != 0 )
1256
        return -1;
1257

    
1258
    /* Initialize COOK signal arithmetic handling */
1259
    if (1) {
1260
        q->scalar_dequant  = scalar_dequant_float;
1261
        q->decouple        = decouple_float;
1262
        q->imlt_window     = imlt_window_float;
1263
        q->interpolate     = interpolate_float;
1264
        q->saturate_output = saturate_output_float;
1265
    }
1266

    
1267
    /* Try to catch some obviously faulty streams, othervise it might be exploitable */
1268
    if ((q->samples_per_channel == 256) || (q->samples_per_channel == 512) || (q->samples_per_channel == 1024)) {
1269
    } else {
1270
        av_log(avctx,AV_LOG_ERROR,"unknown amount of samples_per_channel = %d, report sample!\n",q->samples_per_channel);
1271
        return -1;
1272
    }
1273

    
1274
    avctx->sample_fmt = AV_SAMPLE_FMT_S16;
1275
    if (channel_mask)
1276
        avctx->channel_layout = channel_mask;
1277
    else
1278
        avctx->channel_layout = (avctx->channels==2) ? AV_CH_LAYOUT_STEREO : AV_CH_LAYOUT_MONO;
1279

    
1280
#ifdef COOKDEBUG
1281
    dump_cook_context(q);
1282
#endif
1283
    return 0;
1284
}
1285

    
1286

    
1287
AVCodec ff_cook_decoder =
1288
{
1289
    .name = "cook",
1290
    .type = AVMEDIA_TYPE_AUDIO,
1291
    .id = CODEC_ID_COOK,
1292
    .priv_data_size = sizeof(COOKContext),
1293
    .init = cook_decode_init,
1294
    .close = cook_decode_close,
1295
    .decode = cook_decode_frame,
1296
    .long_name = NULL_IF_CONFIG_SMALL("COOK"),
1297
};