ffmpeg / libavcodec / ac3dec.c @ 2874c81c
History | View | Annotate | Download (52.2 KB)
1 |
/*
|
---|---|
2 |
* AC-3 Audio Decoder
|
3 |
* This code was developed as part of Google Summer of Code 2006.
|
4 |
* E-AC-3 support was added as part of Google Summer of Code 2007.
|
5 |
*
|
6 |
* Copyright (c) 2006 Kartikey Mahendra BHATT (bhattkm at gmail dot com)
|
7 |
* Copyright (c) 2007-2008 Bartlomiej Wolowiec <bartek.wolowiec@gmail.com>
|
8 |
* Copyright (c) 2007 Justin Ruggles <justin.ruggles@gmail.com>
|
9 |
*
|
10 |
* This file is part of FFmpeg.
|
11 |
*
|
12 |
* FFmpeg is free software; you can redistribute it and/or
|
13 |
* modify it under the terms of the GNU Lesser General Public
|
14 |
* License as published by the Free Software Foundation; either
|
15 |
* version 2.1 of the License, or (at your option) any later version.
|
16 |
*
|
17 |
* FFmpeg is distributed in the hope that it will be useful,
|
18 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
19 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
20 |
* Lesser General Public License for more details.
|
21 |
*
|
22 |
* You should have received a copy of the GNU Lesser General Public
|
23 |
* License along with FFmpeg; if not, write to the Free Software
|
24 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
25 |
*/
|
26 |
|
27 |
#include <stdio.h> |
28 |
#include <stddef.h> |
29 |
#include <math.h> |
30 |
#include <string.h> |
31 |
|
32 |
#include "libavutil/crc.h" |
33 |
#include "internal.h" |
34 |
#include "aac_ac3_parser.h" |
35 |
#include "ac3_parser.h" |
36 |
#include "ac3dec.h" |
37 |
#include "ac3dec_data.h" |
38 |
|
39 |
/** Large enough for maximum possible frame size when the specification limit is ignored */
|
40 |
#define AC3_FRAME_BUFFER_SIZE 32768 |
41 |
|
42 |
/**
|
43 |
* table for ungrouping 3 values in 7 bits.
|
44 |
* used for exponents and bap=2 mantissas
|
45 |
*/
|
46 |
static uint8_t ungroup_3_in_7_bits_tab[128][3]; |
47 |
|
48 |
|
49 |
/** tables for ungrouping mantissas */
|
50 |
static int b1_mantissas[32][3]; |
51 |
static int b2_mantissas[128][3]; |
52 |
static int b3_mantissas[8]; |
53 |
static int b4_mantissas[128][2]; |
54 |
static int b5_mantissas[16]; |
55 |
|
56 |
/**
|
57 |
* Quantization table: levels for symmetric. bits for asymmetric.
|
58 |
* reference: Table 7.18 Mapping of bap to Quantizer
|
59 |
*/
|
60 |
static const uint8_t quantization_tab[16] = { |
61 |
0, 3, 5, 7, 11, 15, |
62 |
5, 6, 7, 8, 9, 10, 11, 12, 14, 16 |
63 |
}; |
64 |
|
65 |
/** dynamic range table. converts codes to scale factors. */
|
66 |
static float dynamic_range_tab[256]; |
67 |
|
68 |
/** Adjustments in dB gain */
|
69 |
#define LEVEL_PLUS_3DB 1.4142135623730950 |
70 |
#define LEVEL_PLUS_1POINT5DB 1.1892071150027209 |
71 |
#define LEVEL_MINUS_1POINT5DB 0.8408964152537145 |
72 |
#define LEVEL_MINUS_3DB 0.7071067811865476 |
73 |
#define LEVEL_MINUS_4POINT5DB 0.5946035575013605 |
74 |
#define LEVEL_MINUS_6DB 0.5000000000000000 |
75 |
#define LEVEL_MINUS_9DB 0.3535533905932738 |
76 |
#define LEVEL_ZERO 0.0000000000000000 |
77 |
#define LEVEL_ONE 1.0000000000000000 |
78 |
|
79 |
static const float gain_levels[9] = { |
80 |
LEVEL_PLUS_3DB, |
81 |
LEVEL_PLUS_1POINT5DB, |
82 |
LEVEL_ONE, |
83 |
LEVEL_MINUS_1POINT5DB, |
84 |
LEVEL_MINUS_3DB, |
85 |
LEVEL_MINUS_4POINT5DB, |
86 |
LEVEL_MINUS_6DB, |
87 |
LEVEL_ZERO, |
88 |
LEVEL_MINUS_9DB |
89 |
}; |
90 |
|
91 |
/**
|
92 |
* Table for center mix levels
|
93 |
* reference: Section 5.4.2.4 cmixlev
|
94 |
*/
|
95 |
static const uint8_t center_levels[4] = { 4, 5, 6, 5 }; |
96 |
|
97 |
/**
|
98 |
* Table for surround mix levels
|
99 |
* reference: Section 5.4.2.5 surmixlev
|
100 |
*/
|
101 |
static const uint8_t surround_levels[4] = { 4, 6, 7, 6 }; |
102 |
|
103 |
/**
|
104 |
* Table for default stereo downmixing coefficients
|
105 |
* reference: Section 7.8.2 Downmixing Into Two Channels
|
106 |
*/
|
107 |
static const uint8_t ac3_default_coeffs[8][5][2] = { |
108 |
{ { 2, 7 }, { 7, 2 }, }, |
109 |
{ { 4, 4 }, }, |
110 |
{ { 2, 7 }, { 7, 2 }, }, |
111 |
{ { 2, 7 }, { 5, 5 }, { 7, 2 }, }, |
112 |
{ { 2, 7 }, { 7, 2 }, { 6, 6 }, }, |
113 |
{ { 2, 7 }, { 5, 5 }, { 7, 2 }, { 8, 8 }, }, |
114 |
{ { 2, 7 }, { 7, 2 }, { 6, 7 }, { 7, 6 }, }, |
115 |
{ { 2, 7 }, { 5, 5 }, { 7, 2 }, { 6, 7 }, { 7, 6 }, }, |
116 |
}; |
117 |
|
118 |
/**
|
119 |
* Symmetrical Dequantization
|
120 |
* reference: Section 7.3.3 Expansion of Mantissas for Symmetrical Quantization
|
121 |
* Tables 7.19 to 7.23
|
122 |
*/
|
123 |
static inline int |
124 |
symmetric_dequant(int code, int levels) |
125 |
{ |
126 |
return ((code - (levels >> 1)) << 24) / levels; |
127 |
} |
128 |
|
129 |
/*
|
130 |
* Initialize tables at runtime.
|
131 |
*/
|
132 |
static av_cold void ac3_tables_init(void) |
133 |
{ |
134 |
int i;
|
135 |
|
136 |
/* generate table for ungrouping 3 values in 7 bits
|
137 |
reference: Section 7.1.3 Exponent Decoding */
|
138 |
for(i=0; i<128; i++) { |
139 |
ungroup_3_in_7_bits_tab[i][0] = i / 25; |
140 |
ungroup_3_in_7_bits_tab[i][1] = (i % 25) / 5; |
141 |
ungroup_3_in_7_bits_tab[i][2] = (i % 25) % 5; |
142 |
} |
143 |
|
144 |
/* generate grouped mantissa tables
|
145 |
reference: Section 7.3.5 Ungrouping of Mantissas */
|
146 |
for(i=0; i<32; i++) { |
147 |
/* bap=1 mantissas */
|
148 |
b1_mantissas[i][0] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][0], 3); |
149 |
b1_mantissas[i][1] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][1], 3); |
150 |
b1_mantissas[i][2] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][2], 3); |
151 |
} |
152 |
for(i=0; i<128; i++) { |
153 |
/* bap=2 mantissas */
|
154 |
b2_mantissas[i][0] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][0], 5); |
155 |
b2_mantissas[i][1] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][1], 5); |
156 |
b2_mantissas[i][2] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][2], 5); |
157 |
|
158 |
/* bap=4 mantissas */
|
159 |
b4_mantissas[i][0] = symmetric_dequant(i / 11, 11); |
160 |
b4_mantissas[i][1] = symmetric_dequant(i % 11, 11); |
161 |
} |
162 |
/* generate ungrouped mantissa tables
|
163 |
reference: Tables 7.21 and 7.23 */
|
164 |
for(i=0; i<7; i++) { |
165 |
/* bap=3 mantissas */
|
166 |
b3_mantissas[i] = symmetric_dequant(i, 7);
|
167 |
} |
168 |
for(i=0; i<15; i++) { |
169 |
/* bap=5 mantissas */
|
170 |
b5_mantissas[i] = symmetric_dequant(i, 15);
|
171 |
} |
172 |
|
173 |
/* generate dynamic range table
|
174 |
reference: Section 7.7.1 Dynamic Range Control */
|
175 |
for(i=0; i<256; i++) { |
176 |
int v = (i >> 5) - ((i >> 7) << 3) - 5; |
177 |
dynamic_range_tab[i] = powf(2.0f, v) * ((i & 0x1F) | 0x20); |
178 |
} |
179 |
} |
180 |
|
181 |
|
182 |
/**
|
183 |
* AVCodec initialization
|
184 |
*/
|
185 |
static av_cold int ac3_decode_init(AVCodecContext *avctx) |
186 |
{ |
187 |
AC3DecodeContext *s = avctx->priv_data; |
188 |
s->avctx = avctx; |
189 |
|
190 |
ac3_common_init(); |
191 |
ac3_tables_init(); |
192 |
ff_mdct_init(&s->imdct_256, 8, 1, 1.0); |
193 |
ff_mdct_init(&s->imdct_512, 9, 1, 1.0); |
194 |
ff_kbd_window_init(s->window, 5.0, 256); |
195 |
dsputil_init(&s->dsp, avctx); |
196 |
av_lfg_init(&s->dith_state, 0);
|
197 |
|
198 |
/* set bias values for float to int16 conversion */
|
199 |
if(s->dsp.float_to_int16_interleave == ff_float_to_int16_interleave_c) {
|
200 |
s->add_bias = 385.0f; |
201 |
s->mul_bias = 1.0f; |
202 |
} else {
|
203 |
s->add_bias = 0.0f; |
204 |
s->mul_bias = 32767.0f; |
205 |
} |
206 |
|
207 |
/* allow downmixing to stereo or mono */
|
208 |
if (avctx->channels > 0 && avctx->request_channels > 0 && |
209 |
avctx->request_channels < avctx->channels && |
210 |
avctx->request_channels <= 2) {
|
211 |
avctx->channels = avctx->request_channels; |
212 |
} |
213 |
s->downmixed = 1;
|
214 |
|
215 |
/* allocate context input buffer */
|
216 |
if (avctx->error_recognition >= FF_ER_CAREFUL) {
|
217 |
s->input_buffer = av_mallocz(AC3_FRAME_BUFFER_SIZE + FF_INPUT_BUFFER_PADDING_SIZE); |
218 |
if (!s->input_buffer)
|
219 |
return AVERROR(ENOMEM);
|
220 |
} |
221 |
|
222 |
avctx->sample_fmt = SAMPLE_FMT_S16; |
223 |
return 0; |
224 |
} |
225 |
|
226 |
/**
|
227 |
* Parse the 'sync info' and 'bit stream info' from the AC-3 bitstream.
|
228 |
* GetBitContext within AC3DecodeContext must point to
|
229 |
* the start of the synchronized AC-3 bitstream.
|
230 |
*/
|
231 |
static int ac3_parse_header(AC3DecodeContext *s) |
232 |
{ |
233 |
GetBitContext *gbc = &s->gbc; |
234 |
int i;
|
235 |
|
236 |
/* read the rest of the bsi. read twice for dual mono mode. */
|
237 |
i = !(s->channel_mode); |
238 |
do {
|
239 |
skip_bits(gbc, 5); // skip dialog normalization |
240 |
if (get_bits1(gbc))
|
241 |
skip_bits(gbc, 8); //skip compression |
242 |
if (get_bits1(gbc))
|
243 |
skip_bits(gbc, 8); //skip language code |
244 |
if (get_bits1(gbc))
|
245 |
skip_bits(gbc, 7); //skip audio production information |
246 |
} while (i--);
|
247 |
|
248 |
skip_bits(gbc, 2); //skip copyright bit and original bitstream bit |
249 |
|
250 |
/* skip the timecodes (or extra bitstream information for Alternate Syntax)
|
251 |
TODO: read & use the xbsi1 downmix levels */
|
252 |
if (get_bits1(gbc))
|
253 |
skip_bits(gbc, 14); //skip timecode1 / xbsi1 |
254 |
if (get_bits1(gbc))
|
255 |
skip_bits(gbc, 14); //skip timecode2 / xbsi2 |
256 |
|
257 |
/* skip additional bitstream info */
|
258 |
if (get_bits1(gbc)) {
|
259 |
i = get_bits(gbc, 6);
|
260 |
do {
|
261 |
skip_bits(gbc, 8);
|
262 |
} while(i--);
|
263 |
} |
264 |
|
265 |
return 0; |
266 |
} |
267 |
|
268 |
/**
|
269 |
* Common function to parse AC-3 or E-AC-3 frame header
|
270 |
*/
|
271 |
static int parse_frame_header(AC3DecodeContext *s) |
272 |
{ |
273 |
AC3HeaderInfo hdr; |
274 |
int err;
|
275 |
|
276 |
err = ff_ac3_parse_header(&s->gbc, &hdr); |
277 |
if(err)
|
278 |
return err;
|
279 |
|
280 |
/* get decoding parameters from header info */
|
281 |
s->bit_alloc_params.sr_code = hdr.sr_code; |
282 |
s->channel_mode = hdr.channel_mode; |
283 |
s->channel_layout = hdr.channel_layout; |
284 |
s->lfe_on = hdr.lfe_on; |
285 |
s->bit_alloc_params.sr_shift = hdr.sr_shift; |
286 |
s->sample_rate = hdr.sample_rate; |
287 |
s->bit_rate = hdr.bit_rate; |
288 |
s->channels = hdr.channels; |
289 |
s->fbw_channels = s->channels - s->lfe_on; |
290 |
s->lfe_ch = s->fbw_channels + 1;
|
291 |
s->frame_size = hdr.frame_size; |
292 |
s->center_mix_level = hdr.center_mix_level; |
293 |
s->surround_mix_level = hdr.surround_mix_level; |
294 |
s->num_blocks = hdr.num_blocks; |
295 |
s->frame_type = hdr.frame_type; |
296 |
s->substreamid = hdr.substreamid; |
297 |
|
298 |
if(s->lfe_on) {
|
299 |
s->start_freq[s->lfe_ch] = 0;
|
300 |
s->end_freq[s->lfe_ch] = 7;
|
301 |
s->num_exp_groups[s->lfe_ch] = 2;
|
302 |
s->channel_in_cpl[s->lfe_ch] = 0;
|
303 |
} |
304 |
|
305 |
if (hdr.bitstream_id <= 10) { |
306 |
s->eac3 = 0;
|
307 |
s->snr_offset_strategy = 2;
|
308 |
s->block_switch_syntax = 1;
|
309 |
s->dither_flag_syntax = 1;
|
310 |
s->bit_allocation_syntax = 1;
|
311 |
s->fast_gain_syntax = 0;
|
312 |
s->first_cpl_leak = 0;
|
313 |
s->dba_syntax = 1;
|
314 |
s->skip_syntax = 1;
|
315 |
memset(s->channel_uses_aht, 0, sizeof(s->channel_uses_aht)); |
316 |
return ac3_parse_header(s);
|
317 |
} else if (CONFIG_EAC3_DECODER) { |
318 |
s->eac3 = 1;
|
319 |
return ff_eac3_parse_header(s);
|
320 |
} else {
|
321 |
av_log(s->avctx, AV_LOG_ERROR, "E-AC-3 support not compiled in\n");
|
322 |
return -1; |
323 |
} |
324 |
} |
325 |
|
326 |
/**
|
327 |
* Set stereo downmixing coefficients based on frame header info.
|
328 |
* reference: Section 7.8.2 Downmixing Into Two Channels
|
329 |
*/
|
330 |
static void set_downmix_coeffs(AC3DecodeContext *s) |
331 |
{ |
332 |
int i;
|
333 |
float cmix = gain_levels[center_levels[s->center_mix_level]];
|
334 |
float smix = gain_levels[surround_levels[s->surround_mix_level]];
|
335 |
float norm0, norm1;
|
336 |
|
337 |
for(i=0; i<s->fbw_channels; i++) { |
338 |
s->downmix_coeffs[i][0] = gain_levels[ac3_default_coeffs[s->channel_mode][i][0]]; |
339 |
s->downmix_coeffs[i][1] = gain_levels[ac3_default_coeffs[s->channel_mode][i][1]]; |
340 |
} |
341 |
if(s->channel_mode > 1 && s->channel_mode & 1) { |
342 |
s->downmix_coeffs[1][0] = s->downmix_coeffs[1][1] = cmix; |
343 |
} |
344 |
if(s->channel_mode == AC3_CHMODE_2F1R || s->channel_mode == AC3_CHMODE_3F1R) {
|
345 |
int nf = s->channel_mode - 2; |
346 |
s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf][1] = smix * LEVEL_MINUS_3DB; |
347 |
} |
348 |
if(s->channel_mode == AC3_CHMODE_2F2R || s->channel_mode == AC3_CHMODE_3F2R) {
|
349 |
int nf = s->channel_mode - 4; |
350 |
s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf+1][1] = smix; |
351 |
} |
352 |
|
353 |
/* renormalize */
|
354 |
norm0 = norm1 = 0.0; |
355 |
for(i=0; i<s->fbw_channels; i++) { |
356 |
norm0 += s->downmix_coeffs[i][0];
|
357 |
norm1 += s->downmix_coeffs[i][1];
|
358 |
} |
359 |
norm0 = 1.0f / norm0; |
360 |
norm1 = 1.0f / norm1; |
361 |
for(i=0; i<s->fbw_channels; i++) { |
362 |
s->downmix_coeffs[i][0] *= norm0;
|
363 |
s->downmix_coeffs[i][1] *= norm1;
|
364 |
} |
365 |
|
366 |
if(s->output_mode == AC3_CHMODE_MONO) {
|
367 |
for(i=0; i<s->fbw_channels; i++) |
368 |
s->downmix_coeffs[i][0] = (s->downmix_coeffs[i][0] + s->downmix_coeffs[i][1]) * LEVEL_MINUS_3DB; |
369 |
} |
370 |
} |
371 |
|
372 |
/**
|
373 |
* Decode the grouped exponents according to exponent strategy.
|
374 |
* reference: Section 7.1.3 Exponent Decoding
|
375 |
*/
|
376 |
static int decode_exponents(GetBitContext *gbc, int exp_strategy, int ngrps, |
377 |
uint8_t absexp, int8_t *dexps) |
378 |
{ |
379 |
int i, j, grp, group_size;
|
380 |
int dexp[256]; |
381 |
int expacc, prevexp;
|
382 |
|
383 |
/* unpack groups */
|
384 |
group_size = exp_strategy + (exp_strategy == EXP_D45); |
385 |
for(grp=0,i=0; grp<ngrps; grp++) { |
386 |
expacc = get_bits(gbc, 7);
|
387 |
dexp[i++] = ungroup_3_in_7_bits_tab[expacc][0];
|
388 |
dexp[i++] = ungroup_3_in_7_bits_tab[expacc][1];
|
389 |
dexp[i++] = ungroup_3_in_7_bits_tab[expacc][2];
|
390 |
} |
391 |
|
392 |
/* convert to absolute exps and expand groups */
|
393 |
prevexp = absexp; |
394 |
for(i=0,j=0; i<ngrps*3; i++) { |
395 |
prevexp += dexp[i] - 2;
|
396 |
if (prevexp > 24U) |
397 |
return -1; |
398 |
switch (group_size) {
|
399 |
case 4: dexps[j++] = prevexp; |
400 |
dexps[j++] = prevexp; |
401 |
case 2: dexps[j++] = prevexp; |
402 |
case 1: dexps[j++] = prevexp; |
403 |
} |
404 |
} |
405 |
return 0; |
406 |
} |
407 |
|
408 |
/**
|
409 |
* Generate transform coefficients for each coupled channel in the coupling
|
410 |
* range using the coupling coefficients and coupling coordinates.
|
411 |
* reference: Section 7.4.3 Coupling Coordinate Format
|
412 |
*/
|
413 |
static void calc_transform_coeffs_cpl(AC3DecodeContext *s) |
414 |
{ |
415 |
int bin, band, ch;
|
416 |
|
417 |
bin = s->start_freq[CPL_CH]; |
418 |
for (band = 0; band < s->num_cpl_bands; band++) { |
419 |
int band_start = bin;
|
420 |
int band_end = bin + s->cpl_band_sizes[band];
|
421 |
for (ch = 1; ch <= s->fbw_channels; ch++) { |
422 |
if (s->channel_in_cpl[ch]) {
|
423 |
int cpl_coord = s->cpl_coords[ch][band] << 5; |
424 |
for (bin = band_start; bin < band_end; bin++) {
|
425 |
s->fixed_coeffs[ch][bin] = MULH(s->fixed_coeffs[CPL_CH][bin] << 4, cpl_coord);
|
426 |
} |
427 |
if (ch == 2 && s->phase_flags[band]) { |
428 |
for (bin = band_start; bin < band_end; bin++)
|
429 |
s->fixed_coeffs[2][bin] = -s->fixed_coeffs[2][bin]; |
430 |
} |
431 |
} |
432 |
} |
433 |
bin = band_end; |
434 |
} |
435 |
} |
436 |
|
437 |
/**
|
438 |
* Grouped mantissas for 3-level 5-level and 11-level quantization
|
439 |
*/
|
440 |
typedef struct { |
441 |
int b1_mant[2]; |
442 |
int b2_mant[2]; |
443 |
int b4_mant;
|
444 |
int b1;
|
445 |
int b2;
|
446 |
int b4;
|
447 |
} mant_groups; |
448 |
|
449 |
/**
|
450 |
* Decode the transform coefficients for a particular channel
|
451 |
* reference: Section 7.3 Quantization and Decoding of Mantissas
|
452 |
*/
|
453 |
static void ac3_decode_transform_coeffs_ch(AC3DecodeContext *s, int ch_index, mant_groups *m) |
454 |
{ |
455 |
int start_freq = s->start_freq[ch_index];
|
456 |
int end_freq = s->end_freq[ch_index];
|
457 |
uint8_t *baps = s->bap[ch_index]; |
458 |
int8_t *exps = s->dexps[ch_index]; |
459 |
int *coeffs = s->fixed_coeffs[ch_index];
|
460 |
int dither = (ch_index == CPL_CH) || s->dither_flag[ch_index];
|
461 |
GetBitContext *gbc = &s->gbc; |
462 |
int freq;
|
463 |
|
464 |
for(freq = start_freq; freq < end_freq; freq++){
|
465 |
int bap = baps[freq];
|
466 |
int mantissa;
|
467 |
switch(bap){
|
468 |
case 0: |
469 |
if (dither)
|
470 |
mantissa = (av_lfg_get(&s->dith_state) & 0x7FFFFF) - 0x400000; |
471 |
else
|
472 |
mantissa = 0;
|
473 |
break;
|
474 |
case 1: |
475 |
if(m->b1){
|
476 |
m->b1--; |
477 |
mantissa = m->b1_mant[m->b1]; |
478 |
} |
479 |
else{
|
480 |
int bits = get_bits(gbc, 5); |
481 |
mantissa = b1_mantissas[bits][0];
|
482 |
m->b1_mant[1] = b1_mantissas[bits][1]; |
483 |
m->b1_mant[0] = b1_mantissas[bits][2]; |
484 |
m->b1 = 2;
|
485 |
} |
486 |
break;
|
487 |
case 2: |
488 |
if(m->b2){
|
489 |
m->b2--; |
490 |
mantissa = m->b2_mant[m->b2]; |
491 |
} |
492 |
else{
|
493 |
int bits = get_bits(gbc, 7); |
494 |
mantissa = b2_mantissas[bits][0];
|
495 |
m->b2_mant[1] = b2_mantissas[bits][1]; |
496 |
m->b2_mant[0] = b2_mantissas[bits][2]; |
497 |
m->b2 = 2;
|
498 |
} |
499 |
break;
|
500 |
case 3: |
501 |
mantissa = b3_mantissas[get_bits(gbc, 3)];
|
502 |
break;
|
503 |
case 4: |
504 |
if(m->b4){
|
505 |
m->b4 = 0;
|
506 |
mantissa = m->b4_mant; |
507 |
} |
508 |
else{
|
509 |
int bits = get_bits(gbc, 7); |
510 |
mantissa = b4_mantissas[bits][0];
|
511 |
m->b4_mant = b4_mantissas[bits][1];
|
512 |
m->b4 = 1;
|
513 |
} |
514 |
break;
|
515 |
case 5: |
516 |
mantissa = b5_mantissas[get_bits(gbc, 4)];
|
517 |
break;
|
518 |
default: /* 6 to 15 */ |
519 |
mantissa = get_bits(gbc, quantization_tab[bap]); |
520 |
/* Shift mantissa and sign-extend it. */
|
521 |
mantissa = (mantissa << (32-quantization_tab[bap]))>>8; |
522 |
break;
|
523 |
} |
524 |
coeffs[freq] = mantissa >> exps[freq]; |
525 |
} |
526 |
} |
527 |
|
528 |
/**
|
529 |
* Remove random dithering from coupling range coefficients with zero-bit
|
530 |
* mantissas for coupled channels which do not use dithering.
|
531 |
* reference: Section 7.3.4 Dither for Zero Bit Mantissas (bap=0)
|
532 |
*/
|
533 |
static void remove_dithering(AC3DecodeContext *s) { |
534 |
int ch, i;
|
535 |
|
536 |
for(ch=1; ch<=s->fbw_channels; ch++) { |
537 |
if(!s->dither_flag[ch] && s->channel_in_cpl[ch]) {
|
538 |
for(i = s->start_freq[CPL_CH]; i<s->end_freq[CPL_CH]; i++) {
|
539 |
if(!s->bap[CPL_CH][i])
|
540 |
s->fixed_coeffs[ch][i] = 0;
|
541 |
} |
542 |
} |
543 |
} |
544 |
} |
545 |
|
546 |
static void decode_transform_coeffs_ch(AC3DecodeContext *s, int blk, int ch, |
547 |
mant_groups *m) |
548 |
{ |
549 |
if (!s->channel_uses_aht[ch]) {
|
550 |
ac3_decode_transform_coeffs_ch(s, ch, m); |
551 |
} else {
|
552 |
/* if AHT is used, mantissas for all blocks are encoded in the first
|
553 |
block of the frame. */
|
554 |
int bin;
|
555 |
if (!blk && CONFIG_EAC3_DECODER)
|
556 |
ff_eac3_decode_transform_coeffs_aht_ch(s, ch); |
557 |
for (bin = s->start_freq[ch]; bin < s->end_freq[ch]; bin++) {
|
558 |
s->fixed_coeffs[ch][bin] = s->pre_mantissa[ch][bin][blk] >> s->dexps[ch][bin]; |
559 |
} |
560 |
} |
561 |
} |
562 |
|
563 |
/**
|
564 |
* Decode the transform coefficients.
|
565 |
*/
|
566 |
static void decode_transform_coeffs(AC3DecodeContext *s, int blk) |
567 |
{ |
568 |
int ch, end;
|
569 |
int got_cplchan = 0; |
570 |
mant_groups m; |
571 |
|
572 |
m.b1 = m.b2 = m.b4 = 0;
|
573 |
|
574 |
for (ch = 1; ch <= s->channels; ch++) { |
575 |
/* transform coefficients for full-bandwidth channel */
|
576 |
decode_transform_coeffs_ch(s, blk, ch, &m); |
577 |
/* tranform coefficients for coupling channel come right after the
|
578 |
coefficients for the first coupled channel*/
|
579 |
if (s->channel_in_cpl[ch]) {
|
580 |
if (!got_cplchan) {
|
581 |
decode_transform_coeffs_ch(s, blk, CPL_CH, &m); |
582 |
calc_transform_coeffs_cpl(s); |
583 |
got_cplchan = 1;
|
584 |
} |
585 |
end = s->end_freq[CPL_CH]; |
586 |
} else {
|
587 |
end = s->end_freq[ch]; |
588 |
} |
589 |
do
|
590 |
s->fixed_coeffs[ch][end] = 0;
|
591 |
while(++end < 256); |
592 |
} |
593 |
|
594 |
/* zero the dithered coefficients for appropriate channels */
|
595 |
remove_dithering(s); |
596 |
} |
597 |
|
598 |
/**
|
599 |
* Stereo rematrixing.
|
600 |
* reference: Section 7.5.4 Rematrixing : Decoding Technique
|
601 |
*/
|
602 |
static void do_rematrixing(AC3DecodeContext *s) |
603 |
{ |
604 |
int bnd, i;
|
605 |
int end, bndend;
|
606 |
|
607 |
end = FFMIN(s->end_freq[1], s->end_freq[2]); |
608 |
|
609 |
for(bnd=0; bnd<s->num_rematrixing_bands; bnd++) { |
610 |
if(s->rematrixing_flags[bnd]) {
|
611 |
bndend = FFMIN(end, ff_ac3_rematrix_band_tab[bnd+1]);
|
612 |
for(i=ff_ac3_rematrix_band_tab[bnd]; i<bndend; i++) {
|
613 |
int tmp0 = s->fixed_coeffs[1][i]; |
614 |
s->fixed_coeffs[1][i] += s->fixed_coeffs[2][i]; |
615 |
s->fixed_coeffs[2][i] = tmp0 - s->fixed_coeffs[2][i]; |
616 |
} |
617 |
} |
618 |
} |
619 |
} |
620 |
|
621 |
/**
|
622 |
* Inverse MDCT Transform.
|
623 |
* Convert frequency domain coefficients to time-domain audio samples.
|
624 |
* reference: Section 7.9.4 Transformation Equations
|
625 |
*/
|
626 |
static inline void do_imdct(AC3DecodeContext *s, int channels) |
627 |
{ |
628 |
int ch;
|
629 |
float add_bias = s->add_bias;
|
630 |
if(s->out_channels==1 && channels>1) |
631 |
add_bias *= LEVEL_MINUS_3DB; // compensate for the gain in downmix
|
632 |
|
633 |
for (ch=1; ch<=channels; ch++) { |
634 |
if (s->block_switch[ch]) {
|
635 |
int i;
|
636 |
float *x = s->tmp_output+128; |
637 |
for(i=0; i<128; i++) |
638 |
x[i] = s->transform_coeffs[ch][2*i];
|
639 |
ff_imdct_half(&s->imdct_256, s->tmp_output, x); |
640 |
s->dsp.vector_fmul_window(s->output[ch-1], s->delay[ch-1], s->tmp_output, s->window, add_bias, 128); |
641 |
for(i=0; i<128; i++) |
642 |
x[i] = s->transform_coeffs[ch][2*i+1]; |
643 |
ff_imdct_half(&s->imdct_256, s->delay[ch-1], x);
|
644 |
} else {
|
645 |
ff_imdct_half(&s->imdct_512, s->tmp_output, s->transform_coeffs[ch]); |
646 |
s->dsp.vector_fmul_window(s->output[ch-1], s->delay[ch-1], s->tmp_output, s->window, add_bias, 128); |
647 |
memcpy(s->delay[ch-1], s->tmp_output+128, 128*sizeof(float)); |
648 |
} |
649 |
} |
650 |
} |
651 |
|
652 |
/**
|
653 |
* Downmix the output to mono or stereo.
|
654 |
*/
|
655 |
void ff_ac3_downmix_c(float (*samples)[256], float (*matrix)[2], int out_ch, int in_ch, int len) |
656 |
{ |
657 |
int i, j;
|
658 |
float v0, v1;
|
659 |
if(out_ch == 2) { |
660 |
for(i=0; i<len; i++) { |
661 |
v0 = v1 = 0.0f; |
662 |
for(j=0; j<in_ch; j++) { |
663 |
v0 += samples[j][i] * matrix[j][0];
|
664 |
v1 += samples[j][i] * matrix[j][1];
|
665 |
} |
666 |
samples[0][i] = v0;
|
667 |
samples[1][i] = v1;
|
668 |
} |
669 |
} else if(out_ch == 1) { |
670 |
for(i=0; i<len; i++) { |
671 |
v0 = 0.0f; |
672 |
for(j=0; j<in_ch; j++) |
673 |
v0 += samples[j][i] * matrix[j][0];
|
674 |
samples[0][i] = v0;
|
675 |
} |
676 |
} |
677 |
} |
678 |
|
679 |
/**
|
680 |
* Upmix delay samples from stereo to original channel layout.
|
681 |
*/
|
682 |
static void ac3_upmix_delay(AC3DecodeContext *s) |
683 |
{ |
684 |
int channel_data_size = sizeof(s->delay[0]); |
685 |
switch(s->channel_mode) {
|
686 |
case AC3_CHMODE_DUALMONO:
|
687 |
case AC3_CHMODE_STEREO:
|
688 |
/* upmix mono to stereo */
|
689 |
memcpy(s->delay[1], s->delay[0], channel_data_size); |
690 |
break;
|
691 |
case AC3_CHMODE_2F2R:
|
692 |
memset(s->delay[3], 0, channel_data_size); |
693 |
case AC3_CHMODE_2F1R:
|
694 |
memset(s->delay[2], 0, channel_data_size); |
695 |
break;
|
696 |
case AC3_CHMODE_3F2R:
|
697 |
memset(s->delay[4], 0, channel_data_size); |
698 |
case AC3_CHMODE_3F1R:
|
699 |
memset(s->delay[3], 0, channel_data_size); |
700 |
case AC3_CHMODE_3F:
|
701 |
memcpy(s->delay[2], s->delay[1], channel_data_size); |
702 |
memset(s->delay[1], 0, channel_data_size); |
703 |
break;
|
704 |
} |
705 |
} |
706 |
|
707 |
/**
|
708 |
* Decode band structure for coupling, spectral extension, or enhanced coupling.
|
709 |
* The band structure defines how many subbands are in each band. For each
|
710 |
* subband in the range, 1 means it is combined with the previous band, and 0
|
711 |
* means that it starts a new band.
|
712 |
*
|
713 |
* @param[in] gbc bit reader context
|
714 |
* @param[in] blk block number
|
715 |
* @param[in] eac3 flag to indicate E-AC-3
|
716 |
* @param[in] ecpl flag to indicate enhanced coupling
|
717 |
* @param[in] start_subband subband number for start of range
|
718 |
* @param[in] end_subband subband number for end of range
|
719 |
* @param[in] default_band_struct default band structure table
|
720 |
* @param[out] num_bands number of bands (optionally NULL)
|
721 |
* @param[out] band_sizes array containing the number of bins in each band (optionally NULL)
|
722 |
*/
|
723 |
static void decode_band_structure(GetBitContext *gbc, int blk, int eac3, |
724 |
int ecpl, int start_subband, int end_subband, |
725 |
const uint8_t *default_band_struct,
|
726 |
int *num_bands, uint8_t *band_sizes)
|
727 |
{ |
728 |
int subbnd, bnd, n_subbands, n_bands=0; |
729 |
uint8_t bnd_sz[22];
|
730 |
uint8_t coded_band_struct[22];
|
731 |
const uint8_t *band_struct;
|
732 |
|
733 |
n_subbands = end_subband - start_subband; |
734 |
|
735 |
/* decode band structure from bitstream or use default */
|
736 |
if (!eac3 || get_bits1(gbc)) {
|
737 |
for (subbnd = 0; subbnd < n_subbands - 1; subbnd++) { |
738 |
coded_band_struct[subbnd] = get_bits1(gbc); |
739 |
} |
740 |
band_struct = coded_band_struct; |
741 |
} else if (!blk) { |
742 |
band_struct = &default_band_struct[start_subband+1];
|
743 |
} else {
|
744 |
/* no change in band structure */
|
745 |
return;
|
746 |
} |
747 |
|
748 |
/* calculate number of bands and band sizes based on band structure.
|
749 |
note that the first 4 subbands in enhanced coupling span only 6 bins
|
750 |
instead of 12. */
|
751 |
if (num_bands || band_sizes ) {
|
752 |
n_bands = n_subbands; |
753 |
bnd_sz[0] = ecpl ? 6 : 12; |
754 |
for (bnd = 0, subbnd = 1; subbnd < n_subbands; subbnd++) { |
755 |
int subbnd_size = (ecpl && subbnd < 4) ? 6 : 12; |
756 |
if (band_struct[subbnd-1]) { |
757 |
n_bands--; |
758 |
bnd_sz[bnd] += subbnd_size; |
759 |
} else {
|
760 |
bnd_sz[++bnd] = subbnd_size; |
761 |
} |
762 |
} |
763 |
} |
764 |
|
765 |
/* set optional output params */
|
766 |
if (num_bands)
|
767 |
*num_bands = n_bands; |
768 |
if (band_sizes)
|
769 |
memcpy(band_sizes, bnd_sz, n_bands); |
770 |
} |
771 |
|
772 |
/**
|
773 |
* Decode a single audio block from the AC-3 bitstream.
|
774 |
*/
|
775 |
static int decode_audio_block(AC3DecodeContext *s, int blk) |
776 |
{ |
777 |
int fbw_channels = s->fbw_channels;
|
778 |
int channel_mode = s->channel_mode;
|
779 |
int i, bnd, seg, ch;
|
780 |
int different_transforms;
|
781 |
int downmix_output;
|
782 |
int cpl_in_use;
|
783 |
GetBitContext *gbc = &s->gbc; |
784 |
uint8_t bit_alloc_stages[AC3_MAX_CHANNELS]; |
785 |
|
786 |
memset(bit_alloc_stages, 0, AC3_MAX_CHANNELS);
|
787 |
|
788 |
/* block switch flags */
|
789 |
different_transforms = 0;
|
790 |
if (s->block_switch_syntax) {
|
791 |
for (ch = 1; ch <= fbw_channels; ch++) { |
792 |
s->block_switch[ch] = get_bits1(gbc); |
793 |
if(ch > 1 && s->block_switch[ch] != s->block_switch[1]) |
794 |
different_transforms = 1;
|
795 |
} |
796 |
} |
797 |
|
798 |
/* dithering flags */
|
799 |
if (s->dither_flag_syntax) {
|
800 |
for (ch = 1; ch <= fbw_channels; ch++) { |
801 |
s->dither_flag[ch] = get_bits1(gbc); |
802 |
} |
803 |
} |
804 |
|
805 |
/* dynamic range */
|
806 |
i = !(s->channel_mode); |
807 |
do {
|
808 |
if(get_bits1(gbc)) {
|
809 |
s->dynamic_range[i] = ((dynamic_range_tab[get_bits(gbc, 8)]-1.0) * |
810 |
s->avctx->drc_scale)+1.0; |
811 |
} else if(blk == 0) { |
812 |
s->dynamic_range[i] = 1.0f; |
813 |
} |
814 |
} while(i--);
|
815 |
|
816 |
/* spectral extension strategy */
|
817 |
if (s->eac3 && (!blk || get_bits1(gbc))) {
|
818 |
s->spx_in_use = get_bits1(gbc); |
819 |
if (s->spx_in_use) {
|
820 |
int dst_start_freq, dst_end_freq, src_start_freq,
|
821 |
start_subband, end_subband; |
822 |
|
823 |
/* determine which channels use spx */
|
824 |
if (s->channel_mode == AC3_CHMODE_MONO) {
|
825 |
s->channel_uses_spx[1] = 1; |
826 |
} else {
|
827 |
for (ch = 1; ch <= fbw_channels; ch++) |
828 |
s->channel_uses_spx[ch] = get_bits1(gbc); |
829 |
} |
830 |
|
831 |
/* get the frequency bins of the spx copy region and the spx start
|
832 |
and end subbands */
|
833 |
dst_start_freq = get_bits(gbc, 2);
|
834 |
start_subband = get_bits(gbc, 3) + 2; |
835 |
if (start_subband > 7) |
836 |
start_subband += start_subband - 7;
|
837 |
end_subband = get_bits(gbc, 3) + 5; |
838 |
if (end_subband > 7) |
839 |
end_subband += end_subband - 7;
|
840 |
dst_start_freq = dst_start_freq * 12 + 25; |
841 |
src_start_freq = start_subband * 12 + 25; |
842 |
dst_end_freq = end_subband * 12 + 25; |
843 |
|
844 |
/* check validity of spx ranges */
|
845 |
if (start_subband >= end_subband) {
|
846 |
av_log(s->avctx, AV_LOG_ERROR, "invalid spectral extension "
|
847 |
"range (%d >= %d)\n", start_subband, end_subband);
|
848 |
return -1; |
849 |
} |
850 |
if (dst_start_freq >= src_start_freq) {
|
851 |
av_log(s->avctx, AV_LOG_ERROR, "invalid spectral extension "
|
852 |
"copy start bin (%d >= %d)\n", dst_start_freq, src_start_freq);
|
853 |
return -1; |
854 |
} |
855 |
|
856 |
s->spx_dst_start_freq = dst_start_freq; |
857 |
s->spx_src_start_freq = src_start_freq; |
858 |
s->spx_dst_end_freq = dst_end_freq; |
859 |
|
860 |
decode_band_structure(gbc, blk, s->eac3, 0,
|
861 |
start_subband, end_subband, |
862 |
ff_eac3_default_spx_band_struct, |
863 |
&s->num_spx_bands, |
864 |
s->spx_band_sizes); |
865 |
} else {
|
866 |
for (ch = 1; ch <= fbw_channels; ch++) { |
867 |
s->channel_uses_spx[ch] = 0;
|
868 |
s->first_spx_coords[ch] = 1;
|
869 |
} |
870 |
} |
871 |
} |
872 |
|
873 |
/* spectral extension coordinates */
|
874 |
if (s->spx_in_use) {
|
875 |
for (ch = 1; ch <= fbw_channels; ch++) { |
876 |
if (s->channel_uses_spx[ch]) {
|
877 |
if (s->first_spx_coords[ch] || get_bits1(gbc)) {
|
878 |
float spx_blend;
|
879 |
int bin, master_spx_coord;
|
880 |
|
881 |
s->first_spx_coords[ch] = 0;
|
882 |
spx_blend = get_bits(gbc, 5) * (1.0f/32); |
883 |
master_spx_coord = get_bits(gbc, 2) * 3; |
884 |
|
885 |
bin = s->spx_src_start_freq; |
886 |
for (bnd = 0; bnd < s->num_spx_bands; bnd++) { |
887 |
int bandsize;
|
888 |
int spx_coord_exp, spx_coord_mant;
|
889 |
float nratio, sblend, nblend, spx_coord;
|
890 |
|
891 |
/* calculate blending factors */
|
892 |
bandsize = s->spx_band_sizes[bnd]; |
893 |
nratio = ((float)((bin + (bandsize >> 1))) / s->spx_dst_end_freq) - spx_blend; |
894 |
nratio = av_clipf(nratio, 0.0f, 1.0f); |
895 |
nblend = sqrtf(3.0f * nratio); // noise is scaled by sqrt(3) to give unity variance |
896 |
sblend = sqrtf(1.0f - nratio); |
897 |
bin += bandsize; |
898 |
|
899 |
/* decode spx coordinates */
|
900 |
spx_coord_exp = get_bits(gbc, 4);
|
901 |
spx_coord_mant = get_bits(gbc, 2);
|
902 |
if (spx_coord_exp == 15) spx_coord_mant <<= 1; |
903 |
else spx_coord_mant += 4; |
904 |
spx_coord_mant <<= (25 - spx_coord_exp - master_spx_coord);
|
905 |
spx_coord = spx_coord_mant * (1.0f/(1<<23)); |
906 |
|
907 |
/* multiply noise and signal blending factors by spx coordinate */
|
908 |
s->spx_noise_blend [ch][bnd] = nblend * spx_coord; |
909 |
s->spx_signal_blend[ch][bnd] = sblend * spx_coord; |
910 |
} |
911 |
} |
912 |
} else {
|
913 |
s->first_spx_coords[ch] = 1;
|
914 |
} |
915 |
} |
916 |
} |
917 |
|
918 |
/* coupling strategy */
|
919 |
if (s->eac3 ? s->cpl_strategy_exists[blk] : get_bits1(gbc)) {
|
920 |
memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
|
921 |
if (!s->eac3)
|
922 |
s->cpl_in_use[blk] = get_bits1(gbc); |
923 |
if (s->cpl_in_use[blk]) {
|
924 |
/* coupling in use */
|
925 |
int cpl_start_subband, cpl_end_subband;
|
926 |
|
927 |
if (channel_mode < AC3_CHMODE_STEREO) {
|
928 |
av_log(s->avctx, AV_LOG_ERROR, "coupling not allowed in mono or dual-mono\n");
|
929 |
return -1; |
930 |
} |
931 |
|
932 |
/* check for enhanced coupling */
|
933 |
if (s->eac3 && get_bits1(gbc)) {
|
934 |
/* TODO: parse enhanced coupling strategy info */
|
935 |
av_log_missing_feature(s->avctx, "Enhanced coupling", 1); |
936 |
return -1; |
937 |
} |
938 |
|
939 |
/* determine which channels are coupled */
|
940 |
if (s->eac3 && s->channel_mode == AC3_CHMODE_STEREO) {
|
941 |
s->channel_in_cpl[1] = 1; |
942 |
s->channel_in_cpl[2] = 1; |
943 |
} else {
|
944 |
for (ch = 1; ch <= fbw_channels; ch++) |
945 |
s->channel_in_cpl[ch] = get_bits1(gbc); |
946 |
} |
947 |
|
948 |
/* phase flags in use */
|
949 |
if (channel_mode == AC3_CHMODE_STEREO)
|
950 |
s->phase_flags_in_use = get_bits1(gbc); |
951 |
|
952 |
/* coupling frequency range */
|
953 |
cpl_start_subband = get_bits(gbc, 4);
|
954 |
cpl_end_subband = s->spx_in_use ? (s->spx_src_start_freq - 37) / 12 : |
955 |
get_bits(gbc, 4) + 3; |
956 |
if (cpl_start_subband >= cpl_end_subband) {
|
957 |
av_log(s->avctx, AV_LOG_ERROR, "invalid coupling range (%d >= %d)\n",
|
958 |
cpl_start_subband, cpl_end_subband); |
959 |
return -1; |
960 |
} |
961 |
s->start_freq[CPL_CH] = cpl_start_subband * 12 + 37; |
962 |
s->end_freq[CPL_CH] = cpl_end_subband * 12 + 37; |
963 |
|
964 |
decode_band_structure(gbc, blk, s->eac3, 0, cpl_start_subband,
|
965 |
cpl_end_subband, |
966 |
ff_eac3_default_cpl_band_struct, |
967 |
&s->num_cpl_bands, s->cpl_band_sizes); |
968 |
} else {
|
969 |
/* coupling not in use */
|
970 |
for (ch = 1; ch <= fbw_channels; ch++) { |
971 |
s->channel_in_cpl[ch] = 0;
|
972 |
s->first_cpl_coords[ch] = 1;
|
973 |
} |
974 |
s->first_cpl_leak = s->eac3; |
975 |
s->phase_flags_in_use = 0;
|
976 |
} |
977 |
} else if (!s->eac3) { |
978 |
if(!blk) {
|
979 |
av_log(s->avctx, AV_LOG_ERROR, "new coupling strategy must be present in block 0\n");
|
980 |
return -1; |
981 |
} else {
|
982 |
s->cpl_in_use[blk] = s->cpl_in_use[blk-1];
|
983 |
} |
984 |
} |
985 |
cpl_in_use = s->cpl_in_use[blk]; |
986 |
|
987 |
/* coupling coordinates */
|
988 |
if (cpl_in_use) {
|
989 |
int cpl_coords_exist = 0; |
990 |
|
991 |
for (ch = 1; ch <= fbw_channels; ch++) { |
992 |
if (s->channel_in_cpl[ch]) {
|
993 |
if ((s->eac3 && s->first_cpl_coords[ch]) || get_bits1(gbc)) {
|
994 |
int master_cpl_coord, cpl_coord_exp, cpl_coord_mant;
|
995 |
s->first_cpl_coords[ch] = 0;
|
996 |
cpl_coords_exist = 1;
|
997 |
master_cpl_coord = 3 * get_bits(gbc, 2); |
998 |
for (bnd = 0; bnd < s->num_cpl_bands; bnd++) { |
999 |
cpl_coord_exp = get_bits(gbc, 4);
|
1000 |
cpl_coord_mant = get_bits(gbc, 4);
|
1001 |
if (cpl_coord_exp == 15) |
1002 |
s->cpl_coords[ch][bnd] = cpl_coord_mant << 22;
|
1003 |
else
|
1004 |
s->cpl_coords[ch][bnd] = (cpl_coord_mant + 16) << 21; |
1005 |
s->cpl_coords[ch][bnd] >>= (cpl_coord_exp + master_cpl_coord); |
1006 |
} |
1007 |
} else if (!blk) { |
1008 |
av_log(s->avctx, AV_LOG_ERROR, "new coupling coordinates must be present in block 0\n");
|
1009 |
return -1; |
1010 |
} |
1011 |
} else {
|
1012 |
/* channel not in coupling */
|
1013 |
s->first_cpl_coords[ch] = 1;
|
1014 |
} |
1015 |
} |
1016 |
/* phase flags */
|
1017 |
if (channel_mode == AC3_CHMODE_STEREO && cpl_coords_exist) {
|
1018 |
for (bnd = 0; bnd < s->num_cpl_bands; bnd++) { |
1019 |
s->phase_flags[bnd] = s->phase_flags_in_use? get_bits1(gbc) : 0;
|
1020 |
} |
1021 |
} |
1022 |
} |
1023 |
|
1024 |
/* stereo rematrixing strategy and band structure */
|
1025 |
if (channel_mode == AC3_CHMODE_STEREO) {
|
1026 |
if ((s->eac3 && !blk) || get_bits1(gbc)) {
|
1027 |
s->num_rematrixing_bands = 4;
|
1028 |
if (cpl_in_use && s->start_freq[CPL_CH] <= 61) { |
1029 |
s->num_rematrixing_bands -= 1 + (s->start_freq[CPL_CH] == 37); |
1030 |
} else if (s->spx_in_use && s->spx_src_start_freq <= 61) { |
1031 |
s->num_rematrixing_bands--; |
1032 |
} |
1033 |
for(bnd=0; bnd<s->num_rematrixing_bands; bnd++) |
1034 |
s->rematrixing_flags[bnd] = get_bits1(gbc); |
1035 |
} else if (!blk) { |
1036 |
av_log(s->avctx, AV_LOG_WARNING, "Warning: new rematrixing strategy not present in block 0\n");
|
1037 |
s->num_rematrixing_bands = 0;
|
1038 |
} |
1039 |
} |
1040 |
|
1041 |
/* exponent strategies for each channel */
|
1042 |
for (ch = !cpl_in_use; ch <= s->channels; ch++) {
|
1043 |
if (!s->eac3)
|
1044 |
s->exp_strategy[blk][ch] = get_bits(gbc, 2 - (ch == s->lfe_ch));
|
1045 |
if(s->exp_strategy[blk][ch] != EXP_REUSE)
|
1046 |
bit_alloc_stages[ch] = 3;
|
1047 |
} |
1048 |
|
1049 |
/* channel bandwidth */
|
1050 |
for (ch = 1; ch <= fbw_channels; ch++) { |
1051 |
s->start_freq[ch] = 0;
|
1052 |
if (s->exp_strategy[blk][ch] != EXP_REUSE) {
|
1053 |
int group_size;
|
1054 |
int prev = s->end_freq[ch];
|
1055 |
if (s->channel_in_cpl[ch])
|
1056 |
s->end_freq[ch] = s->start_freq[CPL_CH]; |
1057 |
else if (s->channel_uses_spx[ch]) |
1058 |
s->end_freq[ch] = s->spx_src_start_freq; |
1059 |
else {
|
1060 |
int bandwidth_code = get_bits(gbc, 6); |
1061 |
if (bandwidth_code > 60) { |
1062 |
av_log(s->avctx, AV_LOG_ERROR, "bandwidth code = %d > 60\n", bandwidth_code);
|
1063 |
return -1; |
1064 |
} |
1065 |
s->end_freq[ch] = bandwidth_code * 3 + 73; |
1066 |
} |
1067 |
group_size = 3 << (s->exp_strategy[blk][ch] - 1); |
1068 |
s->num_exp_groups[ch] = (s->end_freq[ch]+group_size-4) / group_size;
|
1069 |
if(blk > 0 && s->end_freq[ch] != prev) |
1070 |
memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
|
1071 |
} |
1072 |
} |
1073 |
if (cpl_in_use && s->exp_strategy[blk][CPL_CH] != EXP_REUSE) {
|
1074 |
s->num_exp_groups[CPL_CH] = (s->end_freq[CPL_CH] - s->start_freq[CPL_CH]) / |
1075 |
(3 << (s->exp_strategy[blk][CPL_CH] - 1)); |
1076 |
} |
1077 |
|
1078 |
/* decode exponents for each channel */
|
1079 |
for (ch = !cpl_in_use; ch <= s->channels; ch++) {
|
1080 |
if (s->exp_strategy[blk][ch] != EXP_REUSE) {
|
1081 |
s->dexps[ch][0] = get_bits(gbc, 4) << !ch; |
1082 |
if (decode_exponents(gbc, s->exp_strategy[blk][ch],
|
1083 |
s->num_exp_groups[ch], s->dexps[ch][0],
|
1084 |
&s->dexps[ch][s->start_freq[ch]+!!ch])) { |
1085 |
av_log(s->avctx, AV_LOG_ERROR, "exponent out-of-range\n");
|
1086 |
return -1; |
1087 |
} |
1088 |
if(ch != CPL_CH && ch != s->lfe_ch)
|
1089 |
skip_bits(gbc, 2); /* skip gainrng */ |
1090 |
} |
1091 |
} |
1092 |
|
1093 |
/* bit allocation information */
|
1094 |
if (s->bit_allocation_syntax) {
|
1095 |
if (get_bits1(gbc)) {
|
1096 |
s->bit_alloc_params.slow_decay = ff_ac3_slow_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift;
|
1097 |
s->bit_alloc_params.fast_decay = ff_ac3_fast_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift;
|
1098 |
s->bit_alloc_params.slow_gain = ff_ac3_slow_gain_tab[get_bits(gbc, 2)];
|
1099 |
s->bit_alloc_params.db_per_bit = ff_ac3_db_per_bit_tab[get_bits(gbc, 2)];
|
1100 |
s->bit_alloc_params.floor = ff_ac3_floor_tab[get_bits(gbc, 3)];
|
1101 |
for(ch=!cpl_in_use; ch<=s->channels; ch++)
|
1102 |
bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
|
1103 |
} else if (!blk) { |
1104 |
av_log(s->avctx, AV_LOG_ERROR, "new bit allocation info must be present in block 0\n");
|
1105 |
return -1; |
1106 |
} |
1107 |
} |
1108 |
|
1109 |
/* signal-to-noise ratio offsets and fast gains (signal-to-mask ratios) */
|
1110 |
if(!s->eac3 || !blk){
|
1111 |
if(s->snr_offset_strategy && get_bits1(gbc)) {
|
1112 |
int snr = 0; |
1113 |
int csnr;
|
1114 |
csnr = (get_bits(gbc, 6) - 15) << 4; |
1115 |
for (i = ch = !cpl_in_use; ch <= s->channels; ch++) {
|
1116 |
/* snr offset */
|
1117 |
if (ch == i || s->snr_offset_strategy == 2) |
1118 |
snr = (csnr + get_bits(gbc, 4)) << 2; |
1119 |
/* run at least last bit allocation stage if snr offset changes */
|
1120 |
if(blk && s->snr_offset[ch] != snr) {
|
1121 |
bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 1);
|
1122 |
} |
1123 |
s->snr_offset[ch] = snr; |
1124 |
|
1125 |
/* fast gain (normal AC-3 only) */
|
1126 |
if (!s->eac3) {
|
1127 |
int prev = s->fast_gain[ch];
|
1128 |
s->fast_gain[ch] = ff_ac3_fast_gain_tab[get_bits(gbc, 3)];
|
1129 |
/* run last 2 bit allocation stages if fast gain changes */
|
1130 |
if(blk && prev != s->fast_gain[ch])
|
1131 |
bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
|
1132 |
} |
1133 |
} |
1134 |
} else if (!s->eac3 && !blk) { |
1135 |
av_log(s->avctx, AV_LOG_ERROR, "new snr offsets must be present in block 0\n");
|
1136 |
return -1; |
1137 |
} |
1138 |
} |
1139 |
|
1140 |
/* fast gain (E-AC-3 only) */
|
1141 |
if (s->fast_gain_syntax && get_bits1(gbc)) {
|
1142 |
for (ch = !cpl_in_use; ch <= s->channels; ch++) {
|
1143 |
int prev = s->fast_gain[ch];
|
1144 |
s->fast_gain[ch] = ff_ac3_fast_gain_tab[get_bits(gbc, 3)];
|
1145 |
/* run last 2 bit allocation stages if fast gain changes */
|
1146 |
if(blk && prev != s->fast_gain[ch])
|
1147 |
bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
|
1148 |
} |
1149 |
} else if (s->eac3 && !blk) { |
1150 |
for (ch = !cpl_in_use; ch <= s->channels; ch++)
|
1151 |
s->fast_gain[ch] = ff_ac3_fast_gain_tab[4];
|
1152 |
} |
1153 |
|
1154 |
/* E-AC-3 to AC-3 converter SNR offset */
|
1155 |
if (s->frame_type == EAC3_FRAME_TYPE_INDEPENDENT && get_bits1(gbc)) {
|
1156 |
skip_bits(gbc, 10); // skip converter snr offset |
1157 |
} |
1158 |
|
1159 |
/* coupling leak information */
|
1160 |
if (cpl_in_use) {
|
1161 |
if (s->first_cpl_leak || get_bits1(gbc)) {
|
1162 |
int fl = get_bits(gbc, 3); |
1163 |
int sl = get_bits(gbc, 3); |
1164 |
/* run last 2 bit allocation stages for coupling channel if
|
1165 |
coupling leak changes */
|
1166 |
if(blk && (fl != s->bit_alloc_params.cpl_fast_leak ||
|
1167 |
sl != s->bit_alloc_params.cpl_slow_leak)) { |
1168 |
bit_alloc_stages[CPL_CH] = FFMAX(bit_alloc_stages[CPL_CH], 2);
|
1169 |
} |
1170 |
s->bit_alloc_params.cpl_fast_leak = fl; |
1171 |
s->bit_alloc_params.cpl_slow_leak = sl; |
1172 |
} else if (!s->eac3 && !blk) { |
1173 |
av_log(s->avctx, AV_LOG_ERROR, "new coupling leak info must be present in block 0\n");
|
1174 |
return -1; |
1175 |
} |
1176 |
s->first_cpl_leak = 0;
|
1177 |
} |
1178 |
|
1179 |
/* delta bit allocation information */
|
1180 |
if (s->dba_syntax && get_bits1(gbc)) {
|
1181 |
/* delta bit allocation exists (strategy) */
|
1182 |
for (ch = !cpl_in_use; ch <= fbw_channels; ch++) {
|
1183 |
s->dba_mode[ch] = get_bits(gbc, 2);
|
1184 |
if (s->dba_mode[ch] == DBA_RESERVED) {
|
1185 |
av_log(s->avctx, AV_LOG_ERROR, "delta bit allocation strategy reserved\n");
|
1186 |
return -1; |
1187 |
} |
1188 |
bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
|
1189 |
} |
1190 |
/* channel delta offset, len and bit allocation */
|
1191 |
for (ch = !cpl_in_use; ch <= fbw_channels; ch++) {
|
1192 |
if (s->dba_mode[ch] == DBA_NEW) {
|
1193 |
s->dba_nsegs[ch] = get_bits(gbc, 3);
|
1194 |
for (seg = 0; seg <= s->dba_nsegs[ch]; seg++) { |
1195 |
s->dba_offsets[ch][seg] = get_bits(gbc, 5);
|
1196 |
s->dba_lengths[ch][seg] = get_bits(gbc, 4);
|
1197 |
s->dba_values[ch][seg] = get_bits(gbc, 3);
|
1198 |
} |
1199 |
/* run last 2 bit allocation stages if new dba values */
|
1200 |
bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
|
1201 |
} |
1202 |
} |
1203 |
} else if(blk == 0) { |
1204 |
for(ch=0; ch<=s->channels; ch++) { |
1205 |
s->dba_mode[ch] = DBA_NONE; |
1206 |
} |
1207 |
} |
1208 |
|
1209 |
/* Bit allocation */
|
1210 |
for(ch=!cpl_in_use; ch<=s->channels; ch++) {
|
1211 |
if(bit_alloc_stages[ch] > 2) { |
1212 |
/* Exponent mapping into PSD and PSD integration */
|
1213 |
ff_ac3_bit_alloc_calc_psd(s->dexps[ch], |
1214 |
s->start_freq[ch], s->end_freq[ch], |
1215 |
s->psd[ch], s->band_psd[ch]); |
1216 |
} |
1217 |
if(bit_alloc_stages[ch] > 1) { |
1218 |
/* Compute excitation function, Compute masking curve, and
|
1219 |
Apply delta bit allocation */
|
1220 |
if (ff_ac3_bit_alloc_calc_mask(&s->bit_alloc_params, s->band_psd[ch],
|
1221 |
s->start_freq[ch], s->end_freq[ch], |
1222 |
s->fast_gain[ch], (ch == s->lfe_ch), |
1223 |
s->dba_mode[ch], s->dba_nsegs[ch], |
1224 |
s->dba_offsets[ch], s->dba_lengths[ch], |
1225 |
s->dba_values[ch], s->mask[ch])) { |
1226 |
av_log(s->avctx, AV_LOG_ERROR, "error in bit allocation\n");
|
1227 |
return -1; |
1228 |
} |
1229 |
} |
1230 |
if(bit_alloc_stages[ch] > 0) { |
1231 |
/* Compute bit allocation */
|
1232 |
const uint8_t *bap_tab = s->channel_uses_aht[ch] ?
|
1233 |
ff_eac3_hebap_tab : ff_ac3_bap_tab; |
1234 |
ff_ac3_bit_alloc_calc_bap(s->mask[ch], s->psd[ch], |
1235 |
s->start_freq[ch], s->end_freq[ch], |
1236 |
s->snr_offset[ch], |
1237 |
s->bit_alloc_params.floor, |
1238 |
bap_tab, s->bap[ch]); |
1239 |
} |
1240 |
} |
1241 |
|
1242 |
/* unused dummy data */
|
1243 |
if (s->skip_syntax && get_bits1(gbc)) {
|
1244 |
int skipl = get_bits(gbc, 9); |
1245 |
while(skipl--)
|
1246 |
skip_bits(gbc, 8);
|
1247 |
} |
1248 |
|
1249 |
/* unpack the transform coefficients
|
1250 |
this also uncouples channels if coupling is in use. */
|
1251 |
decode_transform_coeffs(s, blk); |
1252 |
|
1253 |
/* TODO: generate enhanced coupling coordinates and uncouple */
|
1254 |
|
1255 |
/* recover coefficients if rematrixing is in use */
|
1256 |
if(s->channel_mode == AC3_CHMODE_STEREO)
|
1257 |
do_rematrixing(s); |
1258 |
|
1259 |
/* apply scaling to coefficients (headroom, dynrng) */
|
1260 |
for(ch=1; ch<=s->channels; ch++) { |
1261 |
float gain = s->mul_bias / 4194304.0f; |
1262 |
if(s->channel_mode == AC3_CHMODE_DUALMONO) {
|
1263 |
gain *= s->dynamic_range[2-ch];
|
1264 |
} else {
|
1265 |
gain *= s->dynamic_range[0];
|
1266 |
} |
1267 |
s->dsp.int32_to_float_fmul_scalar(s->transform_coeffs[ch], s->fixed_coeffs[ch], gain, 256);
|
1268 |
} |
1269 |
|
1270 |
/* apply spectral extension to high frequency bins */
|
1271 |
if (s->spx_in_use) {
|
1272 |
ff_eac3_apply_spectral_extension(s); |
1273 |
} |
1274 |
|
1275 |
/* downmix and MDCT. order depends on whether block switching is used for
|
1276 |
any channel in this block. this is because coefficients for the long
|
1277 |
and short transforms cannot be mixed. */
|
1278 |
downmix_output = s->channels != s->out_channels && |
1279 |
!((s->output_mode & AC3_OUTPUT_LFEON) && |
1280 |
s->fbw_channels == s->out_channels); |
1281 |
if(different_transforms) {
|
1282 |
/* the delay samples have already been downmixed, so we upmix the delay
|
1283 |
samples in order to reconstruct all channels before downmixing. */
|
1284 |
if(s->downmixed) {
|
1285 |
s->downmixed = 0;
|
1286 |
ac3_upmix_delay(s); |
1287 |
} |
1288 |
|
1289 |
do_imdct(s, s->channels); |
1290 |
|
1291 |
if(downmix_output) {
|
1292 |
s->dsp.ac3_downmix(s->output, s->downmix_coeffs, s->out_channels, s->fbw_channels, 256);
|
1293 |
} |
1294 |
} else {
|
1295 |
if(downmix_output) {
|
1296 |
s->dsp.ac3_downmix(s->transform_coeffs+1, s->downmix_coeffs, s->out_channels, s->fbw_channels, 256); |
1297 |
} |
1298 |
|
1299 |
if(downmix_output && !s->downmixed) {
|
1300 |
s->downmixed = 1;
|
1301 |
s->dsp.ac3_downmix(s->delay, s->downmix_coeffs, s->out_channels, s->fbw_channels, 128);
|
1302 |
} |
1303 |
|
1304 |
do_imdct(s, s->out_channels); |
1305 |
} |
1306 |
|
1307 |
return 0; |
1308 |
} |
1309 |
|
1310 |
/**
|
1311 |
* Decode a single AC-3 frame.
|
1312 |
*/
|
1313 |
static int ac3_decode_frame(AVCodecContext * avctx, void *data, int *data_size, |
1314 |
AVPacket *avpkt) |
1315 |
{ |
1316 |
const uint8_t *buf = avpkt->data;
|
1317 |
int buf_size = avpkt->size;
|
1318 |
AC3DecodeContext *s = avctx->priv_data; |
1319 |
int16_t *out_samples = (int16_t *)data; |
1320 |
int blk, ch, err;
|
1321 |
const uint8_t *channel_map;
|
1322 |
const float *output[AC3_MAX_CHANNELS]; |
1323 |
|
1324 |
/* initialize the GetBitContext with the start of valid AC-3 Frame */
|
1325 |
if (s->input_buffer) {
|
1326 |
/* copy input buffer to decoder context to avoid reading past the end
|
1327 |
of the buffer, which can be caused by a damaged input stream. */
|
1328 |
memcpy(s->input_buffer, buf, FFMIN(buf_size, AC3_FRAME_BUFFER_SIZE)); |
1329 |
init_get_bits(&s->gbc, s->input_buffer, buf_size * 8);
|
1330 |
} else {
|
1331 |
init_get_bits(&s->gbc, buf, buf_size * 8);
|
1332 |
} |
1333 |
|
1334 |
/* parse the syncinfo */
|
1335 |
*data_size = 0;
|
1336 |
err = parse_frame_header(s); |
1337 |
|
1338 |
if (err) {
|
1339 |
switch(err) {
|
1340 |
case AAC_AC3_PARSE_ERROR_SYNC:
|
1341 |
av_log(avctx, AV_LOG_ERROR, "frame sync error\n");
|
1342 |
return -1; |
1343 |
case AAC_AC3_PARSE_ERROR_BSID:
|
1344 |
av_log(avctx, AV_LOG_ERROR, "invalid bitstream id\n");
|
1345 |
break;
|
1346 |
case AAC_AC3_PARSE_ERROR_SAMPLE_RATE:
|
1347 |
av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n");
|
1348 |
break;
|
1349 |
case AAC_AC3_PARSE_ERROR_FRAME_SIZE:
|
1350 |
av_log(avctx, AV_LOG_ERROR, "invalid frame size\n");
|
1351 |
break;
|
1352 |
case AAC_AC3_PARSE_ERROR_FRAME_TYPE:
|
1353 |
/* skip frame if CRC is ok. otherwise use error concealment. */
|
1354 |
/* TODO: add support for substreams and dependent frames */
|
1355 |
if(s->frame_type == EAC3_FRAME_TYPE_DEPENDENT || s->substreamid) {
|
1356 |
av_log(avctx, AV_LOG_ERROR, "unsupported frame type : skipping frame\n");
|
1357 |
return s->frame_size;
|
1358 |
} else {
|
1359 |
av_log(avctx, AV_LOG_ERROR, "invalid frame type\n");
|
1360 |
} |
1361 |
break;
|
1362 |
default:
|
1363 |
av_log(avctx, AV_LOG_ERROR, "invalid header\n");
|
1364 |
break;
|
1365 |
} |
1366 |
} else {
|
1367 |
/* check that reported frame size fits in input buffer */
|
1368 |
if (s->frame_size > buf_size) {
|
1369 |
av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
|
1370 |
err = AAC_AC3_PARSE_ERROR_FRAME_SIZE; |
1371 |
} else if (avctx->error_recognition >= FF_ER_CAREFUL) { |
1372 |
/* check for crc mismatch */
|
1373 |
if (av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0, &buf[2], s->frame_size-2)) { |
1374 |
av_log(avctx, AV_LOG_ERROR, "frame CRC mismatch\n");
|
1375 |
err = AAC_AC3_PARSE_ERROR_CRC; |
1376 |
} |
1377 |
} |
1378 |
} |
1379 |
|
1380 |
/* if frame is ok, set audio parameters */
|
1381 |
if (!err) {
|
1382 |
avctx->sample_rate = s->sample_rate; |
1383 |
avctx->bit_rate = s->bit_rate; |
1384 |
|
1385 |
/* channel config */
|
1386 |
s->out_channels = s->channels; |
1387 |
s->output_mode = s->channel_mode; |
1388 |
if(s->lfe_on)
|
1389 |
s->output_mode |= AC3_OUTPUT_LFEON; |
1390 |
if (avctx->request_channels > 0 && avctx->request_channels <= 2 && |
1391 |
avctx->request_channels < s->channels) { |
1392 |
s->out_channels = avctx->request_channels; |
1393 |
s->output_mode = avctx->request_channels == 1 ? AC3_CHMODE_MONO : AC3_CHMODE_STEREO;
|
1394 |
s->channel_layout = ff_ac3_channel_layout_tab[s->output_mode]; |
1395 |
} |
1396 |
avctx->channels = s->out_channels; |
1397 |
avctx->channel_layout = s->channel_layout; |
1398 |
|
1399 |
/* set downmixing coefficients if needed */
|
1400 |
if(s->channels != s->out_channels && !((s->output_mode & AC3_OUTPUT_LFEON) &&
|
1401 |
s->fbw_channels == s->out_channels)) { |
1402 |
set_downmix_coeffs(s); |
1403 |
} |
1404 |
} else if (!s->out_channels) { |
1405 |
s->out_channels = avctx->channels; |
1406 |
if(s->out_channels < s->channels)
|
1407 |
s->output_mode = s->out_channels == 1 ? AC3_CHMODE_MONO : AC3_CHMODE_STEREO;
|
1408 |
} |
1409 |
|
1410 |
/* decode the audio blocks */
|
1411 |
channel_map = ff_ac3_dec_channel_map[s->output_mode & ~AC3_OUTPUT_LFEON][s->lfe_on]; |
1412 |
for (ch = 0; ch < s->out_channels; ch++) |
1413 |
output[ch] = s->output[channel_map[ch]]; |
1414 |
for (blk = 0; blk < s->num_blocks; blk++) { |
1415 |
if (!err && decode_audio_block(s, blk)) {
|
1416 |
av_log(avctx, AV_LOG_ERROR, "error decoding the audio block\n");
|
1417 |
err = 1;
|
1418 |
} |
1419 |
s->dsp.float_to_int16_interleave(out_samples, output, 256, s->out_channels);
|
1420 |
out_samples += 256 * s->out_channels;
|
1421 |
} |
1422 |
*data_size = s->num_blocks * 256 * avctx->channels * sizeof (int16_t); |
1423 |
return s->frame_size;
|
1424 |
} |
1425 |
|
1426 |
/**
|
1427 |
* Uninitialize the AC-3 decoder.
|
1428 |
*/
|
1429 |
static av_cold int ac3_decode_end(AVCodecContext *avctx) |
1430 |
{ |
1431 |
AC3DecodeContext *s = avctx->priv_data; |
1432 |
ff_mdct_end(&s->imdct_512); |
1433 |
ff_mdct_end(&s->imdct_256); |
1434 |
|
1435 |
av_freep(&s->input_buffer); |
1436 |
|
1437 |
return 0; |
1438 |
} |
1439 |
|
1440 |
AVCodec ac3_decoder = { |
1441 |
.name = "ac3",
|
1442 |
.type = AVMEDIA_TYPE_AUDIO, |
1443 |
.id = CODEC_ID_AC3, |
1444 |
.priv_data_size = sizeof (AC3DecodeContext),
|
1445 |
.init = ac3_decode_init, |
1446 |
.close = ac3_decode_end, |
1447 |
.decode = ac3_decode_frame, |
1448 |
.long_name = NULL_IF_CONFIG_SMALL("ATSC A/52A (AC-3)"),
|
1449 |
}; |
1450 |
|
1451 |
#if CONFIG_EAC3_DECODER
|
1452 |
AVCodec eac3_decoder = { |
1453 |
.name = "eac3",
|
1454 |
.type = AVMEDIA_TYPE_AUDIO, |
1455 |
.id = CODEC_ID_EAC3, |
1456 |
.priv_data_size = sizeof (AC3DecodeContext),
|
1457 |
.init = ac3_decode_init, |
1458 |
.close = ac3_decode_end, |
1459 |
.decode = ac3_decode_frame, |
1460 |
.long_name = NULL_IF_CONFIG_SMALL("ATSC A/52B (AC-3, E-AC-3)"),
|
1461 |
}; |
1462 |
#endif
|