ffmpeg / libavcodec / rdft.c @ 2881c831
History | View | Annotate | Download (4.15 KB)
1 |
/*
|
---|---|
2 |
* (I)RDFT transforms
|
3 |
* Copyright (c) 2009 Alex Converse <alex dot converse at gmail dot com>
|
4 |
*
|
5 |
* This file is part of FFmpeg.
|
6 |
*
|
7 |
* FFmpeg is free software; you can redistribute it and/or
|
8 |
* modify it under the terms of the GNU Lesser General Public
|
9 |
* License as published by the Free Software Foundation; either
|
10 |
* version 2.1 of the License, or (at your option) any later version.
|
11 |
*
|
12 |
* FFmpeg is distributed in the hope that it will be useful,
|
13 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
14 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
15 |
* Lesser General Public License for more details.
|
16 |
*
|
17 |
* You should have received a copy of the GNU Lesser General Public
|
18 |
* License along with FFmpeg; if not, write to the Free Software
|
19 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
20 |
*/
|
21 |
#include <stdlib.h> |
22 |
#include <math.h> |
23 |
#include "libavutil/mathematics.h" |
24 |
#include "fft.h" |
25 |
|
26 |
/**
|
27 |
* @file libavcodec/rdft.c
|
28 |
* (Inverse) Real Discrete Fourier Transforms.
|
29 |
*/
|
30 |
|
31 |
/* sin(2*pi*x/n) for 0<=x<n/4, followed by n/2<=x<3n/4 */
|
32 |
#if !CONFIG_HARDCODED_TABLES
|
33 |
SINTABLE(16);
|
34 |
SINTABLE(32);
|
35 |
SINTABLE(64);
|
36 |
SINTABLE(128);
|
37 |
SINTABLE(256);
|
38 |
SINTABLE(512);
|
39 |
SINTABLE(1024);
|
40 |
SINTABLE(2048);
|
41 |
SINTABLE(4096);
|
42 |
SINTABLE(8192);
|
43 |
SINTABLE(16384);
|
44 |
SINTABLE(32768);
|
45 |
SINTABLE(65536);
|
46 |
#endif
|
47 |
SINTABLE_CONST FFTSample * const ff_sin_tabs[] = {
|
48 |
NULL, NULL, NULL, NULL, |
49 |
ff_sin_16, ff_sin_32, ff_sin_64, ff_sin_128, ff_sin_256, ff_sin_512, ff_sin_1024, |
50 |
ff_sin_2048, ff_sin_4096, ff_sin_8192, ff_sin_16384, ff_sin_32768, ff_sin_65536, |
51 |
}; |
52 |
|
53 |
static void ff_rdft_calc_c(RDFTContext* s, FFTSample* data); |
54 |
|
55 |
av_cold int ff_rdft_init(RDFTContext *s, int nbits, enum RDFTransformType trans) |
56 |
{ |
57 |
int n = 1 << nbits; |
58 |
int i;
|
59 |
const double theta = (trans == DFT_R2C || trans == DFT_C2R ? -1 : 1)*2*M_PI/n; |
60 |
|
61 |
s->nbits = nbits; |
62 |
s->inverse = trans == IDFT_C2R || trans == DFT_C2R; |
63 |
s->sign_convention = trans == IDFT_R2C || trans == DFT_C2R ? 1 : -1; |
64 |
|
65 |
if (nbits < 4 || nbits > 16) |
66 |
return -1; |
67 |
|
68 |
if (ff_fft_init(&s->fft, nbits-1, trans == IDFT_C2R || trans == IDFT_R2C) < 0) |
69 |
return -1; |
70 |
|
71 |
ff_init_ff_cos_tabs(nbits); |
72 |
s->tcos = ff_cos_tabs[nbits]; |
73 |
s->tsin = ff_sin_tabs[nbits]+(trans == DFT_R2C || trans == DFT_C2R)*(n>>2);
|
74 |
#if !CONFIG_HARDCODED_TABLES
|
75 |
for (i = 0; i < (n>>2); i++) { |
76 |
s->tsin[i] = sin(i*theta); |
77 |
} |
78 |
#endif
|
79 |
s->rdft_calc = ff_rdft_calc_c; |
80 |
return 0; |
81 |
} |
82 |
|
83 |
/** Map one real FFT into two parallel real even and odd FFTs. Then interleave
|
84 |
* the two real FFTs into one complex FFT. Unmangle the results.
|
85 |
* ref: http://www.engineeringproductivitytools.com/stuff/T0001/PT10.HTM
|
86 |
*/
|
87 |
static void ff_rdft_calc_c(RDFTContext* s, FFTSample* data) |
88 |
{ |
89 |
int i, i1, i2;
|
90 |
FFTComplex ev, od; |
91 |
const int n = 1 << s->nbits; |
92 |
const float k1 = 0.5; |
93 |
const float k2 = 0.5 - s->inverse; |
94 |
const FFTSample *tcos = s->tcos;
|
95 |
const FFTSample *tsin = s->tsin;
|
96 |
|
97 |
if (!s->inverse) {
|
98 |
ff_fft_permute(&s->fft, (FFTComplex*)data); |
99 |
ff_fft_calc(&s->fft, (FFTComplex*)data); |
100 |
} |
101 |
/* i=0 is a special case because of packing, the DC term is real, so we
|
102 |
are going to throw the N/2 term (also real) in with it. */
|
103 |
ev.re = data[0];
|
104 |
data[0] = ev.re+data[1]; |
105 |
data[1] = ev.re-data[1]; |
106 |
for (i = 1; i < (n>>2); i++) { |
107 |
i1 = 2*i;
|
108 |
i2 = n-i1; |
109 |
/* Separate even and odd FFTs */
|
110 |
ev.re = k1*(data[i1 ]+data[i2 ]); |
111 |
od.im = -k2*(data[i1 ]-data[i2 ]); |
112 |
ev.im = k1*(data[i1+1]-data[i2+1]); |
113 |
od.re = k2*(data[i1+1]+data[i2+1]); |
114 |
/* Apply twiddle factors to the odd FFT and add to the even FFT */
|
115 |
data[i1 ] = ev.re + od.re*tcos[i] - od.im*tsin[i]; |
116 |
data[i1+1] = ev.im + od.im*tcos[i] + od.re*tsin[i];
|
117 |
data[i2 ] = ev.re - od.re*tcos[i] + od.im*tsin[i]; |
118 |
data[i2+1] = -ev.im + od.im*tcos[i] + od.re*tsin[i];
|
119 |
} |
120 |
data[2*i+1]=s->sign_convention*data[2*i+1]; |
121 |
if (s->inverse) {
|
122 |
data[0] *= k1;
|
123 |
data[1] *= k1;
|
124 |
ff_fft_permute(&s->fft, (FFTComplex*)data); |
125 |
ff_fft_calc(&s->fft, (FFTComplex*)data); |
126 |
} |
127 |
} |
128 |
|
129 |
av_cold void ff_rdft_end(RDFTContext *s)
|
130 |
{ |
131 |
ff_fft_end(&s->fft); |
132 |
} |