Statistics
| Branch: | Revision:

ffmpeg / libavcodec / h264.h @ 2911e132

History | View | Annotate | Download (50.1 KB)

1
/*
2
 * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
3
 * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21

    
22
/**
23
 * @file libavcodec/h264.h
24
 * H.264 / AVC / MPEG4 part10 codec.
25
 * @author Michael Niedermayer <michaelni@gmx.at>
26
 */
27

    
28
#ifndef AVCODEC_H264_H
29
#define AVCODEC_H264_H
30

    
31
#include "dsputil.h"
32
#include "cabac.h"
33
#include "mpegvideo.h"
34
#include "h264pred.h"
35
#include "rectangle.h"
36

    
37
#define interlaced_dct interlaced_dct_is_a_bad_name
38
#define mb_intra mb_intra_is_not_initialized_see_mb_type
39

    
40
#define LUMA_DC_BLOCK_INDEX   25
41
#define CHROMA_DC_BLOCK_INDEX 26
42

    
43
#define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8
44
#define COEFF_TOKEN_VLC_BITS           8
45
#define TOTAL_ZEROS_VLC_BITS           9
46
#define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3
47
#define RUN_VLC_BITS                   3
48
#define RUN7_VLC_BITS                  6
49

    
50
#define MAX_SPS_COUNT 32
51
#define MAX_PPS_COUNT 256
52

    
53
#define MAX_MMCO_COUNT 66
54

    
55
#define MAX_DELAYED_PIC_COUNT 16
56

    
57
/* Compiling in interlaced support reduces the speed
58
 * of progressive decoding by about 2%. */
59
#define ALLOW_INTERLACE
60

    
61
#define ALLOW_NOCHROMA
62

    
63
/**
64
 * The maximum number of slices supported by the decoder.
65
 * must be a power of 2
66
 */
67
#define MAX_SLICES 16
68

    
69
#ifdef ALLOW_INTERLACE
70
#define MB_MBAFF h->mb_mbaff
71
#define MB_FIELD h->mb_field_decoding_flag
72
#define FRAME_MBAFF h->mb_aff_frame
73
#define FIELD_PICTURE (s->picture_structure != PICT_FRAME)
74
#else
75
#define MB_MBAFF 0
76
#define MB_FIELD 0
77
#define FRAME_MBAFF 0
78
#define FIELD_PICTURE 0
79
#undef  IS_INTERLACED
80
#define IS_INTERLACED(mb_type) 0
81
#endif
82
#define FIELD_OR_MBAFF_PICTURE (FRAME_MBAFF || FIELD_PICTURE)
83

    
84
#ifdef ALLOW_NOCHROMA
85
#define CHROMA h->sps.chroma_format_idc
86
#else
87
#define CHROMA 1
88
#endif
89

    
90
#ifndef CABAC
91
#define CABAC h->pps.cabac
92
#endif
93

    
94
#define EXTENDED_SAR          255
95

    
96
#define MB_TYPE_REF0       MB_TYPE_ACPRED //dirty but it fits in 16 bit
97
#define MB_TYPE_8x8DCT     0x01000000
98
#define IS_REF0(a)         ((a) & MB_TYPE_REF0)
99
#define IS_8x8DCT(a)       ((a) & MB_TYPE_8x8DCT)
100

    
101
/**
102
 * Value of Picture.reference when Picture is not a reference picture, but
103
 * is held for delayed output.
104
 */
105
#define DELAYED_PIC_REF 4
106

    
107

    
108
/* NAL unit types */
109
enum {
110
    NAL_SLICE=1,
111
    NAL_DPA,
112
    NAL_DPB,
113
    NAL_DPC,
114
    NAL_IDR_SLICE,
115
    NAL_SEI,
116
    NAL_SPS,
117
    NAL_PPS,
118
    NAL_AUD,
119
    NAL_END_SEQUENCE,
120
    NAL_END_STREAM,
121
    NAL_FILLER_DATA,
122
    NAL_SPS_EXT,
123
    NAL_AUXILIARY_SLICE=19
124
};
125

    
126
/**
127
 * SEI message types
128
 */
129
typedef enum {
130
    SEI_BUFFERING_PERIOD             =  0, ///< buffering period (H.264, D.1.1)
131
    SEI_TYPE_PIC_TIMING              =  1, ///< picture timing
132
    SEI_TYPE_USER_DATA_UNREGISTERED  =  5, ///< unregistered user data
133
    SEI_TYPE_RECOVERY_POINT          =  6  ///< recovery point (frame # to decoder sync)
134
} SEI_Type;
135

    
136
/**
137
 * pic_struct in picture timing SEI message
138
 */
139
typedef enum {
140
    SEI_PIC_STRUCT_FRAME             = 0, ///<  0: %frame
141
    SEI_PIC_STRUCT_TOP_FIELD         = 1, ///<  1: top field
142
    SEI_PIC_STRUCT_BOTTOM_FIELD      = 2, ///<  2: bottom field
143
    SEI_PIC_STRUCT_TOP_BOTTOM        = 3, ///<  3: top field, bottom field, in that order
144
    SEI_PIC_STRUCT_BOTTOM_TOP        = 4, ///<  4: bottom field, top field, in that order
145
    SEI_PIC_STRUCT_TOP_BOTTOM_TOP    = 5, ///<  5: top field, bottom field, top field repeated, in that order
146
    SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM = 6, ///<  6: bottom field, top field, bottom field repeated, in that order
147
    SEI_PIC_STRUCT_FRAME_DOUBLING    = 7, ///<  7: %frame doubling
148
    SEI_PIC_STRUCT_FRAME_TRIPLING    = 8  ///<  8: %frame tripling
149
} SEI_PicStructType;
150

    
151
/**
152
 * Sequence parameter set
153
 */
154
typedef struct SPS{
155

    
156
    int profile_idc;
157
    int level_idc;
158
    int chroma_format_idc;
159
    int transform_bypass;              ///< qpprime_y_zero_transform_bypass_flag
160
    int log2_max_frame_num;            ///< log2_max_frame_num_minus4 + 4
161
    int poc_type;                      ///< pic_order_cnt_type
162
    int log2_max_poc_lsb;              ///< log2_max_pic_order_cnt_lsb_minus4
163
    int delta_pic_order_always_zero_flag;
164
    int offset_for_non_ref_pic;
165
    int offset_for_top_to_bottom_field;
166
    int poc_cycle_length;              ///< num_ref_frames_in_pic_order_cnt_cycle
167
    int ref_frame_count;               ///< num_ref_frames
168
    int gaps_in_frame_num_allowed_flag;
169
    int mb_width;                      ///< pic_width_in_mbs_minus1 + 1
170
    int mb_height;                     ///< pic_height_in_map_units_minus1 + 1
171
    int frame_mbs_only_flag;
172
    int mb_aff;                        ///<mb_adaptive_frame_field_flag
173
    int direct_8x8_inference_flag;
174
    int crop;                   ///< frame_cropping_flag
175
    unsigned int crop_left;            ///< frame_cropping_rect_left_offset
176
    unsigned int crop_right;           ///< frame_cropping_rect_right_offset
177
    unsigned int crop_top;             ///< frame_cropping_rect_top_offset
178
    unsigned int crop_bottom;          ///< frame_cropping_rect_bottom_offset
179
    int vui_parameters_present_flag;
180
    AVRational sar;
181
    int video_signal_type_present_flag;
182
    int full_range;
183
    int colour_description_present_flag;
184
    enum AVColorPrimaries color_primaries;
185
    enum AVColorTransferCharacteristic color_trc;
186
    enum AVColorSpace colorspace;
187
    int timing_info_present_flag;
188
    uint32_t num_units_in_tick;
189
    uint32_t time_scale;
190
    int fixed_frame_rate_flag;
191
    short offset_for_ref_frame[256]; //FIXME dyn aloc?
192
    int bitstream_restriction_flag;
193
    int num_reorder_frames;
194
    int scaling_matrix_present;
195
    uint8_t scaling_matrix4[6][16];
196
    uint8_t scaling_matrix8[2][64];
197
    int nal_hrd_parameters_present_flag;
198
    int vcl_hrd_parameters_present_flag;
199
    int pic_struct_present_flag;
200
    int time_offset_length;
201
    int cpb_cnt;                       ///< See H.264 E.1.2
202
    int initial_cpb_removal_delay_length; ///< initial_cpb_removal_delay_length_minus1 +1
203
    int cpb_removal_delay_length;      ///< cpb_removal_delay_length_minus1 + 1
204
    int dpb_output_delay_length;       ///< dpb_output_delay_length_minus1 + 1
205
    int bit_depth_luma;                ///< bit_depth_luma_minus8 + 8
206
    int bit_depth_chroma;              ///< bit_depth_chroma_minus8 + 8
207
    int residual_color_transform_flag; ///< residual_colour_transform_flag
208
}SPS;
209

    
210
/**
211
 * Picture parameter set
212
 */
213
typedef struct PPS{
214
    unsigned int sps_id;
215
    int cabac;                  ///< entropy_coding_mode_flag
216
    int pic_order_present;      ///< pic_order_present_flag
217
    int slice_group_count;      ///< num_slice_groups_minus1 + 1
218
    int mb_slice_group_map_type;
219
    unsigned int ref_count[2];  ///< num_ref_idx_l0/1_active_minus1 + 1
220
    int weighted_pred;          ///< weighted_pred_flag
221
    int weighted_bipred_idc;
222
    int init_qp;                ///< pic_init_qp_minus26 + 26
223
    int init_qs;                ///< pic_init_qs_minus26 + 26
224
    int chroma_qp_index_offset[2];
225
    int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
226
    int constrained_intra_pred; ///< constrained_intra_pred_flag
227
    int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag
228
    int transform_8x8_mode;     ///< transform_8x8_mode_flag
229
    uint8_t scaling_matrix4[6][16];
230
    uint8_t scaling_matrix8[2][64];
231
    uint8_t chroma_qp_table[2][64];  ///< pre-scaled (with chroma_qp_index_offset) version of qp_table
232
    int chroma_qp_diff;
233
}PPS;
234

    
235
/**
236
 * Memory management control operation opcode.
237
 */
238
typedef enum MMCOOpcode{
239
    MMCO_END=0,
240
    MMCO_SHORT2UNUSED,
241
    MMCO_LONG2UNUSED,
242
    MMCO_SHORT2LONG,
243
    MMCO_SET_MAX_LONG,
244
    MMCO_RESET,
245
    MMCO_LONG,
246
} MMCOOpcode;
247

    
248
/**
249
 * Memory management control operation.
250
 */
251
typedef struct MMCO{
252
    MMCOOpcode opcode;
253
    int short_pic_num;  ///< pic_num without wrapping (pic_num & max_pic_num)
254
    int long_arg;       ///< index, pic_num, or num long refs depending on opcode
255
} MMCO;
256

    
257
/**
258
 * H264Context
259
 */
260
typedef struct H264Context{
261
    MpegEncContext s;
262
    int nal_ref_idc;
263
    int nal_unit_type;
264
    uint8_t *rbsp_buffer[2];
265
    unsigned int rbsp_buffer_size[2];
266

    
267
    /**
268
      * Used to parse AVC variant of h264
269
      */
270
    int is_avc; ///< this flag is != 0 if codec is avc1
271
    int got_avcC; ///< flag used to parse avcC data only once
272
    int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
273

    
274
    int chroma_qp[2]; //QPc
275

    
276
    int qp_thresh;      ///< QP threshold to skip loopfilter
277

    
278
    int prev_mb_skipped;
279
    int next_mb_skipped;
280

    
281
    //prediction stuff
282
    int chroma_pred_mode;
283
    int intra16x16_pred_mode;
284

    
285
    int top_mb_xy;
286
    int left_mb_xy[2];
287

    
288
    int8_t intra4x4_pred_mode_cache[5*8];
289
    int8_t (*intra4x4_pred_mode)[8];
290
    H264PredContext hpc;
291
    unsigned int topleft_samples_available;
292
    unsigned int top_samples_available;
293
    unsigned int topright_samples_available;
294
    unsigned int left_samples_available;
295
    uint8_t (*top_borders[2])[16+2*8];
296
    uint8_t left_border[2*(17+2*9)];
297

    
298
    /**
299
     * non zero coeff count cache.
300
     * is 64 if not available.
301
     */
302
    DECLARE_ALIGNED_8(uint8_t, non_zero_count_cache[6*8]);
303
    uint8_t (*non_zero_count)[32];
304

    
305
    /**
306
     * Motion vector cache.
307
     */
308
    DECLARE_ALIGNED_8(int16_t, mv_cache[2][5*8][2]);
309
    DECLARE_ALIGNED_8(int8_t, ref_cache[2][5*8]);
310
#define LIST_NOT_USED -1 //FIXME rename?
311
#define PART_NOT_AVAILABLE -2
312

    
313
    /**
314
     * is 1 if the specific list MV&references are set to 0,0,-2.
315
     */
316
    int mv_cache_clean[2];
317

    
318
    /**
319
     * number of neighbors (top and/or left) that used 8x8 dct
320
     */
321
    int neighbor_transform_size;
322

    
323
    /**
324
     * block_offset[ 0..23] for frame macroblocks
325
     * block_offset[24..47] for field macroblocks
326
     */
327
    int block_offset[2*(16+8)];
328

    
329
    uint32_t *mb2b_xy; //FIXME are these 4 a good idea?
330
    uint32_t *mb2b8_xy;
331
    int b_stride; //FIXME use s->b4_stride
332
    int b8_stride;
333

    
334
    int mb_linesize;   ///< may be equal to s->linesize or s->linesize*2, for mbaff
335
    int mb_uvlinesize;
336

    
337
    int emu_edge_width;
338
    int emu_edge_height;
339

    
340
    int halfpel_flag;
341
    int thirdpel_flag;
342

    
343
    int unknown_svq3_flag;
344
    int next_slice_index;
345

    
346
    SPS *sps_buffers[MAX_SPS_COUNT];
347
    SPS sps; ///< current sps
348

    
349
    PPS *pps_buffers[MAX_PPS_COUNT];
350
    /**
351
     * current pps
352
     */
353
    PPS pps; //FIXME move to Picture perhaps? (->no) do we need that?
354

    
355
    uint32_t dequant4_buffer[6][52][16];
356
    uint32_t dequant8_buffer[2][52][64];
357
    uint32_t (*dequant4_coeff[6])[16];
358
    uint32_t (*dequant8_coeff[2])[64];
359
    int dequant_coeff_pps;     ///< reinit tables when pps changes
360

    
361
    int slice_num;
362
    uint16_t *slice_table_base;
363
    uint16_t *slice_table;     ///< slice_table_base + 2*mb_stride + 1
364
    int slice_type;
365
    int slice_type_nos;        ///< S free slice type (SI/SP are remapped to I/P)
366
    int slice_type_fixed;
367

    
368
    //interlacing specific flags
369
    int mb_aff_frame;
370
    int mb_field_decoding_flag;
371
    int mb_mbaff;              ///< mb_aff_frame && mb_field_decoding_flag
372

    
373
    DECLARE_ALIGNED_8(uint16_t, sub_mb_type[4]);
374

    
375
    //POC stuff
376
    int poc_lsb;
377
    int poc_msb;
378
    int delta_poc_bottom;
379
    int delta_poc[2];
380
    int frame_num;
381
    int prev_poc_msb;             ///< poc_msb of the last reference pic for POC type 0
382
    int prev_poc_lsb;             ///< poc_lsb of the last reference pic for POC type 0
383
    int frame_num_offset;         ///< for POC type 2
384
    int prev_frame_num_offset;    ///< for POC type 2
385
    int prev_frame_num;           ///< frame_num of the last pic for POC type 1/2
386

    
387
    /**
388
     * frame_num for frames or 2*frame_num+1 for field pics.
389
     */
390
    int curr_pic_num;
391

    
392
    /**
393
     * max_frame_num or 2*max_frame_num for field pics.
394
     */
395
    int max_pic_num;
396

    
397
    //Weighted pred stuff
398
    int use_weight;
399
    int use_weight_chroma;
400
    int luma_log2_weight_denom;
401
    int chroma_log2_weight_denom;
402
    int luma_weight[2][48];
403
    int luma_offset[2][48];
404
    int chroma_weight[2][48][2];
405
    int chroma_offset[2][48][2];
406
    int implicit_weight[48][48];
407

    
408
    //deblock
409
    int deblocking_filter;         ///< disable_deblocking_filter_idc with 1<->0
410
    int slice_alpha_c0_offset;
411
    int slice_beta_offset;
412

    
413
    int redundant_pic_count;
414

    
415
    int direct_spatial_mv_pred;
416
    int dist_scale_factor[16];
417
    int dist_scale_factor_field[2][32];
418
    int map_col_to_list0[2][16+32];
419
    int map_col_to_list0_field[2][2][16+32];
420

    
421
    /**
422
     * num_ref_idx_l0/1_active_minus1 + 1
423
     */
424
    unsigned int ref_count[2];   ///< counts frames or fields, depending on current mb mode
425
    unsigned int list_count;
426
    uint8_t *list_counts;            ///< Array of list_count per MB specifying the slice type
427
    Picture *short_ref[32];
428
    Picture *long_ref[32];
429
    Picture default_ref_list[2][32]; ///< base reference list for all slices of a coded picture
430
    Picture ref_list[2][48];         /**< 0..15: frame refs, 16..47: mbaff field refs.
431
                                          Reordered version of default_ref_list
432
                                          according to picture reordering in slice header */
433
    int ref2frm[MAX_SLICES][2][64];  ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
434
    Picture *delayed_pic[MAX_DELAYED_PIC_COUNT+2]; //FIXME size?
435
    int outputed_poc;
436

    
437
    /**
438
     * memory management control operations buffer.
439
     */
440
    MMCO mmco[MAX_MMCO_COUNT];
441
    int mmco_index;
442

    
443
    int long_ref_count;  ///< number of actual long term references
444
    int short_ref_count; ///< number of actual short term references
445

    
446
    //data partitioning
447
    GetBitContext intra_gb;
448
    GetBitContext inter_gb;
449
    GetBitContext *intra_gb_ptr;
450
    GetBitContext *inter_gb_ptr;
451

    
452
    DECLARE_ALIGNED_16(DCTELEM, mb[16*24]);
453
    DCTELEM mb_padding[256];        ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either check that i is not too large or ensure that there is some unused stuff after mb
454

    
455
    /**
456
     * Cabac
457
     */
458
    CABACContext cabac;
459
    uint8_t      cabac_state[460];
460
    int          cabac_init_idc;
461

    
462
    /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0,1,2), 0x0? luma_cbp */
463
    uint16_t     *cbp_table;
464
    int cbp;
465
    int top_cbp;
466
    int left_cbp;
467
    /* chroma_pred_mode for i4x4 or i16x16, else 0 */
468
    uint8_t     *chroma_pred_mode_table;
469
    int         last_qscale_diff;
470
    int16_t     (*mvd_table[2])[2];
471
    DECLARE_ALIGNED_8(int16_t, mvd_cache[2][5*8][2]);
472
    uint8_t     *direct_table;
473
    uint8_t     direct_cache[5*8];
474

    
475
    uint8_t zigzag_scan[16];
476
    uint8_t zigzag_scan8x8[64];
477
    uint8_t zigzag_scan8x8_cavlc[64];
478
    uint8_t field_scan[16];
479
    uint8_t field_scan8x8[64];
480
    uint8_t field_scan8x8_cavlc[64];
481
    const uint8_t *zigzag_scan_q0;
482
    const uint8_t *zigzag_scan8x8_q0;
483
    const uint8_t *zigzag_scan8x8_cavlc_q0;
484
    const uint8_t *field_scan_q0;
485
    const uint8_t *field_scan8x8_q0;
486
    const uint8_t *field_scan8x8_cavlc_q0;
487

    
488
    int x264_build;
489

    
490
    /**
491
     * @defgroup multithreading Members for slice based multithreading
492
     * @{
493
     */
494
    struct H264Context *thread_context[MAX_THREADS];
495

    
496
    /**
497
     * current slice number, used to initalize slice_num of each thread/context
498
     */
499
    int current_slice;
500

    
501
    /**
502
     * Max number of threads / contexts.
503
     * This is equal to AVCodecContext.thread_count unless
504
     * multithreaded decoding is impossible, in which case it is
505
     * reduced to 1.
506
     */
507
    int max_contexts;
508

    
509
    /**
510
     *  1 if the single thread fallback warning has already been
511
     *  displayed, 0 otherwise.
512
     */
513
    int single_decode_warning;
514

    
515
    int last_slice_type;
516
    /** @} */
517

    
518
    int mb_xy;
519

    
520
    uint32_t svq3_watermark_key;
521

    
522
    /**
523
     * pic_struct in picture timing SEI message
524
     */
525
    SEI_PicStructType sei_pic_struct;
526

    
527
    /**
528
     * Complement sei_pic_struct
529
     * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
530
     * However, soft telecined frames may have these values.
531
     * This is used in an attempt to flag soft telecine progressive.
532
     */
533
    int prev_interlaced_frame;
534

    
535
    /**
536
     * Bit set of clock types for fields/frames in picture timing SEI message.
537
     * For each found ct_type, appropriate bit is set (e.g., bit 1 for
538
     * interlaced).
539
     */
540
    int sei_ct_type;
541

    
542
    /**
543
     * dpb_output_delay in picture timing SEI message, see H.264 C.2.2
544
     */
545
    int sei_dpb_output_delay;
546

    
547
    /**
548
     * cpb_removal_delay in picture timing SEI message, see H.264 C.1.2
549
     */
550
    int sei_cpb_removal_delay;
551

    
552
    /**
553
     * recovery_frame_cnt from SEI message
554
     *
555
     * Set to -1 if no recovery point SEI message found or to number of frames
556
     * before playback synchronizes. Frames having recovery point are key
557
     * frames.
558
     */
559
    int sei_recovery_frame_cnt;
560

    
561
    int is_complex;
562

    
563
    int luma_weight_flag[2];   ///< 7.4.3.2 luma_weight_lX_flag
564
    int chroma_weight_flag[2]; ///< 7.4.3.2 chroma_weight_lX_flag
565

    
566
    // Timestamp stuff
567
    int sei_buffering_period_present;  ///< Buffering period SEI flag
568
    int initial_cpb_removal_delay[32]; ///< Initial timestamps for CPBs
569
}H264Context;
570

    
571

    
572
extern const uint8_t ff_h264_chroma_qp[52];
573

    
574

    
575
/**
576
 * Decode SEI
577
 */
578
int ff_h264_decode_sei(H264Context *h);
579

    
580
/**
581
 * Decode SPS
582
 */
583
int ff_h264_decode_seq_parameter_set(H264Context *h);
584

    
585
/**
586
 * Decode PPS
587
 */
588
int ff_h264_decode_picture_parameter_set(H264Context *h, int bit_length);
589

    
590
/**
591
 * Decodes a network abstraction layer unit.
592
 * @param consumed is the number of bytes used as input
593
 * @param length is the length of the array
594
 * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing?
595
 * @returns decoded bytes, might be src+1 if no escapes
596
 */
597
const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length);
598

    
599
/**
600
 * identifies the exact end of the bitstream
601
 * @return the length of the trailing, or 0 if damaged
602
 */
603
int ff_h264_decode_rbsp_trailing(H264Context *h, const uint8_t *src);
604

    
605
/**
606
 * frees any data that may have been allocated in the H264 context like SPS, PPS etc.
607
 */
608
av_cold void ff_h264_free_context(H264Context *h);
609

    
610
/**
611
 * reconstructs bitstream slice_type.
612
 */
613
int ff_h264_get_slice_type(H264Context *h);
614

    
615
/**
616
 * allocates tables.
617
 * needs width/height
618
 */
619
int ff_h264_alloc_tables(H264Context *h);
620

    
621
/**
622
 * fills the default_ref_list.
623
 */
624
int ff_h264_fill_default_ref_list(H264Context *h);
625

    
626
int ff_h264_decode_ref_pic_list_reordering(H264Context *h);
627
void ff_h264_fill_mbaff_ref_list(H264Context *h);
628
void ff_h264_remove_all_refs(H264Context *h);
629

    
630
/**
631
 * Executes the reference picture marking (memory management control operations).
632
 */
633
int ff_h264_execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count);
634

    
635
int ff_h264_decode_ref_pic_marking(H264Context *h, GetBitContext *gb);
636

    
637

    
638
/**
639
 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
640
 */
641
int ff_h264_check_intra4x4_pred_mode(H264Context *h);
642

    
643
/**
644
 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
645
 */
646
int ff_h264_check_intra_pred_mode(H264Context *h, int mode);
647

    
648
void ff_h264_write_back_intra_pred_mode(H264Context *h);
649
void ff_h264_hl_decode_mb(H264Context *h);
650
int ff_h264_frame_start(H264Context *h);
651
av_cold int ff_h264_decode_init(AVCodecContext *avctx);
652
av_cold int ff_h264_decode_end(AVCodecContext *avctx);
653
av_cold void ff_h264_decode_init_vlc(void);
654

    
655
/**
656
 * decodes a macroblock
657
 * @returns 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
658
 */
659
int ff_h264_decode_mb_cavlc(H264Context *h);
660

    
661
/**
662
 * decodes a CABAC coded macroblock
663
 * @returns 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
664
 */
665
int ff_h264_decode_mb_cabac(H264Context *h);
666

    
667
void ff_h264_init_cabac_states(H264Context *h);
668

    
669
void ff_h264_direct_dist_scale_factor(H264Context * const h);
670
void ff_h264_direct_ref_list_init(H264Context * const h);
671
void ff_h264_pred_direct_motion(H264Context * const h, int *mb_type);
672

    
673
void ff_h264_filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
674
void ff_h264_filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
675

    
676
/**
677
 * Reset SEI values at the beginning of the frame.
678
 *
679
 * @param h H.264 context.
680
 */
681
void ff_h264_reset_sei(H264Context *h);
682

    
683

    
684
/*
685
o-o o-o
686
 / / /
687
o-o o-o
688
 ,---'
689
o-o o-o
690
 / / /
691
o-o o-o
692
*/
693
//This table must be here because scan8[constant] must be known at compiletime
694
static const uint8_t scan8[16 + 2*4]={
695
 4+1*8, 5+1*8, 4+2*8, 5+2*8,
696
 6+1*8, 7+1*8, 6+2*8, 7+2*8,
697
 4+3*8, 5+3*8, 4+4*8, 5+4*8,
698
 6+3*8, 7+3*8, 6+4*8, 7+4*8,
699
 1+1*8, 2+1*8,
700
 1+2*8, 2+2*8,
701
 1+4*8, 2+4*8,
702
 1+5*8, 2+5*8,
703
};
704

    
705
static av_always_inline uint32_t pack16to32(int a, int b){
706
#if HAVE_BIGENDIAN
707
   return (b&0xFFFF) + (a<<16);
708
#else
709
   return (a&0xFFFF) + (b<<16);
710
#endif
711
}
712

    
713
/**
714
 * gets the chroma qp.
715
 */
716
static inline int get_chroma_qp(H264Context *h, int t, int qscale){
717
    return h->pps.chroma_qp_table[t][qscale];
718
}
719

    
720
static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my);
721

    
722
static av_always_inline void fill_caches(H264Context *h, int mb_type, int for_deblock){
723
    MpegEncContext * const s = &h->s;
724
    const int mb_xy= h->mb_xy;
725
    int topleft_xy, top_xy, topright_xy, left_xy[2];
726
    int topleft_type, top_type, topright_type, left_type[2];
727
    const uint8_t * left_block;
728
    int topleft_partition= -1;
729
    int i;
730
    static const uint8_t left_block_options[4][8]={
731
        {0,1,2,3,7,10,8,11},
732
        {2,2,3,3,8,11,8,11},
733
        {0,0,1,1,7,10,7,10},
734
        {0,2,0,2,7,10,7,10}
735
    };
736

    
737
    top_xy     = mb_xy  - (s->mb_stride << FIELD_PICTURE);
738

    
739
    //FIXME deblocking could skip the intra and nnz parts.
740
//     if(for_deblock && (h->slice_num == 1 || h->slice_table[mb_xy] == h->slice_table[top_xy]) && !FRAME_MBAFF)
741
//         return;
742

    
743
    /* Wow, what a mess, why didn't they simplify the interlacing & intra
744
     * stuff, I can't imagine that these complex rules are worth it. */
745

    
746
    topleft_xy = top_xy - 1;
747
    topright_xy= top_xy + 1;
748
    left_xy[1] = left_xy[0] = mb_xy-1;
749
    left_block = left_block_options[0];
750
    if(FRAME_MBAFF){
751
        const int pair_xy          = s->mb_x     + (s->mb_y & ~1)*s->mb_stride;
752
        const int top_pair_xy      = pair_xy     - s->mb_stride;
753
        const int topleft_pair_xy  = top_pair_xy - 1;
754
        const int topright_pair_xy = top_pair_xy + 1;
755
        const int topleft_mb_field_flag  = IS_INTERLACED(s->current_picture.mb_type[topleft_pair_xy]);
756
        const int top_mb_field_flag      = IS_INTERLACED(s->current_picture.mb_type[top_pair_xy]);
757
        const int topright_mb_field_flag = IS_INTERLACED(s->current_picture.mb_type[topright_pair_xy]);
758
        const int left_mb_field_flag     = IS_INTERLACED(s->current_picture.mb_type[pair_xy-1]);
759
        const int curr_mb_field_flag     = IS_INTERLACED(mb_type);
760
        const int bottom = (s->mb_y & 1);
761
        tprintf(s->avctx, "fill_caches: curr_mb_field_flag:%d, left_mb_field_flag:%d, topleft_mb_field_flag:%d, top_mb_field_flag:%d, topright_mb_field_flag:%d\n", curr_mb_field_flag, left_mb_field_flag, topleft_mb_field_flag, top_mb_field_flag, topright_mb_field_flag);
762

    
763
        if (curr_mb_field_flag && (bottom || top_mb_field_flag)){
764
            top_xy -= s->mb_stride;
765
        }
766
        if (curr_mb_field_flag && (bottom || topleft_mb_field_flag)){
767
            topleft_xy -= s->mb_stride;
768
        } else if(bottom && !curr_mb_field_flag && left_mb_field_flag) {
769
            topleft_xy += s->mb_stride;
770
            // take top left mv from the middle of the mb, as opposed to all other modes which use the bottom right partition
771
            topleft_partition = 0;
772
        }
773
        if (curr_mb_field_flag && (bottom || topright_mb_field_flag)){
774
            topright_xy -= s->mb_stride;
775
        }
776
        if (left_mb_field_flag != curr_mb_field_flag) {
777
            left_xy[1] = left_xy[0] = pair_xy - 1;
778
            if (curr_mb_field_flag) {
779
                left_xy[1] += s->mb_stride;
780
                left_block = left_block_options[3];
781
            } else {
782
                left_block= left_block_options[2 - bottom];
783
            }
784
        }
785
    }
786

    
787
    h->top_mb_xy = top_xy;
788
    h->left_mb_xy[0] = left_xy[0];
789
    h->left_mb_xy[1] = left_xy[1];
790
    if(for_deblock){
791
        topleft_type = 0;
792
        topright_type = 0;
793
        top_type     = h->slice_table[top_xy     ] < 0xFFFF ? s->current_picture.mb_type[top_xy]     : 0;
794
        left_type[0] = h->slice_table[left_xy[0] ] < 0xFFFF ? s->current_picture.mb_type[left_xy[0]] : 0;
795
        left_type[1] = h->slice_table[left_xy[1] ] < 0xFFFF ? s->current_picture.mb_type[left_xy[1]] : 0;
796

    
797
        if(!IS_INTRA(mb_type)){
798
            int list;
799
            for(list=0; list<h->list_count; list++){
800
                int8_t *ref;
801
                int y, b_xy;
802
                if(!USES_LIST(mb_type, list)){
803
                    fill_rectangle(  h->mv_cache[list][scan8[0]], 4, 4, 8, pack16to32(0,0), 4);
804
                    *(uint32_t*)&h->ref_cache[list][scan8[ 0]] =
805
                    *(uint32_t*)&h->ref_cache[list][scan8[ 2]] =
806
                    *(uint32_t*)&h->ref_cache[list][scan8[ 8]] =
807
                    *(uint32_t*)&h->ref_cache[list][scan8[10]] = ((LIST_NOT_USED)&0xFF)*0x01010101;
808
                    continue;
809
                }
810

    
811
                ref = &s->current_picture.ref_index[list][h->mb2b8_xy[mb_xy]];
812
                *(uint32_t*)&h->ref_cache[list][scan8[ 0]] =
813
                *(uint32_t*)&h->ref_cache[list][scan8[ 2]] = (pack16to32(ref[0],ref[1])&0x00FF00FF)*0x0101;
814
                ref += h->b8_stride;
815
                *(uint32_t*)&h->ref_cache[list][scan8[ 8]] =
816
                *(uint32_t*)&h->ref_cache[list][scan8[10]] = (pack16to32(ref[0],ref[1])&0x00FF00FF)*0x0101;
817

    
818
                b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
819
                for(y=0; y<4; y++){
820
                    *(uint64_t*)h->mv_cache[list][scan8[0]+0 + 8*y]= *(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride];
821
                    *(uint64_t*)h->mv_cache[list][scan8[0]+2 + 8*y]= *(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride];
822
                }
823

    
824
            }
825
        }
826
    }else{
827
        topleft_type = h->slice_table[topleft_xy ] == h->slice_num ? s->current_picture.mb_type[topleft_xy] : 0;
828
        top_type     = h->slice_table[top_xy     ] == h->slice_num ? s->current_picture.mb_type[top_xy]     : 0;
829
        topright_type= h->slice_table[topright_xy] == h->slice_num ? s->current_picture.mb_type[topright_xy]: 0;
830
        left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0;
831
        left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0;
832

    
833
    if(IS_INTRA(mb_type) && !for_deblock){
834
        int type_mask= h->pps.constrained_intra_pred ? IS_INTRA(-1) : -1;
835
        h->topleft_samples_available=
836
        h->top_samples_available=
837
        h->left_samples_available= 0xFFFF;
838
        h->topright_samples_available= 0xEEEA;
839

    
840
        if(!(top_type & type_mask)){
841
            h->topleft_samples_available= 0xB3FF;
842
            h->top_samples_available= 0x33FF;
843
            h->topright_samples_available= 0x26EA;
844
        }
845
        if(IS_INTERLACED(mb_type) != IS_INTERLACED(left_type[0])){
846
            if(IS_INTERLACED(mb_type)){
847
                if(!(left_type[0] & type_mask)){
848
                    h->topleft_samples_available&= 0xDFFF;
849
                    h->left_samples_available&= 0x5FFF;
850
                }
851
                if(!(left_type[1] & type_mask)){
852
                    h->topleft_samples_available&= 0xFF5F;
853
                    h->left_samples_available&= 0xFF5F;
854
                }
855
            }else{
856
                int left_typei = h->slice_table[left_xy[0] + s->mb_stride ] == h->slice_num
857
                                ? s->current_picture.mb_type[left_xy[0] + s->mb_stride] : 0;
858
                assert(left_xy[0] == left_xy[1]);
859
                if(!((left_typei & type_mask) && (left_type[0] & type_mask))){
860
                    h->topleft_samples_available&= 0xDF5F;
861
                    h->left_samples_available&= 0x5F5F;
862
                }
863
            }
864
        }else{
865
            if(!(left_type[0] & type_mask)){
866
                h->topleft_samples_available&= 0xDF5F;
867
                h->left_samples_available&= 0x5F5F;
868
            }
869
        }
870

    
871
        if(!(topleft_type & type_mask))
872
            h->topleft_samples_available&= 0x7FFF;
873

    
874
        if(!(topright_type & type_mask))
875
            h->topright_samples_available&= 0xFBFF;
876

    
877
        if(IS_INTRA4x4(mb_type)){
878
            if(IS_INTRA4x4(top_type)){
879
                h->intra4x4_pred_mode_cache[4+8*0]= h->intra4x4_pred_mode[top_xy][4];
880
                h->intra4x4_pred_mode_cache[5+8*0]= h->intra4x4_pred_mode[top_xy][5];
881
                h->intra4x4_pred_mode_cache[6+8*0]= h->intra4x4_pred_mode[top_xy][6];
882
                h->intra4x4_pred_mode_cache[7+8*0]= h->intra4x4_pred_mode[top_xy][3];
883
            }else{
884
                int pred;
885
                if(!(top_type & type_mask))
886
                    pred= -1;
887
                else{
888
                    pred= 2;
889
                }
890
                h->intra4x4_pred_mode_cache[4+8*0]=
891
                h->intra4x4_pred_mode_cache[5+8*0]=
892
                h->intra4x4_pred_mode_cache[6+8*0]=
893
                h->intra4x4_pred_mode_cache[7+8*0]= pred;
894
            }
895
            for(i=0; i<2; i++){
896
                if(IS_INTRA4x4(left_type[i])){
897
                    h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[0+2*i]];
898
                    h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[1+2*i]];
899
                }else{
900
                    int pred;
901
                    if(!(left_type[i] & type_mask))
902
                        pred= -1;
903
                    else{
904
                        pred= 2;
905
                    }
906
                    h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
907
                    h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= pred;
908
                }
909
            }
910
        }
911
    }
912
    }
913

    
914

    
915
/*
916
0 . T T. T T T T
917
1 L . .L . . . .
918
2 L . .L . . . .
919
3 . T TL . . . .
920
4 L . .L . . . .
921
5 L . .. . . . .
922
*/
923
//FIXME constraint_intra_pred & partitioning & nnz (let us hope this is just a typo in the spec)
924
    if(top_type){
925
        h->non_zero_count_cache[4+8*0]= h->non_zero_count[top_xy][4];
926
        h->non_zero_count_cache[5+8*0]= h->non_zero_count[top_xy][5];
927
        h->non_zero_count_cache[6+8*0]= h->non_zero_count[top_xy][6];
928
        h->non_zero_count_cache[7+8*0]= h->non_zero_count[top_xy][3];
929

    
930
        h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][9];
931
        h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][8];
932

    
933
        h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][12];
934
        h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][11];
935

    
936
    }else{
937
        h->non_zero_count_cache[4+8*0]=
938
        h->non_zero_count_cache[5+8*0]=
939
        h->non_zero_count_cache[6+8*0]=
940
        h->non_zero_count_cache[7+8*0]=
941

    
942
        h->non_zero_count_cache[1+8*0]=
943
        h->non_zero_count_cache[2+8*0]=
944

    
945
        h->non_zero_count_cache[1+8*3]=
946
        h->non_zero_count_cache[2+8*3]= CABAC && !IS_INTRA(mb_type) ? 0 : 64;
947

    
948
    }
949

    
950
    for (i=0; i<2; i++) {
951
        if(left_type[i]){
952
            h->non_zero_count_cache[3+8*1 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[0+2*i]];
953
            h->non_zero_count_cache[3+8*2 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[1+2*i]];
954
            h->non_zero_count_cache[0+8*1 +   8*i]= h->non_zero_count[left_xy[i]][left_block[4+2*i]];
955
            h->non_zero_count_cache[0+8*4 +   8*i]= h->non_zero_count[left_xy[i]][left_block[5+2*i]];
956
        }else{
957
            h->non_zero_count_cache[3+8*1 + 2*8*i]=
958
            h->non_zero_count_cache[3+8*2 + 2*8*i]=
959
            h->non_zero_count_cache[0+8*1 +   8*i]=
960
            h->non_zero_count_cache[0+8*4 +   8*i]= CABAC && !IS_INTRA(mb_type) ? 0 : 64;
961
        }
962
    }
963

    
964
    if( CABAC && !for_deblock) {
965
        // top_cbp
966
        if(top_type) {
967
            h->top_cbp = h->cbp_table[top_xy];
968
        } else if(IS_INTRA(mb_type)) {
969
            h->top_cbp = 0x1C0;
970
        } else {
971
            h->top_cbp = 0;
972
        }
973
        // left_cbp
974
        if (left_type[0]) {
975
            h->left_cbp = h->cbp_table[left_xy[0]] & 0x1f0;
976
        } else if(IS_INTRA(mb_type)) {
977
            h->left_cbp = 0x1C0;
978
        } else {
979
            h->left_cbp = 0;
980
        }
981
        if (left_type[0]) {
982
            h->left_cbp |= ((h->cbp_table[left_xy[0]]>>((left_block[0]&(~1))+1))&0x1) << 1;
983
        }
984
        if (left_type[1]) {
985
            h->left_cbp |= ((h->cbp_table[left_xy[1]]>>((left_block[2]&(~1))+1))&0x1) << 3;
986
        }
987
    }
988

    
989
#if 1
990
    if(IS_INTER(mb_type) || IS_DIRECT(mb_type)){
991
        int list;
992
        for(list=0; list<h->list_count; list++){
993
            if(!USES_LIST(mb_type, list) && !IS_DIRECT(mb_type) && !h->deblocking_filter){
994
                /*if(!h->mv_cache_clean[list]){
995
                    memset(h->mv_cache [list],  0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
996
                    memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
997
                    h->mv_cache_clean[list]= 1;
998
                }*/
999
                continue;
1000
            }
1001
            h->mv_cache_clean[list]= 0;
1002

    
1003
            if(USES_LIST(top_type, list)){
1004
                const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
1005
                const int b8_xy= h->mb2b8_xy[top_xy] + h->b8_stride;
1006
                *(uint32_t*)h->mv_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 0];
1007
                *(uint32_t*)h->mv_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 1];
1008
                *(uint32_t*)h->mv_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 2];
1009
                *(uint32_t*)h->mv_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 3];
1010
                h->ref_cache[list][scan8[0] + 0 - 1*8]=
1011
                h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][b8_xy + 0];
1012
                h->ref_cache[list][scan8[0] + 2 - 1*8]=
1013
                h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][b8_xy + 1];
1014
            }else{
1015
                *(uint32_t*)h->mv_cache [list][scan8[0] + 0 - 1*8]=
1016
                *(uint32_t*)h->mv_cache [list][scan8[0] + 1 - 1*8]=
1017
                *(uint32_t*)h->mv_cache [list][scan8[0] + 2 - 1*8]=
1018
                *(uint32_t*)h->mv_cache [list][scan8[0] + 3 - 1*8]= 0;
1019
                *(uint32_t*)&h->ref_cache[list][scan8[0] + 0 - 1*8]= ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101;
1020
            }
1021

    
1022
            for(i=0; i<2; i++){
1023
                int cache_idx = scan8[0] - 1 + i*2*8;
1024
                if(USES_LIST(left_type[i], list)){
1025
                    const int b_xy= h->mb2b_xy[left_xy[i]] + 3;
1026
                    const int b8_xy= h->mb2b8_xy[left_xy[i]] + 1;
1027
                    *(uint32_t*)h->mv_cache[list][cache_idx  ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0+i*2]];
1028
                    *(uint32_t*)h->mv_cache[list][cache_idx+8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1+i*2]];
1029
                    h->ref_cache[list][cache_idx  ]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[0+i*2]>>1)];
1030
                    h->ref_cache[list][cache_idx+8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[1+i*2]>>1)];
1031
                }else{
1032
                    *(uint32_t*)h->mv_cache [list][cache_idx  ]=
1033
                    *(uint32_t*)h->mv_cache [list][cache_idx+8]= 0;
1034
                    h->ref_cache[list][cache_idx  ]=
1035
                    h->ref_cache[list][cache_idx+8]= left_type[i] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
1036
                }
1037
            }
1038

    
1039
            if(for_deblock || ((IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred) && !FRAME_MBAFF))
1040
                continue;
1041

    
1042
            if(USES_LIST(topleft_type, list)){
1043
                const int b_xy = h->mb2b_xy[topleft_xy] + 3 + h->b_stride + (topleft_partition & 2*h->b_stride);
1044
                const int b8_xy= h->mb2b8_xy[topleft_xy] + 1 + (topleft_partition & h->b8_stride);
1045
                *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
1046
                h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy];
1047
            }else{
1048
                *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= 0;
1049
                h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
1050
            }
1051

    
1052
            if(USES_LIST(topright_type, list)){
1053
                const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride;
1054
                const int b8_xy= h->mb2b8_xy[topright_xy] + h->b8_stride;
1055
                *(uint32_t*)h->mv_cache[list][scan8[0] + 4 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
1056
                h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][b8_xy];
1057
            }else{
1058
                *(uint32_t*)h->mv_cache [list][scan8[0] + 4 - 1*8]= 0;
1059
                h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
1060
            }
1061

    
1062
            if((IS_SKIP(mb_type) || IS_DIRECT(mb_type)) && !FRAME_MBAFF)
1063
                continue;
1064

    
1065
            h->ref_cache[list][scan8[5 ]+1] =
1066
            h->ref_cache[list][scan8[7 ]+1] =
1067
            h->ref_cache[list][scan8[13]+1] =  //FIXME remove past 3 (init somewhere else)
1068
            h->ref_cache[list][scan8[4 ]] =
1069
            h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
1070
            *(uint32_t*)h->mv_cache [list][scan8[5 ]+1]=
1071
            *(uint32_t*)h->mv_cache [list][scan8[7 ]+1]=
1072
            *(uint32_t*)h->mv_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
1073
            *(uint32_t*)h->mv_cache [list][scan8[4 ]]=
1074
            *(uint32_t*)h->mv_cache [list][scan8[12]]= 0;
1075

    
1076
            if( CABAC ) {
1077
                /* XXX beurk, Load mvd */
1078
                if(USES_LIST(top_type, list)){
1079
                    const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
1080
                    *(uint32_t*)h->mvd_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 0];
1081
                    *(uint32_t*)h->mvd_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 1];
1082
                    *(uint32_t*)h->mvd_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 2];
1083
                    *(uint32_t*)h->mvd_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 3];
1084
                }else{
1085
                    *(uint32_t*)h->mvd_cache [list][scan8[0] + 0 - 1*8]=
1086
                    *(uint32_t*)h->mvd_cache [list][scan8[0] + 1 - 1*8]=
1087
                    *(uint32_t*)h->mvd_cache [list][scan8[0] + 2 - 1*8]=
1088
                    *(uint32_t*)h->mvd_cache [list][scan8[0] + 3 - 1*8]= 0;
1089
                }
1090
                if(USES_LIST(left_type[0], list)){
1091
                    const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
1092
                    *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[0]];
1093
                    *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[1]];
1094
                }else{
1095
                    *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 0*8]=
1096
                    *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 1*8]= 0;
1097
                }
1098
                if(USES_LIST(left_type[1], list)){
1099
                    const int b_xy= h->mb2b_xy[left_xy[1]] + 3;
1100
                    *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[2]];
1101
                    *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[3]];
1102
                }else{
1103
                    *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 2*8]=
1104
                    *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 3*8]= 0;
1105
                }
1106
                *(uint32_t*)h->mvd_cache [list][scan8[5 ]+1]=
1107
                *(uint32_t*)h->mvd_cache [list][scan8[7 ]+1]=
1108
                *(uint32_t*)h->mvd_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
1109
                *(uint32_t*)h->mvd_cache [list][scan8[4 ]]=
1110
                *(uint32_t*)h->mvd_cache [list][scan8[12]]= 0;
1111

    
1112
                if(h->slice_type_nos == FF_B_TYPE){
1113
                    fill_rectangle(&h->direct_cache[scan8[0]], 4, 4, 8, 0, 1);
1114

    
1115
                    if(IS_DIRECT(top_type)){
1116
                        *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0x01010101;
1117
                    }else if(IS_8X8(top_type)){
1118
                        int b8_xy = h->mb2b8_xy[top_xy] + h->b8_stride;
1119
                        h->direct_cache[scan8[0] + 0 - 1*8]= h->direct_table[b8_xy];
1120
                        h->direct_cache[scan8[0] + 2 - 1*8]= h->direct_table[b8_xy + 1];
1121
                    }else{
1122
                        *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0;
1123
                    }
1124

    
1125
                    if(IS_DIRECT(left_type[0]))
1126
                        h->direct_cache[scan8[0] - 1 + 0*8]= 1;
1127
                    else if(IS_8X8(left_type[0]))
1128
                        h->direct_cache[scan8[0] - 1 + 0*8]= h->direct_table[h->mb2b8_xy[left_xy[0]] + 1 + h->b8_stride*(left_block[0]>>1)];
1129
                    else
1130
                        h->direct_cache[scan8[0] - 1 + 0*8]= 0;
1131

    
1132
                    if(IS_DIRECT(left_type[1]))
1133
                        h->direct_cache[scan8[0] - 1 + 2*8]= 1;
1134
                    else if(IS_8X8(left_type[1]))
1135
                        h->direct_cache[scan8[0] - 1 + 2*8]= h->direct_table[h->mb2b8_xy[left_xy[1]] + 1 + h->b8_stride*(left_block[2]>>1)];
1136
                    else
1137
                        h->direct_cache[scan8[0] - 1 + 2*8]= 0;
1138
                }
1139
            }
1140

    
1141
            if(FRAME_MBAFF){
1142
#define MAP_MVS\
1143
                    MAP_F2F(scan8[0] - 1 - 1*8, topleft_type)\
1144
                    MAP_F2F(scan8[0] + 0 - 1*8, top_type)\
1145
                    MAP_F2F(scan8[0] + 1 - 1*8, top_type)\
1146
                    MAP_F2F(scan8[0] + 2 - 1*8, top_type)\
1147
                    MAP_F2F(scan8[0] + 3 - 1*8, top_type)\
1148
                    MAP_F2F(scan8[0] + 4 - 1*8, topright_type)\
1149
                    MAP_F2F(scan8[0] - 1 + 0*8, left_type[0])\
1150
                    MAP_F2F(scan8[0] - 1 + 1*8, left_type[0])\
1151
                    MAP_F2F(scan8[0] - 1 + 2*8, left_type[1])\
1152
                    MAP_F2F(scan8[0] - 1 + 3*8, left_type[1])
1153
                if(MB_FIELD){
1154
#define MAP_F2F(idx, mb_type)\
1155
                    if(!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
1156
                        h->ref_cache[list][idx] <<= 1;\
1157
                        h->mv_cache[list][idx][1] /= 2;\
1158
                        h->mvd_cache[list][idx][1] /= 2;\
1159
                    }
1160
                    MAP_MVS
1161
#undef MAP_F2F
1162
                }else{
1163
#define MAP_F2F(idx, mb_type)\
1164
                    if(IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
1165
                        h->ref_cache[list][idx] >>= 1;\
1166
                        h->mv_cache[list][idx][1] <<= 1;\
1167
                        h->mvd_cache[list][idx][1] <<= 1;\
1168
                    }
1169
                    MAP_MVS
1170
#undef MAP_F2F
1171
                }
1172
            }
1173
        }
1174
    }
1175
#endif
1176

    
1177
    if(!for_deblock)
1178
    h->neighbor_transform_size= !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[0]);
1179
}
1180

    
1181
static void fill_decode_caches(H264Context *h, int mb_type){
1182
    fill_caches(h, mb_type, 0);
1183
}
1184

    
1185
static void fill_filter_caches(H264Context *h, int mb_type){
1186
    fill_caches(h, mb_type, 1);
1187
}
1188

    
1189
/**
1190
 * gets the predicted intra4x4 prediction mode.
1191
 */
1192
static inline int pred_intra_mode(H264Context *h, int n){
1193
    const int index8= scan8[n];
1194
    const int left= h->intra4x4_pred_mode_cache[index8 - 1];
1195
    const int top = h->intra4x4_pred_mode_cache[index8 - 8];
1196
    const int min= FFMIN(left, top);
1197

    
1198
    tprintf(h->s.avctx, "mode:%d %d min:%d\n", left ,top, min);
1199

    
1200
    if(min<0) return DC_PRED;
1201
    else      return min;
1202
}
1203

    
1204
static inline void write_back_non_zero_count(H264Context *h){
1205
    const int mb_xy= h->mb_xy;
1206

    
1207
    h->non_zero_count[mb_xy][0]= h->non_zero_count_cache[7+8*1];
1208
    h->non_zero_count[mb_xy][1]= h->non_zero_count_cache[7+8*2];
1209
    h->non_zero_count[mb_xy][2]= h->non_zero_count_cache[7+8*3];
1210
    h->non_zero_count[mb_xy][3]= h->non_zero_count_cache[7+8*4];
1211
    h->non_zero_count[mb_xy][4]= h->non_zero_count_cache[4+8*4];
1212
    h->non_zero_count[mb_xy][5]= h->non_zero_count_cache[5+8*4];
1213
    h->non_zero_count[mb_xy][6]= h->non_zero_count_cache[6+8*4];
1214

    
1215
    h->non_zero_count[mb_xy][9]= h->non_zero_count_cache[1+8*2];
1216
    h->non_zero_count[mb_xy][8]= h->non_zero_count_cache[2+8*2];
1217
    h->non_zero_count[mb_xy][7]= h->non_zero_count_cache[2+8*1];
1218

    
1219
    h->non_zero_count[mb_xy][12]=h->non_zero_count_cache[1+8*5];
1220
    h->non_zero_count[mb_xy][11]=h->non_zero_count_cache[2+8*5];
1221
    h->non_zero_count[mb_xy][10]=h->non_zero_count_cache[2+8*4];
1222

    
1223
    //FIXME sort better how things are stored in non_zero_count
1224

    
1225

    
1226
    h->non_zero_count[mb_xy][13]= h->non_zero_count_cache[6+8*1];
1227
    h->non_zero_count[mb_xy][14]= h->non_zero_count_cache[6+8*2];
1228
    h->non_zero_count[mb_xy][15]= h->non_zero_count_cache[6+8*3];
1229
    h->non_zero_count[mb_xy][16]= h->non_zero_count_cache[5+8*1];
1230
    h->non_zero_count[mb_xy][17]= h->non_zero_count_cache[5+8*2];
1231
    h->non_zero_count[mb_xy][18]= h->non_zero_count_cache[5+8*3];
1232
    h->non_zero_count[mb_xy][19]= h->non_zero_count_cache[4+8*1];
1233
    h->non_zero_count[mb_xy][20]= h->non_zero_count_cache[4+8*2];
1234
    h->non_zero_count[mb_xy][21]= h->non_zero_count_cache[4+8*3];
1235

    
1236
    h->non_zero_count[mb_xy][22]= h->non_zero_count_cache[1+8*1];
1237
    h->non_zero_count[mb_xy][23]= h->non_zero_count_cache[1+8*4];
1238

    
1239
}
1240

    
1241
static inline void write_back_motion(H264Context *h, int mb_type){
1242
    MpegEncContext * const s = &h->s;
1243
    const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
1244
    const int b8_xy= 2*s->mb_x + 2*s->mb_y*h->b8_stride;
1245
    int list;
1246

    
1247
    if(!USES_LIST(mb_type, 0))
1248
        fill_rectangle(&s->current_picture.ref_index[0][b8_xy], 2, 2, h->b8_stride, (uint8_t)LIST_NOT_USED, 1);
1249

    
1250
    for(list=0; list<h->list_count; list++){
1251
        int y;
1252
        if(!USES_LIST(mb_type, list))
1253
            continue;
1254

    
1255
        for(y=0; y<4; y++){
1256
            *(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+0 + 8*y];
1257
            *(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+2 + 8*y];
1258
        }
1259
        if( CABAC ) {
1260
            if(IS_SKIP(mb_type))
1261
                fill_rectangle(h->mvd_table[list][b_xy], 4, 4, h->b_stride, 0, 4);
1262
            else
1263
            for(y=0; y<4; y++){
1264
                *(uint64_t*)h->mvd_table[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+0 + 8*y];
1265
                *(uint64_t*)h->mvd_table[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+2 + 8*y];
1266
            }
1267
        }
1268

    
1269
        {
1270
            int8_t *ref_index = &s->current_picture.ref_index[list][b8_xy];
1271
            ref_index[0+0*h->b8_stride]= h->ref_cache[list][scan8[0]];
1272
            ref_index[1+0*h->b8_stride]= h->ref_cache[list][scan8[4]];
1273
            ref_index[0+1*h->b8_stride]= h->ref_cache[list][scan8[8]];
1274
            ref_index[1+1*h->b8_stride]= h->ref_cache[list][scan8[12]];
1275
        }
1276
    }
1277

    
1278
    if(h->slice_type_nos == FF_B_TYPE && CABAC){
1279
        if(IS_8X8(mb_type)){
1280
            uint8_t *direct_table = &h->direct_table[b8_xy];
1281
            direct_table[1+0*h->b8_stride] = IS_DIRECT(h->sub_mb_type[1]) ? 1 : 0;
1282
            direct_table[0+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[2]) ? 1 : 0;
1283
            direct_table[1+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[3]) ? 1 : 0;
1284
        }
1285
    }
1286
}
1287

    
1288
static inline int get_dct8x8_allowed(H264Context *h){
1289
    if(h->sps.direct_8x8_inference_flag)
1290
        return !(*(uint64_t*)h->sub_mb_type & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8                )*0x0001000100010001ULL));
1291
    else
1292
        return !(*(uint64_t*)h->sub_mb_type & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8|MB_TYPE_DIRECT2)*0x0001000100010001ULL));
1293
}
1294

    
1295
static void predict_field_decoding_flag(H264Context *h){
1296
    MpegEncContext * const s = &h->s;
1297
    const int mb_xy= h->mb_xy;
1298
    int mb_type = (h->slice_table[mb_xy-1] == h->slice_num)
1299
                ? s->current_picture.mb_type[mb_xy-1]
1300
                : (h->slice_table[mb_xy-s->mb_stride] == h->slice_num)
1301
                ? s->current_picture.mb_type[mb_xy-s->mb_stride]
1302
                : 0;
1303
    h->mb_mbaff = h->mb_field_decoding_flag = IS_INTERLACED(mb_type) ? 1 : 0;
1304
}
1305

    
1306
/**
1307
 * decodes a P_SKIP or B_SKIP macroblock
1308
 */
1309
static void decode_mb_skip(H264Context *h){
1310
    MpegEncContext * const s = &h->s;
1311
    const int mb_xy= h->mb_xy;
1312
    int mb_type=0;
1313

    
1314
    memset(h->non_zero_count[mb_xy], 0, 32);
1315
    memset(h->non_zero_count_cache + 8, 0, 8*5); //FIXME ugly, remove pfui
1316

    
1317
    if(MB_FIELD)
1318
        mb_type|= MB_TYPE_INTERLACED;
1319

    
1320
    if( h->slice_type_nos == FF_B_TYPE )
1321
    {
1322
        // just for fill_caches. pred_direct_motion will set the real mb_type
1323
        mb_type|= MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2|MB_TYPE_SKIP;
1324

    
1325
        fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
1326
        ff_h264_pred_direct_motion(h, &mb_type);
1327
        mb_type|= MB_TYPE_SKIP;
1328
    }
1329
    else
1330
    {
1331
        int mx, my;
1332
        mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P1L0|MB_TYPE_SKIP;
1333

    
1334
        fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
1335
        pred_pskip_motion(h, &mx, &my);
1336
        fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
1337
        fill_rectangle(  h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx,my), 4);
1338
    }
1339

    
1340
    write_back_motion(h, mb_type);
1341
    s->current_picture.mb_type[mb_xy]= mb_type;
1342
    s->current_picture.qscale_table[mb_xy]= s->qscale;
1343
    h->slice_table[ mb_xy ]= h->slice_num;
1344
    h->prev_mb_skipped= 1;
1345
}
1346

    
1347
#include "h264_mvpred.h" //For pred_pskip_motion()
1348

    
1349
#endif /* AVCODEC_H264_H */