Statistics
| Branch: | Revision:

ffmpeg / libavcodec / aaccoder.c @ 2912e87a

History | View | Annotate | Download (43.1 KB)

1
/*
2
 * AAC coefficients encoder
3
 * Copyright (C) 2008-2009 Konstantin Shishkov
4
 *
5
 * This file is part of Libav.
6
 *
7
 * Libav is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * Libav is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with Libav; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21

    
22
/**
23
 * @file
24
 * AAC coefficients encoder
25
 */
26

    
27
/***********************************
28
 *              TODOs:
29
 * speedup quantizer selection
30
 * add sane pulse detection
31
 ***********************************/
32

    
33
#include <float.h>
34
#include "avcodec.h"
35
#include "put_bits.h"
36
#include "aac.h"
37
#include "aacenc.h"
38
#include "aactab.h"
39

    
40
/** bits needed to code codebook run value for long windows */
41
static const uint8_t run_value_bits_long[64] = {
42
     5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,
43
     5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5, 10,
44
    10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
45
    10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 15
46
};
47

    
48
/** bits needed to code codebook run value for short windows */
49
static const uint8_t run_value_bits_short[16] = {
50
    3, 3, 3, 3, 3, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 9
51
};
52

    
53
static const uint8_t *run_value_bits[2] = {
54
    run_value_bits_long, run_value_bits_short
55
};
56

    
57

    
58
/**
59
 * Quantize one coefficient.
60
 * @return absolute value of the quantized coefficient
61
 * @see 3GPP TS26.403 5.6.2 "Scalefactor determination"
62
 */
63
static av_always_inline int quant(float coef, const float Q)
64
{
65
    float a = coef * Q;
66
    return sqrtf(a * sqrtf(a)) + 0.4054;
67
}
68

    
69
static void quantize_bands(int *out, const float *in, const float *scaled,
70
                           int size, float Q34, int is_signed, int maxval)
71
{
72
    int i;
73
    double qc;
74
    for (i = 0; i < size; i++) {
75
        qc = scaled[i] * Q34;
76
        out[i] = (int)FFMIN(qc + 0.4054, (double)maxval);
77
        if (is_signed && in[i] < 0.0f) {
78
            out[i] = -out[i];
79
        }
80
    }
81
}
82

    
83
static void abs_pow34_v(float *out, const float *in, const int size)
84
{
85
#ifndef USE_REALLY_FULL_SEARCH
86
    int i;
87
    for (i = 0; i < size; i++) {
88
        float a = fabsf(in[i]);
89
        out[i] = sqrtf(a * sqrtf(a));
90
    }
91
#endif /* USE_REALLY_FULL_SEARCH */
92
}
93

    
94
static const uint8_t aac_cb_range [12] = {0, 3, 3, 3, 3, 9, 9, 8, 8, 13, 13, 17};
95
static const uint8_t aac_cb_maxval[12] = {0, 1, 1, 2, 2, 4, 4, 7, 7, 12, 12, 16};
96

    
97
/**
98
 * Calculate rate distortion cost for quantizing with given codebook
99
 *
100
 * @return quantization distortion
101
 */
102
static av_always_inline float quantize_and_encode_band_cost_template(
103
                                struct AACEncContext *s,
104
                                PutBitContext *pb, const float *in,
105
                                const float *scaled, int size, int scale_idx,
106
                                int cb, const float lambda, const float uplim,
107
                                int *bits, int BT_ZERO, int BT_UNSIGNED,
108
                                int BT_PAIR, int BT_ESC)
109
{
110
    const float IQ = ff_aac_pow2sf_tab[200 + scale_idx - SCALE_ONE_POS + SCALE_DIV_512];
111
    const float  Q = ff_aac_pow2sf_tab[200 - scale_idx + SCALE_ONE_POS - SCALE_DIV_512];
112
    const float CLIPPED_ESCAPE = 165140.0f*IQ;
113
    int i, j, k;
114
    float cost = 0;
115
    const int dim = BT_PAIR ? 2 : 4;
116
    int resbits = 0;
117
    const float  Q34 = sqrtf(Q * sqrtf(Q));
118
    const int range  = aac_cb_range[cb];
119
    const int maxval = aac_cb_maxval[cb];
120
    int off;
121

    
122
    if (BT_ZERO) {
123
        for (i = 0; i < size; i++)
124
            cost += in[i]*in[i];
125
        if (bits)
126
            *bits = 0;
127
        return cost * lambda;
128
    }
129
    if (!scaled) {
130
        abs_pow34_v(s->scoefs, in, size);
131
        scaled = s->scoefs;
132
    }
133
    quantize_bands(s->qcoefs, in, scaled, size, Q34, !BT_UNSIGNED, maxval);
134
    if (BT_UNSIGNED) {
135
        off = 0;
136
    } else {
137
        off = maxval;
138
    }
139
    for (i = 0; i < size; i += dim) {
140
        const float *vec;
141
        int *quants = s->qcoefs + i;
142
        int curidx = 0;
143
        int curbits;
144
        float rd = 0.0f;
145
        for (j = 0; j < dim; j++) {
146
            curidx *= range;
147
            curidx += quants[j] + off;
148
        }
149
        curbits =  ff_aac_spectral_bits[cb-1][curidx];
150
        vec     = &ff_aac_codebook_vectors[cb-1][curidx*dim];
151
        if (BT_UNSIGNED) {
152
            for (k = 0; k < dim; k++) {
153
                float t = fabsf(in[i+k]);
154
                float di;
155
                if (BT_ESC && vec[k] == 64.0f) { //FIXME: slow
156
                    if (t >= CLIPPED_ESCAPE) {
157
                        di = t - CLIPPED_ESCAPE;
158
                        curbits += 21;
159
                    } else {
160
                        int c = av_clip(quant(t, Q), 0, 8191);
161
                        di = t - c*cbrtf(c)*IQ;
162
                        curbits += av_log2(c)*2 - 4 + 1;
163
                    }
164
                } else {
165
                    di = t - vec[k]*IQ;
166
                }
167
                if (vec[k] != 0.0f)
168
                    curbits++;
169
                rd += di*di;
170
            }
171
        } else {
172
            for (k = 0; k < dim; k++) {
173
                float di = in[i+k] - vec[k]*IQ;
174
                rd += di*di;
175
            }
176
        }
177
        cost    += rd * lambda + curbits;
178
        resbits += curbits;
179
        if (cost >= uplim)
180
            return uplim;
181
        if (pb) {
182
            put_bits(pb, ff_aac_spectral_bits[cb-1][curidx], ff_aac_spectral_codes[cb-1][curidx]);
183
            if (BT_UNSIGNED)
184
                for (j = 0; j < dim; j++)
185
                    if (ff_aac_codebook_vectors[cb-1][curidx*dim+j] != 0.0f)
186
                        put_bits(pb, 1, in[i+j] < 0.0f);
187
            if (BT_ESC) {
188
                for (j = 0; j < 2; j++) {
189
                    if (ff_aac_codebook_vectors[cb-1][curidx*2+j] == 64.0f) {
190
                        int coef = av_clip(quant(fabsf(in[i+j]), Q), 0, 8191);
191
                        int len = av_log2(coef);
192

    
193
                        put_bits(pb, len - 4 + 1, (1 << (len - 4 + 1)) - 2);
194
                        put_bits(pb, len, coef & ((1 << len) - 1));
195
                    }
196
                }
197
            }
198
        }
199
    }
200

    
201
    if (bits)
202
        *bits = resbits;
203
    return cost;
204
}
205

    
206
#define QUANTIZE_AND_ENCODE_BAND_COST_FUNC(NAME, BT_ZERO, BT_UNSIGNED, BT_PAIR, BT_ESC) \
207
static float quantize_and_encode_band_cost_ ## NAME(                                        \
208
                                struct AACEncContext *s,                                \
209
                                PutBitContext *pb, const float *in,                     \
210
                                const float *scaled, int size, int scale_idx,           \
211
                                int cb, const float lambda, const float uplim,          \
212
                                int *bits) {                                            \
213
    return quantize_and_encode_band_cost_template(                                      \
214
                                s, pb, in, scaled, size, scale_idx,                     \
215
                                BT_ESC ? ESC_BT : cb, lambda, uplim, bits,              \
216
                                BT_ZERO, BT_UNSIGNED, BT_PAIR, BT_ESC);                 \
217
}
218

    
219
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(ZERO,  1, 0, 0, 0)
220
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(SQUAD, 0, 0, 0, 0)
221
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(UQUAD, 0, 1, 0, 0)
222
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(SPAIR, 0, 0, 1, 0)
223
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(UPAIR, 0, 1, 1, 0)
224
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(ESC,   0, 1, 1, 1)
225

    
226
static float (*const quantize_and_encode_band_cost_arr[])(
227
                                struct AACEncContext *s,
228
                                PutBitContext *pb, const float *in,
229
                                const float *scaled, int size, int scale_idx,
230
                                int cb, const float lambda, const float uplim,
231
                                int *bits) = {
232
    quantize_and_encode_band_cost_ZERO,
233
    quantize_and_encode_band_cost_SQUAD,
234
    quantize_and_encode_band_cost_SQUAD,
235
    quantize_and_encode_band_cost_UQUAD,
236
    quantize_and_encode_band_cost_UQUAD,
237
    quantize_and_encode_band_cost_SPAIR,
238
    quantize_and_encode_band_cost_SPAIR,
239
    quantize_and_encode_band_cost_UPAIR,
240
    quantize_and_encode_band_cost_UPAIR,
241
    quantize_and_encode_band_cost_UPAIR,
242
    quantize_and_encode_band_cost_UPAIR,
243
    quantize_and_encode_band_cost_ESC,
244
};
245

    
246
#define quantize_and_encode_band_cost(                                  \
247
                                s, pb, in, scaled, size, scale_idx, cb, \
248
                                lambda, uplim, bits)                    \
249
    quantize_and_encode_band_cost_arr[cb](                              \
250
                                s, pb, in, scaled, size, scale_idx, cb, \
251
                                lambda, uplim, bits)
252

    
253
static float quantize_band_cost(struct AACEncContext *s, const float *in,
254
                                const float *scaled, int size, int scale_idx,
255
                                int cb, const float lambda, const float uplim,
256
                                int *bits)
257
{
258
    return quantize_and_encode_band_cost(s, NULL, in, scaled, size, scale_idx,
259
                                         cb, lambda, uplim, bits);
260
}
261

    
262
static void quantize_and_encode_band(struct AACEncContext *s, PutBitContext *pb,
263
                                     const float *in, int size, int scale_idx,
264
                                     int cb, const float lambda)
265
{
266
    quantize_and_encode_band_cost(s, pb, in, NULL, size, scale_idx, cb, lambda,
267
                                  INFINITY, NULL);
268
}
269

    
270
static float find_max_val(int group_len, int swb_size, const float *scaled) {
271
    float maxval = 0.0f;
272
    int w2, i;
273
    for (w2 = 0; w2 < group_len; w2++) {
274
        for (i = 0; i < swb_size; i++) {
275
            maxval = FFMAX(maxval, scaled[w2*128+i]);
276
        }
277
    }
278
    return maxval;
279
}
280

    
281
static int find_min_book(float maxval, int sf) {
282
    float Q = ff_aac_pow2sf_tab[200 - sf + SCALE_ONE_POS - SCALE_DIV_512];
283
    float Q34 = sqrtf(Q * sqrtf(Q));
284
    int qmaxval, cb;
285
    qmaxval = maxval * Q34 + 0.4054f;
286
    if      (qmaxval ==  0) cb = 0;
287
    else if (qmaxval ==  1) cb = 1;
288
    else if (qmaxval ==  2) cb = 3;
289
    else if (qmaxval <=  4) cb = 5;
290
    else if (qmaxval <=  7) cb = 7;
291
    else if (qmaxval <= 12) cb = 9;
292
    else                    cb = 11;
293
    return cb;
294
}
295

    
296
/**
297
 * structure used in optimal codebook search
298
 */
299
typedef struct BandCodingPath {
300
    int prev_idx; ///< pointer to the previous path point
301
    float cost;   ///< path cost
302
    int run;
303
} BandCodingPath;
304

    
305
/**
306
 * Encode band info for single window group bands.
307
 */
308
static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce,
309
                                     int win, int group_len, const float lambda)
310
{
311
    BandCodingPath path[120][12];
312
    int w, swb, cb, start, start2, size;
313
    int i, j;
314
    const int max_sfb  = sce->ics.max_sfb;
315
    const int run_bits = sce->ics.num_windows == 1 ? 5 : 3;
316
    const int run_esc  = (1 << run_bits) - 1;
317
    int idx, ppos, count;
318
    int stackrun[120], stackcb[120], stack_len;
319
    float next_minrd = INFINITY;
320
    int next_mincb = 0;
321

    
322
    abs_pow34_v(s->scoefs, sce->coeffs, 1024);
323
    start = win*128;
324
    for (cb = 0; cb < 12; cb++) {
325
        path[0][cb].cost     = 0.0f;
326
        path[0][cb].prev_idx = -1;
327
        path[0][cb].run      = 0;
328
    }
329
    for (swb = 0; swb < max_sfb; swb++) {
330
        start2 = start;
331
        size = sce->ics.swb_sizes[swb];
332
        if (sce->zeroes[win*16 + swb]) {
333
            for (cb = 0; cb < 12; cb++) {
334
                path[swb+1][cb].prev_idx = cb;
335
                path[swb+1][cb].cost     = path[swb][cb].cost;
336
                path[swb+1][cb].run      = path[swb][cb].run + 1;
337
            }
338
        } else {
339
            float minrd = next_minrd;
340
            int mincb = next_mincb;
341
            next_minrd = INFINITY;
342
            next_mincb = 0;
343
            for (cb = 0; cb < 12; cb++) {
344
                float cost_stay_here, cost_get_here;
345
                float rd = 0.0f;
346
                for (w = 0; w < group_len; w++) {
347
                    FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(win+w)*16+swb];
348
                    rd += quantize_band_cost(s, sce->coeffs + start + w*128,
349
                                             s->scoefs + start + w*128, size,
350
                                             sce->sf_idx[(win+w)*16+swb], cb,
351
                                             lambda / band->threshold, INFINITY, NULL);
352
                }
353
                cost_stay_here = path[swb][cb].cost + rd;
354
                cost_get_here  = minrd              + rd + run_bits + 4;
355
                if (   run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run]
356
                    != run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1])
357
                    cost_stay_here += run_bits;
358
                if (cost_get_here < cost_stay_here) {
359
                    path[swb+1][cb].prev_idx = mincb;
360
                    path[swb+1][cb].cost     = cost_get_here;
361
                    path[swb+1][cb].run      = 1;
362
                } else {
363
                    path[swb+1][cb].prev_idx = cb;
364
                    path[swb+1][cb].cost     = cost_stay_here;
365
                    path[swb+1][cb].run      = path[swb][cb].run + 1;
366
                }
367
                if (path[swb+1][cb].cost < next_minrd) {
368
                    next_minrd = path[swb+1][cb].cost;
369
                    next_mincb = cb;
370
                }
371
            }
372
        }
373
        start += sce->ics.swb_sizes[swb];
374
    }
375

    
376
    //convert resulting path from backward-linked list
377
    stack_len = 0;
378
    idx       = 0;
379
    for (cb = 1; cb < 12; cb++)
380
        if (path[max_sfb][cb].cost < path[max_sfb][idx].cost)
381
            idx = cb;
382
    ppos = max_sfb;
383
    while (ppos > 0) {
384
        cb = idx;
385
        stackrun[stack_len] = path[ppos][cb].run;
386
        stackcb [stack_len] = cb;
387
        idx = path[ppos-path[ppos][cb].run+1][cb].prev_idx;
388
        ppos -= path[ppos][cb].run;
389
        stack_len++;
390
    }
391
    //perform actual band info encoding
392
    start = 0;
393
    for (i = stack_len - 1; i >= 0; i--) {
394
        put_bits(&s->pb, 4, stackcb[i]);
395
        count = stackrun[i];
396
        memset(sce->zeroes + win*16 + start, !stackcb[i], count);
397
        //XXX: memset when band_type is also uint8_t
398
        for (j = 0; j < count; j++) {
399
            sce->band_type[win*16 + start] =  stackcb[i];
400
            start++;
401
        }
402
        while (count >= run_esc) {
403
            put_bits(&s->pb, run_bits, run_esc);
404
            count -= run_esc;
405
        }
406
        put_bits(&s->pb, run_bits, count);
407
    }
408
}
409

    
410
static void codebook_trellis_rate(AACEncContext *s, SingleChannelElement *sce,
411
                                  int win, int group_len, const float lambda)
412
{
413
    BandCodingPath path[120][12];
414
    int w, swb, cb, start, start2, size;
415
    int i, j;
416
    const int max_sfb  = sce->ics.max_sfb;
417
    const int run_bits = sce->ics.num_windows == 1 ? 5 : 3;
418
    const int run_esc  = (1 << run_bits) - 1;
419
    int idx, ppos, count;
420
    int stackrun[120], stackcb[120], stack_len;
421
    float next_minrd = INFINITY;
422
    int next_mincb = 0;
423

    
424
    abs_pow34_v(s->scoefs, sce->coeffs, 1024);
425
    start = win*128;
426
    for (cb = 0; cb < 12; cb++) {
427
        path[0][cb].cost     = run_bits+4;
428
        path[0][cb].prev_idx = -1;
429
        path[0][cb].run      = 0;
430
    }
431
    for (swb = 0; swb < max_sfb; swb++) {
432
        start2 = start;
433
        size = sce->ics.swb_sizes[swb];
434
        if (sce->zeroes[win*16 + swb]) {
435
            for (cb = 0; cb < 12; cb++) {
436
                path[swb+1][cb].prev_idx = cb;
437
                path[swb+1][cb].cost     = path[swb][cb].cost;
438
                path[swb+1][cb].run      = path[swb][cb].run + 1;
439
            }
440
        } else {
441
            float minrd = next_minrd;
442
            int mincb = next_mincb;
443
            int startcb = sce->band_type[win*16+swb];
444
            next_minrd = INFINITY;
445
            next_mincb = 0;
446
            for (cb = 0; cb < startcb; cb++) {
447
                path[swb+1][cb].cost = 61450;
448
                path[swb+1][cb].prev_idx = -1;
449
                path[swb+1][cb].run = 0;
450
            }
451
            for (cb = startcb; cb < 12; cb++) {
452
                float cost_stay_here, cost_get_here;
453
                float rd = 0.0f;
454
                for (w = 0; w < group_len; w++) {
455
                    rd += quantize_band_cost(s, sce->coeffs + start + w*128,
456
                                             s->scoefs + start + w*128, size,
457
                                             sce->sf_idx[(win+w)*16+swb], cb,
458
                                             0, INFINITY, NULL);
459
                }
460
                cost_stay_here = path[swb][cb].cost + rd;
461
                cost_get_here  = minrd              + rd + run_bits + 4;
462
                if (   run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run]
463
                    != run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1])
464
                    cost_stay_here += run_bits;
465
                if (cost_get_here < cost_stay_here) {
466
                    path[swb+1][cb].prev_idx = mincb;
467
                    path[swb+1][cb].cost     = cost_get_here;
468
                    path[swb+1][cb].run      = 1;
469
                } else {
470
                    path[swb+1][cb].prev_idx = cb;
471
                    path[swb+1][cb].cost     = cost_stay_here;
472
                    path[swb+1][cb].run      = path[swb][cb].run + 1;
473
                }
474
                if (path[swb+1][cb].cost < next_minrd) {
475
                    next_minrd = path[swb+1][cb].cost;
476
                    next_mincb = cb;
477
                }
478
            }
479
        }
480
        start += sce->ics.swb_sizes[swb];
481
    }
482

    
483
    //convert resulting path from backward-linked list
484
    stack_len = 0;
485
    idx       = 0;
486
    for (cb = 1; cb < 12; cb++)
487
        if (path[max_sfb][cb].cost < path[max_sfb][idx].cost)
488
            idx = cb;
489
    ppos = max_sfb;
490
    while (ppos > 0) {
491
        assert(idx >= 0);
492
        cb = idx;
493
        stackrun[stack_len] = path[ppos][cb].run;
494
        stackcb [stack_len] = cb;
495
        idx = path[ppos-path[ppos][cb].run+1][cb].prev_idx;
496
        ppos -= path[ppos][cb].run;
497
        stack_len++;
498
    }
499
    //perform actual band info encoding
500
    start = 0;
501
    for (i = stack_len - 1; i >= 0; i--) {
502
        put_bits(&s->pb, 4, stackcb[i]);
503
        count = stackrun[i];
504
        memset(sce->zeroes + win*16 + start, !stackcb[i], count);
505
        //XXX: memset when band_type is also uint8_t
506
        for (j = 0; j < count; j++) {
507
            sce->band_type[win*16 + start] =  stackcb[i];
508
            start++;
509
        }
510
        while (count >= run_esc) {
511
            put_bits(&s->pb, run_bits, run_esc);
512
            count -= run_esc;
513
        }
514
        put_bits(&s->pb, run_bits, count);
515
    }
516
}
517

    
518
/** Return the minimum scalefactor where the quantized coef does not clip. */
519
static av_always_inline uint8_t coef2minsf(float coef) {
520
    return av_clip_uint8(log2f(coef)*4 - 69 + SCALE_ONE_POS - SCALE_DIV_512);
521
}
522

    
523
/** Return the maximum scalefactor where the quantized coef is not zero. */
524
static av_always_inline uint8_t coef2maxsf(float coef) {
525
    return av_clip_uint8(log2f(coef)*4 +  6 + SCALE_ONE_POS - SCALE_DIV_512);
526
}
527

    
528
typedef struct TrellisPath {
529
    float cost;
530
    int prev;
531
} TrellisPath;
532

    
533
#define TRELLIS_STAGES 121
534
#define TRELLIS_STATES (SCALE_MAX_DIFF+1)
535

    
536
static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s,
537
                                       SingleChannelElement *sce,
538
                                       const float lambda)
539
{
540
    int q, w, w2, g, start = 0;
541
    int i, j;
542
    int idx;
543
    TrellisPath paths[TRELLIS_STAGES][TRELLIS_STATES];
544
    int bandaddr[TRELLIS_STAGES];
545
    int minq;
546
    float mincost;
547
    float q0f = FLT_MAX, q1f = 0.0f, qnrgf = 0.0f;
548
    int q0, q1, qcnt = 0;
549

    
550
    for (i = 0; i < 1024; i++) {
551
        float t = fabsf(sce->coeffs[i]);
552
        if (t > 0.0f) {
553
            q0f = FFMIN(q0f, t);
554
            q1f = FFMAX(q1f, t);
555
            qnrgf += t*t;
556
            qcnt++;
557
        }
558
    }
559

    
560
    if (!qcnt) {
561
        memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
562
        memset(sce->zeroes, 1, sizeof(sce->zeroes));
563
        return;
564
    }
565

    
566
    //minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
567
    q0 = coef2minsf(q0f);
568
    //maximum scalefactor index is when maximum coefficient after quantizing is still not zero
569
    q1 = coef2maxsf(q1f);
570
    //av_log(NULL, AV_LOG_ERROR, "q0 %d, q1 %d\n", q0, q1);
571
    if (q1 - q0 > 60) {
572
        int q0low  = q0;
573
        int q1high = q1;
574
        //minimum scalefactor index is when maximum nonzero coefficient after quantizing is not clipped
575
        int qnrg = av_clip_uint8(log2f(sqrtf(qnrgf/qcnt))*4 - 31 + SCALE_ONE_POS - SCALE_DIV_512);
576
        q1 = qnrg + 30;
577
        q0 = qnrg - 30;
578
        //av_log(NULL, AV_LOG_ERROR, "q0 %d, q1 %d\n", q0, q1);
579
        if (q0 < q0low) {
580
            q1 += q0low - q0;
581
            q0  = q0low;
582
        } else if (q1 > q1high) {
583
            q0 -= q1 - q1high;
584
            q1  = q1high;
585
        }
586
    }
587
    //av_log(NULL, AV_LOG_ERROR, "q0 %d, q1 %d\n", q0, q1);
588

    
589
    for (i = 0; i < TRELLIS_STATES; i++) {
590
        paths[0][i].cost    = 0.0f;
591
        paths[0][i].prev    = -1;
592
    }
593
    for (j = 1; j < TRELLIS_STAGES; j++) {
594
        for (i = 0; i < TRELLIS_STATES; i++) {
595
            paths[j][i].cost    = INFINITY;
596
            paths[j][i].prev    = -2;
597
        }
598
    }
599
    idx = 1;
600
    abs_pow34_v(s->scoefs, sce->coeffs, 1024);
601
    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
602
        start = w*128;
603
        for (g = 0; g < sce->ics.num_swb; g++) {
604
            const float *coefs = sce->coeffs + start;
605
            float qmin, qmax;
606
            int nz = 0;
607

    
608
            bandaddr[idx] = w * 16 + g;
609
            qmin = INT_MAX;
610
            qmax = 0.0f;
611
            for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
612
                FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
613
                if (band->energy <= band->threshold || band->threshold == 0.0f) {
614
                    sce->zeroes[(w+w2)*16+g] = 1;
615
                    continue;
616
                }
617
                sce->zeroes[(w+w2)*16+g] = 0;
618
                nz = 1;
619
                for (i = 0; i < sce->ics.swb_sizes[g]; i++) {
620
                    float t = fabsf(coefs[w2*128+i]);
621
                    if (t > 0.0f)
622
                        qmin = FFMIN(qmin, t);
623
                    qmax = FFMAX(qmax, t);
624
                }
625
            }
626
            if (nz) {
627
                int minscale, maxscale;
628
                float minrd = INFINITY;
629
                float maxval;
630
                //minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
631
                minscale = coef2minsf(qmin);
632
                //maximum scalefactor index is when maximum coefficient after quantizing is still not zero
633
                maxscale = coef2maxsf(qmax);
634
                minscale = av_clip(minscale - q0, 0, TRELLIS_STATES - 1);
635
                maxscale = av_clip(maxscale - q0, 0, TRELLIS_STATES);
636
                maxval = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], s->scoefs+start);
637
                for (q = minscale; q < maxscale; q++) {
638
                    float dist = 0;
639
                    int cb = find_min_book(maxval, sce->sf_idx[w*16+g]);
640
                    for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
641
                        FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
642
                        dist += quantize_band_cost(s, coefs + w2*128, s->scoefs + start + w2*128, sce->ics.swb_sizes[g],
643
                                                   q + q0, cb, lambda / band->threshold, INFINITY, NULL);
644
                    }
645
                    minrd = FFMIN(minrd, dist);
646

    
647
                    for (i = 0; i < q1 - q0; i++) {
648
                        float cost;
649
                        cost = paths[idx - 1][i].cost + dist
650
                               + ff_aac_scalefactor_bits[q - i + SCALE_DIFF_ZERO];
651
                        if (cost < paths[idx][q].cost) {
652
                            paths[idx][q].cost    = cost;
653
                            paths[idx][q].prev    = i;
654
                        }
655
                    }
656
                }
657
            } else {
658
                for (q = 0; q < q1 - q0; q++) {
659
                    paths[idx][q].cost = paths[idx - 1][q].cost + 1;
660
                    paths[idx][q].prev = q;
661
                }
662
            }
663
            sce->zeroes[w*16+g] = !nz;
664
            start += sce->ics.swb_sizes[g];
665
            idx++;
666
        }
667
    }
668
    idx--;
669
    mincost = paths[idx][0].cost;
670
    minq    = 0;
671
    for (i = 1; i < TRELLIS_STATES; i++) {
672
        if (paths[idx][i].cost < mincost) {
673
            mincost = paths[idx][i].cost;
674
            minq = i;
675
        }
676
    }
677
    while (idx) {
678
        sce->sf_idx[bandaddr[idx]] = minq + q0;
679
        minq = paths[idx][minq].prev;
680
        idx--;
681
    }
682
    //set the same quantizers inside window groups
683
    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
684
        for (g = 0;  g < sce->ics.num_swb; g++)
685
            for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
686
                sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
687
}
688

    
689
/**
690
 * two-loop quantizers search taken from ISO 13818-7 Appendix C
691
 */
692
static void search_for_quantizers_twoloop(AVCodecContext *avctx,
693
                                          AACEncContext *s,
694
                                          SingleChannelElement *sce,
695
                                          const float lambda)
696
{
697
    int start = 0, i, w, w2, g;
698
    int destbits = avctx->bit_rate * 1024.0 / avctx->sample_rate / avctx->channels;
699
    float dists[128], uplims[128];
700
    float maxvals[128];
701
    int fflag, minscaler;
702
    int its  = 0;
703
    int allz = 0;
704
    float minthr = INFINITY;
705

    
706
    //XXX: some heuristic to determine initial quantizers will reduce search time
707
    memset(dists, 0, sizeof(dists));
708
    //determine zero bands and upper limits
709
    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
710
        for (g = 0;  g < sce->ics.num_swb; g++) {
711
            int nz = 0;
712
            float uplim = 0.0f;
713
            for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
714
                FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
715
                uplim += band->threshold;
716
                if (band->energy <= band->threshold || band->threshold == 0.0f) {
717
                    sce->zeroes[(w+w2)*16+g] = 1;
718
                    continue;
719
                }
720
                nz = 1;
721
            }
722
            uplims[w*16+g] = uplim *512;
723
            sce->zeroes[w*16+g] = !nz;
724
            if (nz)
725
                minthr = FFMIN(minthr, uplim);
726
            allz |= nz;
727
        }
728
    }
729
    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
730
        for (g = 0;  g < sce->ics.num_swb; g++) {
731
            if (sce->zeroes[w*16+g]) {
732
                sce->sf_idx[w*16+g] = SCALE_ONE_POS;
733
                continue;
734
            }
735
            sce->sf_idx[w*16+g] = SCALE_ONE_POS + FFMIN(log2f(uplims[w*16+g]/minthr)*4,59);
736
        }
737
    }
738

    
739
    if (!allz)
740
        return;
741
    abs_pow34_v(s->scoefs, sce->coeffs, 1024);
742

    
743
    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
744
        start = w*128;
745
        for (g = 0;  g < sce->ics.num_swb; g++) {
746
            const float *scaled = s->scoefs + start;
747
            maxvals[w*16+g] = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], scaled);
748
            start += sce->ics.swb_sizes[g];
749
        }
750
    }
751

    
752
    //perform two-loop search
753
    //outer loop - improve quality
754
    do {
755
        int tbits, qstep;
756
        minscaler = sce->sf_idx[0];
757
        //inner loop - quantize spectrum to fit into given number of bits
758
        qstep = its ? 1 : 32;
759
        do {
760
            int prev = -1;
761
            tbits = 0;
762
            fflag = 0;
763
            for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
764
                start = w*128;
765
                for (g = 0;  g < sce->ics.num_swb; g++) {
766
                    const float *coefs = sce->coeffs + start;
767
                    const float *scaled = s->scoefs + start;
768
                    int bits = 0;
769
                    int cb;
770
                    float dist = 0.0f;
771

    
772
                    if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218) {
773
                        start += sce->ics.swb_sizes[g];
774
                        continue;
775
                    }
776
                    minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]);
777
                    cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
778
                    for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
779
                        int b;
780
                        dist += quantize_band_cost(s, coefs + w2*128,
781
                                                   scaled + w2*128,
782
                                                   sce->ics.swb_sizes[g],
783
                                                   sce->sf_idx[w*16+g],
784
                                                   cb,
785
                                                   1.0f,
786
                                                   INFINITY,
787
                                                   &b);
788
                        bits += b;
789
                    }
790
                    dists[w*16+g] = dist - bits;
791
                    if (prev != -1) {
792
                        bits += ff_aac_scalefactor_bits[sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO];
793
                    }
794
                    tbits += bits;
795
                    start += sce->ics.swb_sizes[g];
796
                    prev = sce->sf_idx[w*16+g];
797
                }
798
            }
799
            if (tbits > destbits) {
800
                for (i = 0; i < 128; i++)
801
                    if (sce->sf_idx[i] < 218 - qstep)
802
                        sce->sf_idx[i] += qstep;
803
            } else {
804
                for (i = 0; i < 128; i++)
805
                    if (sce->sf_idx[i] > 60 - qstep)
806
                        sce->sf_idx[i] -= qstep;
807
            }
808
            qstep >>= 1;
809
            if (!qstep && tbits > destbits*1.02 && sce->sf_idx[0] < 217)
810
                qstep = 1;
811
        } while (qstep);
812

    
813
        fflag = 0;
814
        minscaler = av_clip(minscaler, 60, 255 - SCALE_MAX_DIFF);
815
        for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
816
            for (g = 0; g < sce->ics.num_swb; g++) {
817
                int prevsc = sce->sf_idx[w*16+g];
818
                if (dists[w*16+g] > uplims[w*16+g] && sce->sf_idx[w*16+g] > 60) {
819
                    if (find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]-1))
820
                    sce->sf_idx[w*16+g]--;
821
                    else //Try to make sure there is some energy in every band
822
                        sce->sf_idx[w*16+g]-=2;
823
                }
824
                sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler, minscaler + SCALE_MAX_DIFF);
825
                sce->sf_idx[w*16+g] = FFMIN(sce->sf_idx[w*16+g], 219);
826
                if (sce->sf_idx[w*16+g] != prevsc)
827
                    fflag = 1;
828
                sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
829
            }
830
        }
831
        its++;
832
    } while (fflag && its < 10);
833
}
834

    
835
static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s,
836
                                       SingleChannelElement *sce,
837
                                       const float lambda)
838
{
839
    int start = 0, i, w, w2, g;
840
    float uplim[128], maxq[128];
841
    int minq, maxsf;
842
    float distfact = ((sce->ics.num_windows > 1) ? 85.80 : 147.84) / lambda;
843
    int last = 0, lastband = 0, curband = 0;
844
    float avg_energy = 0.0;
845
    if (sce->ics.num_windows == 1) {
846
        start = 0;
847
        for (i = 0; i < 1024; i++) {
848
            if (i - start >= sce->ics.swb_sizes[curband]) {
849
                start += sce->ics.swb_sizes[curband];
850
                curband++;
851
            }
852
            if (sce->coeffs[i]) {
853
                avg_energy += sce->coeffs[i] * sce->coeffs[i];
854
                last = i;
855
                lastband = curband;
856
            }
857
        }
858
    } else {
859
        for (w = 0; w < 8; w++) {
860
            const float *coeffs = sce->coeffs + w*128;
861
            start = 0;
862
            for (i = 0; i < 128; i++) {
863
                if (i - start >= sce->ics.swb_sizes[curband]) {
864
                    start += sce->ics.swb_sizes[curband];
865
                    curband++;
866
                }
867
                if (coeffs[i]) {
868
                    avg_energy += coeffs[i] * coeffs[i];
869
                    last = FFMAX(last, i);
870
                    lastband = FFMAX(lastband, curband);
871
                }
872
            }
873
        }
874
    }
875
    last++;
876
    avg_energy /= last;
877
    if (avg_energy == 0.0f) {
878
        for (i = 0; i < FF_ARRAY_ELEMS(sce->sf_idx); i++)
879
            sce->sf_idx[i] = SCALE_ONE_POS;
880
        return;
881
    }
882
    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
883
        start = w*128;
884
        for (g = 0; g < sce->ics.num_swb; g++) {
885
            float *coefs   = sce->coeffs + start;
886
            const int size = sce->ics.swb_sizes[g];
887
            int start2 = start, end2 = start + size, peakpos = start;
888
            float maxval = -1, thr = 0.0f, t;
889
            maxq[w*16+g] = 0.0f;
890
            if (g > lastband) {
891
                maxq[w*16+g] = 0.0f;
892
                start += size;
893
                for (w2 = 0; w2 < sce->ics.group_len[w]; w2++)
894
                    memset(coefs + w2*128, 0, sizeof(coefs[0])*size);
895
                continue;
896
            }
897
            for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
898
                for (i = 0; i < size; i++) {
899
                    float t = coefs[w2*128+i]*coefs[w2*128+i];
900
                    maxq[w*16+g] = FFMAX(maxq[w*16+g], fabsf(coefs[w2*128 + i]));
901
                    thr += t;
902
                    if (sce->ics.num_windows == 1 && maxval < t) {
903
                        maxval  = t;
904
                        peakpos = start+i;
905
                    }
906
                }
907
            }
908
            if (sce->ics.num_windows == 1) {
909
                start2 = FFMAX(peakpos - 2, start2);
910
                end2   = FFMIN(peakpos + 3, end2);
911
            } else {
912
                start2 -= start;
913
                end2   -= start;
914
            }
915
            start += size;
916
            thr = pow(thr / (avg_energy * (end2 - start2)), 0.3 + 0.1*(lastband - g) / lastband);
917
            t   = 1.0 - (1.0 * start2 / last);
918
            uplim[w*16+g] = distfact / (1.4 * thr + t*t*t + 0.075);
919
        }
920
    }
921
    memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
922
    abs_pow34_v(s->scoefs, sce->coeffs, 1024);
923
    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
924
        start = w*128;
925
        for (g = 0;  g < sce->ics.num_swb; g++) {
926
            const float *coefs  = sce->coeffs + start;
927
            const float *scaled = s->scoefs   + start;
928
            const int size      = sce->ics.swb_sizes[g];
929
            int scf, prev_scf, step;
930
            int min_scf = -1, max_scf = 256;
931
            float curdiff;
932
            if (maxq[w*16+g] < 21.544) {
933
                sce->zeroes[w*16+g] = 1;
934
                start += size;
935
                continue;
936
            }
937
            sce->zeroes[w*16+g] = 0;
938
            scf  = prev_scf = av_clip(SCALE_ONE_POS - SCALE_DIV_512 - log2f(1/maxq[w*16+g])*16/3, 60, 218);
939
            step = 16;
940
            for (;;) {
941
                float dist = 0.0f;
942
                int quant_max;
943

    
944
                for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
945
                    int b;
946
                    dist += quantize_band_cost(s, coefs + w2*128,
947
                                               scaled + w2*128,
948
                                               sce->ics.swb_sizes[g],
949
                                               scf,
950
                                               ESC_BT,
951
                                               lambda,
952
                                               INFINITY,
953
                                               &b);
954
                    dist -= b;
955
                }
956
                dist *= 1.0f / 512.0f / lambda;
957
                quant_max = quant(maxq[w*16+g], ff_aac_pow2sf_tab[200 - scf + SCALE_ONE_POS - SCALE_DIV_512]);
958
                if (quant_max >= 8191) { // too much, return to the previous quantizer
959
                    sce->sf_idx[w*16+g] = prev_scf;
960
                    break;
961
                }
962
                prev_scf = scf;
963
                curdiff = fabsf(dist - uplim[w*16+g]);
964
                if (curdiff <= 1.0f)
965
                    step = 0;
966
                else
967
                    step = log2f(curdiff);
968
                if (dist > uplim[w*16+g])
969
                    step = -step;
970
                scf += step;
971
                scf = av_clip_uint8(scf);
972
                step = scf - prev_scf;
973
                if (FFABS(step) <= 1 || (step > 0 && scf >= max_scf) || (step < 0 && scf <= min_scf)) {
974
                    sce->sf_idx[w*16+g] = av_clip(scf, min_scf, max_scf);
975
                    break;
976
                }
977
                if (step > 0)
978
                    min_scf = prev_scf;
979
                else
980
                    max_scf = prev_scf;
981
            }
982
            start += size;
983
        }
984
    }
985
    minq = sce->sf_idx[0] ? sce->sf_idx[0] : INT_MAX;
986
    for (i = 1; i < 128; i++) {
987
        if (!sce->sf_idx[i])
988
            sce->sf_idx[i] = sce->sf_idx[i-1];
989
        else
990
            minq = FFMIN(minq, sce->sf_idx[i]);
991
    }
992
    if (minq == INT_MAX)
993
        minq = 0;
994
    minq = FFMIN(minq, SCALE_MAX_POS);
995
    maxsf = FFMIN(minq + SCALE_MAX_DIFF, SCALE_MAX_POS);
996
    for (i = 126; i >= 0; i--) {
997
        if (!sce->sf_idx[i])
998
            sce->sf_idx[i] = sce->sf_idx[i+1];
999
        sce->sf_idx[i] = av_clip(sce->sf_idx[i], minq, maxsf);
1000
    }
1001
}
1002

    
1003
static void search_for_quantizers_fast(AVCodecContext *avctx, AACEncContext *s,
1004
                                       SingleChannelElement *sce,
1005
                                       const float lambda)
1006
{
1007
    int start = 0, i, w, w2, g;
1008
    int minq = 255;
1009

    
1010
    memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
1011
    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
1012
        start = w*128;
1013
        for (g = 0; g < sce->ics.num_swb; g++) {
1014
            for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
1015
                FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
1016
                if (band->energy <= band->threshold) {
1017
                    sce->sf_idx[(w+w2)*16+g] = 218;
1018
                    sce->zeroes[(w+w2)*16+g] = 1;
1019
                } else {
1020
                    sce->sf_idx[(w+w2)*16+g] = av_clip(SCALE_ONE_POS - SCALE_DIV_512 + log2f(band->threshold), 80, 218);
1021
                    sce->zeroes[(w+w2)*16+g] = 0;
1022
                }
1023
                minq = FFMIN(minq, sce->sf_idx[(w+w2)*16+g]);
1024
            }
1025
        }
1026
    }
1027
    for (i = 0; i < 128; i++) {
1028
        sce->sf_idx[i] = 140;
1029
        //av_clip(sce->sf_idx[i], minq, minq + SCALE_MAX_DIFF - 1);
1030
    }
1031
    //set the same quantizers inside window groups
1032
    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
1033
        for (g = 0;  g < sce->ics.num_swb; g++)
1034
            for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
1035
                sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
1036
}
1037

    
1038
static void search_for_ms(AACEncContext *s, ChannelElement *cpe,
1039
                          const float lambda)
1040
{
1041
    int start = 0, i, w, w2, g;
1042
    float M[128], S[128];
1043
    float *L34 = s->scoefs, *R34 = s->scoefs + 128, *M34 = s->scoefs + 128*2, *S34 = s->scoefs + 128*3;
1044
    SingleChannelElement *sce0 = &cpe->ch[0];
1045
    SingleChannelElement *sce1 = &cpe->ch[1];
1046
    if (!cpe->common_window)
1047
        return;
1048
    for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) {
1049
        for (g = 0;  g < sce0->ics.num_swb; g++) {
1050
            if (!cpe->ch[0].zeroes[w*16+g] && !cpe->ch[1].zeroes[w*16+g]) {
1051
                float dist1 = 0.0f, dist2 = 0.0f;
1052
                for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
1053
                    FFPsyBand *band0 = &s->psy.psy_bands[(s->cur_channel+0)*PSY_MAX_BANDS+(w+w2)*16+g];
1054
                    FFPsyBand *band1 = &s->psy.psy_bands[(s->cur_channel+1)*PSY_MAX_BANDS+(w+w2)*16+g];
1055
                    float minthr = FFMIN(band0->threshold, band1->threshold);
1056
                    float maxthr = FFMAX(band0->threshold, band1->threshold);
1057
                    for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
1058
                        M[i] = (sce0->coeffs[start+w2*128+i]
1059
                              + sce1->coeffs[start+w2*128+i]) * 0.5;
1060
                        S[i] =  sce0->coeffs[start+w2*128+i]
1061
                              - sce1->coeffs[start+w2*128+i];
1062
                    }
1063
                    abs_pow34_v(L34, sce0->coeffs+start+w2*128, sce0->ics.swb_sizes[g]);
1064
                    abs_pow34_v(R34, sce1->coeffs+start+w2*128, sce0->ics.swb_sizes[g]);
1065
                    abs_pow34_v(M34, M,                         sce0->ics.swb_sizes[g]);
1066
                    abs_pow34_v(S34, S,                         sce0->ics.swb_sizes[g]);
1067
                    dist1 += quantize_band_cost(s, sce0->coeffs + start + w2*128,
1068
                                                L34,
1069
                                                sce0->ics.swb_sizes[g],
1070
                                                sce0->sf_idx[(w+w2)*16+g],
1071
                                                sce0->band_type[(w+w2)*16+g],
1072
                                                lambda / band0->threshold, INFINITY, NULL);
1073
                    dist1 += quantize_band_cost(s, sce1->coeffs + start + w2*128,
1074
                                                R34,
1075
                                                sce1->ics.swb_sizes[g],
1076
                                                sce1->sf_idx[(w+w2)*16+g],
1077
                                                sce1->band_type[(w+w2)*16+g],
1078
                                                lambda / band1->threshold, INFINITY, NULL);
1079
                    dist2 += quantize_band_cost(s, M,
1080
                                                M34,
1081
                                                sce0->ics.swb_sizes[g],
1082
                                                sce0->sf_idx[(w+w2)*16+g],
1083
                                                sce0->band_type[(w+w2)*16+g],
1084
                                                lambda / maxthr, INFINITY, NULL);
1085
                    dist2 += quantize_band_cost(s, S,
1086
                                                S34,
1087
                                                sce1->ics.swb_sizes[g],
1088
                                                sce1->sf_idx[(w+w2)*16+g],
1089
                                                sce1->band_type[(w+w2)*16+g],
1090
                                                lambda / minthr, INFINITY, NULL);
1091
                }
1092
                cpe->ms_mask[w*16+g] = dist2 < dist1;
1093
            }
1094
            start += sce0->ics.swb_sizes[g];
1095
        }
1096
    }
1097
}
1098

    
1099
AACCoefficientsEncoder ff_aac_coders[] = {
1100
    {
1101
        search_for_quantizers_faac,
1102
        encode_window_bands_info,
1103
        quantize_and_encode_band,
1104
        search_for_ms,
1105
    },
1106
    {
1107
        search_for_quantizers_anmr,
1108
        encode_window_bands_info,
1109
        quantize_and_encode_band,
1110
        search_for_ms,
1111
    },
1112
    {
1113
        search_for_quantizers_twoloop,
1114
        codebook_trellis_rate,
1115
        quantize_and_encode_band,
1116
        search_for_ms,
1117
    },
1118
    {
1119
        search_for_quantizers_fast,
1120
        encode_window_bands_info,
1121
        quantize_and_encode_band,
1122
        search_for_ms,
1123
    },
1124
};