Statistics
| Branch: | Revision:

ffmpeg / libavcodec / adpcm.c @ 2912e87a

History | View | Annotate | Download (65 KB)

1
/*
2
 * ADPCM codecs
3
 * Copyright (c) 2001-2003 The ffmpeg Project
4
 *
5
 * This file is part of Libav.
6
 *
7
 * Libav is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * Libav is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with Libav; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
#include "avcodec.h"
22
#include "get_bits.h"
23
#include "put_bits.h"
24
#include "bytestream.h"
25

    
26
/**
27
 * @file
28
 * ADPCM codecs.
29
 * First version by Francois Revol (revol@free.fr)
30
 * Fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
31
 *   by Mike Melanson (melanson@pcisys.net)
32
 * CD-ROM XA ADPCM codec by BERO
33
 * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
34
 * EA ADPCM R1/R2/R3 decoder by Peter Ross (pross@xvid.org)
35
 * EA IMA EACS decoder by Peter Ross (pross@xvid.org)
36
 * EA IMA SEAD decoder by Peter Ross (pross@xvid.org)
37
 * EA ADPCM XAS decoder by Peter Ross (pross@xvid.org)
38
 * MAXIS EA ADPCM decoder by Robert Marston (rmarston@gmail.com)
39
 * THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl)
40
 *
41
 * Features and limitations:
42
 *
43
 * Reference documents:
44
 * http://www.pcisys.net/~melanson/codecs/simpleaudio.html
45
 * http://www.geocities.com/SiliconValley/8682/aud3.txt
46
 * http://openquicktime.sourceforge.net/plugins.htm
47
 * XAnim sources (xa_codec.c) http://www.rasnaimaging.com/people/lapus/download.html
48
 * http://www.cs.ucla.edu/~leec/mediabench/applications.html
49
 * SoX source code http://home.sprynet.com/~cbagwell/sox.html
50
 *
51
 * CD-ROM XA:
52
 * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html
53
 * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html
54
 * readstr http://www.geocities.co.jp/Playtown/2004/
55
 */
56

    
57
#define BLKSIZE 1024
58

    
59
/* step_table[] and index_table[] are from the ADPCM reference source */
60
/* This is the index table: */
61
static const int index_table[16] = {
62
    -1, -1, -1, -1, 2, 4, 6, 8,
63
    -1, -1, -1, -1, 2, 4, 6, 8,
64
};
65

    
66
/**
67
 * This is the step table. Note that many programs use slight deviations from
68
 * this table, but such deviations are negligible:
69
 */
70
static const int step_table[89] = {
71
    7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
72
    19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
73
    50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
74
    130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
75
    337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
76
    876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
77
    2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
78
    5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
79
    15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
80
};
81

    
82
/* These are for MS-ADPCM */
83
/* AdaptationTable[], AdaptCoeff1[], and AdaptCoeff2[] are from libsndfile */
84
static const int AdaptationTable[] = {
85
        230, 230, 230, 230, 307, 409, 512, 614,
86
        768, 614, 512, 409, 307, 230, 230, 230
87
};
88

    
89
/** Divided by 4 to fit in 8-bit integers */
90
static const uint8_t AdaptCoeff1[] = {
91
        64, 128, 0, 48, 60, 115, 98
92
};
93

    
94
/** Divided by 4 to fit in 8-bit integers */
95
static const int8_t AdaptCoeff2[] = {
96
        0, -64, 0, 16, 0, -52, -58
97
};
98

    
99
/* These are for CD-ROM XA ADPCM */
100
static const int xa_adpcm_table[5][2] = {
101
   {   0,   0 },
102
   {  60,   0 },
103
   { 115, -52 },
104
   {  98, -55 },
105
   { 122, -60 }
106
};
107

    
108
static const int ea_adpcm_table[] = {
109
    0, 240, 460, 392, 0, 0, -208, -220, 0, 1,
110
    3, 4, 7, 8, 10, 11, 0, -1, -3, -4
111
};
112

    
113
// padded to zero where table size is less then 16
114
static const int swf_index_tables[4][16] = {
115
    /*2*/ { -1, 2 },
116
    /*3*/ { -1, -1, 2, 4 },
117
    /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
118
    /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
119
};
120

    
121
static const int yamaha_indexscale[] = {
122
    230, 230, 230, 230, 307, 409, 512, 614,
123
    230, 230, 230, 230, 307, 409, 512, 614
124
};
125

    
126
static const int yamaha_difflookup[] = {
127
    1, 3, 5, 7, 9, 11, 13, 15,
128
    -1, -3, -5, -7, -9, -11, -13, -15
129
};
130

    
131
/* end of tables */
132

    
133
typedef struct ADPCMChannelStatus {
134
    int predictor;
135
    short int step_index;
136
    int step;
137
    /* for encoding */
138
    int prev_sample;
139

    
140
    /* MS version */
141
    short sample1;
142
    short sample2;
143
    int coeff1;
144
    int coeff2;
145
    int idelta;
146
} ADPCMChannelStatus;
147

    
148
typedef struct TrellisPath {
149
    int nibble;
150
    int prev;
151
} TrellisPath;
152

    
153
typedef struct TrellisNode {
154
    uint32_t ssd;
155
    int path;
156
    int sample1;
157
    int sample2;
158
    int step;
159
} TrellisNode;
160

    
161
typedef struct ADPCMContext {
162
    ADPCMChannelStatus status[6];
163
    TrellisPath *paths;
164
    TrellisNode *node_buf;
165
    TrellisNode **nodep_buf;
166
    uint8_t *trellis_hash;
167
} ADPCMContext;
168

    
169
#define FREEZE_INTERVAL 128
170

    
171
/* XXX: implement encoding */
172

    
173
#if CONFIG_ENCODERS
174
static av_cold int adpcm_encode_init(AVCodecContext *avctx)
175
{
176
    ADPCMContext *s = avctx->priv_data;
177
    uint8_t *extradata;
178
    int i;
179
    if (avctx->channels > 2)
180
        return -1; /* only stereo or mono =) */
181

    
182
    if(avctx->trellis && (unsigned)avctx->trellis > 16U){
183
        av_log(avctx, AV_LOG_ERROR, "invalid trellis size\n");
184
        return -1;
185
    }
186

    
187
    if (avctx->trellis) {
188
        int frontier = 1 << avctx->trellis;
189
        int max_paths =  frontier * FREEZE_INTERVAL;
190
        FF_ALLOC_OR_GOTO(avctx, s->paths,     max_paths * sizeof(*s->paths), error);
191
        FF_ALLOC_OR_GOTO(avctx, s->node_buf,  2 * frontier * sizeof(*s->node_buf), error);
192
        FF_ALLOC_OR_GOTO(avctx, s->nodep_buf, 2 * frontier * sizeof(*s->nodep_buf), error);
193
        FF_ALLOC_OR_GOTO(avctx, s->trellis_hash, 65536 * sizeof(*s->trellis_hash), error);
194
    }
195

    
196
    switch(avctx->codec->id) {
197
    case CODEC_ID_ADPCM_IMA_WAV:
198
        avctx->frame_size = (BLKSIZE - 4 * avctx->channels) * 8 / (4 * avctx->channels) + 1; /* each 16 bits sample gives one nibble */
199
                                                             /* and we have 4 bytes per channel overhead */
200
        avctx->block_align = BLKSIZE;
201
        /* seems frame_size isn't taken into account... have to buffer the samples :-( */
202
        break;
203
    case CODEC_ID_ADPCM_IMA_QT:
204
        avctx->frame_size = 64;
205
        avctx->block_align = 34 * avctx->channels;
206
        break;
207
    case CODEC_ID_ADPCM_MS:
208
        avctx->frame_size = (BLKSIZE - 7 * avctx->channels) * 2 / avctx->channels + 2; /* each 16 bits sample gives one nibble */
209
                                                             /* and we have 7 bytes per channel overhead */
210
        avctx->block_align = BLKSIZE;
211
        avctx->extradata_size = 32;
212
        extradata = avctx->extradata = av_malloc(avctx->extradata_size);
213
        if (!extradata)
214
            return AVERROR(ENOMEM);
215
        bytestream_put_le16(&extradata, avctx->frame_size);
216
        bytestream_put_le16(&extradata, 7); /* wNumCoef */
217
        for (i = 0; i < 7; i++) {
218
            bytestream_put_le16(&extradata, AdaptCoeff1[i] * 4);
219
            bytestream_put_le16(&extradata, AdaptCoeff2[i] * 4);
220
        }
221
        break;
222
    case CODEC_ID_ADPCM_YAMAHA:
223
        avctx->frame_size = BLKSIZE * avctx->channels;
224
        avctx->block_align = BLKSIZE;
225
        break;
226
    case CODEC_ID_ADPCM_SWF:
227
        if (avctx->sample_rate != 11025 &&
228
            avctx->sample_rate != 22050 &&
229
            avctx->sample_rate != 44100) {
230
            av_log(avctx, AV_LOG_ERROR, "Sample rate must be 11025, 22050 or 44100\n");
231
            goto error;
232
        }
233
        avctx->frame_size = 512 * (avctx->sample_rate / 11025);
234
        break;
235
    default:
236
        goto error;
237
    }
238

    
239
    avctx->coded_frame= avcodec_alloc_frame();
240
    avctx->coded_frame->key_frame= 1;
241

    
242
    return 0;
243
error:
244
    av_freep(&s->paths);
245
    av_freep(&s->node_buf);
246
    av_freep(&s->nodep_buf);
247
    av_freep(&s->trellis_hash);
248
    return -1;
249
}
250

    
251
static av_cold int adpcm_encode_close(AVCodecContext *avctx)
252
{
253
    ADPCMContext *s = avctx->priv_data;
254
    av_freep(&avctx->coded_frame);
255
    av_freep(&s->paths);
256
    av_freep(&s->node_buf);
257
    av_freep(&s->nodep_buf);
258
    av_freep(&s->trellis_hash);
259

    
260
    return 0;
261
}
262

    
263

    
264
static inline unsigned char adpcm_ima_compress_sample(ADPCMChannelStatus *c, short sample)
265
{
266
    int delta = sample - c->prev_sample;
267
    int nibble = FFMIN(7, abs(delta)*4/step_table[c->step_index]) + (delta<0)*8;
268
    c->prev_sample += ((step_table[c->step_index] * yamaha_difflookup[nibble]) / 8);
269
    c->prev_sample = av_clip_int16(c->prev_sample);
270
    c->step_index = av_clip(c->step_index + index_table[nibble], 0, 88);
271
    return nibble;
272
}
273

    
274
static inline unsigned char adpcm_ms_compress_sample(ADPCMChannelStatus *c, short sample)
275
{
276
    int predictor, nibble, bias;
277

    
278
    predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
279

    
280
    nibble= sample - predictor;
281
    if(nibble>=0) bias= c->idelta/2;
282
    else          bias=-c->idelta/2;
283

    
284
    nibble= (nibble + bias) / c->idelta;
285
    nibble= av_clip(nibble, -8, 7)&0x0F;
286

    
287
    predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
288

    
289
    c->sample2 = c->sample1;
290
    c->sample1 = av_clip_int16(predictor);
291

    
292
    c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
293
    if (c->idelta < 16) c->idelta = 16;
294

    
295
    return nibble;
296
}
297

    
298
static inline unsigned char adpcm_yamaha_compress_sample(ADPCMChannelStatus *c, short sample)
299
{
300
    int nibble, delta;
301

    
302
    if(!c->step) {
303
        c->predictor = 0;
304
        c->step = 127;
305
    }
306

    
307
    delta = sample - c->predictor;
308

    
309
    nibble = FFMIN(7, abs(delta)*4/c->step) + (delta<0)*8;
310

    
311
    c->predictor += ((c->step * yamaha_difflookup[nibble]) / 8);
312
    c->predictor = av_clip_int16(c->predictor);
313
    c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
314
    c->step = av_clip(c->step, 127, 24567);
315

    
316
    return nibble;
317
}
318

    
319
static void adpcm_compress_trellis(AVCodecContext *avctx, const short *samples,
320
                                   uint8_t *dst, ADPCMChannelStatus *c, int n)
321
{
322
    //FIXME 6% faster if frontier is a compile-time constant
323
    ADPCMContext *s = avctx->priv_data;
324
    const int frontier = 1 << avctx->trellis;
325
    const int stride = avctx->channels;
326
    const int version = avctx->codec->id;
327
    TrellisPath *paths = s->paths, *p;
328
    TrellisNode *node_buf = s->node_buf;
329
    TrellisNode **nodep_buf = s->nodep_buf;
330
    TrellisNode **nodes = nodep_buf; // nodes[] is always sorted by .ssd
331
    TrellisNode **nodes_next = nodep_buf + frontier;
332
    int pathn = 0, froze = -1, i, j, k, generation = 0;
333
    uint8_t *hash = s->trellis_hash;
334
    memset(hash, 0xff, 65536 * sizeof(*hash));
335

    
336
    memset(nodep_buf, 0, 2 * frontier * sizeof(*nodep_buf));
337
    nodes[0] = node_buf + frontier;
338
    nodes[0]->ssd = 0;
339
    nodes[0]->path = 0;
340
    nodes[0]->step = c->step_index;
341
    nodes[0]->sample1 = c->sample1;
342
    nodes[0]->sample2 = c->sample2;
343
    if((version == CODEC_ID_ADPCM_IMA_WAV) || (version == CODEC_ID_ADPCM_IMA_QT) || (version == CODEC_ID_ADPCM_SWF))
344
        nodes[0]->sample1 = c->prev_sample;
345
    if(version == CODEC_ID_ADPCM_MS)
346
        nodes[0]->step = c->idelta;
347
    if(version == CODEC_ID_ADPCM_YAMAHA) {
348
        if(c->step == 0) {
349
            nodes[0]->step = 127;
350
            nodes[0]->sample1 = 0;
351
        } else {
352
            nodes[0]->step = c->step;
353
            nodes[0]->sample1 = c->predictor;
354
        }
355
    }
356

    
357
    for(i=0; i<n; i++) {
358
        TrellisNode *t = node_buf + frontier*(i&1);
359
        TrellisNode **u;
360
        int sample = samples[i*stride];
361
        int heap_pos = 0;
362
        memset(nodes_next, 0, frontier*sizeof(TrellisNode*));
363
        for(j=0; j<frontier && nodes[j]; j++) {
364
            // higher j have higher ssd already, so they're likely to yield a suboptimal next sample too
365
            const int range = (j < frontier/2) ? 1 : 0;
366
            const int step = nodes[j]->step;
367
            int nidx;
368
            if(version == CODEC_ID_ADPCM_MS) {
369
                const int predictor = ((nodes[j]->sample1 * c->coeff1) + (nodes[j]->sample2 * c->coeff2)) / 64;
370
                const int div = (sample - predictor) / step;
371
                const int nmin = av_clip(div-range, -8, 6);
372
                const int nmax = av_clip(div+range, -7, 7);
373
                for(nidx=nmin; nidx<=nmax; nidx++) {
374
                    const int nibble = nidx & 0xf;
375
                    int dec_sample = predictor + nidx * step;
376
#define STORE_NODE(NAME, STEP_INDEX)\
377
                    int d;\
378
                    uint32_t ssd;\
379
                    int pos;\
380
                    TrellisNode *u;\
381
                    uint8_t *h;\
382
                    dec_sample = av_clip_int16(dec_sample);\
383
                    d = sample - dec_sample;\
384
                    ssd = nodes[j]->ssd + d*d;\
385
                    /* Check for wraparound, skip such samples completely. \
386
                     * Note, changing ssd to a 64 bit variable would be \
387
                     * simpler, avoiding this check, but it's slower on \
388
                     * x86 32 bit at the moment. */\
389
                    if (ssd < nodes[j]->ssd)\
390
                        goto next_##NAME;\
391
                    /* Collapse any two states with the same previous sample value. \
392
                     * One could also distinguish states by step and by 2nd to last
393
                     * sample, but the effects of that are negligible.
394
                     * Since nodes in the previous generation are iterated
395
                     * through a heap, they're roughly ordered from better to
396
                     * worse, but not strictly ordered. Therefore, an earlier
397
                     * node with the same sample value is better in most cases
398
                     * (and thus the current is skipped), but not strictly
399
                     * in all cases. Only skipping samples where ssd >=
400
                     * ssd of the earlier node with the same sample gives
401
                     * slightly worse quality, though, for some reason. */ \
402
                    h = &hash[(uint16_t) dec_sample];\
403
                    if (*h == generation)\
404
                        goto next_##NAME;\
405
                    if (heap_pos < frontier) {\
406
                        pos = heap_pos++;\
407
                    } else {\
408
                        /* Try to replace one of the leaf nodes with the new \
409
                         * one, but try a different slot each time. */\
410
                        pos = (frontier >> 1) + (heap_pos & ((frontier >> 1) - 1));\
411
                        if (ssd > nodes_next[pos]->ssd)\
412
                            goto next_##NAME;\
413
                        heap_pos++;\
414
                    }\
415
                    *h = generation;\
416
                    u = nodes_next[pos];\
417
                    if(!u) {\
418
                        assert(pathn < FREEZE_INTERVAL<<avctx->trellis);\
419
                        u = t++;\
420
                        nodes_next[pos] = u;\
421
                        u->path = pathn++;\
422
                    }\
423
                    u->ssd = ssd;\
424
                    u->step = STEP_INDEX;\
425
                    u->sample2 = nodes[j]->sample1;\
426
                    u->sample1 = dec_sample;\
427
                    paths[u->path].nibble = nibble;\
428
                    paths[u->path].prev = nodes[j]->path;\
429
                    /* Sift the newly inserted node up in the heap to \
430
                     * restore the heap property. */\
431
                    while (pos > 0) {\
432
                        int parent = (pos - 1) >> 1;\
433
                        if (nodes_next[parent]->ssd <= ssd)\
434
                            break;\
435
                        FFSWAP(TrellisNode*, nodes_next[parent], nodes_next[pos]);\
436
                        pos = parent;\
437
                    }\
438
                    next_##NAME:;
439
                    STORE_NODE(ms, FFMAX(16, (AdaptationTable[nibble] * step) >> 8));
440
                }
441
            } else if((version == CODEC_ID_ADPCM_IMA_WAV)|| (version == CODEC_ID_ADPCM_IMA_QT)|| (version == CODEC_ID_ADPCM_SWF)) {
442
#define LOOP_NODES(NAME, STEP_TABLE, STEP_INDEX)\
443
                const int predictor = nodes[j]->sample1;\
444
                const int div = (sample - predictor) * 4 / STEP_TABLE;\
445
                int nmin = av_clip(div-range, -7, 6);\
446
                int nmax = av_clip(div+range, -6, 7);\
447
                if(nmin<=0) nmin--; /* distinguish -0 from +0 */\
448
                if(nmax<0) nmax--;\
449
                for(nidx=nmin; nidx<=nmax; nidx++) {\
450
                    const int nibble = nidx<0 ? 7-nidx : nidx;\
451
                    int dec_sample = predictor + (STEP_TABLE * yamaha_difflookup[nibble]) / 8;\
452
                    STORE_NODE(NAME, STEP_INDEX);\
453
                }
454
                LOOP_NODES(ima, step_table[step], av_clip(step + index_table[nibble], 0, 88));
455
            } else { //CODEC_ID_ADPCM_YAMAHA
456
                LOOP_NODES(yamaha, step, av_clip((step * yamaha_indexscale[nibble]) >> 8, 127, 24567));
457
#undef LOOP_NODES
458
#undef STORE_NODE
459
            }
460
        }
461

    
462
        u = nodes;
463
        nodes = nodes_next;
464
        nodes_next = u;
465

    
466
        generation++;
467
        if (generation == 255) {
468
            memset(hash, 0xff, 65536 * sizeof(*hash));
469
            generation = 0;
470
        }
471

    
472
        // prevent overflow
473
        if(nodes[0]->ssd > (1<<28)) {
474
            for(j=1; j<frontier && nodes[j]; j++)
475
                nodes[j]->ssd -= nodes[0]->ssd;
476
            nodes[0]->ssd = 0;
477
        }
478

    
479
        // merge old paths to save memory
480
        if(i == froze + FREEZE_INTERVAL) {
481
            p = &paths[nodes[0]->path];
482
            for(k=i; k>froze; k--) {
483
                dst[k] = p->nibble;
484
                p = &paths[p->prev];
485
            }
486
            froze = i;
487
            pathn = 0;
488
            // other nodes might use paths that don't coincide with the frozen one.
489
            // checking which nodes do so is too slow, so just kill them all.
490
            // this also slightly improves quality, but I don't know why.
491
            memset(nodes+1, 0, (frontier-1)*sizeof(TrellisNode*));
492
        }
493
    }
494

    
495
    p = &paths[nodes[0]->path];
496
    for(i=n-1; i>froze; i--) {
497
        dst[i] = p->nibble;
498
        p = &paths[p->prev];
499
    }
500

    
501
    c->predictor = nodes[0]->sample1;
502
    c->sample1 = nodes[0]->sample1;
503
    c->sample2 = nodes[0]->sample2;
504
    c->step_index = nodes[0]->step;
505
    c->step = nodes[0]->step;
506
    c->idelta = nodes[0]->step;
507
}
508

    
509
static int adpcm_encode_frame(AVCodecContext *avctx,
510
                            unsigned char *frame, int buf_size, void *data)
511
{
512
    int n, i, st;
513
    short *samples;
514
    unsigned char *dst;
515
    ADPCMContext *c = avctx->priv_data;
516
    uint8_t *buf;
517

    
518
    dst = frame;
519
    samples = (short *)data;
520
    st= avctx->channels == 2;
521
/*    n = (BLKSIZE - 4 * avctx->channels) / (2 * 8 * avctx->channels); */
522

    
523
    switch(avctx->codec->id) {
524
    case CODEC_ID_ADPCM_IMA_WAV:
525
        n = avctx->frame_size / 8;
526
            c->status[0].prev_sample = (signed short)samples[0]; /* XXX */
527
/*            c->status[0].step_index = 0; *//* XXX: not sure how to init the state machine */
528
            bytestream_put_le16(&dst, c->status[0].prev_sample);
529
            *dst++ = (unsigned char)c->status[0].step_index;
530
            *dst++ = 0; /* unknown */
531
            samples++;
532
            if (avctx->channels == 2) {
533
                c->status[1].prev_sample = (signed short)samples[0];
534
/*                c->status[1].step_index = 0; */
535
                bytestream_put_le16(&dst, c->status[1].prev_sample);
536
                *dst++ = (unsigned char)c->status[1].step_index;
537
                *dst++ = 0;
538
                samples++;
539
            }
540

    
541
            /* stereo: 4 bytes (8 samples) for left, 4 bytes for right, 4 bytes left, ... */
542
            if(avctx->trellis > 0) {
543
                FF_ALLOC_OR_GOTO(avctx, buf, 2*n*8, error);
544
                adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n*8);
545
                if(avctx->channels == 2)
546
                    adpcm_compress_trellis(avctx, samples+1, buf + n*8, &c->status[1], n*8);
547
                for(i=0; i<n; i++) {
548
                    *dst++ = buf[8*i+0] | (buf[8*i+1] << 4);
549
                    *dst++ = buf[8*i+2] | (buf[8*i+3] << 4);
550
                    *dst++ = buf[8*i+4] | (buf[8*i+5] << 4);
551
                    *dst++ = buf[8*i+6] | (buf[8*i+7] << 4);
552
                    if (avctx->channels == 2) {
553
                        uint8_t *buf1 = buf + n*8;
554
                        *dst++ = buf1[8*i+0] | (buf1[8*i+1] << 4);
555
                        *dst++ = buf1[8*i+2] | (buf1[8*i+3] << 4);
556
                        *dst++ = buf1[8*i+4] | (buf1[8*i+5] << 4);
557
                        *dst++ = buf1[8*i+6] | (buf1[8*i+7] << 4);
558
                    }
559
                }
560
                av_free(buf);
561
            } else
562
            for (; n>0; n--) {
563
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[0]);
564
                *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels]) << 4;
565
                dst++;
566
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 2]);
567
                *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 3]) << 4;
568
                dst++;
569
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 4]);
570
                *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 5]) << 4;
571
                dst++;
572
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 6]);
573
                *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 7]) << 4;
574
                dst++;
575
                /* right channel */
576
                if (avctx->channels == 2) {
577
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[1]);
578
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[3]) << 4;
579
                    dst++;
580
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[5]);
581
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[7]) << 4;
582
                    dst++;
583
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[9]);
584
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[11]) << 4;
585
                    dst++;
586
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[13]);
587
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[15]) << 4;
588
                    dst++;
589
                }
590
                samples += 8 * avctx->channels;
591
            }
592
        break;
593
    case CODEC_ID_ADPCM_IMA_QT:
594
    {
595
        int ch, i;
596
        PutBitContext pb;
597
        init_put_bits(&pb, dst, buf_size*8);
598

    
599
        for(ch=0; ch<avctx->channels; ch++){
600
            put_bits(&pb, 9, (c->status[ch].prev_sample + 0x10000) >> 7);
601
            put_bits(&pb, 7, c->status[ch].step_index);
602
            if(avctx->trellis > 0) {
603
                uint8_t buf[64];
604
                adpcm_compress_trellis(avctx, samples+ch, buf, &c->status[ch], 64);
605
                for(i=0; i<64; i++)
606
                    put_bits(&pb, 4, buf[i^1]);
607
                c->status[ch].prev_sample = c->status[ch].predictor & ~0x7F;
608
            } else {
609
                for (i=0; i<64; i+=2){
610
                    int t1, t2;
611
                    t1 = adpcm_ima_compress_sample(&c->status[ch], samples[avctx->channels*(i+0)+ch]);
612
                    t2 = adpcm_ima_compress_sample(&c->status[ch], samples[avctx->channels*(i+1)+ch]);
613
                    put_bits(&pb, 4, t2);
614
                    put_bits(&pb, 4, t1);
615
                }
616
                c->status[ch].prev_sample &= ~0x7F;
617
            }
618
        }
619

    
620
        flush_put_bits(&pb);
621
        dst += put_bits_count(&pb)>>3;
622
        break;
623
    }
624
    case CODEC_ID_ADPCM_SWF:
625
    {
626
        int i;
627
        PutBitContext pb;
628
        init_put_bits(&pb, dst, buf_size*8);
629

    
630
        n = avctx->frame_size-1;
631

    
632
        //Store AdpcmCodeSize
633
        put_bits(&pb, 2, 2);                //Set 4bits flash adpcm format
634

    
635
        //Init the encoder state
636
        for(i=0; i<avctx->channels; i++){
637
            c->status[i].step_index = av_clip(c->status[i].step_index, 0, 63); // clip step so it fits 6 bits
638
            put_sbits(&pb, 16, samples[i]);
639
            put_bits(&pb, 6, c->status[i].step_index);
640
            c->status[i].prev_sample = (signed short)samples[i];
641
        }
642

    
643
        if(avctx->trellis > 0) {
644
            FF_ALLOC_OR_GOTO(avctx, buf, 2*n, error);
645
            adpcm_compress_trellis(avctx, samples+2, buf, &c->status[0], n);
646
            if (avctx->channels == 2)
647
                adpcm_compress_trellis(avctx, samples+3, buf+n, &c->status[1], n);
648
            for(i=0; i<n; i++) {
649
                put_bits(&pb, 4, buf[i]);
650
                if (avctx->channels == 2)
651
                    put_bits(&pb, 4, buf[n+i]);
652
            }
653
            av_free(buf);
654
        } else {
655
            for (i=1; i<avctx->frame_size; i++) {
656
                put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels*i]));
657
                if (avctx->channels == 2)
658
                    put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[1], samples[2*i+1]));
659
            }
660
        }
661
        flush_put_bits(&pb);
662
        dst += put_bits_count(&pb)>>3;
663
        break;
664
    }
665
    case CODEC_ID_ADPCM_MS:
666
        for(i=0; i<avctx->channels; i++){
667
            int predictor=0;
668

    
669
            *dst++ = predictor;
670
            c->status[i].coeff1 = AdaptCoeff1[predictor];
671
            c->status[i].coeff2 = AdaptCoeff2[predictor];
672
        }
673
        for(i=0; i<avctx->channels; i++){
674
            if (c->status[i].idelta < 16)
675
                c->status[i].idelta = 16;
676

    
677
            bytestream_put_le16(&dst, c->status[i].idelta);
678
        }
679
        for(i=0; i<avctx->channels; i++){
680
            c->status[i].sample2= *samples++;
681
        }
682
        for(i=0; i<avctx->channels; i++){
683
            c->status[i].sample1= *samples++;
684

    
685
            bytestream_put_le16(&dst, c->status[i].sample1);
686
        }
687
        for(i=0; i<avctx->channels; i++)
688
            bytestream_put_le16(&dst, c->status[i].sample2);
689

    
690
        if(avctx->trellis > 0) {
691
            int n = avctx->block_align - 7*avctx->channels;
692
            FF_ALLOC_OR_GOTO(avctx, buf, 2*n, error);
693
            if(avctx->channels == 1) {
694
                adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n);
695
                for(i=0; i<n; i+=2)
696
                    *dst++ = (buf[i] << 4) | buf[i+1];
697
            } else {
698
                adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n);
699
                adpcm_compress_trellis(avctx, samples+1, buf+n, &c->status[1], n);
700
                for(i=0; i<n; i++)
701
                    *dst++ = (buf[i] << 4) | buf[n+i];
702
            }
703
            av_free(buf);
704
        } else
705
        for(i=7*avctx->channels; i<avctx->block_align; i++) {
706
            int nibble;
707
            nibble = adpcm_ms_compress_sample(&c->status[ 0], *samples++)<<4;
708
            nibble|= adpcm_ms_compress_sample(&c->status[st], *samples++);
709
            *dst++ = nibble;
710
        }
711
        break;
712
    case CODEC_ID_ADPCM_YAMAHA:
713
        n = avctx->frame_size / 2;
714
        if(avctx->trellis > 0) {
715
            FF_ALLOC_OR_GOTO(avctx, buf, 2*n*2, error);
716
            n *= 2;
717
            if(avctx->channels == 1) {
718
                adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n);
719
                for(i=0; i<n; i+=2)
720
                    *dst++ = buf[i] | (buf[i+1] << 4);
721
            } else {
722
                adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n);
723
                adpcm_compress_trellis(avctx, samples+1, buf+n, &c->status[1], n);
724
                for(i=0; i<n; i++)
725
                    *dst++ = buf[i] | (buf[n+i] << 4);
726
            }
727
            av_free(buf);
728
        } else
729
            for (n *= avctx->channels; n>0; n--) {
730
                int nibble;
731
                nibble  = adpcm_yamaha_compress_sample(&c->status[ 0], *samples++);
732
                nibble |= adpcm_yamaha_compress_sample(&c->status[st], *samples++) << 4;
733
                *dst++ = nibble;
734
            }
735
        break;
736
    default:
737
    error:
738
        return -1;
739
    }
740
    return dst - frame;
741
}
742
#endif //CONFIG_ENCODERS
743

    
744
static av_cold int adpcm_decode_init(AVCodecContext * avctx)
745
{
746
    ADPCMContext *c = avctx->priv_data;
747
    unsigned int max_channels = 2;
748

    
749
    switch(avctx->codec->id) {
750
    case CODEC_ID_ADPCM_EA_R1:
751
    case CODEC_ID_ADPCM_EA_R2:
752
    case CODEC_ID_ADPCM_EA_R3:
753
        max_channels = 6;
754
        break;
755
    }
756
    if(avctx->channels > max_channels){
757
        return -1;
758
    }
759

    
760
    switch(avctx->codec->id) {
761
    case CODEC_ID_ADPCM_CT:
762
        c->status[0].step = c->status[1].step = 511;
763
        break;
764
    case CODEC_ID_ADPCM_IMA_WAV:
765
        if (avctx->bits_per_coded_sample != 4) {
766
            av_log(avctx, AV_LOG_ERROR, "Only 4-bit ADPCM IMA WAV files are supported\n");
767
            return -1;
768
        }
769
        break;
770
    case CODEC_ID_ADPCM_IMA_WS:
771
        if (avctx->extradata && avctx->extradata_size == 2 * 4) {
772
            c->status[0].predictor = AV_RL32(avctx->extradata);
773
            c->status[1].predictor = AV_RL32(avctx->extradata + 4);
774
        }
775
        break;
776
    default:
777
        break;
778
    }
779
    avctx->sample_fmt = AV_SAMPLE_FMT_S16;
780
    return 0;
781
}
782

    
783
static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift)
784
{
785
    int step_index;
786
    int predictor;
787
    int sign, delta, diff, step;
788

    
789
    step = step_table[c->step_index];
790
    step_index = c->step_index + index_table[(unsigned)nibble];
791
    if (step_index < 0) step_index = 0;
792
    else if (step_index > 88) step_index = 88;
793

    
794
    sign = nibble & 8;
795
    delta = nibble & 7;
796
    /* perform direct multiplication instead of series of jumps proposed by
797
     * the reference ADPCM implementation since modern CPUs can do the mults
798
     * quickly enough */
799
    diff = ((2 * delta + 1) * step) >> shift;
800
    predictor = c->predictor;
801
    if (sign) predictor -= diff;
802
    else predictor += diff;
803

    
804
    c->predictor = av_clip_int16(predictor);
805
    c->step_index = step_index;
806

    
807
    return (short)c->predictor;
808
}
809

    
810
static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, char nibble)
811
{
812
    int predictor;
813

    
814
    predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
815
    predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
816

    
817
    c->sample2 = c->sample1;
818
    c->sample1 = av_clip_int16(predictor);
819
    c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
820
    if (c->idelta < 16) c->idelta = 16;
821

    
822
    return c->sample1;
823
}
824

    
825
static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble)
826
{
827
    int sign, delta, diff;
828
    int new_step;
829

    
830
    sign = nibble & 8;
831
    delta = nibble & 7;
832
    /* perform direct multiplication instead of series of jumps proposed by
833
     * the reference ADPCM implementation since modern CPUs can do the mults
834
     * quickly enough */
835
    diff = ((2 * delta + 1) * c->step) >> 3;
836
    /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
837
    c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff);
838
    c->predictor = av_clip_int16(c->predictor);
839
    /* calculate new step and clamp it to range 511..32767 */
840
    new_step = (AdaptationTable[nibble & 7] * c->step) >> 8;
841
    c->step = av_clip(new_step, 511, 32767);
842

    
843
    return (short)c->predictor;
844
}
845

    
846
static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift)
847
{
848
    int sign, delta, diff;
849

    
850
    sign = nibble & (1<<(size-1));
851
    delta = nibble & ((1<<(size-1))-1);
852
    diff = delta << (7 + c->step + shift);
853

    
854
    /* clamp result */
855
    c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256);
856

    
857
    /* calculate new step */
858
    if (delta >= (2*size - 3) && c->step < 3)
859
        c->step++;
860
    else if (delta == 0 && c->step > 0)
861
        c->step--;
862

    
863
    return (short) c->predictor;
864
}
865

    
866
static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble)
867
{
868
    if(!c->step) {
869
        c->predictor = 0;
870
        c->step = 127;
871
    }
872

    
873
    c->predictor += (c->step * yamaha_difflookup[nibble]) / 8;
874
    c->predictor = av_clip_int16(c->predictor);
875
    c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
876
    c->step = av_clip(c->step, 127, 24567);
877
    return c->predictor;
878
}
879

    
880
static void xa_decode(short *out, const unsigned char *in,
881
    ADPCMChannelStatus *left, ADPCMChannelStatus *right, int inc)
882
{
883
    int i, j;
884
    int shift,filter,f0,f1;
885
    int s_1,s_2;
886
    int d,s,t;
887

    
888
    for(i=0;i<4;i++) {
889

    
890
        shift  = 12 - (in[4+i*2] & 15);
891
        filter = in[4+i*2] >> 4;
892
        f0 = xa_adpcm_table[filter][0];
893
        f1 = xa_adpcm_table[filter][1];
894

    
895
        s_1 = left->sample1;
896
        s_2 = left->sample2;
897

    
898
        for(j=0;j<28;j++) {
899
            d = in[16+i+j*4];
900

    
901
            t = (signed char)(d<<4)>>4;
902
            s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
903
            s_2 = s_1;
904
            s_1 = av_clip_int16(s);
905
            *out = s_1;
906
            out += inc;
907
        }
908

    
909
        if (inc==2) { /* stereo */
910
            left->sample1 = s_1;
911
            left->sample2 = s_2;
912
            s_1 = right->sample1;
913
            s_2 = right->sample2;
914
            out = out + 1 - 28*2;
915
        }
916

    
917
        shift  = 12 - (in[5+i*2] & 15);
918
        filter = in[5+i*2] >> 4;
919

    
920
        f0 = xa_adpcm_table[filter][0];
921
        f1 = xa_adpcm_table[filter][1];
922

    
923
        for(j=0;j<28;j++) {
924
            d = in[16+i+j*4];
925

    
926
            t = (signed char)d >> 4;
927
            s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
928
            s_2 = s_1;
929
            s_1 = av_clip_int16(s);
930
            *out = s_1;
931
            out += inc;
932
        }
933

    
934
        if (inc==2) { /* stereo */
935
            right->sample1 = s_1;
936
            right->sample2 = s_2;
937
            out -= 1;
938
        } else {
939
            left->sample1 = s_1;
940
            left->sample2 = s_2;
941
        }
942
    }
943
}
944

    
945

    
946
/* DK3 ADPCM support macro */
947
#define DK3_GET_NEXT_NIBBLE() \
948
    if (decode_top_nibble_next) \
949
    { \
950
        nibble = last_byte >> 4; \
951
        decode_top_nibble_next = 0; \
952
    } \
953
    else \
954
    { \
955
        last_byte = *src++; \
956
        if (src >= buf + buf_size) break; \
957
        nibble = last_byte & 0x0F; \
958
        decode_top_nibble_next = 1; \
959
    }
960

    
961
static int adpcm_decode_frame(AVCodecContext *avctx,
962
                            void *data, int *data_size,
963
                            AVPacket *avpkt)
964
{
965
    const uint8_t *buf = avpkt->data;
966
    int buf_size = avpkt->size;
967
    ADPCMContext *c = avctx->priv_data;
968
    ADPCMChannelStatus *cs;
969
    int n, m, channel, i;
970
    int block_predictor[2];
971
    short *samples;
972
    short *samples_end;
973
    const uint8_t *src;
974
    int st; /* stereo */
975

    
976
    /* DK3 ADPCM accounting variables */
977
    unsigned char last_byte = 0;
978
    unsigned char nibble;
979
    int decode_top_nibble_next = 0;
980
    int diff_channel;
981

    
982
    /* EA ADPCM state variables */
983
    uint32_t samples_in_chunk;
984
    int32_t previous_left_sample, previous_right_sample;
985
    int32_t current_left_sample, current_right_sample;
986
    int32_t next_left_sample, next_right_sample;
987
    int32_t coeff1l, coeff2l, coeff1r, coeff2r;
988
    uint8_t shift_left, shift_right;
989
    int count1, count2;
990
    int coeff[2][2], shift[2];//used in EA MAXIS ADPCM
991

    
992
    if (!buf_size)
993
        return 0;
994

    
995
    //should protect all 4bit ADPCM variants
996
    //8 is needed for CODEC_ID_ADPCM_IMA_WAV with 2 channels
997
    //
998
    if(*data_size/4 < buf_size + 8)
999
        return -1;
1000

    
1001
    samples = data;
1002
    samples_end= samples + *data_size/2;
1003
    *data_size= 0;
1004
    src = buf;
1005

    
1006
    st = avctx->channels == 2 ? 1 : 0;
1007

    
1008
    switch(avctx->codec->id) {
1009
    case CODEC_ID_ADPCM_IMA_QT:
1010
        n = buf_size - 2*avctx->channels;
1011
        for (channel = 0; channel < avctx->channels; channel++) {
1012
            cs = &(c->status[channel]);
1013
            /* (pppppp) (piiiiiii) */
1014

    
1015
            /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
1016
            cs->predictor = (*src++) << 8;
1017
            cs->predictor |= (*src & 0x80);
1018
            cs->predictor &= 0xFF80;
1019

    
1020
            /* sign extension */
1021
            if(cs->predictor & 0x8000)
1022
                cs->predictor -= 0x10000;
1023

    
1024
            cs->predictor = av_clip_int16(cs->predictor);
1025

    
1026
            cs->step_index = (*src++) & 0x7F;
1027

    
1028
            if (cs->step_index > 88){
1029
                av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
1030
                cs->step_index = 88;
1031
            }
1032

    
1033
            cs->step = step_table[cs->step_index];
1034

    
1035
            samples = (short*)data + channel;
1036

    
1037
            for(m=32; n>0 && m>0; n--, m--) { /* in QuickTime, IMA is encoded by chuncks of 34 bytes (=64 samples) */
1038
                *samples = adpcm_ima_expand_nibble(cs, src[0] & 0x0F, 3);
1039
                samples += avctx->channels;
1040
                *samples = adpcm_ima_expand_nibble(cs, src[0] >> 4  , 3);
1041
                samples += avctx->channels;
1042
                src ++;
1043
            }
1044
        }
1045
        if (st)
1046
            samples--;
1047
        break;
1048
    case CODEC_ID_ADPCM_IMA_WAV:
1049
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
1050
            buf_size = avctx->block_align;
1051

    
1052
//        samples_per_block= (block_align-4*chanels)*8 / (bits_per_sample * chanels) + 1;
1053

    
1054
        for(i=0; i<avctx->channels; i++){
1055
            cs = &(c->status[i]);
1056
            cs->predictor = *samples++ = (int16_t)bytestream_get_le16(&src);
1057

    
1058
            cs->step_index = *src++;
1059
            if (cs->step_index > 88){
1060
                av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
1061
                cs->step_index = 88;
1062
            }
1063
            if (*src++) av_log(avctx, AV_LOG_ERROR, "unused byte should be null but is %d!!\n", src[-1]); /* unused */
1064
        }
1065

    
1066
        while(src < buf + buf_size){
1067
            for(m=0; m<4; m++){
1068
                for(i=0; i<=st; i++)
1069
                    *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] & 0x0F, 3);
1070
                for(i=0; i<=st; i++)
1071
                    *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] >> 4  , 3);
1072
                src++;
1073
            }
1074
            src += 4*st;
1075
        }
1076
        break;
1077
    case CODEC_ID_ADPCM_4XM:
1078
        cs = &(c->status[0]);
1079
        c->status[0].predictor= (int16_t)bytestream_get_le16(&src);
1080
        if(st){
1081
            c->status[1].predictor= (int16_t)bytestream_get_le16(&src);
1082
        }
1083
        c->status[0].step_index= (int16_t)bytestream_get_le16(&src);
1084
        if(st){
1085
            c->status[1].step_index= (int16_t)bytestream_get_le16(&src);
1086
        }
1087
        if (cs->step_index < 0) cs->step_index = 0;
1088
        if (cs->step_index > 88) cs->step_index = 88;
1089

    
1090
        m= (buf_size - (src - buf))>>st;
1091
        for(i=0; i<m; i++) {
1092
            *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] & 0x0F, 4);
1093
            if (st)
1094
                *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] & 0x0F, 4);
1095
            *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] >> 4, 4);
1096
            if (st)
1097
                *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] >> 4, 4);
1098
        }
1099

    
1100
        src += m<<st;
1101

    
1102
        break;
1103
    case CODEC_ID_ADPCM_MS:
1104
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
1105
            buf_size = avctx->block_align;
1106
        n = buf_size - 7 * avctx->channels;
1107
        if (n < 0)
1108
            return -1;
1109
        block_predictor[0] = av_clip(*src++, 0, 6);
1110
        block_predictor[1] = 0;
1111
        if (st)
1112
            block_predictor[1] = av_clip(*src++, 0, 6);
1113
        c->status[0].idelta = (int16_t)bytestream_get_le16(&src);
1114
        if (st){
1115
            c->status[1].idelta = (int16_t)bytestream_get_le16(&src);
1116
        }
1117
        c->status[0].coeff1 = AdaptCoeff1[block_predictor[0]];
1118
        c->status[0].coeff2 = AdaptCoeff2[block_predictor[0]];
1119
        c->status[1].coeff1 = AdaptCoeff1[block_predictor[1]];
1120
        c->status[1].coeff2 = AdaptCoeff2[block_predictor[1]];
1121

    
1122
        c->status[0].sample1 = bytestream_get_le16(&src);
1123
        if (st) c->status[1].sample1 = bytestream_get_le16(&src);
1124
        c->status[0].sample2 = bytestream_get_le16(&src);
1125
        if (st) c->status[1].sample2 = bytestream_get_le16(&src);
1126

    
1127
        *samples++ = c->status[0].sample2;
1128
        if (st) *samples++ = c->status[1].sample2;
1129
        *samples++ = c->status[0].sample1;
1130
        if (st) *samples++ = c->status[1].sample1;
1131
        for(;n>0;n--) {
1132
            *samples++ = adpcm_ms_expand_nibble(&c->status[0 ], src[0] >> 4  );
1133
            *samples++ = adpcm_ms_expand_nibble(&c->status[st], src[0] & 0x0F);
1134
            src ++;
1135
        }
1136
        break;
1137
    case CODEC_ID_ADPCM_IMA_DK4:
1138
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
1139
            buf_size = avctx->block_align;
1140

    
1141
        c->status[0].predictor  = (int16_t)bytestream_get_le16(&src);
1142
        c->status[0].step_index = *src++;
1143
        src++;
1144
        *samples++ = c->status[0].predictor;
1145
        if (st) {
1146
            c->status[1].predictor  = (int16_t)bytestream_get_le16(&src);
1147
            c->status[1].step_index = *src++;
1148
            src++;
1149
            *samples++ = c->status[1].predictor;
1150
        }
1151
        while (src < buf + buf_size) {
1152

    
1153
            /* take care of the top nibble (always left or mono channel) */
1154
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1155
                src[0] >> 4, 3);
1156

    
1157
            /* take care of the bottom nibble, which is right sample for
1158
             * stereo, or another mono sample */
1159
            if (st)
1160
                *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1161
                    src[0] & 0x0F, 3);
1162
            else
1163
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1164
                    src[0] & 0x0F, 3);
1165

    
1166
            src++;
1167
        }
1168
        break;
1169
    case CODEC_ID_ADPCM_IMA_DK3:
1170
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
1171
            buf_size = avctx->block_align;
1172

    
1173
        if(buf_size + 16 > (samples_end - samples)*3/8)
1174
            return -1;
1175

    
1176
        c->status[0].predictor  = (int16_t)AV_RL16(src + 10);
1177
        c->status[1].predictor  = (int16_t)AV_RL16(src + 12);
1178
        c->status[0].step_index = src[14];
1179
        c->status[1].step_index = src[15];
1180
        /* sign extend the predictors */
1181
        src += 16;
1182
        diff_channel = c->status[1].predictor;
1183

    
1184
        /* the DK3_GET_NEXT_NIBBLE macro issues the break statement when
1185
         * the buffer is consumed */
1186
        while (1) {
1187

    
1188
            /* for this algorithm, c->status[0] is the sum channel and
1189
             * c->status[1] is the diff channel */
1190

    
1191
            /* process the first predictor of the sum channel */
1192
            DK3_GET_NEXT_NIBBLE();
1193
            adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1194

    
1195
            /* process the diff channel predictor */
1196
            DK3_GET_NEXT_NIBBLE();
1197
            adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
1198

    
1199
            /* process the first pair of stereo PCM samples */
1200
            diff_channel = (diff_channel + c->status[1].predictor) / 2;
1201
            *samples++ = c->status[0].predictor + c->status[1].predictor;
1202
            *samples++ = c->status[0].predictor - c->status[1].predictor;
1203

    
1204
            /* process the second predictor of the sum channel */
1205
            DK3_GET_NEXT_NIBBLE();
1206
            adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1207

    
1208
            /* process the second pair of stereo PCM samples */
1209
            diff_channel = (diff_channel + c->status[1].predictor) / 2;
1210
            *samples++ = c->status[0].predictor + c->status[1].predictor;
1211
            *samples++ = c->status[0].predictor - c->status[1].predictor;
1212
        }
1213
        break;
1214
    case CODEC_ID_ADPCM_IMA_ISS:
1215
        c->status[0].predictor  = (int16_t)AV_RL16(src + 0);
1216
        c->status[0].step_index = src[2];
1217
        src += 4;
1218
        if(st) {
1219
            c->status[1].predictor  = (int16_t)AV_RL16(src + 0);
1220
            c->status[1].step_index = src[2];
1221
            src += 4;
1222
        }
1223

    
1224
        while (src < buf + buf_size) {
1225

    
1226
            if (st) {
1227
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1228
                    src[0] >> 4  , 3);
1229
                *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1230
                    src[0] & 0x0F, 3);
1231
            } else {
1232
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1233
                    src[0] & 0x0F, 3);
1234
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1235
                    src[0] >> 4  , 3);
1236
            }
1237

    
1238
            src++;
1239
        }
1240
        break;
1241
    case CODEC_ID_ADPCM_IMA_WS:
1242
        /* no per-block initialization; just start decoding the data */
1243
        while (src < buf + buf_size) {
1244

    
1245
            if (st) {
1246
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1247
                    src[0] >> 4  , 3);
1248
                *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1249
                    src[0] & 0x0F, 3);
1250
            } else {
1251
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1252
                    src[0] >> 4  , 3);
1253
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1254
                    src[0] & 0x0F, 3);
1255
            }
1256

    
1257
            src++;
1258
        }
1259
        break;
1260
    case CODEC_ID_ADPCM_XA:
1261
        while (buf_size >= 128) {
1262
            xa_decode(samples, src, &c->status[0], &c->status[1],
1263
                avctx->channels);
1264
            src += 128;
1265
            samples += 28 * 8;
1266
            buf_size -= 128;
1267
        }
1268
        break;
1269
    case CODEC_ID_ADPCM_IMA_EA_EACS:
1270
        samples_in_chunk = bytestream_get_le32(&src) >> (1-st);
1271

    
1272
        if (samples_in_chunk > buf_size-4-(8<<st)) {
1273
            src += buf_size - 4;
1274
            break;
1275
        }
1276

    
1277
        for (i=0; i<=st; i++)
1278
            c->status[i].step_index = bytestream_get_le32(&src);
1279
        for (i=0; i<=st; i++)
1280
            c->status[i].predictor  = bytestream_get_le32(&src);
1281

    
1282
        for (; samples_in_chunk; samples_in_chunk--, src++) {
1283
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],  *src>>4,   3);
1284
            *samples++ = adpcm_ima_expand_nibble(&c->status[st], *src&0x0F, 3);
1285
        }
1286
        break;
1287
    case CODEC_ID_ADPCM_IMA_EA_SEAD:
1288
        for (; src < buf+buf_size; src++) {
1289
            *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[0] >> 4, 6);
1290
            *samples++ = adpcm_ima_expand_nibble(&c->status[st],src[0]&0x0F, 6);
1291
        }
1292
        break;
1293
    case CODEC_ID_ADPCM_EA:
1294
        if (buf_size < 4 || AV_RL32(src) >= ((buf_size - 12) * 2)) {
1295
            src += buf_size;
1296
            break;
1297
        }
1298
        samples_in_chunk = AV_RL32(src);
1299
        src += 4;
1300
        current_left_sample   = (int16_t)bytestream_get_le16(&src);
1301
        previous_left_sample  = (int16_t)bytestream_get_le16(&src);
1302
        current_right_sample  = (int16_t)bytestream_get_le16(&src);
1303
        previous_right_sample = (int16_t)bytestream_get_le16(&src);
1304

    
1305
        for (count1 = 0; count1 < samples_in_chunk/28;count1++) {
1306
            coeff1l = ea_adpcm_table[ *src >> 4       ];
1307
            coeff2l = ea_adpcm_table[(*src >> 4  ) + 4];
1308
            coeff1r = ea_adpcm_table[*src & 0x0F];
1309
            coeff2r = ea_adpcm_table[(*src & 0x0F) + 4];
1310
            src++;
1311

    
1312
            shift_left  = (*src >> 4  ) + 8;
1313
            shift_right = (*src & 0x0F) + 8;
1314
            src++;
1315

    
1316
            for (count2 = 0; count2 < 28; count2++) {
1317
                next_left_sample  = (int32_t)((*src & 0xF0) << 24) >> shift_left;
1318
                next_right_sample = (int32_t)((*src & 0x0F) << 28) >> shift_right;
1319
                src++;
1320

    
1321
                next_left_sample = (next_left_sample +
1322
                    (current_left_sample * coeff1l) +
1323
                    (previous_left_sample * coeff2l) + 0x80) >> 8;
1324
                next_right_sample = (next_right_sample +
1325
                    (current_right_sample * coeff1r) +
1326
                    (previous_right_sample * coeff2r) + 0x80) >> 8;
1327

    
1328
                previous_left_sample = current_left_sample;
1329
                current_left_sample = av_clip_int16(next_left_sample);
1330
                previous_right_sample = current_right_sample;
1331
                current_right_sample = av_clip_int16(next_right_sample);
1332
                *samples++ = (unsigned short)current_left_sample;
1333
                *samples++ = (unsigned short)current_right_sample;
1334
            }
1335
        }
1336

    
1337
        if (src - buf == buf_size - 2)
1338
            src += 2; // Skip terminating 0x0000
1339

    
1340
        break;
1341
    case CODEC_ID_ADPCM_EA_MAXIS_XA:
1342
        for(channel = 0; channel < avctx->channels; channel++) {
1343
            for (i=0; i<2; i++)
1344
                coeff[channel][i] = ea_adpcm_table[(*src >> 4) + 4*i];
1345
            shift[channel] = (*src & 0x0F) + 8;
1346
            src++;
1347
        }
1348
        for (count1 = 0; count1 < (buf_size - avctx->channels) / avctx->channels; count1++) {
1349
            for(i = 4; i >= 0; i-=4) { /* Pairwise samples LL RR (st) or LL LL (mono) */
1350
                for(channel = 0; channel < avctx->channels; channel++) {
1351
                    int32_t sample = (int32_t)(((*(src+channel) >> i) & 0x0F) << 0x1C) >> shift[channel];
1352
                    sample = (sample +
1353
                             c->status[channel].sample1 * coeff[channel][0] +
1354
                             c->status[channel].sample2 * coeff[channel][1] + 0x80) >> 8;
1355
                    c->status[channel].sample2 = c->status[channel].sample1;
1356
                    c->status[channel].sample1 = av_clip_int16(sample);
1357
                    *samples++ = c->status[channel].sample1;
1358
                }
1359
            }
1360
            src+=avctx->channels;
1361
        }
1362
        break;
1363
    case CODEC_ID_ADPCM_EA_R1:
1364
    case CODEC_ID_ADPCM_EA_R2:
1365
    case CODEC_ID_ADPCM_EA_R3: {
1366
        /* channel numbering
1367
           2chan: 0=fl, 1=fr
1368
           4chan: 0=fl, 1=rl, 2=fr, 3=rr
1369
           6chan: 0=fl, 1=c,  2=fr, 3=rl,  4=rr, 5=sub */
1370
        const int big_endian = avctx->codec->id == CODEC_ID_ADPCM_EA_R3;
1371
        int32_t previous_sample, current_sample, next_sample;
1372
        int32_t coeff1, coeff2;
1373
        uint8_t shift;
1374
        unsigned int channel;
1375
        uint16_t *samplesC;
1376
        const uint8_t *srcC;
1377
        const uint8_t *src_end = buf + buf_size;
1378

    
1379
        samples_in_chunk = (big_endian ? bytestream_get_be32(&src)
1380
                                       : bytestream_get_le32(&src)) / 28;
1381
        if (samples_in_chunk > UINT32_MAX/(28*avctx->channels) ||
1382
            28*samples_in_chunk*avctx->channels > samples_end-samples) {
1383
            src += buf_size - 4;
1384
            break;
1385
        }
1386

    
1387
        for (channel=0; channel<avctx->channels; channel++) {
1388
            int32_t offset = (big_endian ? bytestream_get_be32(&src)
1389
                                         : bytestream_get_le32(&src))
1390
                           + (avctx->channels-channel-1) * 4;
1391

    
1392
            if ((offset < 0) || (offset >= src_end - src - 4)) break;
1393
            srcC  = src + offset;
1394
            samplesC = samples + channel;
1395

    
1396
            if (avctx->codec->id == CODEC_ID_ADPCM_EA_R1) {
1397
                current_sample  = (int16_t)bytestream_get_le16(&srcC);
1398
                previous_sample = (int16_t)bytestream_get_le16(&srcC);
1399
            } else {
1400
                current_sample  = c->status[channel].predictor;
1401
                previous_sample = c->status[channel].prev_sample;
1402
            }
1403

    
1404
            for (count1=0; count1<samples_in_chunk; count1++) {
1405
                if (*srcC == 0xEE) {  /* only seen in R2 and R3 */
1406
                    srcC++;
1407
                    if (srcC > src_end - 30*2) break;
1408
                    current_sample  = (int16_t)bytestream_get_be16(&srcC);
1409
                    previous_sample = (int16_t)bytestream_get_be16(&srcC);
1410

    
1411
                    for (count2=0; count2<28; count2++) {
1412
                        *samplesC = (int16_t)bytestream_get_be16(&srcC);
1413
                        samplesC += avctx->channels;
1414
                    }
1415
                } else {
1416
                    coeff1 = ea_adpcm_table[ *srcC>>4     ];
1417
                    coeff2 = ea_adpcm_table[(*srcC>>4) + 4];
1418
                    shift = (*srcC++ & 0x0F) + 8;
1419

    
1420
                    if (srcC > src_end - 14) break;
1421
                    for (count2=0; count2<28; count2++) {
1422
                        if (count2 & 1)
1423
                            next_sample = (int32_t)((*srcC++ & 0x0F) << 28) >> shift;
1424
                        else
1425
                            next_sample = (int32_t)((*srcC   & 0xF0) << 24) >> shift;
1426

    
1427
                        next_sample += (current_sample  * coeff1) +
1428
                                       (previous_sample * coeff2);
1429
                        next_sample = av_clip_int16(next_sample >> 8);
1430

    
1431
                        previous_sample = current_sample;
1432
                        current_sample  = next_sample;
1433
                        *samplesC = current_sample;
1434
                        samplesC += avctx->channels;
1435
                    }
1436
                }
1437
            }
1438

    
1439
            if (avctx->codec->id != CODEC_ID_ADPCM_EA_R1) {
1440
                c->status[channel].predictor   = current_sample;
1441
                c->status[channel].prev_sample = previous_sample;
1442
            }
1443
        }
1444

    
1445
        src = src + buf_size - (4 + 4*avctx->channels);
1446
        samples += 28 * samples_in_chunk * avctx->channels;
1447
        break;
1448
    }
1449
    case CODEC_ID_ADPCM_EA_XAS:
1450
        if (samples_end-samples < 32*4*avctx->channels
1451
            || buf_size < (4+15)*4*avctx->channels) {
1452
            src += buf_size;
1453
            break;
1454
        }
1455
        for (channel=0; channel<avctx->channels; channel++) {
1456
            int coeff[2][4], shift[4];
1457
            short *s2, *s = &samples[channel];
1458
            for (n=0; n<4; n++, s+=32*avctx->channels) {
1459
                for (i=0; i<2; i++)
1460
                    coeff[i][n] = ea_adpcm_table[(src[0]&0x0F)+4*i];
1461
                shift[n] = (src[2]&0x0F) + 8;
1462
                for (s2=s, i=0; i<2; i++, src+=2, s2+=avctx->channels)
1463
                    s2[0] = (src[0]&0xF0) + (src[1]<<8);
1464
            }
1465

    
1466
            for (m=2; m<32; m+=2) {
1467
                s = &samples[m*avctx->channels + channel];
1468
                for (n=0; n<4; n++, src++, s+=32*avctx->channels) {
1469
                    for (s2=s, i=0; i<8; i+=4, s2+=avctx->channels) {
1470
                        int level = (int32_t)((*src & (0xF0>>i)) << (24+i)) >> shift[n];
1471
                        int pred  = s2[-1*avctx->channels] * coeff[0][n]
1472
                                  + s2[-2*avctx->channels] * coeff[1][n];
1473
                        s2[0] = av_clip_int16((level + pred + 0x80) >> 8);
1474
                    }
1475
                }
1476
            }
1477
        }
1478
        samples += 32*4*avctx->channels;
1479
        break;
1480
    case CODEC_ID_ADPCM_IMA_AMV:
1481
    case CODEC_ID_ADPCM_IMA_SMJPEG:
1482
        c->status[0].predictor = (int16_t)bytestream_get_le16(&src);
1483
        c->status[0].step_index = bytestream_get_le16(&src);
1484

    
1485
        if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
1486
            src+=4;
1487

    
1488
        while (src < buf + buf_size) {
1489
            char hi, lo;
1490
            lo = *src & 0x0F;
1491
            hi = *src >> 4;
1492

    
1493
            if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
1494
                FFSWAP(char, hi, lo);
1495

    
1496
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1497
                lo, 3);
1498
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1499
                hi, 3);
1500
            src++;
1501
        }
1502
        break;
1503
    case CODEC_ID_ADPCM_CT:
1504
        while (src < buf + buf_size) {
1505
            if (st) {
1506
                *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1507
                    src[0] >> 4);
1508
                *samples++ = adpcm_ct_expand_nibble(&c->status[1],
1509
                    src[0] & 0x0F);
1510
            } else {
1511
                *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1512
                    src[0] >> 4);
1513
                *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1514
                    src[0] & 0x0F);
1515
            }
1516
            src++;
1517
        }
1518
        break;
1519
    case CODEC_ID_ADPCM_SBPRO_4:
1520
    case CODEC_ID_ADPCM_SBPRO_3:
1521
    case CODEC_ID_ADPCM_SBPRO_2:
1522
        if (!c->status[0].step_index) {
1523
            /* the first byte is a raw sample */
1524
            *samples++ = 128 * (*src++ - 0x80);
1525
            if (st)
1526
              *samples++ = 128 * (*src++ - 0x80);
1527
            c->status[0].step_index = 1;
1528
        }
1529
        if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_4) {
1530
            while (src < buf + buf_size) {
1531
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1532
                    src[0] >> 4, 4, 0);
1533
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1534
                    src[0] & 0x0F, 4, 0);
1535
                src++;
1536
            }
1537
        } else if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_3) {
1538
            while (src < buf + buf_size && samples + 2 < samples_end) {
1539
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1540
                     src[0] >> 5        , 3, 0);
1541
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1542
                    (src[0] >> 2) & 0x07, 3, 0);
1543
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1544
                    src[0] & 0x03, 2, 0);
1545
                src++;
1546
            }
1547
        } else {
1548
            while (src < buf + buf_size && samples + 3 < samples_end) {
1549
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1550
                     src[0] >> 6        , 2, 2);
1551
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1552
                    (src[0] >> 4) & 0x03, 2, 2);
1553
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1554
                    (src[0] >> 2) & 0x03, 2, 2);
1555
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1556
                    src[0] & 0x03, 2, 2);
1557
                src++;
1558
            }
1559
        }
1560
        break;
1561
    case CODEC_ID_ADPCM_SWF:
1562
    {
1563
        GetBitContext gb;
1564
        const int *table;
1565
        int k0, signmask, nb_bits, count;
1566
        int size = buf_size*8;
1567

    
1568
        init_get_bits(&gb, buf, size);
1569

    
1570
        //read bits & initial values
1571
        nb_bits = get_bits(&gb, 2)+2;
1572
        //av_log(NULL,AV_LOG_INFO,"nb_bits: %d\n", nb_bits);
1573
        table = swf_index_tables[nb_bits-2];
1574
        k0 = 1 << (nb_bits-2);
1575
        signmask = 1 << (nb_bits-1);
1576

    
1577
        while (get_bits_count(&gb) <= size - 22*avctx->channels) {
1578
            for (i = 0; i < avctx->channels; i++) {
1579
                *samples++ = c->status[i].predictor = get_sbits(&gb, 16);
1580
                c->status[i].step_index = get_bits(&gb, 6);
1581
            }
1582

    
1583
            for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) {
1584
                int i;
1585

    
1586
                for (i = 0; i < avctx->channels; i++) {
1587
                    // similar to IMA adpcm
1588
                    int delta = get_bits(&gb, nb_bits);
1589
                    int step = step_table[c->status[i].step_index];
1590
                    long vpdiff = 0; // vpdiff = (delta+0.5)*step/4
1591
                    int k = k0;
1592

    
1593
                    do {
1594
                        if (delta & k)
1595
                            vpdiff += step;
1596
                        step >>= 1;
1597
                        k >>= 1;
1598
                    } while(k);
1599
                    vpdiff += step;
1600

    
1601
                    if (delta & signmask)
1602
                        c->status[i].predictor -= vpdiff;
1603
                    else
1604
                        c->status[i].predictor += vpdiff;
1605

    
1606
                    c->status[i].step_index += table[delta & (~signmask)];
1607

    
1608
                    c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
1609
                    c->status[i].predictor = av_clip_int16(c->status[i].predictor);
1610

    
1611
                    *samples++ = c->status[i].predictor;
1612
                    if (samples >= samples_end) {
1613
                        av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n");
1614
                        return -1;
1615
                    }
1616
                }
1617
            }
1618
        }
1619
        src += buf_size;
1620
        break;
1621
    }
1622
    case CODEC_ID_ADPCM_YAMAHA:
1623
        while (src < buf + buf_size) {
1624
            if (st) {
1625
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1626
                        src[0] & 0x0F);
1627
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[1],
1628
                        src[0] >> 4  );
1629
            } else {
1630
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1631
                        src[0] & 0x0F);
1632
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1633
                        src[0] >> 4  );
1634
            }
1635
            src++;
1636
        }
1637
        break;
1638
    case CODEC_ID_ADPCM_THP:
1639
    {
1640
        int table[2][16];
1641
        unsigned int samplecnt;
1642
        int prev[2][2];
1643
        int ch;
1644

    
1645
        if (buf_size < 80) {
1646
            av_log(avctx, AV_LOG_ERROR, "frame too small\n");
1647
            return -1;
1648
        }
1649

    
1650
        src+=4;
1651
        samplecnt = bytestream_get_be32(&src);
1652

    
1653
        for (i = 0; i < 32; i++)
1654
            table[0][i] = (int16_t)bytestream_get_be16(&src);
1655

    
1656
        /* Initialize the previous sample.  */
1657
        for (i = 0; i < 4; i++)
1658
            prev[0][i] = (int16_t)bytestream_get_be16(&src);
1659

    
1660
        if (samplecnt >= (samples_end - samples) /  (st + 1)) {
1661
            av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n");
1662
            return -1;
1663
        }
1664

    
1665
        for (ch = 0; ch <= st; ch++) {
1666
            samples = (unsigned short *) data + ch;
1667

    
1668
            /* Read in every sample for this channel.  */
1669
            for (i = 0; i < samplecnt / 14; i++) {
1670
                int index = (*src >> 4) & 7;
1671
                unsigned int exp = 28 - (*src++ & 15);
1672
                int factor1 = table[ch][index * 2];
1673
                int factor2 = table[ch][index * 2 + 1];
1674

    
1675
                /* Decode 14 samples.  */
1676
                for (n = 0; n < 14; n++) {
1677
                    int32_t sampledat;
1678
                    if(n&1) sampledat=  *src++    <<28;
1679
                    else    sampledat= (*src&0xF0)<<24;
1680

    
1681
                    sampledat = ((prev[ch][0]*factor1
1682
                                + prev[ch][1]*factor2) >> 11) + (sampledat>>exp);
1683
                    *samples = av_clip_int16(sampledat);
1684
                    prev[ch][1] = prev[ch][0];
1685
                    prev[ch][0] = *samples++;
1686

    
1687
                    /* In case of stereo, skip one sample, this sample
1688
                       is for the other channel.  */
1689
                    samples += st;
1690
                }
1691
            }
1692
        }
1693

    
1694
        /* In the previous loop, in case stereo is used, samples is
1695
           increased exactly one time too often.  */
1696
        samples -= st;
1697
        break;
1698
    }
1699

    
1700
    default:
1701
        return -1;
1702
    }
1703
    *data_size = (uint8_t *)samples - (uint8_t *)data;
1704
    return src - buf;
1705
}
1706

    
1707

    
1708

    
1709
#if CONFIG_ENCODERS
1710
#define ADPCM_ENCODER(id,name,long_name_)       \
1711
AVCodec ff_ ## name ## _encoder = {             \
1712
    #name,                                      \
1713
    AVMEDIA_TYPE_AUDIO,                         \
1714
    id,                                         \
1715
    sizeof(ADPCMContext),                       \
1716
    adpcm_encode_init,                          \
1717
    adpcm_encode_frame,                         \
1718
    adpcm_encode_close,                         \
1719
    NULL,                                       \
1720
    .sample_fmts = (const enum AVSampleFormat[]){AV_SAMPLE_FMT_S16,AV_SAMPLE_FMT_NONE}, \
1721
    .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
1722
}
1723
#else
1724
#define ADPCM_ENCODER(id,name,long_name_)
1725
#endif
1726

    
1727
#if CONFIG_DECODERS
1728
#define ADPCM_DECODER(id,name,long_name_)       \
1729
AVCodec ff_ ## name ## _decoder = {             \
1730
    #name,                                      \
1731
    AVMEDIA_TYPE_AUDIO,                         \
1732
    id,                                         \
1733
    sizeof(ADPCMContext),                       \
1734
    adpcm_decode_init,                          \
1735
    NULL,                                       \
1736
    NULL,                                       \
1737
    adpcm_decode_frame,                         \
1738
    .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
1739
}
1740
#else
1741
#define ADPCM_DECODER(id,name,long_name_)
1742
#endif
1743

    
1744
#define ADPCM_CODEC(id,name,long_name_)         \
1745
    ADPCM_ENCODER(id,name,long_name_); ADPCM_DECODER(id,name,long_name_)
1746

    
1747
/* Note: Do not forget to add new entries to the Makefile as well. */
1748
ADPCM_DECODER(CODEC_ID_ADPCM_4XM, adpcm_4xm, "ADPCM 4X Movie");
1749
ADPCM_DECODER(CODEC_ID_ADPCM_CT, adpcm_ct, "ADPCM Creative Technology");
1750
ADPCM_DECODER(CODEC_ID_ADPCM_EA, adpcm_ea, "ADPCM Electronic Arts");
1751
ADPCM_DECODER(CODEC_ID_ADPCM_EA_MAXIS_XA, adpcm_ea_maxis_xa, "ADPCM Electronic Arts Maxis CDROM XA");
1752
ADPCM_DECODER(CODEC_ID_ADPCM_EA_R1, adpcm_ea_r1, "ADPCM Electronic Arts R1");
1753
ADPCM_DECODER(CODEC_ID_ADPCM_EA_R2, adpcm_ea_r2, "ADPCM Electronic Arts R2");
1754
ADPCM_DECODER(CODEC_ID_ADPCM_EA_R3, adpcm_ea_r3, "ADPCM Electronic Arts R3");
1755
ADPCM_DECODER(CODEC_ID_ADPCM_EA_XAS, adpcm_ea_xas, "ADPCM Electronic Arts XAS");
1756
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_AMV, adpcm_ima_amv, "ADPCM IMA AMV");
1757
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK3, adpcm_ima_dk3, "ADPCM IMA Duck DK3");
1758
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK4, adpcm_ima_dk4, "ADPCM IMA Duck DK4");
1759
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_EACS, adpcm_ima_ea_eacs, "ADPCM IMA Electronic Arts EACS");
1760
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_SEAD, adpcm_ima_ea_sead, "ADPCM IMA Electronic Arts SEAD");
1761
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_ISS, adpcm_ima_iss, "ADPCM IMA Funcom ISS");
1762
ADPCM_CODEC  (CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt, "ADPCM IMA QuickTime");
1763
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_SMJPEG, adpcm_ima_smjpeg, "ADPCM IMA Loki SDL MJPEG");
1764
ADPCM_CODEC  (CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav, "ADPCM IMA WAV");
1765
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_WS, adpcm_ima_ws, "ADPCM IMA Westwood");
1766
ADPCM_CODEC  (CODEC_ID_ADPCM_MS, adpcm_ms, "ADPCM Microsoft");
1767
ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_2, adpcm_sbpro_2, "ADPCM Sound Blaster Pro 2-bit");
1768
ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_3, adpcm_sbpro_3, "ADPCM Sound Blaster Pro 2.6-bit");
1769
ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_4, adpcm_sbpro_4, "ADPCM Sound Blaster Pro 4-bit");
1770
ADPCM_CODEC  (CODEC_ID_ADPCM_SWF, adpcm_swf, "ADPCM Shockwave Flash");
1771
ADPCM_DECODER(CODEC_ID_ADPCM_THP, adpcm_thp, "ADPCM Nintendo Gamecube THP");
1772
ADPCM_DECODER(CODEC_ID_ADPCM_XA, adpcm_xa, "ADPCM CDROM XA");
1773
ADPCM_CODEC  (CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha, "ADPCM Yamaha");