Statistics
| Branch: | Revision:

ffmpeg / libavcodec / atrac1.c @ 2912e87a

History | View | Annotate | Download (12.2 KB)

1
/*
2
 * Atrac 1 compatible decoder
3
 * Copyright (c) 2009 Maxim Poliakovski
4
 * Copyright (c) 2009 Benjamin Larsson
5
 *
6
 * This file is part of Libav.
7
 *
8
 * Libav is free software; you can redistribute it and/or
9
 * modify it under the terms of the GNU Lesser General Public
10
 * License as published by the Free Software Foundation; either
11
 * version 2.1 of the License, or (at your option) any later version.
12
 *
13
 * Libav is distributed in the hope that it will be useful,
14
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16
 * Lesser General Public License for more details.
17
 *
18
 * You should have received a copy of the GNU Lesser General Public
19
 * License along with Libav; if not, write to the Free Software
20
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21
 */
22

    
23
/**
24
 * @file
25
 * Atrac 1 compatible decoder.
26
 * This decoder handles raw ATRAC1 data and probably SDDS data.
27
 */
28

    
29
/* Many thanks to Tim Craig for all the help! */
30

    
31
#include <math.h>
32
#include <stddef.h>
33
#include <stdio.h>
34

    
35
#include "avcodec.h"
36
#include "get_bits.h"
37
#include "dsputil.h"
38
#include "fft.h"
39

    
40
#include "atrac.h"
41
#include "atrac1data.h"
42

    
43
#define AT1_MAX_BFU      52                 ///< max number of block floating units in a sound unit
44
#define AT1_SU_SIZE      212                ///< number of bytes in a sound unit
45
#define AT1_SU_SAMPLES   512                ///< number of samples in a sound unit
46
#define AT1_FRAME_SIZE   AT1_SU_SIZE * 2
47
#define AT1_SU_MAX_BITS  AT1_SU_SIZE * 8
48
#define AT1_MAX_CHANNELS 2
49

    
50
#define AT1_QMF_BANDS    3
51
#define IDX_LOW_BAND     0
52
#define IDX_MID_BAND     1
53
#define IDX_HIGH_BAND    2
54

    
55
/**
56
 * Sound unit struct, one unit is used per channel
57
 */
58
typedef struct {
59
    int                 log2_block_count[AT1_QMF_BANDS];    ///< log2 number of blocks in a band
60
    int                 num_bfus;                           ///< number of Block Floating Units
61
    float*              spectrum[2];
62
    DECLARE_ALIGNED(16, float, spec1)[AT1_SU_SAMPLES];     ///< mdct buffer
63
    DECLARE_ALIGNED(16, float, spec2)[AT1_SU_SAMPLES];     ///< mdct buffer
64
    DECLARE_ALIGNED(16, float, fst_qmf_delay)[46];         ///< delay line for the 1st stacked QMF filter
65
    DECLARE_ALIGNED(16, float, snd_qmf_delay)[46];         ///< delay line for the 2nd stacked QMF filter
66
    DECLARE_ALIGNED(16, float, last_qmf_delay)[256+23];    ///< delay line for the last stacked QMF filter
67
} AT1SUCtx;
68

    
69
/**
70
 * The atrac1 context, holds all needed parameters for decoding
71
 */
72
typedef struct {
73
    AT1SUCtx            SUs[AT1_MAX_CHANNELS];              ///< channel sound unit
74
    DECLARE_ALIGNED(16, float, spec)[AT1_SU_SAMPLES];      ///< the mdct spectrum buffer
75

    
76
    DECLARE_ALIGNED(16, float,  low)[256];
77
    DECLARE_ALIGNED(16, float,  mid)[256];
78
    DECLARE_ALIGNED(16, float, high)[512];
79
    float*              bands[3];
80
    DECLARE_ALIGNED(16, float, out_samples)[AT1_MAX_CHANNELS][AT1_SU_SAMPLES];
81
    FFTContext          mdct_ctx[3];
82
    int                 channels;
83
    DSPContext          dsp;
84
} AT1Ctx;
85

    
86
/** size of the transform in samples in the long mode for each QMF band */
87
static const uint16_t samples_per_band[3] = {128, 128, 256};
88
static const uint8_t   mdct_long_nbits[3] = {7, 7, 8};
89

    
90

    
91
static void at1_imdct(AT1Ctx *q, float *spec, float *out, int nbits,
92
                      int rev_spec)
93
{
94
    FFTContext* mdct_context = &q->mdct_ctx[nbits - 5 - (nbits > 6)];
95
    int transf_size = 1 << nbits;
96

    
97
    if (rev_spec) {
98
        int i;
99
        for (i = 0; i < transf_size / 2; i++)
100
            FFSWAP(float, spec[i], spec[transf_size - 1 - i]);
101
    }
102
    ff_imdct_half(mdct_context, out, spec);
103
}
104

    
105

    
106
static int at1_imdct_block(AT1SUCtx* su, AT1Ctx *q)
107
{
108
    int          band_num, band_samples, log2_block_count, nbits, num_blocks, block_size;
109
    unsigned int start_pos, ref_pos = 0, pos = 0;
110

    
111
    for (band_num = 0; band_num < AT1_QMF_BANDS; band_num++) {
112
        float *prev_buf;
113
        int j;
114

    
115
        band_samples = samples_per_band[band_num];
116
        log2_block_count = su->log2_block_count[band_num];
117

    
118
        /* number of mdct blocks in the current QMF band: 1 - for long mode */
119
        /* 4 for short mode(low/middle bands) and 8 for short mode(high band)*/
120
        num_blocks = 1 << log2_block_count;
121

    
122
        if (num_blocks == 1) {
123
            /* mdct block size in samples: 128 (long mode, low & mid bands), */
124
            /* 256 (long mode, high band) and 32 (short mode, all bands) */
125
            block_size = band_samples >> log2_block_count;
126

    
127
            /* calc transform size in bits according to the block_size_mode */
128
            nbits = mdct_long_nbits[band_num] - log2_block_count;
129

    
130
            if (nbits != 5 && nbits != 7 && nbits != 8)
131
                return -1;
132
        } else {
133
            block_size = 32;
134
            nbits = 5;
135
        }
136

    
137
        start_pos = 0;
138
        prev_buf = &su->spectrum[1][ref_pos + band_samples - 16];
139
        for (j=0; j < num_blocks; j++) {
140
            at1_imdct(q, &q->spec[pos], &su->spectrum[0][ref_pos + start_pos], nbits, band_num);
141

    
142
            /* overlap and window */
143
            q->dsp.vector_fmul_window(&q->bands[band_num][start_pos], prev_buf,
144
                                      &su->spectrum[0][ref_pos + start_pos], ff_sine_32, 16);
145

    
146
            prev_buf = &su->spectrum[0][ref_pos+start_pos + 16];
147
            start_pos += block_size;
148
            pos += block_size;
149
        }
150

    
151
        if (num_blocks == 1)
152
            memcpy(q->bands[band_num] + 32, &su->spectrum[0][ref_pos + 16], 240 * sizeof(float));
153

    
154
        ref_pos += band_samples;
155
    }
156

    
157
    /* Swap buffers so the mdct overlap works */
158
    FFSWAP(float*, su->spectrum[0], su->spectrum[1]);
159

    
160
    return 0;
161
}
162

    
163
/**
164
 * Parse the block size mode byte
165
 */
166

    
167
static int at1_parse_bsm(GetBitContext* gb, int log2_block_cnt[AT1_QMF_BANDS])
168
{
169
    int log2_block_count_tmp, i;
170

    
171
    for (i = 0; i < 2; i++) {
172
        /* low and mid band */
173
        log2_block_count_tmp = get_bits(gb, 2);
174
        if (log2_block_count_tmp & 1)
175
            return -1;
176
        log2_block_cnt[i] = 2 - log2_block_count_tmp;
177
    }
178

    
179
    /* high band */
180
    log2_block_count_tmp = get_bits(gb, 2);
181
    if (log2_block_count_tmp != 0 && log2_block_count_tmp != 3)
182
        return -1;
183
    log2_block_cnt[IDX_HIGH_BAND] = 3 - log2_block_count_tmp;
184

    
185
    skip_bits(gb, 2);
186
    return 0;
187
}
188

    
189

    
190
static int at1_unpack_dequant(GetBitContext* gb, AT1SUCtx* su,
191
                              float spec[AT1_SU_SAMPLES])
192
{
193
    int bits_used, band_num, bfu_num, i;
194
    uint8_t idwls[AT1_MAX_BFU];                 ///< the word length indexes for each BFU
195
    uint8_t idsfs[AT1_MAX_BFU];                 ///< the scalefactor indexes for each BFU
196

    
197
    /* parse the info byte (2nd byte) telling how much BFUs were coded */
198
    su->num_bfus = bfu_amount_tab1[get_bits(gb, 3)];
199

    
200
    /* calc number of consumed bits:
201
        num_BFUs * (idwl(4bits) + idsf(6bits)) + log2_block_count(8bits) + info_byte(8bits)
202
        + info_byte_copy(8bits) + log2_block_count_copy(8bits) */
203
    bits_used = su->num_bfus * 10 + 32 +
204
                bfu_amount_tab2[get_bits(gb, 2)] +
205
                (bfu_amount_tab3[get_bits(gb, 3)] << 1);
206

    
207
    /* get word length index (idwl) for each BFU */
208
    for (i = 0; i < su->num_bfus; i++)
209
        idwls[i] = get_bits(gb, 4);
210

    
211
    /* get scalefactor index (idsf) for each BFU */
212
    for (i = 0; i < su->num_bfus; i++)
213
        idsfs[i] = get_bits(gb, 6);
214

    
215
    /* zero idwl/idsf for empty BFUs */
216
    for (i = su->num_bfus; i < AT1_MAX_BFU; i++)
217
        idwls[i] = idsfs[i] = 0;
218

    
219
    /* read in the spectral data and reconstruct MDCT spectrum of this channel */
220
    for (band_num = 0; band_num < AT1_QMF_BANDS; band_num++) {
221
        for (bfu_num = bfu_bands_t[band_num]; bfu_num < bfu_bands_t[band_num+1]; bfu_num++) {
222
            int pos;
223

    
224
            int num_specs = specs_per_bfu[bfu_num];
225
            int word_len  = !!idwls[bfu_num] + idwls[bfu_num];
226
            float scale_factor = ff_atrac_sf_table[idsfs[bfu_num]];
227
            bits_used += word_len * num_specs; /* add number of bits consumed by current BFU */
228

    
229
            /* check for bitstream overflow */
230
            if (bits_used > AT1_SU_MAX_BITS)
231
                return -1;
232

    
233
            /* get the position of the 1st spec according to the block size mode */
234
            pos = su->log2_block_count[band_num] ? bfu_start_short[bfu_num] : bfu_start_long[bfu_num];
235

    
236
            if (word_len) {
237
                float   max_quant = 1.0 / (float)((1 << (word_len - 1)) - 1);
238

    
239
                for (i = 0; i < num_specs; i++) {
240
                    /* read in a quantized spec and convert it to
241
                     * signed int and then inverse quantization
242
                     */
243
                    spec[pos+i] = get_sbits(gb, word_len) * scale_factor * max_quant;
244
                }
245
            } else { /* word_len = 0 -> empty BFU, zero all specs in the emty BFU */
246
                memset(&spec[pos], 0, num_specs * sizeof(float));
247
            }
248
        }
249
    }
250

    
251
    return 0;
252
}
253

    
254

    
255
static void at1_subband_synthesis(AT1Ctx *q, AT1SUCtx* su, float *pOut)
256
{
257
    float temp[256];
258
    float iqmf_temp[512 + 46];
259

    
260
    /* combine low and middle bands */
261
    atrac_iqmf(q->bands[0], q->bands[1], 128, temp, su->fst_qmf_delay, iqmf_temp);
262

    
263
    /* delay the signal of the high band by 23 samples */
264
    memcpy( su->last_qmf_delay,    &su->last_qmf_delay[256], sizeof(float) *  23);
265
    memcpy(&su->last_qmf_delay[23], q->bands[2],             sizeof(float) * 256);
266

    
267
    /* combine (low + middle) and high bands */
268
    atrac_iqmf(temp, su->last_qmf_delay, 256, pOut, su->snd_qmf_delay, iqmf_temp);
269
}
270

    
271

    
272
static int atrac1_decode_frame(AVCodecContext *avctx, void *data,
273
                               int *data_size, AVPacket *avpkt)
274
{
275
    const uint8_t *buf = avpkt->data;
276
    int buf_size       = avpkt->size;
277
    AT1Ctx *q          = avctx->priv_data;
278
    int ch, ret, i;
279
    GetBitContext gb;
280
    float* samples = data;
281

    
282

    
283
    if (buf_size < 212 * q->channels) {
284
        av_log(q,AV_LOG_ERROR,"Not enought data to decode!\n");
285
        return -1;
286
    }
287

    
288
    for (ch = 0; ch < q->channels; ch++) {
289
        AT1SUCtx* su = &q->SUs[ch];
290

    
291
        init_get_bits(&gb, &buf[212 * ch], 212 * 8);
292

    
293
        /* parse block_size_mode, 1st byte */
294
        ret = at1_parse_bsm(&gb, su->log2_block_count);
295
        if (ret < 0)
296
            return ret;
297

    
298
        ret = at1_unpack_dequant(&gb, su, q->spec);
299
        if (ret < 0)
300
            return ret;
301

    
302
        ret = at1_imdct_block(su, q);
303
        if (ret < 0)
304
            return ret;
305
        at1_subband_synthesis(q, su, q->out_samples[ch]);
306
    }
307

    
308
    /* interleave; FIXME, should create/use a DSP function */
309
    if (q->channels == 1) {
310
        /* mono */
311
        memcpy(samples, q->out_samples[0], AT1_SU_SAMPLES * 4);
312
    } else {
313
        /* stereo */
314
        for (i = 0; i < AT1_SU_SAMPLES; i++) {
315
            samples[i * 2]     = q->out_samples[0][i];
316
            samples[i * 2 + 1] = q->out_samples[1][i];
317
        }
318
    }
319

    
320
    *data_size = q->channels * AT1_SU_SAMPLES * sizeof(*samples);
321
    return avctx->block_align;
322
}
323

    
324

    
325
static av_cold int atrac1_decode_init(AVCodecContext *avctx)
326
{
327
    AT1Ctx *q = avctx->priv_data;
328

    
329
    avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
330

    
331
    q->channels = avctx->channels;
332

    
333
    /* Init the mdct transforms */
334
    ff_mdct_init(&q->mdct_ctx[0], 6, 1, -1.0/ (1 << 15));
335
    ff_mdct_init(&q->mdct_ctx[1], 8, 1, -1.0/ (1 << 15));
336
    ff_mdct_init(&q->mdct_ctx[2], 9, 1, -1.0/ (1 << 15));
337

    
338
    ff_init_ff_sine_windows(5);
339

    
340
    atrac_generate_tables();
341

    
342
    dsputil_init(&q->dsp, avctx);
343

    
344
    q->bands[0] = q->low;
345
    q->bands[1] = q->mid;
346
    q->bands[2] = q->high;
347

    
348
    /* Prepare the mdct overlap buffers */
349
    q->SUs[0].spectrum[0] = q->SUs[0].spec1;
350
    q->SUs[0].spectrum[1] = q->SUs[0].spec2;
351
    q->SUs[1].spectrum[0] = q->SUs[1].spec1;
352
    q->SUs[1].spectrum[1] = q->SUs[1].spec2;
353

    
354
    return 0;
355
}
356

    
357

    
358
static av_cold int atrac1_decode_end(AVCodecContext * avctx) {
359
    AT1Ctx *q = avctx->priv_data;
360

    
361
    ff_mdct_end(&q->mdct_ctx[0]);
362
    ff_mdct_end(&q->mdct_ctx[1]);
363
    ff_mdct_end(&q->mdct_ctx[2]);
364
    return 0;
365
}
366

    
367

    
368
AVCodec ff_atrac1_decoder = {
369
    .name = "atrac1",
370
    .type = AVMEDIA_TYPE_AUDIO,
371
    .id = CODEC_ID_ATRAC1,
372
    .priv_data_size = sizeof(AT1Ctx),
373
    .init = atrac1_decode_init,
374
    .close = atrac1_decode_end,
375
    .decode = atrac1_decode_frame,
376
    .long_name = NULL_IF_CONFIG_SMALL("Atrac 1 (Adaptive TRansform Acoustic Coding)"),
377
};