Statistics
| Branch: | Revision:

ffmpeg / libavcodec / lpc.c @ 2912e87a

History | View | Annotate | Download (7.83 KB)

1
/**
2
 * LPC utility code
3
 * Copyright (c) 2006  Justin Ruggles <justin.ruggles@gmail.com>
4
 *
5
 * This file is part of Libav.
6
 *
7
 * Libav is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * Libav is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with Libav; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21

    
22
#include "libavutil/lls.h"
23

    
24
#define LPC_USE_DOUBLE
25
#include "lpc.h"
26

    
27

    
28
/**
29
 * Apply Welch window function to audio block
30
 */
31
static void lpc_apply_welch_window_c(const int32_t *data, int len,
32
                                     double *w_data)
33
{
34
    int i, n2;
35
    double w;
36
    double c;
37

    
38
    assert(!(len&1)); //the optimization in r11881 does not support odd len
39
                      //if someone wants odd len extend the change in r11881
40

    
41
    n2 = (len >> 1);
42
    c = 2.0 / (len - 1.0);
43

    
44
    w_data+=n2;
45
      data+=n2;
46
    for(i=0; i<n2; i++) {
47
        w = c - n2 + i;
48
        w = 1.0 - (w * w);
49
        w_data[-i-1] = data[-i-1] * w;
50
        w_data[+i  ] = data[+i  ] * w;
51
    }
52
}
53

    
54
/**
55
 * Calculate autocorrelation data from audio samples
56
 * A Welch window function is applied before calculation.
57
 */
58
static void lpc_compute_autocorr_c(const double *data, int len, int lag,
59
                                   double *autoc)
60
{
61
    int i, j;
62

    
63
    for(j=0; j<lag; j+=2){
64
        double sum0 = 1.0, sum1 = 1.0;
65
        for(i=j; i<len; i++){
66
            sum0 += data[i] * data[i-j];
67
            sum1 += data[i] * data[i-j-1];
68
        }
69
        autoc[j  ] = sum0;
70
        autoc[j+1] = sum1;
71
    }
72

    
73
    if(j==lag){
74
        double sum = 1.0;
75
        for(i=j-1; i<len; i+=2){
76
            sum += data[i  ] * data[i-j  ]
77
                 + data[i+1] * data[i-j+1];
78
        }
79
        autoc[j] = sum;
80
    }
81
}
82

    
83
/**
84
 * Quantize LPC coefficients
85
 */
86
static void quantize_lpc_coefs(double *lpc_in, int order, int precision,
87
                               int32_t *lpc_out, int *shift, int max_shift, int zero_shift)
88
{
89
    int i;
90
    double cmax, error;
91
    int32_t qmax;
92
    int sh;
93

    
94
    /* define maximum levels */
95
    qmax = (1 << (precision - 1)) - 1;
96

    
97
    /* find maximum coefficient value */
98
    cmax = 0.0;
99
    for(i=0; i<order; i++) {
100
        cmax= FFMAX(cmax, fabs(lpc_in[i]));
101
    }
102

    
103
    /* if maximum value quantizes to zero, return all zeros */
104
    if(cmax * (1 << max_shift) < 1.0) {
105
        *shift = zero_shift;
106
        memset(lpc_out, 0, sizeof(int32_t) * order);
107
        return;
108
    }
109

    
110
    /* calculate level shift which scales max coeff to available bits */
111
    sh = max_shift;
112
    while((cmax * (1 << sh) > qmax) && (sh > 0)) {
113
        sh--;
114
    }
115

    
116
    /* since negative shift values are unsupported in decoder, scale down
117
       coefficients instead */
118
    if(sh == 0 && cmax > qmax) {
119
        double scale = ((double)qmax) / cmax;
120
        for(i=0; i<order; i++) {
121
            lpc_in[i] *= scale;
122
        }
123
    }
124

    
125
    /* output quantized coefficients and level shift */
126
    error=0;
127
    for(i=0; i<order; i++) {
128
        error -= lpc_in[i] * (1 << sh);
129
        lpc_out[i] = av_clip(lrintf(error), -qmax, qmax);
130
        error -= lpc_out[i];
131
    }
132
    *shift = sh;
133
}
134

    
135
static int estimate_best_order(double *ref, int min_order, int max_order)
136
{
137
    int i, est;
138

    
139
    est = min_order;
140
    for(i=max_order-1; i>=min_order-1; i--) {
141
        if(ref[i] > 0.10) {
142
            est = i+1;
143
            break;
144
        }
145
    }
146
    return est;
147
}
148

    
149
/**
150
 * Calculate LPC coefficients for multiple orders
151
 *
152
 * @param use_lpc LPC method for determining coefficients
153
 * 0  = LPC with fixed pre-defined coeffs
154
 * 1  = LPC with coeffs determined by Levinson-Durbin recursion
155
 * 2+ = LPC with coeffs determined by Cholesky factorization using (use_lpc-1) passes.
156
 */
157
int ff_lpc_calc_coefs(LPCContext *s,
158
                      const int32_t *samples, int blocksize, int min_order,
159
                      int max_order, int precision,
160
                      int32_t coefs[][MAX_LPC_ORDER], int *shift,
161
                      enum AVLPCType lpc_type, int lpc_passes,
162
                      int omethod, int max_shift, int zero_shift)
163
{
164
    double autoc[MAX_LPC_ORDER+1];
165
    double ref[MAX_LPC_ORDER];
166
    double lpc[MAX_LPC_ORDER][MAX_LPC_ORDER];
167
    int i, j, pass;
168
    int opt_order;
169

    
170
    assert(max_order >= MIN_LPC_ORDER && max_order <= MAX_LPC_ORDER &&
171
           lpc_type > AV_LPC_TYPE_FIXED);
172

    
173
    /* reinit LPC context if parameters have changed */
174
    if (blocksize != s->blocksize || max_order != s->max_order ||
175
        lpc_type  != s->lpc_type) {
176
        ff_lpc_end(s);
177
        ff_lpc_init(s, blocksize, max_order, lpc_type);
178
    }
179

    
180
    if (lpc_type == AV_LPC_TYPE_LEVINSON) {
181
        double *windowed_samples = s->windowed_samples + max_order;
182

    
183
        s->lpc_apply_welch_window(samples, blocksize, windowed_samples);
184

    
185
        s->lpc_compute_autocorr(windowed_samples, blocksize, max_order, autoc);
186

    
187
        compute_lpc_coefs(autoc, max_order, &lpc[0][0], MAX_LPC_ORDER, 0, 1);
188

    
189
        for(i=0; i<max_order; i++)
190
            ref[i] = fabs(lpc[i][i]);
191
    } else if (lpc_type == AV_LPC_TYPE_CHOLESKY) {
192
        LLSModel m[2];
193
        double var[MAX_LPC_ORDER+1], av_uninit(weight);
194

    
195
        for(pass=0; pass<lpc_passes; pass++){
196
            av_init_lls(&m[pass&1], max_order);
197

    
198
            weight=0;
199
            for(i=max_order; i<blocksize; i++){
200
                for(j=0; j<=max_order; j++)
201
                    var[j]= samples[i-j];
202

    
203
                if(pass){
204
                    double eval, inv, rinv;
205
                    eval= av_evaluate_lls(&m[(pass-1)&1], var+1, max_order-1);
206
                    eval= (512>>pass) + fabs(eval - var[0]);
207
                    inv = 1/eval;
208
                    rinv = sqrt(inv);
209
                    for(j=0; j<=max_order; j++)
210
                        var[j] *= rinv;
211
                    weight += inv;
212
                }else
213
                    weight++;
214

    
215
                av_update_lls(&m[pass&1], var, 1.0);
216
            }
217
            av_solve_lls(&m[pass&1], 0.001, 0);
218
        }
219

    
220
        for(i=0; i<max_order; i++){
221
            for(j=0; j<max_order; j++)
222
                lpc[i][j]=-m[(pass-1)&1].coeff[i][j];
223
            ref[i]= sqrt(m[(pass-1)&1].variance[i] / weight) * (blocksize - max_order) / 4000;
224
        }
225
        for(i=max_order-1; i>0; i--)
226
            ref[i] = ref[i-1] - ref[i];
227
    }
228
    opt_order = max_order;
229

    
230
    if(omethod == ORDER_METHOD_EST) {
231
        opt_order = estimate_best_order(ref, min_order, max_order);
232
        i = opt_order-1;
233
        quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i], max_shift, zero_shift);
234
    } else {
235
        for(i=min_order-1; i<max_order; i++) {
236
            quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i], max_shift, zero_shift);
237
        }
238
    }
239

    
240
    return opt_order;
241
}
242

    
243
av_cold int ff_lpc_init(LPCContext *s, int blocksize, int max_order,
244
                        enum AVLPCType lpc_type)
245
{
246
    s->blocksize = blocksize;
247
    s->max_order = max_order;
248
    s->lpc_type  = lpc_type;
249

    
250
    if (lpc_type == AV_LPC_TYPE_LEVINSON) {
251
        s->windowed_samples = av_mallocz((blocksize + max_order + 2) *
252
                                         sizeof(*s->windowed_samples));
253
        if (!s->windowed_samples)
254
            return AVERROR(ENOMEM);
255
    } else {
256
        s->windowed_samples = NULL;
257
    }
258

    
259
    s->lpc_apply_welch_window = lpc_apply_welch_window_c;
260
    s->lpc_compute_autocorr   = lpc_compute_autocorr_c;
261

    
262
    if (HAVE_MMX)
263
        ff_lpc_init_x86(s);
264

    
265
    return 0;
266
}
267

    
268
av_cold void ff_lpc_end(LPCContext *s)
269
{
270
    av_freep(&s->windowed_samples);
271
}