Statistics
| Branch: | Revision:

ffmpeg / libavcodec / mpegaudiodec.c @ 2912e87a

History | View | Annotate | Download (73 KB)

1
/*
2
 * MPEG Audio decoder
3
 * Copyright (c) 2001, 2002 Fabrice Bellard
4
 *
5
 * This file is part of Libav.
6
 *
7
 * Libav is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * Libav is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with Libav; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21

    
22
/**
23
 * @file
24
 * MPEG Audio decoder.
25
 */
26

    
27
#include "avcodec.h"
28
#include "get_bits.h"
29
#include "dsputil.h"
30

    
31
/*
32
 * TODO:
33
 *  - in low precision mode, use more 16 bit multiplies in synth filter
34
 *  - test lsf / mpeg25 extensively.
35
 */
36

    
37
#include "mpegaudio.h"
38
#include "mpegaudiodecheader.h"
39

    
40
#include "mathops.h"
41

    
42
#if CONFIG_FLOAT
43
#   define SHR(a,b)       ((a)*(1.0f/(1<<(b))))
44
#   define compute_antialias compute_antialias_float
45
#   define FIXR_OLD(a)    ((int)((a) * FRAC_ONE + 0.5))
46
#   define FIXR(x)        ((float)(x))
47
#   define FIXHR(x)       ((float)(x))
48
#   define MULH3(x, y, s) ((s)*(y)*(x))
49
#   define MULLx(x, y, s) ((y)*(x))
50
#   define RENAME(a) a ## _float
51
#else
52
#   define SHR(a,b)       ((a)>>(b))
53
#   define compute_antialias compute_antialias_integer
54
/* WARNING: only correct for posititive numbers */
55
#   define FIXR_OLD(a)    ((int)((a) * FRAC_ONE + 0.5))
56
#   define FIXR(a)        ((int)((a) * FRAC_ONE + 0.5))
57
#   define FIXHR(a)       ((int)((a) * (1LL<<32) + 0.5))
58
#   define MULH3(x, y, s) MULH((s)*(x), y)
59
#   define MULLx(x, y, s) MULL(x,y,s)
60
#   define RENAME(a)      a
61
#endif
62

    
63
/****************/
64

    
65
#define HEADER_SIZE 4
66

    
67
#include "mpegaudiodata.h"
68
#include "mpegaudiodectab.h"
69

    
70
#if CONFIG_FLOAT
71
#    include "fft.h"
72
#else
73
#    include "dct32.c"
74
#endif
75

    
76
static void compute_antialias(MPADecodeContext *s, GranuleDef *g);
77
static void apply_window_mp3_c(MPA_INT *synth_buf, MPA_INT *window,
78
                               int *dither_state, OUT_INT *samples, int incr);
79

    
80
/* vlc structure for decoding layer 3 huffman tables */
81
static VLC huff_vlc[16];
82
static VLC_TYPE huff_vlc_tables[
83
  0+128+128+128+130+128+154+166+
84
  142+204+190+170+542+460+662+414
85
  ][2];
86
static const int huff_vlc_tables_sizes[16] = {
87
  0, 128, 128, 128, 130, 128, 154, 166,
88
  142, 204, 190, 170, 542, 460, 662, 414
89
};
90
static VLC huff_quad_vlc[2];
91
static VLC_TYPE huff_quad_vlc_tables[128+16][2];
92
static const int huff_quad_vlc_tables_sizes[2] = {
93
  128, 16
94
};
95
/* computed from band_size_long */
96
static uint16_t band_index_long[9][23];
97
#include "mpegaudio_tablegen.h"
98
/* intensity stereo coef table */
99
static INTFLOAT is_table[2][16];
100
static INTFLOAT is_table_lsf[2][2][16];
101
static int32_t csa_table[8][4];
102
static float csa_table_float[8][4];
103
static INTFLOAT mdct_win[8][36];
104

    
105
static int16_t division_tab3[1<<6 ];
106
static int16_t division_tab5[1<<8 ];
107
static int16_t division_tab9[1<<11];
108

    
109
static int16_t * const division_tabs[4] = {
110
    division_tab3, division_tab5, NULL, division_tab9
111
};
112

    
113
/* lower 2 bits: modulo 3, higher bits: shift */
114
static uint16_t scale_factor_modshift[64];
115
/* [i][j]:  2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
116
static int32_t scale_factor_mult[15][3];
117
/* mult table for layer 2 group quantization */
118

    
119
#define SCALE_GEN(v) \
120
{ FIXR_OLD(1.0 * (v)), FIXR_OLD(0.7937005259 * (v)), FIXR_OLD(0.6299605249 * (v)) }
121

    
122
static const int32_t scale_factor_mult2[3][3] = {
123
    SCALE_GEN(4.0 / 3.0), /* 3 steps */
124
    SCALE_GEN(4.0 / 5.0), /* 5 steps */
125
    SCALE_GEN(4.0 / 9.0), /* 9 steps */
126
};
127

    
128
DECLARE_ALIGNED(16, MPA_INT, RENAME(ff_mpa_synth_window))[512+256];
129

    
130
/**
131
 * Convert region offsets to region sizes and truncate
132
 * size to big_values.
133
 */
134
static void ff_region_offset2size(GranuleDef *g){
135
    int i, k, j=0;
136
    g->region_size[2] = (576 / 2);
137
    for(i=0;i<3;i++) {
138
        k = FFMIN(g->region_size[i], g->big_values);
139
        g->region_size[i] = k - j;
140
        j = k;
141
    }
142
}
143

    
144
static void ff_init_short_region(MPADecodeContext *s, GranuleDef *g){
145
    if (g->block_type == 2)
146
        g->region_size[0] = (36 / 2);
147
    else {
148
        if (s->sample_rate_index <= 2)
149
            g->region_size[0] = (36 / 2);
150
        else if (s->sample_rate_index != 8)
151
            g->region_size[0] = (54 / 2);
152
        else
153
            g->region_size[0] = (108 / 2);
154
    }
155
    g->region_size[1] = (576 / 2);
156
}
157

    
158
static void ff_init_long_region(MPADecodeContext *s, GranuleDef *g, int ra1, int ra2){
159
    int l;
160
    g->region_size[0] =
161
        band_index_long[s->sample_rate_index][ra1 + 1] >> 1;
162
    /* should not overflow */
163
    l = FFMIN(ra1 + ra2 + 2, 22);
164
    g->region_size[1] =
165
        band_index_long[s->sample_rate_index][l] >> 1;
166
}
167

    
168
static void ff_compute_band_indexes(MPADecodeContext *s, GranuleDef *g){
169
    if (g->block_type == 2) {
170
        if (g->switch_point) {
171
            /* if switched mode, we handle the 36 first samples as
172
                long blocks.  For 8000Hz, we handle the 48 first
173
                exponents as long blocks (XXX: check this!) */
174
            if (s->sample_rate_index <= 2)
175
                g->long_end = 8;
176
            else if (s->sample_rate_index != 8)
177
                g->long_end = 6;
178
            else
179
                g->long_end = 4; /* 8000 Hz */
180

    
181
            g->short_start = 2 + (s->sample_rate_index != 8);
182
        } else {
183
            g->long_end = 0;
184
            g->short_start = 0;
185
        }
186
    } else {
187
        g->short_start = 13;
188
        g->long_end = 22;
189
    }
190
}
191

    
192
/* layer 1 unscaling */
193
/* n = number of bits of the mantissa minus 1 */
194
static inline int l1_unscale(int n, int mant, int scale_factor)
195
{
196
    int shift, mod;
197
    int64_t val;
198

    
199
    shift = scale_factor_modshift[scale_factor];
200
    mod = shift & 3;
201
    shift >>= 2;
202
    val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
203
    shift += n;
204
    /* NOTE: at this point, 1 <= shift >= 21 + 15 */
205
    return (int)((val + (1LL << (shift - 1))) >> shift);
206
}
207

    
208
static inline int l2_unscale_group(int steps, int mant, int scale_factor)
209
{
210
    int shift, mod, val;
211

    
212
    shift = scale_factor_modshift[scale_factor];
213
    mod = shift & 3;
214
    shift >>= 2;
215

    
216
    val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
217
    /* NOTE: at this point, 0 <= shift <= 21 */
218
    if (shift > 0)
219
        val = (val + (1 << (shift - 1))) >> shift;
220
    return val;
221
}
222

    
223
/* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
224
static inline int l3_unscale(int value, int exponent)
225
{
226
    unsigned int m;
227
    int e;
228

    
229
    e = table_4_3_exp  [4*value + (exponent&3)];
230
    m = table_4_3_value[4*value + (exponent&3)];
231
    e -= (exponent >> 2);
232
    assert(e>=1);
233
    if (e > 31)
234
        return 0;
235
    m = (m + (1 << (e-1))) >> e;
236

    
237
    return m;
238
}
239

    
240
/* all integer n^(4/3) computation code */
241
#define DEV_ORDER 13
242

    
243
#define POW_FRAC_BITS 24
244
#define POW_FRAC_ONE    (1 << POW_FRAC_BITS)
245
#define POW_FIX(a)   ((int)((a) * POW_FRAC_ONE))
246
#define POW_MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> POW_FRAC_BITS)
247

    
248
static int dev_4_3_coefs[DEV_ORDER];
249

    
250
#if 0 /* unused */
251
static int pow_mult3[3] = {
252
    POW_FIX(1.0),
253
    POW_FIX(1.25992104989487316476),
254
    POW_FIX(1.58740105196819947474),
255
};
256
#endif
257

    
258
static av_cold void int_pow_init(void)
259
{
260
    int i, a;
261

    
262
    a = POW_FIX(1.0);
263
    for(i=0;i<DEV_ORDER;i++) {
264
        a = POW_MULL(a, POW_FIX(4.0 / 3.0) - i * POW_FIX(1.0)) / (i + 1);
265
        dev_4_3_coefs[i] = a;
266
    }
267
}
268

    
269
#if 0 /* unused, remove? */
270
/* return the mantissa and the binary exponent */
271
static int int_pow(int i, int *exp_ptr)
272
{
273
    int e, er, eq, j;
274
    int a, a1;
275

276
    /* renormalize */
277
    a = i;
278
    e = POW_FRAC_BITS;
279
    while (a < (1 << (POW_FRAC_BITS - 1))) {
280
        a = a << 1;
281
        e--;
282
    }
283
    a -= (1 << POW_FRAC_BITS);
284
    a1 = 0;
285
    for(j = DEV_ORDER - 1; j >= 0; j--)
286
        a1 = POW_MULL(a, dev_4_3_coefs[j] + a1);
287
    a = (1 << POW_FRAC_BITS) + a1;
288
    /* exponent compute (exact) */
289
    e = e * 4;
290
    er = e % 3;
291
    eq = e / 3;
292
    a = POW_MULL(a, pow_mult3[er]);
293
    while (a >= 2 * POW_FRAC_ONE) {
294
        a = a >> 1;
295
        eq++;
296
    }
297
    /* convert to float */
298
    while (a < POW_FRAC_ONE) {
299
        a = a << 1;
300
        eq--;
301
    }
302
    /* now POW_FRAC_ONE <= a < 2 * POW_FRAC_ONE */
303
#if POW_FRAC_BITS > FRAC_BITS
304
    a = (a + (1 << (POW_FRAC_BITS - FRAC_BITS - 1))) >> (POW_FRAC_BITS - FRAC_BITS);
305
    /* correct overflow */
306
    if (a >= 2 * (1 << FRAC_BITS)) {
307
        a = a >> 1;
308
        eq++;
309
    }
310
#endif
311
    *exp_ptr = eq;
312
    return a;
313
}
314
#endif
315

    
316
static av_cold int decode_init(AVCodecContext * avctx)
317
{
318
    MPADecodeContext *s = avctx->priv_data;
319
    static int init=0;
320
    int i, j, k;
321

    
322
    s->avctx = avctx;
323
    s->apply_window_mp3 = apply_window_mp3_c;
324
#if HAVE_MMX && CONFIG_FLOAT
325
    ff_mpegaudiodec_init_mmx(s);
326
#endif
327
#if CONFIG_FLOAT
328
    ff_dct_init(&s->dct, 5, DCT_II);
329
#endif
330
    if (HAVE_ALTIVEC && CONFIG_FLOAT) ff_mpegaudiodec_init_altivec(s);
331

    
332
    avctx->sample_fmt= OUT_FMT;
333
    s->error_recognition= avctx->error_recognition;
334

    
335
    if (!init && !avctx->parse_only) {
336
        int offset;
337

    
338
        /* scale factors table for layer 1/2 */
339
        for(i=0;i<64;i++) {
340
            int shift, mod;
341
            /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
342
            shift = (i / 3);
343
            mod = i % 3;
344
            scale_factor_modshift[i] = mod | (shift << 2);
345
        }
346

    
347
        /* scale factor multiply for layer 1 */
348
        for(i=0;i<15;i++) {
349
            int n, norm;
350
            n = i + 2;
351
            norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
352
            scale_factor_mult[i][0] = MULLx(norm, FIXR(1.0          * 2.0), FRAC_BITS);
353
            scale_factor_mult[i][1] = MULLx(norm, FIXR(0.7937005259 * 2.0), FRAC_BITS);
354
            scale_factor_mult[i][2] = MULLx(norm, FIXR(0.6299605249 * 2.0), FRAC_BITS);
355
            av_dlog(avctx, "%d: norm=%x s=%x %x %x\n",
356
                    i, norm,
357
                    scale_factor_mult[i][0],
358
                    scale_factor_mult[i][1],
359
                    scale_factor_mult[i][2]);
360
        }
361

    
362
        RENAME(ff_mpa_synth_init)(RENAME(ff_mpa_synth_window));
363

    
364
        /* huffman decode tables */
365
        offset = 0;
366
        for(i=1;i<16;i++) {
367
            const HuffTable *h = &mpa_huff_tables[i];
368
            int xsize, x, y;
369
            uint8_t  tmp_bits [512];
370
            uint16_t tmp_codes[512];
371

    
372
            memset(tmp_bits , 0, sizeof(tmp_bits ));
373
            memset(tmp_codes, 0, sizeof(tmp_codes));
374

    
375
            xsize = h->xsize;
376

    
377
            j = 0;
378
            for(x=0;x<xsize;x++) {
379
                for(y=0;y<xsize;y++){
380
                    tmp_bits [(x << 5) | y | ((x&&y)<<4)]= h->bits [j  ];
381
                    tmp_codes[(x << 5) | y | ((x&&y)<<4)]= h->codes[j++];
382
                }
383
            }
384

    
385
            /* XXX: fail test */
386
            huff_vlc[i].table = huff_vlc_tables+offset;
387
            huff_vlc[i].table_allocated = huff_vlc_tables_sizes[i];
388
            init_vlc(&huff_vlc[i], 7, 512,
389
                     tmp_bits, 1, 1, tmp_codes, 2, 2,
390
                     INIT_VLC_USE_NEW_STATIC);
391
            offset += huff_vlc_tables_sizes[i];
392
        }
393
        assert(offset == FF_ARRAY_ELEMS(huff_vlc_tables));
394

    
395
        offset = 0;
396
        for(i=0;i<2;i++) {
397
            huff_quad_vlc[i].table = huff_quad_vlc_tables+offset;
398
            huff_quad_vlc[i].table_allocated = huff_quad_vlc_tables_sizes[i];
399
            init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
400
                     mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1,
401
                     INIT_VLC_USE_NEW_STATIC);
402
            offset += huff_quad_vlc_tables_sizes[i];
403
        }
404
        assert(offset == FF_ARRAY_ELEMS(huff_quad_vlc_tables));
405

    
406
        for(i=0;i<9;i++) {
407
            k = 0;
408
            for(j=0;j<22;j++) {
409
                band_index_long[i][j] = k;
410
                k += band_size_long[i][j];
411
            }
412
            band_index_long[i][22] = k;
413
        }
414

    
415
        /* compute n ^ (4/3) and store it in mantissa/exp format */
416

    
417
        int_pow_init();
418
        mpegaudio_tableinit();
419

    
420
        for (i = 0; i < 4; i++)
421
            if (ff_mpa_quant_bits[i] < 0)
422
                for (j = 0; j < (1<<(-ff_mpa_quant_bits[i]+1)); j++) {
423
                    int val1, val2, val3, steps;
424
                    int val = j;
425
                    steps  = ff_mpa_quant_steps[i];
426
                    val1 = val % steps;
427
                    val /= steps;
428
                    val2 = val % steps;
429
                    val3 = val / steps;
430
                    division_tabs[i][j] = val1 + (val2 << 4) + (val3 << 8);
431
                }
432

    
433

    
434
        for(i=0;i<7;i++) {
435
            float f;
436
            INTFLOAT v;
437
            if (i != 6) {
438
                f = tan((double)i * M_PI / 12.0);
439
                v = FIXR(f / (1.0 + f));
440
            } else {
441
                v = FIXR(1.0);
442
            }
443
            is_table[0][i] = v;
444
            is_table[1][6 - i] = v;
445
        }
446
        /* invalid values */
447
        for(i=7;i<16;i++)
448
            is_table[0][i] = is_table[1][i] = 0.0;
449

    
450
        for(i=0;i<16;i++) {
451
            double f;
452
            int e, k;
453

    
454
            for(j=0;j<2;j++) {
455
                e = -(j + 1) * ((i + 1) >> 1);
456
                f = pow(2.0, e / 4.0);
457
                k = i & 1;
458
                is_table_lsf[j][k ^ 1][i] = FIXR(f);
459
                is_table_lsf[j][k][i] = FIXR(1.0);
460
                av_dlog(avctx, "is_table_lsf %d %d: %x %x\n",
461
                        i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]);
462
            }
463
        }
464

    
465
        for(i=0;i<8;i++) {
466
            float ci, cs, ca;
467
            ci = ci_table[i];
468
            cs = 1.0 / sqrt(1.0 + ci * ci);
469
            ca = cs * ci;
470
            csa_table[i][0] = FIXHR(cs/4);
471
            csa_table[i][1] = FIXHR(ca/4);
472
            csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
473
            csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
474
            csa_table_float[i][0] = cs;
475
            csa_table_float[i][1] = ca;
476
            csa_table_float[i][2] = ca + cs;
477
            csa_table_float[i][3] = ca - cs;
478
        }
479

    
480
        /* compute mdct windows */
481
        for(i=0;i<36;i++) {
482
            for(j=0; j<4; j++){
483
                double d;
484

    
485
                if(j==2 && i%3 != 1)
486
                    continue;
487

    
488
                d= sin(M_PI * (i + 0.5) / 36.0);
489
                if(j==1){
490
                    if     (i>=30) d= 0;
491
                    else if(i>=24) d= sin(M_PI * (i - 18 + 0.5) / 12.0);
492
                    else if(i>=18) d= 1;
493
                }else if(j==3){
494
                    if     (i<  6) d= 0;
495
                    else if(i< 12) d= sin(M_PI * (i -  6 + 0.5) / 12.0);
496
                    else if(i< 18) d= 1;
497
                }
498
                //merge last stage of imdct into the window coefficients
499
                d*= 0.5 / cos(M_PI*(2*i + 19)/72);
500

    
501
                if(j==2)
502
                    mdct_win[j][i/3] = FIXHR((d / (1<<5)));
503
                else
504
                    mdct_win[j][i  ] = FIXHR((d / (1<<5)));
505
            }
506
        }
507

    
508
        /* NOTE: we do frequency inversion adter the MDCT by changing
509
           the sign of the right window coefs */
510
        for(j=0;j<4;j++) {
511
            for(i=0;i<36;i+=2) {
512
                mdct_win[j + 4][i] = mdct_win[j][i];
513
                mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1];
514
            }
515
        }
516

    
517
        init = 1;
518
    }
519

    
520
    if (avctx->codec_id == CODEC_ID_MP3ADU)
521
        s->adu_mode = 1;
522
    return 0;
523
}
524

    
525

    
526
#if CONFIG_FLOAT
527
static inline float round_sample(float *sum)
528
{
529
    float sum1=*sum;
530
    *sum = 0;
531
    return sum1;
532
}
533

    
534
/* signed 16x16 -> 32 multiply add accumulate */
535
#define MACS(rt, ra, rb) rt+=(ra)*(rb)
536

    
537
/* signed 16x16 -> 32 multiply */
538
#define MULS(ra, rb) ((ra)*(rb))
539

    
540
#define MLSS(rt, ra, rb) rt-=(ra)*(rb)
541

    
542
#elif FRAC_BITS <= 15
543

    
544
static inline int round_sample(int *sum)
545
{
546
    int sum1;
547
    sum1 = (*sum) >> OUT_SHIFT;
548
    *sum &= (1<<OUT_SHIFT)-1;
549
    return av_clip(sum1, OUT_MIN, OUT_MAX);
550
}
551

    
552
/* signed 16x16 -> 32 multiply add accumulate */
553
#define MACS(rt, ra, rb) MAC16(rt, ra, rb)
554

    
555
/* signed 16x16 -> 32 multiply */
556
#define MULS(ra, rb) MUL16(ra, rb)
557

    
558
#define MLSS(rt, ra, rb) MLS16(rt, ra, rb)
559

    
560
#else
561

    
562
static inline int round_sample(int64_t *sum)
563
{
564
    int sum1;
565
    sum1 = (int)((*sum) >> OUT_SHIFT);
566
    *sum &= (1<<OUT_SHIFT)-1;
567
    return av_clip(sum1, OUT_MIN, OUT_MAX);
568
}
569

    
570
#   define MULS(ra, rb) MUL64(ra, rb)
571
#   define MACS(rt, ra, rb) MAC64(rt, ra, rb)
572
#   define MLSS(rt, ra, rb) MLS64(rt, ra, rb)
573
#endif
574

    
575
#define SUM8(op, sum, w, p)               \
576
{                                         \
577
    op(sum, (w)[0 * 64], (p)[0 * 64]);    \
578
    op(sum, (w)[1 * 64], (p)[1 * 64]);    \
579
    op(sum, (w)[2 * 64], (p)[2 * 64]);    \
580
    op(sum, (w)[3 * 64], (p)[3 * 64]);    \
581
    op(sum, (w)[4 * 64], (p)[4 * 64]);    \
582
    op(sum, (w)[5 * 64], (p)[5 * 64]);    \
583
    op(sum, (w)[6 * 64], (p)[6 * 64]);    \
584
    op(sum, (w)[7 * 64], (p)[7 * 64]);    \
585
}
586

    
587
#define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \
588
{                                               \
589
    INTFLOAT tmp;\
590
    tmp = p[0 * 64];\
591
    op1(sum1, (w1)[0 * 64], tmp);\
592
    op2(sum2, (w2)[0 * 64], tmp);\
593
    tmp = p[1 * 64];\
594
    op1(sum1, (w1)[1 * 64], tmp);\
595
    op2(sum2, (w2)[1 * 64], tmp);\
596
    tmp = p[2 * 64];\
597
    op1(sum1, (w1)[2 * 64], tmp);\
598
    op2(sum2, (w2)[2 * 64], tmp);\
599
    tmp = p[3 * 64];\
600
    op1(sum1, (w1)[3 * 64], tmp);\
601
    op2(sum2, (w2)[3 * 64], tmp);\
602
    tmp = p[4 * 64];\
603
    op1(sum1, (w1)[4 * 64], tmp);\
604
    op2(sum2, (w2)[4 * 64], tmp);\
605
    tmp = p[5 * 64];\
606
    op1(sum1, (w1)[5 * 64], tmp);\
607
    op2(sum2, (w2)[5 * 64], tmp);\
608
    tmp = p[6 * 64];\
609
    op1(sum1, (w1)[6 * 64], tmp);\
610
    op2(sum2, (w2)[6 * 64], tmp);\
611
    tmp = p[7 * 64];\
612
    op1(sum1, (w1)[7 * 64], tmp);\
613
    op2(sum2, (w2)[7 * 64], tmp);\
614
}
615

    
616
void av_cold RENAME(ff_mpa_synth_init)(MPA_INT *window)
617
{
618
    int i, j;
619

    
620
    /* max = 18760, max sum over all 16 coefs : 44736 */
621
    for(i=0;i<257;i++) {
622
        INTFLOAT v;
623
        v = ff_mpa_enwindow[i];
624
#if CONFIG_FLOAT
625
        v *= 1.0 / (1LL<<(16 + FRAC_BITS));
626
#elif WFRAC_BITS < 16
627
        v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
628
#endif
629
        window[i] = v;
630
        if ((i & 63) != 0)
631
            v = -v;
632
        if (i != 0)
633
            window[512 - i] = v;
634
    }
635

    
636
    // Needed for avoiding shuffles in ASM implementations
637
    for(i=0; i < 8; i++)
638
        for(j=0; j < 16; j++)
639
            window[512+16*i+j] = window[64*i+32-j];
640

    
641
    for(i=0; i < 8; i++)
642
        for(j=0; j < 16; j++)
643
            window[512+128+16*i+j] = window[64*i+48-j];
644
}
645

    
646
static void apply_window_mp3_c(MPA_INT *synth_buf, MPA_INT *window,
647
                               int *dither_state, OUT_INT *samples, int incr)
648
{
649
    register const MPA_INT *w, *w2, *p;
650
    int j;
651
    OUT_INT *samples2;
652
#if CONFIG_FLOAT
653
    float sum, sum2;
654
#elif FRAC_BITS <= 15
655
    int sum, sum2;
656
#else
657
    int64_t sum, sum2;
658
#endif
659

    
660
    /* copy to avoid wrap */
661
    memcpy(synth_buf + 512, synth_buf, 32 * sizeof(*synth_buf));
662

    
663
    samples2 = samples + 31 * incr;
664
    w = window;
665
    w2 = window + 31;
666

    
667
    sum = *dither_state;
668
    p = synth_buf + 16;
669
    SUM8(MACS, sum, w, p);
670
    p = synth_buf + 48;
671
    SUM8(MLSS, sum, w + 32, p);
672
    *samples = round_sample(&sum);
673
    samples += incr;
674
    w++;
675

    
676
    /* we calculate two samples at the same time to avoid one memory
677
       access per two sample */
678
    for(j=1;j<16;j++) {
679
        sum2 = 0;
680
        p = synth_buf + 16 + j;
681
        SUM8P2(sum, MACS, sum2, MLSS, w, w2, p);
682
        p = synth_buf + 48 - j;
683
        SUM8P2(sum, MLSS, sum2, MLSS, w + 32, w2 + 32, p);
684

    
685
        *samples = round_sample(&sum);
686
        samples += incr;
687
        sum += sum2;
688
        *samples2 = round_sample(&sum);
689
        samples2 -= incr;
690
        w++;
691
        w2--;
692
    }
693

    
694
    p = synth_buf + 32;
695
    SUM8(MLSS, sum, w + 32, p);
696
    *samples = round_sample(&sum);
697
    *dither_state= sum;
698
}
699

    
700

    
701
/* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
702
   32 samples. */
703
/* XXX: optimize by avoiding ring buffer usage */
704
#if !CONFIG_FLOAT
705
void ff_mpa_synth_filter(MPA_INT *synth_buf_ptr, int *synth_buf_offset,
706
                         MPA_INT *window, int *dither_state,
707
                         OUT_INT *samples, int incr,
708
                         INTFLOAT sb_samples[SBLIMIT])
709
{
710
    register MPA_INT *synth_buf;
711
    int offset;
712
#if FRAC_BITS <= 15
713
    int32_t tmp[32];
714
    int j;
715
#endif
716

    
717
    offset = *synth_buf_offset;
718
    synth_buf = synth_buf_ptr + offset;
719

    
720
#if FRAC_BITS <= 15
721
    dct32(tmp, sb_samples);
722
    for(j=0;j<32;j++) {
723
        /* NOTE: can cause a loss in precision if very high amplitude
724
           sound */
725
        synth_buf[j] = av_clip_int16(tmp[j]);
726
    }
727
#else
728
    dct32(synth_buf, sb_samples);
729
#endif
730

    
731
    apply_window_mp3_c(synth_buf, window, dither_state, samples, incr);
732

    
733
    offset = (offset - 32) & 511;
734
    *synth_buf_offset = offset;
735
}
736
#endif
737

    
738
#define C3 FIXHR(0.86602540378443864676/2)
739

    
740
/* 0.5 / cos(pi*(2*i+1)/36) */
741
static const INTFLOAT icos36[9] = {
742
    FIXR(0.50190991877167369479),
743
    FIXR(0.51763809020504152469), //0
744
    FIXR(0.55168895948124587824),
745
    FIXR(0.61038729438072803416),
746
    FIXR(0.70710678118654752439), //1
747
    FIXR(0.87172339781054900991),
748
    FIXR(1.18310079157624925896),
749
    FIXR(1.93185165257813657349), //2
750
    FIXR(5.73685662283492756461),
751
};
752

    
753
/* 0.5 / cos(pi*(2*i+1)/36) */
754
static const INTFLOAT icos36h[9] = {
755
    FIXHR(0.50190991877167369479/2),
756
    FIXHR(0.51763809020504152469/2), //0
757
    FIXHR(0.55168895948124587824/2),
758
    FIXHR(0.61038729438072803416/2),
759
    FIXHR(0.70710678118654752439/2), //1
760
    FIXHR(0.87172339781054900991/2),
761
    FIXHR(1.18310079157624925896/4),
762
    FIXHR(1.93185165257813657349/4), //2
763
//    FIXHR(5.73685662283492756461),
764
};
765

    
766
/* 12 points IMDCT. We compute it "by hand" by factorizing obvious
767
   cases. */
768
static void imdct12(INTFLOAT *out, INTFLOAT *in)
769
{
770
    INTFLOAT in0, in1, in2, in3, in4, in5, t1, t2;
771

    
772
    in0= in[0*3];
773
    in1= in[1*3] + in[0*3];
774
    in2= in[2*3] + in[1*3];
775
    in3= in[3*3] + in[2*3];
776
    in4= in[4*3] + in[3*3];
777
    in5= in[5*3] + in[4*3];
778
    in5 += in3;
779
    in3 += in1;
780

    
781
    in2= MULH3(in2, C3, 2);
782
    in3= MULH3(in3, C3, 4);
783

    
784
    t1 = in0 - in4;
785
    t2 = MULH3(in1 - in5, icos36h[4], 2);
786

    
787
    out[ 7]=
788
    out[10]= t1 + t2;
789
    out[ 1]=
790
    out[ 4]= t1 - t2;
791

    
792
    in0 += SHR(in4, 1);
793
    in4 = in0 + in2;
794
    in5 += 2*in1;
795
    in1 = MULH3(in5 + in3, icos36h[1], 1);
796
    out[ 8]=
797
    out[ 9]= in4 + in1;
798
    out[ 2]=
799
    out[ 3]= in4 - in1;
800

    
801
    in0 -= in2;
802
    in5 = MULH3(in5 - in3, icos36h[7], 2);
803
    out[ 0]=
804
    out[ 5]= in0 - in5;
805
    out[ 6]=
806
    out[11]= in0 + in5;
807
}
808

    
809
/* cos(pi*i/18) */
810
#define C1 FIXHR(0.98480775301220805936/2)
811
#define C2 FIXHR(0.93969262078590838405/2)
812
#define C3 FIXHR(0.86602540378443864676/2)
813
#define C4 FIXHR(0.76604444311897803520/2)
814
#define C5 FIXHR(0.64278760968653932632/2)
815
#define C6 FIXHR(0.5/2)
816
#define C7 FIXHR(0.34202014332566873304/2)
817
#define C8 FIXHR(0.17364817766693034885/2)
818

    
819

    
820
/* using Lee like decomposition followed by hand coded 9 points DCT */
821
static void imdct36(INTFLOAT *out, INTFLOAT *buf, INTFLOAT *in, INTFLOAT *win)
822
{
823
    int i, j;
824
    INTFLOAT t0, t1, t2, t3, s0, s1, s2, s3;
825
    INTFLOAT tmp[18], *tmp1, *in1;
826

    
827
    for(i=17;i>=1;i--)
828
        in[i] += in[i-1];
829
    for(i=17;i>=3;i-=2)
830
        in[i] += in[i-2];
831

    
832
    for(j=0;j<2;j++) {
833
        tmp1 = tmp + j;
834
        in1 = in + j;
835

    
836
        t2 = in1[2*4] + in1[2*8] - in1[2*2];
837

    
838
        t3 = in1[2*0] + SHR(in1[2*6],1);
839
        t1 = in1[2*0] - in1[2*6];
840
        tmp1[ 6] = t1 - SHR(t2,1);
841
        tmp1[16] = t1 + t2;
842

    
843
        t0 = MULH3(in1[2*2] + in1[2*4] ,    C2, 2);
844
        t1 = MULH3(in1[2*4] - in1[2*8] , -2*C8, 1);
845
        t2 = MULH3(in1[2*2] + in1[2*8] ,   -C4, 2);
846

    
847
        tmp1[10] = t3 - t0 - t2;
848
        tmp1[ 2] = t3 + t0 + t1;
849
        tmp1[14] = t3 + t2 - t1;
850

    
851
        tmp1[ 4] = MULH3(in1[2*5] + in1[2*7] - in1[2*1], -C3, 2);
852
        t2 = MULH3(in1[2*1] + in1[2*5],    C1, 2);
853
        t3 = MULH3(in1[2*5] - in1[2*7], -2*C7, 1);
854
        t0 = MULH3(in1[2*3], C3, 2);
855

    
856
        t1 = MULH3(in1[2*1] + in1[2*7],   -C5, 2);
857

    
858
        tmp1[ 0] = t2 + t3 + t0;
859
        tmp1[12] = t2 + t1 - t0;
860
        tmp1[ 8] = t3 - t1 - t0;
861
    }
862

    
863
    i = 0;
864
    for(j=0;j<4;j++) {
865
        t0 = tmp[i];
866
        t1 = tmp[i + 2];
867
        s0 = t1 + t0;
868
        s2 = t1 - t0;
869

    
870
        t2 = tmp[i + 1];
871
        t3 = tmp[i + 3];
872
        s1 = MULH3(t3 + t2, icos36h[j], 2);
873
        s3 = MULLx(t3 - t2, icos36[8 - j], FRAC_BITS);
874

    
875
        t0 = s0 + s1;
876
        t1 = s0 - s1;
877
        out[(9 + j)*SBLIMIT] =  MULH3(t1, win[9 + j], 1) + buf[9 + j];
878
        out[(8 - j)*SBLIMIT] =  MULH3(t1, win[8 - j], 1) + buf[8 - j];
879
        buf[9 + j] = MULH3(t0, win[18 + 9 + j], 1);
880
        buf[8 - j] = MULH3(t0, win[18 + 8 - j], 1);
881

    
882
        t0 = s2 + s3;
883
        t1 = s2 - s3;
884
        out[(9 + 8 - j)*SBLIMIT] =  MULH3(t1, win[9 + 8 - j], 1) + buf[9 + 8 - j];
885
        out[(        j)*SBLIMIT] =  MULH3(t1, win[        j], 1) + buf[        j];
886
        buf[9 + 8 - j] = MULH3(t0, win[18 + 9 + 8 - j], 1);
887
        buf[      + j] = MULH3(t0, win[18         + j], 1);
888
        i += 4;
889
    }
890

    
891
    s0 = tmp[16];
892
    s1 = MULH3(tmp[17], icos36h[4], 2);
893
    t0 = s0 + s1;
894
    t1 = s0 - s1;
895
    out[(9 + 4)*SBLIMIT] =  MULH3(t1, win[9 + 4], 1) + buf[9 + 4];
896
    out[(8 - 4)*SBLIMIT] =  MULH3(t1, win[8 - 4], 1) + buf[8 - 4];
897
    buf[9 + 4] = MULH3(t0, win[18 + 9 + 4], 1);
898
    buf[8 - 4] = MULH3(t0, win[18 + 8 - 4], 1);
899
}
900

    
901
/* return the number of decoded frames */
902
static int mp_decode_layer1(MPADecodeContext *s)
903
{
904
    int bound, i, v, n, ch, j, mant;
905
    uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
906
    uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
907

    
908
    if (s->mode == MPA_JSTEREO)
909
        bound = (s->mode_ext + 1) * 4;
910
    else
911
        bound = SBLIMIT;
912

    
913
    /* allocation bits */
914
    for(i=0;i<bound;i++) {
915
        for(ch=0;ch<s->nb_channels;ch++) {
916
            allocation[ch][i] = get_bits(&s->gb, 4);
917
        }
918
    }
919
    for(i=bound;i<SBLIMIT;i++) {
920
        allocation[0][i] = get_bits(&s->gb, 4);
921
    }
922

    
923
    /* scale factors */
924
    for(i=0;i<bound;i++) {
925
        for(ch=0;ch<s->nb_channels;ch++) {
926
            if (allocation[ch][i])
927
                scale_factors[ch][i] = get_bits(&s->gb, 6);
928
        }
929
    }
930
    for(i=bound;i<SBLIMIT;i++) {
931
        if (allocation[0][i]) {
932
            scale_factors[0][i] = get_bits(&s->gb, 6);
933
            scale_factors[1][i] = get_bits(&s->gb, 6);
934
        }
935
    }
936

    
937
    /* compute samples */
938
    for(j=0;j<12;j++) {
939
        for(i=0;i<bound;i++) {
940
            for(ch=0;ch<s->nb_channels;ch++) {
941
                n = allocation[ch][i];
942
                if (n) {
943
                    mant = get_bits(&s->gb, n + 1);
944
                    v = l1_unscale(n, mant, scale_factors[ch][i]);
945
                } else {
946
                    v = 0;
947
                }
948
                s->sb_samples[ch][j][i] = v;
949
            }
950
        }
951
        for(i=bound;i<SBLIMIT;i++) {
952
            n = allocation[0][i];
953
            if (n) {
954
                mant = get_bits(&s->gb, n + 1);
955
                v = l1_unscale(n, mant, scale_factors[0][i]);
956
                s->sb_samples[0][j][i] = v;
957
                v = l1_unscale(n, mant, scale_factors[1][i]);
958
                s->sb_samples[1][j][i] = v;
959
            } else {
960
                s->sb_samples[0][j][i] = 0;
961
                s->sb_samples[1][j][i] = 0;
962
            }
963
        }
964
    }
965
    return 12;
966
}
967

    
968
static int mp_decode_layer2(MPADecodeContext *s)
969
{
970
    int sblimit; /* number of used subbands */
971
    const unsigned char *alloc_table;
972
    int table, bit_alloc_bits, i, j, ch, bound, v;
973
    unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
974
    unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
975
    unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
976
    int scale, qindex, bits, steps, k, l, m, b;
977

    
978
    /* select decoding table */
979
    table = ff_mpa_l2_select_table(s->bit_rate / 1000, s->nb_channels,
980
                            s->sample_rate, s->lsf);
981
    sblimit = ff_mpa_sblimit_table[table];
982
    alloc_table = ff_mpa_alloc_tables[table];
983

    
984
    if (s->mode == MPA_JSTEREO)
985
        bound = (s->mode_ext + 1) * 4;
986
    else
987
        bound = sblimit;
988

    
989
    av_dlog(s->avctx, "bound=%d sblimit=%d\n", bound, sblimit);
990

    
991
    /* sanity check */
992
    if( bound > sblimit ) bound = sblimit;
993

    
994
    /* parse bit allocation */
995
    j = 0;
996
    for(i=0;i<bound;i++) {
997
        bit_alloc_bits = alloc_table[j];
998
        for(ch=0;ch<s->nb_channels;ch++) {
999
            bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
1000
        }
1001
        j += 1 << bit_alloc_bits;
1002
    }
1003
    for(i=bound;i<sblimit;i++) {
1004
        bit_alloc_bits = alloc_table[j];
1005
        v = get_bits(&s->gb, bit_alloc_bits);
1006
        bit_alloc[0][i] = v;
1007
        bit_alloc[1][i] = v;
1008
        j += 1 << bit_alloc_bits;
1009
    }
1010

    
1011
    /* scale codes */
1012
    for(i=0;i<sblimit;i++) {
1013
        for(ch=0;ch<s->nb_channels;ch++) {
1014
            if (bit_alloc[ch][i])
1015
                scale_code[ch][i] = get_bits(&s->gb, 2);
1016
        }
1017
    }
1018

    
1019
    /* scale factors */
1020
    for(i=0;i<sblimit;i++) {
1021
        for(ch=0;ch<s->nb_channels;ch++) {
1022
            if (bit_alloc[ch][i]) {
1023
                sf = scale_factors[ch][i];
1024
                switch(scale_code[ch][i]) {
1025
                default:
1026
                case 0:
1027
                    sf[0] = get_bits(&s->gb, 6);
1028
                    sf[1] = get_bits(&s->gb, 6);
1029
                    sf[2] = get_bits(&s->gb, 6);
1030
                    break;
1031
                case 2:
1032
                    sf[0] = get_bits(&s->gb, 6);
1033
                    sf[1] = sf[0];
1034
                    sf[2] = sf[0];
1035
                    break;
1036
                case 1:
1037
                    sf[0] = get_bits(&s->gb, 6);
1038
                    sf[2] = get_bits(&s->gb, 6);
1039
                    sf[1] = sf[0];
1040
                    break;
1041
                case 3:
1042
                    sf[0] = get_bits(&s->gb, 6);
1043
                    sf[2] = get_bits(&s->gb, 6);
1044
                    sf[1] = sf[2];
1045
                    break;
1046
                }
1047
            }
1048
        }
1049
    }
1050

    
1051
    /* samples */
1052
    for(k=0;k<3;k++) {
1053
        for(l=0;l<12;l+=3) {
1054
            j = 0;
1055
            for(i=0;i<bound;i++) {
1056
                bit_alloc_bits = alloc_table[j];
1057
                for(ch=0;ch<s->nb_channels;ch++) {
1058
                    b = bit_alloc[ch][i];
1059
                    if (b) {
1060
                        scale = scale_factors[ch][i][k];
1061
                        qindex = alloc_table[j+b];
1062
                        bits = ff_mpa_quant_bits[qindex];
1063
                        if (bits < 0) {
1064
                            int v2;
1065
                            /* 3 values at the same time */
1066
                            v = get_bits(&s->gb, -bits);
1067
                            v2 = division_tabs[qindex][v];
1068
                            steps  = ff_mpa_quant_steps[qindex];
1069

    
1070
                            s->sb_samples[ch][k * 12 + l + 0][i] =
1071
                                l2_unscale_group(steps, v2        & 15, scale);
1072
                            s->sb_samples[ch][k * 12 + l + 1][i] =
1073
                                l2_unscale_group(steps, (v2 >> 4) & 15, scale);
1074
                            s->sb_samples[ch][k * 12 + l + 2][i] =
1075
                                l2_unscale_group(steps,  v2 >> 8      , scale);
1076
                        } else {
1077
                            for(m=0;m<3;m++) {
1078
                                v = get_bits(&s->gb, bits);
1079
                                v = l1_unscale(bits - 1, v, scale);
1080
                                s->sb_samples[ch][k * 12 + l + m][i] = v;
1081
                            }
1082
                        }
1083
                    } else {
1084
                        s->sb_samples[ch][k * 12 + l + 0][i] = 0;
1085
                        s->sb_samples[ch][k * 12 + l + 1][i] = 0;
1086
                        s->sb_samples[ch][k * 12 + l + 2][i] = 0;
1087
                    }
1088
                }
1089
                /* next subband in alloc table */
1090
                j += 1 << bit_alloc_bits;
1091
            }
1092
            /* XXX: find a way to avoid this duplication of code */
1093
            for(i=bound;i<sblimit;i++) {
1094
                bit_alloc_bits = alloc_table[j];
1095
                b = bit_alloc[0][i];
1096
                if (b) {
1097
                    int mant, scale0, scale1;
1098
                    scale0 = scale_factors[0][i][k];
1099
                    scale1 = scale_factors[1][i][k];
1100
                    qindex = alloc_table[j+b];
1101
                    bits = ff_mpa_quant_bits[qindex];
1102
                    if (bits < 0) {
1103
                        /* 3 values at the same time */
1104
                        v = get_bits(&s->gb, -bits);
1105
                        steps = ff_mpa_quant_steps[qindex];
1106
                        mant = v % steps;
1107
                        v = v / steps;
1108
                        s->sb_samples[0][k * 12 + l + 0][i] =
1109
                            l2_unscale_group(steps, mant, scale0);
1110
                        s->sb_samples[1][k * 12 + l + 0][i] =
1111
                            l2_unscale_group(steps, mant, scale1);
1112
                        mant = v % steps;
1113
                        v = v / steps;
1114
                        s->sb_samples[0][k * 12 + l + 1][i] =
1115
                            l2_unscale_group(steps, mant, scale0);
1116
                        s->sb_samples[1][k * 12 + l + 1][i] =
1117
                            l2_unscale_group(steps, mant, scale1);
1118
                        s->sb_samples[0][k * 12 + l + 2][i] =
1119
                            l2_unscale_group(steps, v, scale0);
1120
                        s->sb_samples[1][k * 12 + l + 2][i] =
1121
                            l2_unscale_group(steps, v, scale1);
1122
                    } else {
1123
                        for(m=0;m<3;m++) {
1124
                            mant = get_bits(&s->gb, bits);
1125
                            s->sb_samples[0][k * 12 + l + m][i] =
1126
                                l1_unscale(bits - 1, mant, scale0);
1127
                            s->sb_samples[1][k * 12 + l + m][i] =
1128
                                l1_unscale(bits - 1, mant, scale1);
1129
                        }
1130
                    }
1131
                } else {
1132
                    s->sb_samples[0][k * 12 + l + 0][i] = 0;
1133
                    s->sb_samples[0][k * 12 + l + 1][i] = 0;
1134
                    s->sb_samples[0][k * 12 + l + 2][i] = 0;
1135
                    s->sb_samples[1][k * 12 + l + 0][i] = 0;
1136
                    s->sb_samples[1][k * 12 + l + 1][i] = 0;
1137
                    s->sb_samples[1][k * 12 + l + 2][i] = 0;
1138
                }
1139
                /* next subband in alloc table */
1140
                j += 1 << bit_alloc_bits;
1141
            }
1142
            /* fill remaining samples to zero */
1143
            for(i=sblimit;i<SBLIMIT;i++) {
1144
                for(ch=0;ch<s->nb_channels;ch++) {
1145
                    s->sb_samples[ch][k * 12 + l + 0][i] = 0;
1146
                    s->sb_samples[ch][k * 12 + l + 1][i] = 0;
1147
                    s->sb_samples[ch][k * 12 + l + 2][i] = 0;
1148
                }
1149
            }
1150
        }
1151
    }
1152
    return 3 * 12;
1153
}
1154

    
1155
#define SPLIT(dst,sf,n)\
1156
    if(n==3){\
1157
        int m= (sf*171)>>9;\
1158
        dst= sf - 3*m;\
1159
        sf=m;\
1160
    }else if(n==4){\
1161
        dst= sf&3;\
1162
        sf>>=2;\
1163
    }else if(n==5){\
1164
        int m= (sf*205)>>10;\
1165
        dst= sf - 5*m;\
1166
        sf=m;\
1167
    }else if(n==6){\
1168
        int m= (sf*171)>>10;\
1169
        dst= sf - 6*m;\
1170
        sf=m;\
1171
    }else{\
1172
        dst=0;\
1173
    }
1174

    
1175
static av_always_inline void lsf_sf_expand(int *slen,
1176
                                 int sf, int n1, int n2, int n3)
1177
{
1178
    SPLIT(slen[3], sf, n3)
1179
    SPLIT(slen[2], sf, n2)
1180
    SPLIT(slen[1], sf, n1)
1181
    slen[0] = sf;
1182
}
1183

    
1184
static void exponents_from_scale_factors(MPADecodeContext *s,
1185
                                         GranuleDef *g,
1186
                                         int16_t *exponents)
1187
{
1188
    const uint8_t *bstab, *pretab;
1189
    int len, i, j, k, l, v0, shift, gain, gains[3];
1190
    int16_t *exp_ptr;
1191

    
1192
    exp_ptr = exponents;
1193
    gain = g->global_gain - 210;
1194
    shift = g->scalefac_scale + 1;
1195

    
1196
    bstab = band_size_long[s->sample_rate_index];
1197
    pretab = mpa_pretab[g->preflag];
1198
    for(i=0;i<g->long_end;i++) {
1199
        v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift) + 400;
1200
        len = bstab[i];
1201
        for(j=len;j>0;j--)
1202
            *exp_ptr++ = v0;
1203
    }
1204

    
1205
    if (g->short_start < 13) {
1206
        bstab = band_size_short[s->sample_rate_index];
1207
        gains[0] = gain - (g->subblock_gain[0] << 3);
1208
        gains[1] = gain - (g->subblock_gain[1] << 3);
1209
        gains[2] = gain - (g->subblock_gain[2] << 3);
1210
        k = g->long_end;
1211
        for(i=g->short_start;i<13;i++) {
1212
            len = bstab[i];
1213
            for(l=0;l<3;l++) {
1214
                v0 = gains[l] - (g->scale_factors[k++] << shift) + 400;
1215
                for(j=len;j>0;j--)
1216
                *exp_ptr++ = v0;
1217
            }
1218
        }
1219
    }
1220
}
1221

    
1222
/* handle n = 0 too */
1223
static inline int get_bitsz(GetBitContext *s, int n)
1224
{
1225
    if (n == 0)
1226
        return 0;
1227
    else
1228
        return get_bits(s, n);
1229
}
1230

    
1231

    
1232
static void switch_buffer(MPADecodeContext *s, int *pos, int *end_pos, int *end_pos2){
1233
    if(s->in_gb.buffer && *pos >= s->gb.size_in_bits){
1234
        s->gb= s->in_gb;
1235
        s->in_gb.buffer=NULL;
1236
        assert((get_bits_count(&s->gb) & 7) == 0);
1237
        skip_bits_long(&s->gb, *pos - *end_pos);
1238
        *end_pos2=
1239
        *end_pos= *end_pos2 + get_bits_count(&s->gb) - *pos;
1240
        *pos= get_bits_count(&s->gb);
1241
    }
1242
}
1243

    
1244
/* Following is a optimized code for
1245
            INTFLOAT v = *src
1246
            if(get_bits1(&s->gb))
1247
                v = -v;
1248
            *dst = v;
1249
*/
1250
#if CONFIG_FLOAT
1251
#define READ_FLIP_SIGN(dst,src)\
1252
            v = AV_RN32A(src) ^ (get_bits1(&s->gb)<<31);\
1253
            AV_WN32A(dst, v);
1254
#else
1255
#define READ_FLIP_SIGN(dst,src)\
1256
            v= -get_bits1(&s->gb);\
1257
            *(dst) = (*(src) ^ v) - v;
1258
#endif
1259

    
1260
static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
1261
                          int16_t *exponents, int end_pos2)
1262
{
1263
    int s_index;
1264
    int i;
1265
    int last_pos, bits_left;
1266
    VLC *vlc;
1267
    int end_pos= FFMIN(end_pos2, s->gb.size_in_bits);
1268

    
1269
    /* low frequencies (called big values) */
1270
    s_index = 0;
1271
    for(i=0;i<3;i++) {
1272
        int j, k, l, linbits;
1273
        j = g->region_size[i];
1274
        if (j == 0)
1275
            continue;
1276
        /* select vlc table */
1277
        k = g->table_select[i];
1278
        l = mpa_huff_data[k][0];
1279
        linbits = mpa_huff_data[k][1];
1280
        vlc = &huff_vlc[l];
1281

    
1282
        if(!l){
1283
            memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*2*j);
1284
            s_index += 2*j;
1285
            continue;
1286
        }
1287

    
1288
        /* read huffcode and compute each couple */
1289
        for(;j>0;j--) {
1290
            int exponent, x, y;
1291
            int v;
1292
            int pos= get_bits_count(&s->gb);
1293

    
1294
            if (pos >= end_pos){
1295
//                av_log(NULL, AV_LOG_ERROR, "pos: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
1296
                switch_buffer(s, &pos, &end_pos, &end_pos2);
1297
//                av_log(NULL, AV_LOG_ERROR, "new pos: %d %d\n", pos, end_pos);
1298
                if(pos >= end_pos)
1299
                    break;
1300
            }
1301
            y = get_vlc2(&s->gb, vlc->table, 7, 3);
1302

    
1303
            if(!y){
1304
                g->sb_hybrid[s_index  ] =
1305
                g->sb_hybrid[s_index+1] = 0;
1306
                s_index += 2;
1307
                continue;
1308
            }
1309

    
1310
            exponent= exponents[s_index];
1311

    
1312
            av_dlog(s->avctx, "region=%d n=%d x=%d y=%d exp=%d\n",
1313
                    i, g->region_size[i] - j, x, y, exponent);
1314
            if(y&16){
1315
                x = y >> 5;
1316
                y = y & 0x0f;
1317
                if (x < 15){
1318
                    READ_FLIP_SIGN(g->sb_hybrid+s_index, RENAME(expval_table)[ exponent ]+x)
1319
                }else{
1320
                    x += get_bitsz(&s->gb, linbits);
1321
                    v = l3_unscale(x, exponent);
1322
                    if (get_bits1(&s->gb))
1323
                        v = -v;
1324
                    g->sb_hybrid[s_index] = v;
1325
                }
1326
                if (y < 15){
1327
                    READ_FLIP_SIGN(g->sb_hybrid+s_index+1, RENAME(expval_table)[ exponent ]+y)
1328
                }else{
1329
                    y += get_bitsz(&s->gb, linbits);
1330
                    v = l3_unscale(y, exponent);
1331
                    if (get_bits1(&s->gb))
1332
                        v = -v;
1333
                    g->sb_hybrid[s_index+1] = v;
1334
                }
1335
            }else{
1336
                x = y >> 5;
1337
                y = y & 0x0f;
1338
                x += y;
1339
                if (x < 15){
1340
                    READ_FLIP_SIGN(g->sb_hybrid+s_index+!!y, RENAME(expval_table)[ exponent ]+x)
1341
                }else{
1342
                    x += get_bitsz(&s->gb, linbits);
1343
                    v = l3_unscale(x, exponent);
1344
                    if (get_bits1(&s->gb))
1345
                        v = -v;
1346
                    g->sb_hybrid[s_index+!!y] = v;
1347
                }
1348
                g->sb_hybrid[s_index+ !y] = 0;
1349
            }
1350
            s_index+=2;
1351
        }
1352
    }
1353

    
1354
    /* high frequencies */
1355
    vlc = &huff_quad_vlc[g->count1table_select];
1356
    last_pos=0;
1357
    while (s_index <= 572) {
1358
        int pos, code;
1359
        pos = get_bits_count(&s->gb);
1360
        if (pos >= end_pos) {
1361
            if (pos > end_pos2 && last_pos){
1362
                /* some encoders generate an incorrect size for this
1363
                   part. We must go back into the data */
1364
                s_index -= 4;
1365
                skip_bits_long(&s->gb, last_pos - pos);
1366
                av_log(s->avctx, AV_LOG_INFO, "overread, skip %d enddists: %d %d\n", last_pos - pos, end_pos-pos, end_pos2-pos);
1367
                if(s->error_recognition >= FF_ER_COMPLIANT)
1368
                    s_index=0;
1369
                break;
1370
            }
1371
//                av_log(NULL, AV_LOG_ERROR, "pos2: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
1372
            switch_buffer(s, &pos, &end_pos, &end_pos2);
1373
//                av_log(NULL, AV_LOG_ERROR, "new pos2: %d %d %d\n", pos, end_pos, s_index);
1374
            if(pos >= end_pos)
1375
                break;
1376
        }
1377
        last_pos= pos;
1378

    
1379
        code = get_vlc2(&s->gb, vlc->table, vlc->bits, 1);
1380
        av_dlog(s->avctx, "t=%d code=%d\n", g->count1table_select, code);
1381
        g->sb_hybrid[s_index+0]=
1382
        g->sb_hybrid[s_index+1]=
1383
        g->sb_hybrid[s_index+2]=
1384
        g->sb_hybrid[s_index+3]= 0;
1385
        while(code){
1386
            static const int idxtab[16]={3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0};
1387
            int v;
1388
            int pos= s_index+idxtab[code];
1389
            code ^= 8>>idxtab[code];
1390
            READ_FLIP_SIGN(g->sb_hybrid+pos, RENAME(exp_table)+exponents[pos])
1391
        }
1392
        s_index+=4;
1393
    }
1394
    /* skip extension bits */
1395
    bits_left = end_pos2 - get_bits_count(&s->gb);
1396
//av_log(NULL, AV_LOG_ERROR, "left:%d buf:%p\n", bits_left, s->in_gb.buffer);
1397
    if (bits_left < 0 && s->error_recognition >= FF_ER_COMPLIANT) {
1398
        av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
1399
        s_index=0;
1400
    }else if(bits_left > 0 && s->error_recognition >= FF_ER_AGGRESSIVE){
1401
        av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
1402
        s_index=0;
1403
    }
1404
    memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*(576 - s_index));
1405
    skip_bits_long(&s->gb, bits_left);
1406

    
1407
    i= get_bits_count(&s->gb);
1408
    switch_buffer(s, &i, &end_pos, &end_pos2);
1409

    
1410
    return 0;
1411
}
1412

    
1413
/* Reorder short blocks from bitstream order to interleaved order. It
1414
   would be faster to do it in parsing, but the code would be far more
1415
   complicated */
1416
static void reorder_block(MPADecodeContext *s, GranuleDef *g)
1417
{
1418
    int i, j, len;
1419
    INTFLOAT *ptr, *dst, *ptr1;
1420
    INTFLOAT tmp[576];
1421

    
1422
    if (g->block_type != 2)
1423
        return;
1424

    
1425
    if (g->switch_point) {
1426
        if (s->sample_rate_index != 8) {
1427
            ptr = g->sb_hybrid + 36;
1428
        } else {
1429
            ptr = g->sb_hybrid + 48;
1430
        }
1431
    } else {
1432
        ptr = g->sb_hybrid;
1433
    }
1434

    
1435
    for(i=g->short_start;i<13;i++) {
1436
        len = band_size_short[s->sample_rate_index][i];
1437
        ptr1 = ptr;
1438
        dst = tmp;
1439
        for(j=len;j>0;j--) {
1440
            *dst++ = ptr[0*len];
1441
            *dst++ = ptr[1*len];
1442
            *dst++ = ptr[2*len];
1443
            ptr++;
1444
        }
1445
        ptr+=2*len;
1446
        memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1));
1447
    }
1448
}
1449

    
1450
#define ISQRT2 FIXR(0.70710678118654752440)
1451

    
1452
static void compute_stereo(MPADecodeContext *s,
1453
                           GranuleDef *g0, GranuleDef *g1)
1454
{
1455
    int i, j, k, l;
1456
    int sf_max, sf, len, non_zero_found;
1457
    INTFLOAT (*is_tab)[16], *tab0, *tab1, tmp0, tmp1, v1, v2;
1458
    int non_zero_found_short[3];
1459

    
1460
    /* intensity stereo */
1461
    if (s->mode_ext & MODE_EXT_I_STEREO) {
1462
        if (!s->lsf) {
1463
            is_tab = is_table;
1464
            sf_max = 7;
1465
        } else {
1466
            is_tab = is_table_lsf[g1->scalefac_compress & 1];
1467
            sf_max = 16;
1468
        }
1469

    
1470
        tab0 = g0->sb_hybrid + 576;
1471
        tab1 = g1->sb_hybrid + 576;
1472

    
1473
        non_zero_found_short[0] = 0;
1474
        non_zero_found_short[1] = 0;
1475
        non_zero_found_short[2] = 0;
1476
        k = (13 - g1->short_start) * 3 + g1->long_end - 3;
1477
        for(i = 12;i >= g1->short_start;i--) {
1478
            /* for last band, use previous scale factor */
1479
            if (i != 11)
1480
                k -= 3;
1481
            len = band_size_short[s->sample_rate_index][i];
1482
            for(l=2;l>=0;l--) {
1483
                tab0 -= len;
1484
                tab1 -= len;
1485
                if (!non_zero_found_short[l]) {
1486
                    /* test if non zero band. if so, stop doing i-stereo */
1487
                    for(j=0;j<len;j++) {
1488
                        if (tab1[j] != 0) {
1489
                            non_zero_found_short[l] = 1;
1490
                            goto found1;
1491
                        }
1492
                    }
1493
                    sf = g1->scale_factors[k + l];
1494
                    if (sf >= sf_max)
1495
                        goto found1;
1496

    
1497
                    v1 = is_tab[0][sf];
1498
                    v2 = is_tab[1][sf];
1499
                    for(j=0;j<len;j++) {
1500
                        tmp0 = tab0[j];
1501
                        tab0[j] = MULLx(tmp0, v1, FRAC_BITS);
1502
                        tab1[j] = MULLx(tmp0, v2, FRAC_BITS);
1503
                    }
1504
                } else {
1505
                found1:
1506
                    if (s->mode_ext & MODE_EXT_MS_STEREO) {
1507
                        /* lower part of the spectrum : do ms stereo
1508
                           if enabled */
1509
                        for(j=0;j<len;j++) {
1510
                            tmp0 = tab0[j];
1511
                            tmp1 = tab1[j];
1512
                            tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS);
1513
                            tab1[j] = MULLx(tmp0 - tmp1, ISQRT2, FRAC_BITS);
1514
                        }
1515
                    }
1516
                }
1517
            }
1518
        }
1519

    
1520
        non_zero_found = non_zero_found_short[0] |
1521
            non_zero_found_short[1] |
1522
            non_zero_found_short[2];
1523

    
1524
        for(i = g1->long_end - 1;i >= 0;i--) {
1525
            len = band_size_long[s->sample_rate_index][i];
1526
            tab0 -= len;
1527
            tab1 -= len;
1528
            /* test if non zero band. if so, stop doing i-stereo */
1529
            if (!non_zero_found) {
1530
                for(j=0;j<len;j++) {
1531
                    if (tab1[j] != 0) {
1532
                        non_zero_found = 1;
1533
                        goto found2;
1534
                    }
1535
                }
1536
                /* for last band, use previous scale factor */
1537
                k = (i == 21) ? 20 : i;
1538
                sf = g1->scale_factors[k];
1539
                if (sf >= sf_max)
1540
                    goto found2;
1541
                v1 = is_tab[0][sf];
1542
                v2 = is_tab[1][sf];
1543
                for(j=0;j<len;j++) {
1544
                    tmp0 = tab0[j];
1545
                    tab0[j] = MULLx(tmp0, v1, FRAC_BITS);
1546
                    tab1[j] = MULLx(tmp0, v2, FRAC_BITS);
1547
                }
1548
            } else {
1549
            found2:
1550
                if (s->mode_ext & MODE_EXT_MS_STEREO) {
1551
                    /* lower part of the spectrum : do ms stereo
1552
                       if enabled */
1553
                    for(j=0;j<len;j++) {
1554
                        tmp0 = tab0[j];
1555
                        tmp1 = tab1[j];
1556
                        tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS);
1557
                        tab1[j] = MULLx(tmp0 - tmp1, ISQRT2, FRAC_BITS);
1558
                    }
1559
                }
1560
            }
1561
        }
1562
    } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
1563
        /* ms stereo ONLY */
1564
        /* NOTE: the 1/sqrt(2) normalization factor is included in the
1565
           global gain */
1566
        tab0 = g0->sb_hybrid;
1567
        tab1 = g1->sb_hybrid;
1568
        for(i=0;i<576;i++) {
1569
            tmp0 = tab0[i];
1570
            tmp1 = tab1[i];
1571
            tab0[i] = tmp0 + tmp1;
1572
            tab1[i] = tmp0 - tmp1;
1573
        }
1574
    }
1575
}
1576

    
1577
#if !CONFIG_FLOAT
1578
static void compute_antialias_integer(MPADecodeContext *s,
1579
                              GranuleDef *g)
1580
{
1581
    int32_t *ptr, *csa;
1582
    int n, i;
1583

    
1584
    /* we antialias only "long" bands */
1585
    if (g->block_type == 2) {
1586
        if (!g->switch_point)
1587
            return;
1588
        /* XXX: check this for 8000Hz case */
1589
        n = 1;
1590
    } else {
1591
        n = SBLIMIT - 1;
1592
    }
1593

    
1594
    ptr = g->sb_hybrid + 18;
1595
    for(i = n;i > 0;i--) {
1596
        int tmp0, tmp1, tmp2;
1597
        csa = &csa_table[0][0];
1598
#define INT_AA(j) \
1599
            tmp0 = ptr[-1-j];\
1600
            tmp1 = ptr[   j];\
1601
            tmp2= MULH(tmp0 + tmp1, csa[0+4*j]);\
1602
            ptr[-1-j] = 4*(tmp2 - MULH(tmp1, csa[2+4*j]));\
1603
            ptr[   j] = 4*(tmp2 + MULH(tmp0, csa[3+4*j]));
1604

    
1605
        INT_AA(0)
1606
        INT_AA(1)
1607
        INT_AA(2)
1608
        INT_AA(3)
1609
        INT_AA(4)
1610
        INT_AA(5)
1611
        INT_AA(6)
1612
        INT_AA(7)
1613

    
1614
        ptr += 18;
1615
    }
1616
}
1617
#endif
1618

    
1619
static void compute_imdct(MPADecodeContext *s,
1620
                          GranuleDef *g,
1621
                          INTFLOAT *sb_samples,
1622
                          INTFLOAT *mdct_buf)
1623
{
1624
    INTFLOAT *win, *win1, *out_ptr, *ptr, *buf, *ptr1;
1625
    INTFLOAT out2[12];
1626
    int i, j, mdct_long_end, sblimit;
1627

    
1628
    /* find last non zero block */
1629
    ptr = g->sb_hybrid + 576;
1630
    ptr1 = g->sb_hybrid + 2 * 18;
1631
    while (ptr >= ptr1) {
1632
        int32_t *p;
1633
        ptr -= 6;
1634
        p= (int32_t*)ptr;
1635
        if(p[0] | p[1] | p[2] | p[3] | p[4] | p[5])
1636
            break;
1637
    }
1638
    sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
1639

    
1640
    if (g->block_type == 2) {
1641
        /* XXX: check for 8000 Hz */
1642
        if (g->switch_point)
1643
            mdct_long_end = 2;
1644
        else
1645
            mdct_long_end = 0;
1646
    } else {
1647
        mdct_long_end = sblimit;
1648
    }
1649

    
1650
    buf = mdct_buf;
1651
    ptr = g->sb_hybrid;
1652
    for(j=0;j<mdct_long_end;j++) {
1653
        /* apply window & overlap with previous buffer */
1654
        out_ptr = sb_samples + j;
1655
        /* select window */
1656
        if (g->switch_point && j < 2)
1657
            win1 = mdct_win[0];
1658
        else
1659
            win1 = mdct_win[g->block_type];
1660
        /* select frequency inversion */
1661
        win = win1 + ((4 * 36) & -(j & 1));
1662
        imdct36(out_ptr, buf, ptr, win);
1663
        out_ptr += 18*SBLIMIT;
1664
        ptr += 18;
1665
        buf += 18;
1666
    }
1667
    for(j=mdct_long_end;j<sblimit;j++) {
1668
        /* select frequency inversion */
1669
        win = mdct_win[2] + ((4 * 36) & -(j & 1));
1670
        out_ptr = sb_samples + j;
1671

    
1672
        for(i=0; i<6; i++){
1673
            *out_ptr = buf[i];
1674
            out_ptr += SBLIMIT;
1675
        }
1676
        imdct12(out2, ptr + 0);
1677
        for(i=0;i<6;i++) {
1678
            *out_ptr     = MULH3(out2[i    ], win[i    ], 1) + buf[i + 6*1];
1679
            buf[i + 6*2] = MULH3(out2[i + 6], win[i + 6], 1);
1680
            out_ptr += SBLIMIT;
1681
        }
1682
        imdct12(out2, ptr + 1);
1683
        for(i=0;i<6;i++) {
1684
            *out_ptr     = MULH3(out2[i    ], win[i    ], 1) + buf[i + 6*2];
1685
            buf[i + 6*0] = MULH3(out2[i + 6], win[i + 6], 1);
1686
            out_ptr += SBLIMIT;
1687
        }
1688
        imdct12(out2, ptr + 2);
1689
        for(i=0;i<6;i++) {
1690
            buf[i + 6*0] = MULH3(out2[i    ], win[i    ], 1) + buf[i + 6*0];
1691
            buf[i + 6*1] = MULH3(out2[i + 6], win[i + 6], 1);
1692
            buf[i + 6*2] = 0;
1693
        }
1694
        ptr += 18;
1695
        buf += 18;
1696
    }
1697
    /* zero bands */
1698
    for(j=sblimit;j<SBLIMIT;j++) {
1699
        /* overlap */
1700
        out_ptr = sb_samples + j;
1701
        for(i=0;i<18;i++) {
1702
            *out_ptr = buf[i];
1703
            buf[i] = 0;
1704
            out_ptr += SBLIMIT;
1705
        }
1706
        buf += 18;
1707
    }
1708
}
1709

    
1710
/* main layer3 decoding function */
1711
static int mp_decode_layer3(MPADecodeContext *s)
1712
{
1713
    int nb_granules, main_data_begin, private_bits;
1714
    int gr, ch, blocksplit_flag, i, j, k, n, bits_pos;
1715
    GranuleDef *g;
1716
    int16_t exponents[576]; //FIXME try INTFLOAT
1717

    
1718
    /* read side info */
1719
    if (s->lsf) {
1720
        main_data_begin = get_bits(&s->gb, 8);
1721
        private_bits = get_bits(&s->gb, s->nb_channels);
1722
        nb_granules = 1;
1723
    } else {
1724
        main_data_begin = get_bits(&s->gb, 9);
1725
        if (s->nb_channels == 2)
1726
            private_bits = get_bits(&s->gb, 3);
1727
        else
1728
            private_bits = get_bits(&s->gb, 5);
1729
        nb_granules = 2;
1730
        for(ch=0;ch<s->nb_channels;ch++) {
1731
            s->granules[ch][0].scfsi = 0;/* all scale factors are transmitted */
1732
            s->granules[ch][1].scfsi = get_bits(&s->gb, 4);
1733
        }
1734
    }
1735

    
1736
    for(gr=0;gr<nb_granules;gr++) {
1737
        for(ch=0;ch<s->nb_channels;ch++) {
1738
            av_dlog(s->avctx, "gr=%d ch=%d: side_info\n", gr, ch);
1739
            g = &s->granules[ch][gr];
1740
            g->part2_3_length = get_bits(&s->gb, 12);
1741
            g->big_values = get_bits(&s->gb, 9);
1742
            if(g->big_values > 288){
1743
                av_log(s->avctx, AV_LOG_ERROR, "big_values too big\n");
1744
                return -1;
1745
            }
1746

    
1747
            g->global_gain = get_bits(&s->gb, 8);
1748
            /* if MS stereo only is selected, we precompute the
1749
               1/sqrt(2) renormalization factor */
1750
            if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
1751
                MODE_EXT_MS_STEREO)
1752
                g->global_gain -= 2;
1753
            if (s->lsf)
1754
                g->scalefac_compress = get_bits(&s->gb, 9);
1755
            else
1756
                g->scalefac_compress = get_bits(&s->gb, 4);
1757
            blocksplit_flag = get_bits1(&s->gb);
1758
            if (blocksplit_flag) {
1759
                g->block_type = get_bits(&s->gb, 2);
1760
                if (g->block_type == 0){
1761
                    av_log(s->avctx, AV_LOG_ERROR, "invalid block type\n");
1762
                    return -1;
1763
                }
1764
                g->switch_point = get_bits1(&s->gb);
1765
                for(i=0;i<2;i++)
1766
                    g->table_select[i] = get_bits(&s->gb, 5);
1767
                for(i=0;i<3;i++)
1768
                    g->subblock_gain[i] = get_bits(&s->gb, 3);
1769
                ff_init_short_region(s, g);
1770
            } else {
1771
                int region_address1, region_address2;
1772
                g->block_type = 0;
1773
                g->switch_point = 0;
1774
                for(i=0;i<3;i++)
1775
                    g->table_select[i] = get_bits(&s->gb, 5);
1776
                /* compute huffman coded region sizes */
1777
                region_address1 = get_bits(&s->gb, 4);
1778
                region_address2 = get_bits(&s->gb, 3);
1779
                av_dlog(s->avctx, "region1=%d region2=%d\n",
1780
                        region_address1, region_address2);
1781
                ff_init_long_region(s, g, region_address1, region_address2);
1782
            }
1783
            ff_region_offset2size(g);
1784
            ff_compute_band_indexes(s, g);
1785

    
1786
            g->preflag = 0;
1787
            if (!s->lsf)
1788
                g->preflag = get_bits1(&s->gb);
1789
            g->scalefac_scale = get_bits1(&s->gb);
1790
            g->count1table_select = get_bits1(&s->gb);
1791
            av_dlog(s->avctx, "block_type=%d switch_point=%d\n",
1792
                    g->block_type, g->switch_point);
1793
        }
1794
    }
1795

    
1796
  if (!s->adu_mode) {
1797
    const uint8_t *ptr = s->gb.buffer + (get_bits_count(&s->gb)>>3);
1798
    assert((get_bits_count(&s->gb) & 7) == 0);
1799
    /* now we get bits from the main_data_begin offset */
1800
    av_dlog(s->avctx, "seekback: %d\n", main_data_begin);
1801
//av_log(NULL, AV_LOG_ERROR, "backstep:%d, lastbuf:%d\n", main_data_begin, s->last_buf_size);
1802

    
1803
    memcpy(s->last_buf + s->last_buf_size, ptr, EXTRABYTES);
1804
    s->in_gb= s->gb;
1805
        init_get_bits(&s->gb, s->last_buf, s->last_buf_size*8);
1806
        skip_bits_long(&s->gb, 8*(s->last_buf_size - main_data_begin));
1807
  }
1808

    
1809
    for(gr=0;gr<nb_granules;gr++) {
1810
        for(ch=0;ch<s->nb_channels;ch++) {
1811
            g = &s->granules[ch][gr];
1812
            if(get_bits_count(&s->gb)<0){
1813
                av_log(s->avctx, AV_LOG_DEBUG, "mdb:%d, lastbuf:%d skipping granule %d\n",
1814
                                            main_data_begin, s->last_buf_size, gr);
1815
                skip_bits_long(&s->gb, g->part2_3_length);
1816
                memset(g->sb_hybrid, 0, sizeof(g->sb_hybrid));
1817
                if(get_bits_count(&s->gb) >= s->gb.size_in_bits && s->in_gb.buffer){
1818
                    skip_bits_long(&s->in_gb, get_bits_count(&s->gb) - s->gb.size_in_bits);
1819
                    s->gb= s->in_gb;
1820
                    s->in_gb.buffer=NULL;
1821
                }
1822
                continue;
1823
            }
1824

    
1825
            bits_pos = get_bits_count(&s->gb);
1826

    
1827
            if (!s->lsf) {
1828
                uint8_t *sc;
1829
                int slen, slen1, slen2;
1830

    
1831
                /* MPEG1 scale factors */
1832
                slen1 = slen_table[0][g->scalefac_compress];
1833
                slen2 = slen_table[1][g->scalefac_compress];
1834
                av_dlog(s->avctx, "slen1=%d slen2=%d\n", slen1, slen2);
1835
                if (g->block_type == 2) {
1836
                    n = g->switch_point ? 17 : 18;
1837
                    j = 0;
1838
                    if(slen1){
1839
                        for(i=0;i<n;i++)
1840
                            g->scale_factors[j++] = get_bits(&s->gb, slen1);
1841
                    }else{
1842
                        for(i=0;i<n;i++)
1843
                            g->scale_factors[j++] = 0;
1844
                    }
1845
                    if(slen2){
1846
                        for(i=0;i<18;i++)
1847
                            g->scale_factors[j++] = get_bits(&s->gb, slen2);
1848
                        for(i=0;i<3;i++)
1849
                            g->scale_factors[j++] = 0;
1850
                    }else{
1851
                        for(i=0;i<21;i++)
1852
                            g->scale_factors[j++] = 0;
1853
                    }
1854
                } else {
1855
                    sc = s->granules[ch][0].scale_factors;
1856
                    j = 0;
1857
                    for(k=0;k<4;k++) {
1858
                        n = (k == 0 ? 6 : 5);
1859
                        if ((g->scfsi & (0x8 >> k)) == 0) {
1860
                            slen = (k < 2) ? slen1 : slen2;
1861
                            if(slen){
1862
                                for(i=0;i<n;i++)
1863
                                    g->scale_factors[j++] = get_bits(&s->gb, slen);
1864
                            }else{
1865
                                for(i=0;i<n;i++)
1866
                                    g->scale_factors[j++] = 0;
1867
                            }
1868
                        } else {
1869
                            /* simply copy from last granule */
1870
                            for(i=0;i<n;i++) {
1871
                                g->scale_factors[j] = sc[j];
1872
                                j++;
1873
                            }
1874
                        }
1875
                    }
1876
                    g->scale_factors[j++] = 0;
1877
                }
1878
            } else {
1879
                int tindex, tindex2, slen[4], sl, sf;
1880

    
1881
                /* LSF scale factors */
1882
                if (g->block_type == 2) {
1883
                    tindex = g->switch_point ? 2 : 1;
1884
                } else {
1885
                    tindex = 0;
1886
                }
1887
                sf = g->scalefac_compress;
1888
                if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
1889
                    /* intensity stereo case */
1890
                    sf >>= 1;
1891
                    if (sf < 180) {
1892
                        lsf_sf_expand(slen, sf, 6, 6, 0);
1893
                        tindex2 = 3;
1894
                    } else if (sf < 244) {
1895
                        lsf_sf_expand(slen, sf - 180, 4, 4, 0);
1896
                        tindex2 = 4;
1897
                    } else {
1898
                        lsf_sf_expand(slen, sf - 244, 3, 0, 0);
1899
                        tindex2 = 5;
1900
                    }
1901
                } else {
1902
                    /* normal case */
1903
                    if (sf < 400) {
1904
                        lsf_sf_expand(slen, sf, 5, 4, 4);
1905
                        tindex2 = 0;
1906
                    } else if (sf < 500) {
1907
                        lsf_sf_expand(slen, sf - 400, 5, 4, 0);
1908
                        tindex2 = 1;
1909
                    } else {
1910
                        lsf_sf_expand(slen, sf - 500, 3, 0, 0);
1911
                        tindex2 = 2;
1912
                        g->preflag = 1;
1913
                    }
1914
                }
1915

    
1916
                j = 0;
1917
                for(k=0;k<4;k++) {
1918
                    n = lsf_nsf_table[tindex2][tindex][k];
1919
                    sl = slen[k];
1920
                    if(sl){
1921
                        for(i=0;i<n;i++)
1922
                            g->scale_factors[j++] = get_bits(&s->gb, sl);
1923
                    }else{
1924
                        for(i=0;i<n;i++)
1925
                            g->scale_factors[j++] = 0;
1926
                    }
1927
                }
1928
                /* XXX: should compute exact size */
1929
                for(;j<40;j++)
1930
                    g->scale_factors[j] = 0;
1931
            }
1932

    
1933
            exponents_from_scale_factors(s, g, exponents);
1934

    
1935
            /* read Huffman coded residue */
1936
            huffman_decode(s, g, exponents, bits_pos + g->part2_3_length);
1937
        } /* ch */
1938

    
1939
        if (s->nb_channels == 2)
1940
            compute_stereo(s, &s->granules[0][gr], &s->granules[1][gr]);
1941

    
1942
        for(ch=0;ch<s->nb_channels;ch++) {
1943
            g = &s->granules[ch][gr];
1944

    
1945
            reorder_block(s, g);
1946
            compute_antialias(s, g);
1947
            compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
1948
        }
1949
    } /* gr */
1950
    if(get_bits_count(&s->gb)<0)
1951
        skip_bits_long(&s->gb, -get_bits_count(&s->gb));
1952
    return nb_granules * 18;
1953
}
1954

    
1955
static int mp_decode_frame(MPADecodeContext *s,
1956
                           OUT_INT *samples, const uint8_t *buf, int buf_size)
1957
{
1958
    int i, nb_frames, ch;
1959
    OUT_INT *samples_ptr;
1960

    
1961
    init_get_bits(&s->gb, buf + HEADER_SIZE, (buf_size - HEADER_SIZE)*8);
1962

    
1963
    /* skip error protection field */
1964
    if (s->error_protection)
1965
        skip_bits(&s->gb, 16);
1966

    
1967
    av_dlog(s->avctx, "frame %d:\n", s->frame_count);
1968
    switch(s->layer) {
1969
    case 1:
1970
        s->avctx->frame_size = 384;
1971
        nb_frames = mp_decode_layer1(s);
1972
        break;
1973
    case 2:
1974
        s->avctx->frame_size = 1152;
1975
        nb_frames = mp_decode_layer2(s);
1976
        break;
1977
    case 3:
1978
        s->avctx->frame_size = s->lsf ? 576 : 1152;
1979
    default:
1980
        nb_frames = mp_decode_layer3(s);
1981

    
1982
        s->last_buf_size=0;
1983
        if(s->in_gb.buffer){
1984
            align_get_bits(&s->gb);
1985
            i= get_bits_left(&s->gb)>>3;
1986
            if(i >= 0 && i <= BACKSTEP_SIZE){
1987
                memmove(s->last_buf, s->gb.buffer + (get_bits_count(&s->gb)>>3), i);
1988
                s->last_buf_size=i;
1989
            }else
1990
                av_log(s->avctx, AV_LOG_ERROR, "invalid old backstep %d\n", i);
1991
            s->gb= s->in_gb;
1992
            s->in_gb.buffer= NULL;
1993
        }
1994

    
1995
        align_get_bits(&s->gb);
1996
        assert((get_bits_count(&s->gb) & 7) == 0);
1997
        i= get_bits_left(&s->gb)>>3;
1998

    
1999
        if(i<0 || i > BACKSTEP_SIZE || nb_frames<0){
2000
            if(i<0)
2001
                av_log(s->avctx, AV_LOG_ERROR, "invalid new backstep %d\n", i);
2002
            i= FFMIN(BACKSTEP_SIZE, buf_size - HEADER_SIZE);
2003
        }
2004
        assert(i <= buf_size - HEADER_SIZE && i>= 0);
2005
        memcpy(s->last_buf + s->last_buf_size, s->gb.buffer + buf_size - HEADER_SIZE - i, i);
2006
        s->last_buf_size += i;
2007

    
2008
        break;
2009
    }
2010

    
2011
    /* apply the synthesis filter */
2012
    for(ch=0;ch<s->nb_channels;ch++) {
2013
        samples_ptr = samples + ch;
2014
        for(i=0;i<nb_frames;i++) {
2015
            RENAME(ff_mpa_synth_filter)(
2016
#if CONFIG_FLOAT
2017
                         s,
2018
#endif
2019
                         s->synth_buf[ch], &(s->synth_buf_offset[ch]),
2020
                         RENAME(ff_mpa_synth_window), &s->dither_state,
2021
                         samples_ptr, s->nb_channels,
2022
                         s->sb_samples[ch][i]);
2023
            samples_ptr += 32 * s->nb_channels;
2024
        }
2025
    }
2026

    
2027
    return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels;
2028
}
2029

    
2030
static int decode_frame(AVCodecContext * avctx,
2031
                        void *data, int *data_size,
2032
                        AVPacket *avpkt)
2033
{
2034
    const uint8_t *buf = avpkt->data;
2035
    int buf_size = avpkt->size;
2036
    MPADecodeContext *s = avctx->priv_data;
2037
    uint32_t header;
2038
    int out_size;
2039
    OUT_INT *out_samples = data;
2040

    
2041
    if(buf_size < HEADER_SIZE)
2042
        return -1;
2043

    
2044
    header = AV_RB32(buf);
2045
    if(ff_mpa_check_header(header) < 0){
2046
        av_log(avctx, AV_LOG_ERROR, "Header missing\n");
2047
        return -1;
2048
    }
2049

    
2050
    if (ff_mpegaudio_decode_header((MPADecodeHeader *)s, header) == 1) {
2051
        /* free format: prepare to compute frame size */
2052
        s->frame_size = -1;
2053
        return -1;
2054
    }
2055
    /* update codec info */
2056
    avctx->channels = s->nb_channels;
2057
    avctx->channel_layout = s->nb_channels == 1 ? AV_CH_LAYOUT_MONO : AV_CH_LAYOUT_STEREO;
2058
    if (!avctx->bit_rate)
2059
        avctx->bit_rate = s->bit_rate;
2060
    avctx->sub_id = s->layer;
2061

    
2062
    if(*data_size < 1152*avctx->channels*sizeof(OUT_INT))
2063
        return -1;
2064
    *data_size = 0;
2065

    
2066
    if(s->frame_size<=0 || s->frame_size > buf_size){
2067
        av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
2068
        return -1;
2069
    }else if(s->frame_size < buf_size){
2070
        av_log(avctx, AV_LOG_ERROR, "incorrect frame size\n");
2071
        buf_size= s->frame_size;
2072
    }
2073

    
2074
    out_size = mp_decode_frame(s, out_samples, buf, buf_size);
2075
    if(out_size>=0){
2076
        *data_size = out_size;
2077
        avctx->sample_rate = s->sample_rate;
2078
        //FIXME maybe move the other codec info stuff from above here too
2079
    }else
2080
        av_log(avctx, AV_LOG_DEBUG, "Error while decoding MPEG audio frame.\n"); //FIXME return -1 / but also return the number of bytes consumed
2081
    s->frame_size = 0;
2082
    return buf_size;
2083
}
2084

    
2085
static void flush(AVCodecContext *avctx){
2086
    MPADecodeContext *s = avctx->priv_data;
2087
    memset(s->synth_buf, 0, sizeof(s->synth_buf));
2088
    s->last_buf_size= 0;
2089
}
2090

    
2091
#if CONFIG_MP3ADU_DECODER || CONFIG_MP3ADUFLOAT_DECODER
2092
static int decode_frame_adu(AVCodecContext * avctx,
2093
                        void *data, int *data_size,
2094
                        AVPacket *avpkt)
2095
{
2096
    const uint8_t *buf = avpkt->data;
2097
    int buf_size = avpkt->size;
2098
    MPADecodeContext *s = avctx->priv_data;
2099
    uint32_t header;
2100
    int len, out_size;
2101
    OUT_INT *out_samples = data;
2102

    
2103
    len = buf_size;
2104

    
2105
    // Discard too short frames
2106
    if (buf_size < HEADER_SIZE) {
2107
        *data_size = 0;
2108
        return buf_size;
2109
    }
2110

    
2111

    
2112
    if (len > MPA_MAX_CODED_FRAME_SIZE)
2113
        len = MPA_MAX_CODED_FRAME_SIZE;
2114

    
2115
    // Get header and restore sync word
2116
    header = AV_RB32(buf) | 0xffe00000;
2117

    
2118
    if (ff_mpa_check_header(header) < 0) { // Bad header, discard frame
2119
        *data_size = 0;
2120
        return buf_size;
2121
    }
2122

    
2123
    ff_mpegaudio_decode_header((MPADecodeHeader *)s, header);
2124
    /* update codec info */
2125
    avctx->sample_rate = s->sample_rate;
2126
    avctx->channels = s->nb_channels;
2127
    if (!avctx->bit_rate)
2128
        avctx->bit_rate = s->bit_rate;
2129
    avctx->sub_id = s->layer;
2130

    
2131
    s->frame_size = len;
2132

    
2133
    if (avctx->parse_only) {
2134
        out_size = buf_size;
2135
    } else {
2136
        out_size = mp_decode_frame(s, out_samples, buf, buf_size);
2137
    }
2138

    
2139
    *data_size = out_size;
2140
    return buf_size;
2141
}
2142
#endif /* CONFIG_MP3ADU_DECODER || CONFIG_MP3ADUFLOAT_DECODER */
2143

    
2144
#if CONFIG_MP3ON4_DECODER || CONFIG_MP3ON4FLOAT_DECODER
2145

    
2146
/**
2147
 * Context for MP3On4 decoder
2148
 */
2149
typedef struct MP3On4DecodeContext {
2150
    int frames;   ///< number of mp3 frames per block (number of mp3 decoder instances)
2151
    int syncword; ///< syncword patch
2152
    const uint8_t *coff; ///< channels offsets in output buffer
2153
    MPADecodeContext *mp3decctx[5]; ///< MPADecodeContext for every decoder instance
2154
} MP3On4DecodeContext;
2155

    
2156
#include "mpeg4audio.h"
2157

    
2158
/* Next 3 arrays are indexed by channel config number (passed via codecdata) */
2159
static const uint8_t mp3Frames[8] = {0,1,1,2,3,3,4,5};   /* number of mp3 decoder instances */
2160
/* offsets into output buffer, assume output order is FL FR BL BR C LFE */
2161
static const uint8_t chan_offset[8][5] = {
2162
    {0},
2163
    {0},            // C
2164
    {0},            // FLR
2165
    {2,0},          // C FLR
2166
    {2,0,3},        // C FLR BS
2167
    {4,0,2},        // C FLR BLRS
2168
    {4,0,2,5},      // C FLR BLRS LFE
2169
    {4,0,2,6,5},    // C FLR BLRS BLR LFE
2170
};
2171

    
2172

    
2173
static int decode_init_mp3on4(AVCodecContext * avctx)
2174
{
2175
    MP3On4DecodeContext *s = avctx->priv_data;
2176
    MPEG4AudioConfig cfg;
2177
    int i;
2178

    
2179
    if ((avctx->extradata_size < 2) || (avctx->extradata == NULL)) {
2180
        av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");
2181
        return -1;
2182
    }
2183

    
2184
    ff_mpeg4audio_get_config(&cfg, avctx->extradata, avctx->extradata_size);
2185
    if (!cfg.chan_config || cfg.chan_config > 7) {
2186
        av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");
2187
        return -1;
2188
    }
2189
    s->frames = mp3Frames[cfg.chan_config];
2190
    s->coff = chan_offset[cfg.chan_config];
2191
    avctx->channels = ff_mpeg4audio_channels[cfg.chan_config];
2192

    
2193
    if (cfg.sample_rate < 16000)
2194
        s->syncword = 0xffe00000;
2195
    else
2196
        s->syncword = 0xfff00000;
2197

    
2198
    /* Init the first mp3 decoder in standard way, so that all tables get builded
2199
     * We replace avctx->priv_data with the context of the first decoder so that
2200
     * decode_init() does not have to be changed.
2201
     * Other decoders will be initialized here copying data from the first context
2202
     */
2203
    // Allocate zeroed memory for the first decoder context
2204
    s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext));
2205
    // Put decoder context in place to make init_decode() happy
2206
    avctx->priv_data = s->mp3decctx[0];
2207
    decode_init(avctx);
2208
    // Restore mp3on4 context pointer
2209
    avctx->priv_data = s;
2210
    s->mp3decctx[0]->adu_mode = 1; // Set adu mode
2211

    
2212
    /* Create a separate codec/context for each frame (first is already ok).
2213
     * Each frame is 1 or 2 channels - up to 5 frames allowed
2214
     */
2215
    for (i = 1; i < s->frames; i++) {
2216
        s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
2217
        s->mp3decctx[i]->adu_mode = 1;
2218
        s->mp3decctx[i]->avctx = avctx;
2219
    }
2220

    
2221
    return 0;
2222
}
2223

    
2224

    
2225
static av_cold int decode_close_mp3on4(AVCodecContext * avctx)
2226
{
2227
    MP3On4DecodeContext *s = avctx->priv_data;
2228
    int i;
2229

    
2230
    for (i = 0; i < s->frames; i++)
2231
        av_free(s->mp3decctx[i]);
2232

    
2233
    return 0;
2234
}
2235

    
2236

    
2237
static int decode_frame_mp3on4(AVCodecContext * avctx,
2238
                        void *data, int *data_size,
2239
                        AVPacket *avpkt)
2240
{
2241
    const uint8_t *buf = avpkt->data;
2242
    int buf_size = avpkt->size;
2243
    MP3On4DecodeContext *s = avctx->priv_data;
2244
    MPADecodeContext *m;
2245
    int fsize, len = buf_size, out_size = 0;
2246
    uint32_t header;
2247
    OUT_INT *out_samples = data;
2248
    OUT_INT decoded_buf[MPA_FRAME_SIZE * MPA_MAX_CHANNELS];
2249
    OUT_INT *outptr, *bp;
2250
    int fr, j, n;
2251

    
2252
    if(*data_size < MPA_FRAME_SIZE * MPA_MAX_CHANNELS * s->frames * sizeof(OUT_INT))
2253
        return -1;
2254

    
2255
    *data_size = 0;
2256
    // Discard too short frames
2257
    if (buf_size < HEADER_SIZE)
2258
        return -1;
2259

    
2260
    // If only one decoder interleave is not needed
2261
    outptr = s->frames == 1 ? out_samples : decoded_buf;
2262

    
2263
    avctx->bit_rate = 0;
2264

    
2265
    for (fr = 0; fr < s->frames; fr++) {
2266
        fsize = AV_RB16(buf) >> 4;
2267
        fsize = FFMIN3(fsize, len, MPA_MAX_CODED_FRAME_SIZE);
2268
        m = s->mp3decctx[fr];
2269
        assert (m != NULL);
2270

    
2271
        header = (AV_RB32(buf) & 0x000fffff) | s->syncword; // patch header
2272

    
2273
        if (ff_mpa_check_header(header) < 0) // Bad header, discard block
2274
            break;
2275

    
2276
        ff_mpegaudio_decode_header((MPADecodeHeader *)m, header);
2277
        out_size += mp_decode_frame(m, outptr, buf, fsize);
2278
        buf += fsize;
2279
        len -= fsize;
2280

    
2281
        if(s->frames > 1) {
2282
            n = m->avctx->frame_size*m->nb_channels;
2283
            /* interleave output data */
2284
            bp = out_samples + s->coff[fr];
2285
            if(m->nb_channels == 1) {
2286
                for(j = 0; j < n; j++) {
2287
                    *bp = decoded_buf[j];
2288
                    bp += avctx->channels;
2289
                }
2290
            } else {
2291
                for(j = 0; j < n; j++) {
2292
                    bp[0] = decoded_buf[j++];
2293
                    bp[1] = decoded_buf[j];
2294
                    bp += avctx->channels;
2295
                }
2296
            }
2297
        }
2298
        avctx->bit_rate += m->bit_rate;
2299
    }
2300

    
2301
    /* update codec info */
2302
    avctx->sample_rate = s->mp3decctx[0]->sample_rate;
2303

    
2304
    *data_size = out_size;
2305
    return buf_size;
2306
}
2307
#endif /* CONFIG_MP3ON4_DECODER || CONFIG_MP3ON4FLOAT_DECODER */
2308

    
2309
#if !CONFIG_FLOAT
2310
#if CONFIG_MP1_DECODER
2311
AVCodec ff_mp1_decoder =
2312
{
2313
    "mp1",
2314
    AVMEDIA_TYPE_AUDIO,
2315
    CODEC_ID_MP1,
2316
    sizeof(MPADecodeContext),
2317
    decode_init,
2318
    NULL,
2319
    NULL,
2320
    decode_frame,
2321
    CODEC_CAP_PARSE_ONLY,
2322
    .flush= flush,
2323
    .long_name= NULL_IF_CONFIG_SMALL("MP1 (MPEG audio layer 1)"),
2324
};
2325
#endif
2326
#if CONFIG_MP2_DECODER
2327
AVCodec ff_mp2_decoder =
2328
{
2329
    "mp2",
2330
    AVMEDIA_TYPE_AUDIO,
2331
    CODEC_ID_MP2,
2332
    sizeof(MPADecodeContext),
2333
    decode_init,
2334
    NULL,
2335
    NULL,
2336
    decode_frame,
2337
    CODEC_CAP_PARSE_ONLY,
2338
    .flush= flush,
2339
    .long_name= NULL_IF_CONFIG_SMALL("MP2 (MPEG audio layer 2)"),
2340
};
2341
#endif
2342
#if CONFIG_MP3_DECODER
2343
AVCodec ff_mp3_decoder =
2344
{
2345
    "mp3",
2346
    AVMEDIA_TYPE_AUDIO,
2347
    CODEC_ID_MP3,
2348
    sizeof(MPADecodeContext),
2349
    decode_init,
2350
    NULL,
2351
    NULL,
2352
    decode_frame,
2353
    CODEC_CAP_PARSE_ONLY,
2354
    .flush= flush,
2355
    .long_name= NULL_IF_CONFIG_SMALL("MP3 (MPEG audio layer 3)"),
2356
};
2357
#endif
2358
#if CONFIG_MP3ADU_DECODER
2359
AVCodec ff_mp3adu_decoder =
2360
{
2361
    "mp3adu",
2362
    AVMEDIA_TYPE_AUDIO,
2363
    CODEC_ID_MP3ADU,
2364
    sizeof(MPADecodeContext),
2365
    decode_init,
2366
    NULL,
2367
    NULL,
2368
    decode_frame_adu,
2369
    CODEC_CAP_PARSE_ONLY,
2370
    .flush= flush,
2371
    .long_name= NULL_IF_CONFIG_SMALL("ADU (Application Data Unit) MP3 (MPEG audio layer 3)"),
2372
};
2373
#endif
2374
#if CONFIG_MP3ON4_DECODER
2375
AVCodec ff_mp3on4_decoder =
2376
{
2377
    "mp3on4",
2378
    AVMEDIA_TYPE_AUDIO,
2379
    CODEC_ID_MP3ON4,
2380
    sizeof(MP3On4DecodeContext),
2381
    decode_init_mp3on4,
2382
    NULL,
2383
    decode_close_mp3on4,
2384
    decode_frame_mp3on4,
2385
    .flush= flush,
2386
    .long_name= NULL_IF_CONFIG_SMALL("MP3onMP4"),
2387
};
2388
#endif
2389
#endif