Statistics
| Branch: | Revision:

ffmpeg / libavcodec / resample2.c @ 2912e87a

History | View | Annotate | Download (10 KB)

1
/*
2
 * audio resampling
3
 * Copyright (c) 2004 Michael Niedermayer <michaelni@gmx.at>
4
 *
5
 * This file is part of Libav.
6
 *
7
 * Libav is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * Libav is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with Libav; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21

    
22
/**
23
 * @file
24
 * audio resampling
25
 * @author Michael Niedermayer <michaelni@gmx.at>
26
 */
27

    
28
#include "avcodec.h"
29
#include "dsputil.h"
30

    
31
#ifndef CONFIG_RESAMPLE_HP
32
#define FILTER_SHIFT 15
33

    
34
#define FELEM int16_t
35
#define FELEM2 int32_t
36
#define FELEML int64_t
37
#define FELEM_MAX INT16_MAX
38
#define FELEM_MIN INT16_MIN
39
#define WINDOW_TYPE 9
40
#elif !defined(CONFIG_RESAMPLE_AUDIOPHILE_KIDDY_MODE)
41
#define FILTER_SHIFT 30
42

    
43
#define FELEM int32_t
44
#define FELEM2 int64_t
45
#define FELEML int64_t
46
#define FELEM_MAX INT32_MAX
47
#define FELEM_MIN INT32_MIN
48
#define WINDOW_TYPE 12
49
#else
50
#define FILTER_SHIFT 0
51

    
52
#define FELEM double
53
#define FELEM2 double
54
#define FELEML double
55
#define WINDOW_TYPE 24
56
#endif
57

    
58

    
59
typedef struct AVResampleContext{
60
    const AVClass *av_class;
61
    FELEM *filter_bank;
62
    int filter_length;
63
    int ideal_dst_incr;
64
    int dst_incr;
65
    int index;
66
    int frac;
67
    int src_incr;
68
    int compensation_distance;
69
    int phase_shift;
70
    int phase_mask;
71
    int linear;
72
}AVResampleContext;
73

    
74
/**
75
 * 0th order modified bessel function of the first kind.
76
 */
77
static double bessel(double x){
78
    double v=1;
79
    double lastv=0;
80
    double t=1;
81
    int i;
82

    
83
    x= x*x/4;
84
    for(i=1; v != lastv; i++){
85
        lastv=v;
86
        t *= x/(i*i);
87
        v += t;
88
    }
89
    return v;
90
}
91

    
92
/**
93
 * builds a polyphase filterbank.
94
 * @param factor resampling factor
95
 * @param scale wanted sum of coefficients for each filter
96
 * @param type 0->cubic, 1->blackman nuttall windowed sinc, 2..16->kaiser windowed sinc beta=2..16
97
 * @return 0 on success, negative on error
98
 */
99
static int build_filter(FELEM *filter, double factor, int tap_count, int phase_count, int scale, int type){
100
    int ph, i;
101
    double x, y, w;
102
    double *tab = av_malloc(tap_count * sizeof(*tab));
103
    const int center= (tap_count-1)/2;
104

    
105
    if (!tab)
106
        return AVERROR(ENOMEM);
107

    
108
    /* if upsampling, only need to interpolate, no filter */
109
    if (factor > 1.0)
110
        factor = 1.0;
111

    
112
    for(ph=0;ph<phase_count;ph++) {
113
        double norm = 0;
114
        for(i=0;i<tap_count;i++) {
115
            x = M_PI * ((double)(i - center) - (double)ph / phase_count) * factor;
116
            if (x == 0) y = 1.0;
117
            else        y = sin(x) / x;
118
            switch(type){
119
            case 0:{
120
                const float d= -0.5; //first order derivative = -0.5
121
                x = fabs(((double)(i - center) - (double)ph / phase_count) * factor);
122
                if(x<1.0) y= 1 - 3*x*x + 2*x*x*x + d*(            -x*x + x*x*x);
123
                else      y=                       d*(-4 + 8*x - 5*x*x + x*x*x);
124
                break;}
125
            case 1:
126
                w = 2.0*x / (factor*tap_count) + M_PI;
127
                y *= 0.3635819 - 0.4891775 * cos(w) + 0.1365995 * cos(2*w) - 0.0106411 * cos(3*w);
128
                break;
129
            default:
130
                w = 2.0*x / (factor*tap_count*M_PI);
131
                y *= bessel(type*sqrt(FFMAX(1-w*w, 0)));
132
                break;
133
            }
134

    
135
            tab[i] = y;
136
            norm += y;
137
        }
138

    
139
        /* normalize so that an uniform color remains the same */
140
        for(i=0;i<tap_count;i++) {
141
#ifdef CONFIG_RESAMPLE_AUDIOPHILE_KIDDY_MODE
142
            filter[ph * tap_count + i] = tab[i] / norm;
143
#else
144
            filter[ph * tap_count + i] = av_clip(lrintf(tab[i] * scale / norm), FELEM_MIN, FELEM_MAX);
145
#endif
146
        }
147
    }
148
#if 0
149
    {
150
#define LEN 1024
151
        int j,k;
152
        double sine[LEN + tap_count];
153
        double filtered[LEN];
154
        double maxff=-2, minff=2, maxsf=-2, minsf=2;
155
        for(i=0; i<LEN; i++){
156
            double ss=0, sf=0, ff=0;
157
            for(j=0; j<LEN+tap_count; j++)
158
                sine[j]= cos(i*j*M_PI/LEN);
159
            for(j=0; j<LEN; j++){
160
                double sum=0;
161
                ph=0;
162
                for(k=0; k<tap_count; k++)
163
                    sum += filter[ph * tap_count + k] * sine[k+j];
164
                filtered[j]= sum / (1<<FILTER_SHIFT);
165
                ss+= sine[j + center] * sine[j + center];
166
                ff+= filtered[j] * filtered[j];
167
                sf+= sine[j + center] * filtered[j];
168
            }
169
            ss= sqrt(2*ss/LEN);
170
            ff= sqrt(2*ff/LEN);
171
            sf= 2*sf/LEN;
172
            maxff= FFMAX(maxff, ff);
173
            minff= FFMIN(minff, ff);
174
            maxsf= FFMAX(maxsf, sf);
175
            minsf= FFMIN(minsf, sf);
176
            if(i%11==0){
177
                av_log(NULL, AV_LOG_ERROR, "i:%4d ss:%f ff:%13.6e-%13.6e sf:%13.6e-%13.6e\n", i, ss, maxff, minff, maxsf, minsf);
178
                minff=minsf= 2;
179
                maxff=maxsf= -2;
180
            }
181
        }
182
    }
183
#endif
184

    
185
    av_free(tab);
186
    return 0;
187
}
188

    
189
AVResampleContext *av_resample_init(int out_rate, int in_rate, int filter_size, int phase_shift, int linear, double cutoff){
190
    AVResampleContext *c= av_mallocz(sizeof(AVResampleContext));
191
    double factor= FFMIN(out_rate * cutoff / in_rate, 1.0);
192
    int phase_count= 1<<phase_shift;
193

    
194
    if (!c)
195
        return NULL;
196

    
197
    c->phase_shift= phase_shift;
198
    c->phase_mask= phase_count-1;
199
    c->linear= linear;
200

    
201
    c->filter_length= FFMAX((int)ceil(filter_size/factor), 1);
202
    c->filter_bank= av_mallocz(c->filter_length*(phase_count+1)*sizeof(FELEM));
203
    if (!c->filter_bank)
204
        goto error;
205
    if (build_filter(c->filter_bank, factor, c->filter_length, phase_count, 1<<FILTER_SHIFT, WINDOW_TYPE))
206
        goto error;
207
    memcpy(&c->filter_bank[c->filter_length*phase_count+1], c->filter_bank, (c->filter_length-1)*sizeof(FELEM));
208
    c->filter_bank[c->filter_length*phase_count]= c->filter_bank[c->filter_length - 1];
209

    
210
    c->src_incr= out_rate;
211
    c->ideal_dst_incr= c->dst_incr= in_rate * phase_count;
212
    c->index= -phase_count*((c->filter_length-1)/2);
213

    
214
    return c;
215
error:
216
    av_free(c->filter_bank);
217
    av_free(c);
218
    return NULL;
219
}
220

    
221
void av_resample_close(AVResampleContext *c){
222
    av_freep(&c->filter_bank);
223
    av_freep(&c);
224
}
225

    
226
void av_resample_compensate(AVResampleContext *c, int sample_delta, int compensation_distance){
227
//    sample_delta += (c->ideal_dst_incr - c->dst_incr)*(int64_t)c->compensation_distance / c->ideal_dst_incr;
228
    c->compensation_distance= compensation_distance;
229
    c->dst_incr = c->ideal_dst_incr - c->ideal_dst_incr * (int64_t)sample_delta / compensation_distance;
230
}
231

    
232
int av_resample(AVResampleContext *c, short *dst, short *src, int *consumed, int src_size, int dst_size, int update_ctx){
233
    int dst_index, i;
234
    int index= c->index;
235
    int frac= c->frac;
236
    int dst_incr_frac= c->dst_incr % c->src_incr;
237
    int dst_incr=      c->dst_incr / c->src_incr;
238
    int compensation_distance= c->compensation_distance;
239

    
240
  if(compensation_distance == 0 && c->filter_length == 1 && c->phase_shift==0){
241
        int64_t index2= ((int64_t)index)<<32;
242
        int64_t incr= (1LL<<32) * c->dst_incr / c->src_incr;
243
        dst_size= FFMIN(dst_size, (src_size-1-index) * (int64_t)c->src_incr / c->dst_incr);
244

    
245
        for(dst_index=0; dst_index < dst_size; dst_index++){
246
            dst[dst_index] = src[index2>>32];
247
            index2 += incr;
248
        }
249
        frac += dst_index * dst_incr_frac;
250
        index += dst_index * dst_incr;
251
        index += frac / c->src_incr;
252
        frac %= c->src_incr;
253
  }else{
254
    for(dst_index=0; dst_index < dst_size; dst_index++){
255
        FELEM *filter= c->filter_bank + c->filter_length*(index & c->phase_mask);
256
        int sample_index= index >> c->phase_shift;
257
        FELEM2 val=0;
258

    
259
        if(sample_index < 0){
260
            for(i=0; i<c->filter_length; i++)
261
                val += src[FFABS(sample_index + i) % src_size] * filter[i];
262
        }else if(sample_index + c->filter_length > src_size){
263
            break;
264
        }else if(c->linear){
265
            FELEM2 v2=0;
266
            for(i=0; i<c->filter_length; i++){
267
                val += src[sample_index + i] * (FELEM2)filter[i];
268
                v2  += src[sample_index + i] * (FELEM2)filter[i + c->filter_length];
269
            }
270
            val+=(v2-val)*(FELEML)frac / c->src_incr;
271
        }else{
272
            for(i=0; i<c->filter_length; i++){
273
                val += src[sample_index + i] * (FELEM2)filter[i];
274
            }
275
        }
276

    
277
#ifdef CONFIG_RESAMPLE_AUDIOPHILE_KIDDY_MODE
278
        dst[dst_index] = av_clip_int16(lrintf(val));
279
#else
280
        val = (val + (1<<(FILTER_SHIFT-1)))>>FILTER_SHIFT;
281
        dst[dst_index] = (unsigned)(val + 32768) > 65535 ? (val>>31) ^ 32767 : val;
282
#endif
283

    
284
        frac += dst_incr_frac;
285
        index += dst_incr;
286
        if(frac >= c->src_incr){
287
            frac -= c->src_incr;
288
            index++;
289
        }
290

    
291
        if(dst_index + 1 == compensation_distance){
292
            compensation_distance= 0;
293
            dst_incr_frac= c->ideal_dst_incr % c->src_incr;
294
            dst_incr=      c->ideal_dst_incr / c->src_incr;
295
        }
296
    }
297
  }
298
    *consumed= FFMAX(index, 0) >> c->phase_shift;
299
    if(index>=0) index &= c->phase_mask;
300

    
301
    if(compensation_distance){
302
        compensation_distance -= dst_index;
303
        assert(compensation_distance > 0);
304
    }
305
    if(update_ctx){
306
        c->frac= frac;
307
        c->index= index;
308
        c->dst_incr= dst_incr_frac + c->src_incr*dst_incr;
309
        c->compensation_distance= compensation_distance;
310
    }
311
#if 0
312
    if(update_ctx && !c->compensation_distance){
313
#undef rand
314
        av_resample_compensate(c, rand() % (8000*2) - 8000, 8000*2);
315
av_log(NULL, AV_LOG_DEBUG, "%d %d %d\n", c->dst_incr, c->ideal_dst_incr, c->compensation_distance);
316
    }
317
#endif
318

    
319
    return dst_index;
320
}