Statistics
| Branch: | Revision:

ffmpeg / libavcodec / h264.h @ 2a1f431d

History | View | Annotate | Download (46.1 KB)

1
/*
2
 * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
3
 * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21

    
22
/**
23
 * @file
24
 * H.264 / AVC / MPEG4 part10 codec.
25
 * @author Michael Niedermayer <michaelni@gmx.at>
26
 */
27

    
28
#ifndef AVCODEC_H264_H
29
#define AVCODEC_H264_H
30

    
31
#include "libavutil/intreadwrite.h"
32
#include "dsputil.h"
33
#include "cabac.h"
34
#include "mpegvideo.h"
35
#include "h264dsp.h"
36
#include "h264pred.h"
37
#include "rectangle.h"
38

    
39
#define interlaced_dct interlaced_dct_is_a_bad_name
40
#define mb_intra mb_intra_is_not_initialized_see_mb_type
41

    
42
#define LUMA_DC_BLOCK_INDEX   24
43
#define CHROMA_DC_BLOCK_INDEX 25
44

    
45
#define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8
46
#define COEFF_TOKEN_VLC_BITS           8
47
#define TOTAL_ZEROS_VLC_BITS           9
48
#define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3
49
#define RUN_VLC_BITS                   3
50
#define RUN7_VLC_BITS                  6
51

    
52
#define MAX_SPS_COUNT 32
53
#define MAX_PPS_COUNT 256
54

    
55
#define MAX_MMCO_COUNT 66
56

    
57
#define MAX_DELAYED_PIC_COUNT 16
58

    
59
/* Compiling in interlaced support reduces the speed
60
 * of progressive decoding by about 2%. */
61
#define ALLOW_INTERLACE
62

    
63
#define ALLOW_NOCHROMA
64

    
65
#define FMO 0
66

    
67
/**
68
 * The maximum number of slices supported by the decoder.
69
 * must be a power of 2
70
 */
71
#define MAX_SLICES 16
72

    
73
#ifdef ALLOW_INTERLACE
74
#define MB_MBAFF h->mb_mbaff
75
#define MB_FIELD h->mb_field_decoding_flag
76
#define FRAME_MBAFF h->mb_aff_frame
77
#define FIELD_PICTURE (s->picture_structure != PICT_FRAME)
78
#else
79
#define MB_MBAFF 0
80
#define MB_FIELD 0
81
#define FRAME_MBAFF 0
82
#define FIELD_PICTURE 0
83
#undef  IS_INTERLACED
84
#define IS_INTERLACED(mb_type) 0
85
#endif
86
#define FIELD_OR_MBAFF_PICTURE (FRAME_MBAFF || FIELD_PICTURE)
87

    
88
#ifdef ALLOW_NOCHROMA
89
#define CHROMA h->sps.chroma_format_idc
90
#else
91
#define CHROMA 1
92
#endif
93

    
94
#ifndef CABAC
95
#define CABAC h->pps.cabac
96
#endif
97

    
98
#define EXTENDED_SAR          255
99

    
100
#define MB_TYPE_REF0       MB_TYPE_ACPRED //dirty but it fits in 16 bit
101
#define MB_TYPE_8x8DCT     0x01000000
102
#define IS_REF0(a)         ((a) & MB_TYPE_REF0)
103
#define IS_8x8DCT(a)       ((a) & MB_TYPE_8x8DCT)
104

    
105
/**
106
 * Value of Picture.reference when Picture is not a reference picture, but
107
 * is held for delayed output.
108
 */
109
#define DELAYED_PIC_REF 4
110

    
111

    
112
/* NAL unit types */
113
enum {
114
    NAL_SLICE=1,
115
    NAL_DPA,
116
    NAL_DPB,
117
    NAL_DPC,
118
    NAL_IDR_SLICE,
119
    NAL_SEI,
120
    NAL_SPS,
121
    NAL_PPS,
122
    NAL_AUD,
123
    NAL_END_SEQUENCE,
124
    NAL_END_STREAM,
125
    NAL_FILLER_DATA,
126
    NAL_SPS_EXT,
127
    NAL_AUXILIARY_SLICE=19
128
};
129

    
130
/**
131
 * SEI message types
132
 */
133
typedef enum {
134
    SEI_BUFFERING_PERIOD             =  0, ///< buffering period (H.264, D.1.1)
135
    SEI_TYPE_PIC_TIMING              =  1, ///< picture timing
136
    SEI_TYPE_USER_DATA_UNREGISTERED  =  5, ///< unregistered user data
137
    SEI_TYPE_RECOVERY_POINT          =  6  ///< recovery point (frame # to decoder sync)
138
} SEI_Type;
139

    
140
/**
141
 * pic_struct in picture timing SEI message
142
 */
143
typedef enum {
144
    SEI_PIC_STRUCT_FRAME             = 0, ///<  0: %frame
145
    SEI_PIC_STRUCT_TOP_FIELD         = 1, ///<  1: top field
146
    SEI_PIC_STRUCT_BOTTOM_FIELD      = 2, ///<  2: bottom field
147
    SEI_PIC_STRUCT_TOP_BOTTOM        = 3, ///<  3: top field, bottom field, in that order
148
    SEI_PIC_STRUCT_BOTTOM_TOP        = 4, ///<  4: bottom field, top field, in that order
149
    SEI_PIC_STRUCT_TOP_BOTTOM_TOP    = 5, ///<  5: top field, bottom field, top field repeated, in that order
150
    SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM = 6, ///<  6: bottom field, top field, bottom field repeated, in that order
151
    SEI_PIC_STRUCT_FRAME_DOUBLING    = 7, ///<  7: %frame doubling
152
    SEI_PIC_STRUCT_FRAME_TRIPLING    = 8  ///<  8: %frame tripling
153
} SEI_PicStructType;
154

    
155
/**
156
 * Sequence parameter set
157
 */
158
typedef struct SPS{
159

    
160
    int profile_idc;
161
    int level_idc;
162
    int chroma_format_idc;
163
    int transform_bypass;              ///< qpprime_y_zero_transform_bypass_flag
164
    int log2_max_frame_num;            ///< log2_max_frame_num_minus4 + 4
165
    int poc_type;                      ///< pic_order_cnt_type
166
    int log2_max_poc_lsb;              ///< log2_max_pic_order_cnt_lsb_minus4
167
    int delta_pic_order_always_zero_flag;
168
    int offset_for_non_ref_pic;
169
    int offset_for_top_to_bottom_field;
170
    int poc_cycle_length;              ///< num_ref_frames_in_pic_order_cnt_cycle
171
    int ref_frame_count;               ///< num_ref_frames
172
    int gaps_in_frame_num_allowed_flag;
173
    int mb_width;                      ///< pic_width_in_mbs_minus1 + 1
174
    int mb_height;                     ///< pic_height_in_map_units_minus1 + 1
175
    int frame_mbs_only_flag;
176
    int mb_aff;                        ///<mb_adaptive_frame_field_flag
177
    int direct_8x8_inference_flag;
178
    int crop;                   ///< frame_cropping_flag
179
    unsigned int crop_left;            ///< frame_cropping_rect_left_offset
180
    unsigned int crop_right;           ///< frame_cropping_rect_right_offset
181
    unsigned int crop_top;             ///< frame_cropping_rect_top_offset
182
    unsigned int crop_bottom;          ///< frame_cropping_rect_bottom_offset
183
    int vui_parameters_present_flag;
184
    AVRational sar;
185
    int video_signal_type_present_flag;
186
    int full_range;
187
    int colour_description_present_flag;
188
    enum AVColorPrimaries color_primaries;
189
    enum AVColorTransferCharacteristic color_trc;
190
    enum AVColorSpace colorspace;
191
    int timing_info_present_flag;
192
    uint32_t num_units_in_tick;
193
    uint32_t time_scale;
194
    int fixed_frame_rate_flag;
195
    short offset_for_ref_frame[256]; //FIXME dyn aloc?
196
    int bitstream_restriction_flag;
197
    int num_reorder_frames;
198
    int scaling_matrix_present;
199
    uint8_t scaling_matrix4[6][16];
200
    uint8_t scaling_matrix8[2][64];
201
    int nal_hrd_parameters_present_flag;
202
    int vcl_hrd_parameters_present_flag;
203
    int pic_struct_present_flag;
204
    int time_offset_length;
205
    int cpb_cnt;                       ///< See H.264 E.1.2
206
    int initial_cpb_removal_delay_length; ///< initial_cpb_removal_delay_length_minus1 +1
207
    int cpb_removal_delay_length;      ///< cpb_removal_delay_length_minus1 + 1
208
    int dpb_output_delay_length;       ///< dpb_output_delay_length_minus1 + 1
209
    int bit_depth_luma;                ///< bit_depth_luma_minus8 + 8
210
    int bit_depth_chroma;              ///< bit_depth_chroma_minus8 + 8
211
    int residual_color_transform_flag; ///< residual_colour_transform_flag
212
}SPS;
213

    
214
/**
215
 * Picture parameter set
216
 */
217
typedef struct PPS{
218
    unsigned int sps_id;
219
    int cabac;                  ///< entropy_coding_mode_flag
220
    int pic_order_present;      ///< pic_order_present_flag
221
    int slice_group_count;      ///< num_slice_groups_minus1 + 1
222
    int mb_slice_group_map_type;
223
    unsigned int ref_count[2];  ///< num_ref_idx_l0/1_active_minus1 + 1
224
    int weighted_pred;          ///< weighted_pred_flag
225
    int weighted_bipred_idc;
226
    int init_qp;                ///< pic_init_qp_minus26 + 26
227
    int init_qs;                ///< pic_init_qs_minus26 + 26
228
    int chroma_qp_index_offset[2];
229
    int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
230
    int constrained_intra_pred; ///< constrained_intra_pred_flag
231
    int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag
232
    int transform_8x8_mode;     ///< transform_8x8_mode_flag
233
    uint8_t scaling_matrix4[6][16];
234
    uint8_t scaling_matrix8[2][64];
235
    uint8_t chroma_qp_table[2][64];  ///< pre-scaled (with chroma_qp_index_offset) version of qp_table
236
    int chroma_qp_diff;
237
}PPS;
238

    
239
/**
240
 * Memory management control operation opcode.
241
 */
242
typedef enum MMCOOpcode{
243
    MMCO_END=0,
244
    MMCO_SHORT2UNUSED,
245
    MMCO_LONG2UNUSED,
246
    MMCO_SHORT2LONG,
247
    MMCO_SET_MAX_LONG,
248
    MMCO_RESET,
249
    MMCO_LONG,
250
} MMCOOpcode;
251

    
252
/**
253
 * Memory management control operation.
254
 */
255
typedef struct MMCO{
256
    MMCOOpcode opcode;
257
    int short_pic_num;  ///< pic_num without wrapping (pic_num & max_pic_num)
258
    int long_arg;       ///< index, pic_num, or num long refs depending on opcode
259
} MMCO;
260

    
261
/**
262
 * H264Context
263
 */
264
typedef struct H264Context{
265
    MpegEncContext s;
266
    H264DSPContext h264dsp;
267
    int chroma_qp[2]; //QPc
268

    
269
    int qp_thresh;      ///< QP threshold to skip loopfilter
270

    
271
    int prev_mb_skipped;
272
    int next_mb_skipped;
273

    
274
    //prediction stuff
275
    int chroma_pred_mode;
276
    int intra16x16_pred_mode;
277

    
278
    int topleft_mb_xy;
279
    int top_mb_xy;
280
    int topright_mb_xy;
281
    int left_mb_xy[2];
282

    
283
    int topleft_type;
284
    int top_type;
285
    int topright_type;
286
    int left_type[2];
287

    
288
    const uint8_t * left_block;
289
    int topleft_partition;
290

    
291
    int8_t intra4x4_pred_mode_cache[5*8];
292
    int8_t (*intra4x4_pred_mode);
293
    H264PredContext hpc;
294
    unsigned int topleft_samples_available;
295
    unsigned int top_samples_available;
296
    unsigned int topright_samples_available;
297
    unsigned int left_samples_available;
298
    uint8_t (*top_borders[2])[16+2*8];
299

    
300
    /**
301
     * non zero coeff count cache.
302
     * is 64 if not available.
303
     */
304
    DECLARE_ALIGNED(8, uint8_t, non_zero_count_cache)[6*8];
305

    
306
    /*
307
    .UU.YYYY
308
    .UU.YYYY
309
    .vv.YYYY
310
    .VV.YYYY
311
    */
312
    uint8_t (*non_zero_count)[32];
313

    
314
    /**
315
     * Motion vector cache.
316
     */
317
    DECLARE_ALIGNED(16, int16_t, mv_cache)[2][5*8][2];
318
    DECLARE_ALIGNED(8, int8_t, ref_cache)[2][5*8];
319
#define LIST_NOT_USED -1 //FIXME rename?
320
#define PART_NOT_AVAILABLE -2
321

    
322
    /**
323
     * is 1 if the specific list MV&references are set to 0,0,-2.
324
     */
325
    int mv_cache_clean[2];
326

    
327
    /**
328
     * number of neighbors (top and/or left) that used 8x8 dct
329
     */
330
    int neighbor_transform_size;
331

    
332
    /**
333
     * block_offset[ 0..23] for frame macroblocks
334
     * block_offset[24..47] for field macroblocks
335
     */
336
    int block_offset[2*(16+8)];
337

    
338
    uint32_t *mb2b_xy; //FIXME are these 4 a good idea?
339
    uint32_t *mb2br_xy;
340
    int b_stride; //FIXME use s->b4_stride
341

    
342
    int mb_linesize;   ///< may be equal to s->linesize or s->linesize*2, for mbaff
343
    int mb_uvlinesize;
344

    
345
    int emu_edge_width;
346
    int emu_edge_height;
347

    
348
    SPS sps; ///< current sps
349

    
350
    /**
351
     * current pps
352
     */
353
    PPS pps; //FIXME move to Picture perhaps? (->no) do we need that?
354

    
355
    uint32_t dequant4_buffer[6][52][16]; //FIXME should these be moved down?
356
    uint32_t dequant8_buffer[2][52][64];
357
    uint32_t (*dequant4_coeff[6])[16];
358
    uint32_t (*dequant8_coeff[2])[64];
359

    
360
    int slice_num;
361
    uint16_t *slice_table;     ///< slice_table_base + 2*mb_stride + 1
362
    int slice_type;
363
    int slice_type_nos;        ///< S free slice type (SI/SP are remapped to I/P)
364
    int slice_type_fixed;
365

    
366
    //interlacing specific flags
367
    int mb_aff_frame;
368
    int mb_field_decoding_flag;
369
    int mb_mbaff;              ///< mb_aff_frame && mb_field_decoding_flag
370

    
371
    DECLARE_ALIGNED(8, uint16_t, sub_mb_type)[4];
372

    
373
    //Weighted pred stuff
374
    int use_weight;
375
    int use_weight_chroma;
376
    int luma_log2_weight_denom;
377
    int chroma_log2_weight_denom;
378
    //The following 2 can be changed to int8_t but that causes 10cpu cycles speedloss
379
    int luma_weight[48][2][2];
380
    int chroma_weight[48][2][2][2];
381
    int implicit_weight[48][48][2];
382

    
383
    int direct_spatial_mv_pred;
384
    int col_parity;
385
    int col_fieldoff;
386
    int dist_scale_factor[16];
387
    int dist_scale_factor_field[2][32];
388
    int map_col_to_list0[2][16+32];
389
    int map_col_to_list0_field[2][2][16+32];
390

    
391
    /**
392
     * num_ref_idx_l0/1_active_minus1 + 1
393
     */
394
    unsigned int ref_count[2];   ///< counts frames or fields, depending on current mb mode
395
    unsigned int list_count;
396
    uint8_t *list_counts;            ///< Array of list_count per MB specifying the slice type
397
    Picture ref_list[2][48];         /**< 0..15: frame refs, 16..47: mbaff field refs.
398
                                          Reordered version of default_ref_list
399
                                          according to picture reordering in slice header */
400
    int ref2frm[MAX_SLICES][2][64];  ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
401

    
402
    //data partitioning
403
    GetBitContext intra_gb;
404
    GetBitContext inter_gb;
405
    GetBitContext *intra_gb_ptr;
406
    GetBitContext *inter_gb_ptr;
407

    
408
    DECLARE_ALIGNED(16, DCTELEM, mb)[16*24];
409
    DECLARE_ALIGNED(16, DCTELEM, mb_luma_dc)[16];
410
    DECLARE_ALIGNED(16, DCTELEM, mb_chroma_dc)[2][4];
411
    DCTELEM mb_padding[256];        ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either check that i is not too large or ensure that there is some unused stuff after mb
412

    
413
    /**
414
     * Cabac
415
     */
416
    CABACContext cabac;
417
    uint8_t      cabac_state[460];
418

    
419
    /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0,1,2), 0x0? luma_cbp */
420
    uint16_t     *cbp_table;
421
    int cbp;
422
    int top_cbp;
423
    int left_cbp;
424
    /* chroma_pred_mode for i4x4 or i16x16, else 0 */
425
    uint8_t     *chroma_pred_mode_table;
426
    int         last_qscale_diff;
427
    uint8_t     (*mvd_table[2])[2];
428
    DECLARE_ALIGNED(16, uint8_t, mvd_cache)[2][5*8][2];
429
    uint8_t     *direct_table;
430
    uint8_t     direct_cache[5*8];
431

    
432
    uint8_t zigzag_scan[16];
433
    uint8_t zigzag_scan8x8[64];
434
    uint8_t zigzag_scan8x8_cavlc[64];
435
    uint8_t field_scan[16];
436
    uint8_t field_scan8x8[64];
437
    uint8_t field_scan8x8_cavlc[64];
438
    const uint8_t *zigzag_scan_q0;
439
    const uint8_t *zigzag_scan8x8_q0;
440
    const uint8_t *zigzag_scan8x8_cavlc_q0;
441
    const uint8_t *field_scan_q0;
442
    const uint8_t *field_scan8x8_q0;
443
    const uint8_t *field_scan8x8_cavlc_q0;
444

    
445
    int x264_build;
446

    
447
    int mb_xy;
448

    
449
    int is_complex;
450

    
451
    //deblock
452
    int deblocking_filter;         ///< disable_deblocking_filter_idc with 1<->0
453
    int slice_alpha_c0_offset;
454
    int slice_beta_offset;
455

    
456
//=============================================================
457
    //Things below are not used in the MB or more inner code
458

    
459
    int nal_ref_idc;
460
    int nal_unit_type;
461
    uint8_t *rbsp_buffer[2];
462
    unsigned int rbsp_buffer_size[2];
463

    
464
    /**
465
     * Used to parse AVC variant of h264
466
     */
467
    int is_avc; ///< this flag is != 0 if codec is avc1
468
    int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
469
    int got_first; ///< this flag is != 0 if we've parsed a frame
470

    
471
    SPS *sps_buffers[MAX_SPS_COUNT];
472
    PPS *pps_buffers[MAX_PPS_COUNT];
473

    
474
    int dequant_coeff_pps;     ///< reinit tables when pps changes
475

    
476
    uint16_t *slice_table_base;
477

    
478

    
479
    //POC stuff
480
    int poc_lsb;
481
    int poc_msb;
482
    int delta_poc_bottom;
483
    int delta_poc[2];
484
    int frame_num;
485
    int prev_poc_msb;             ///< poc_msb of the last reference pic for POC type 0
486
    int prev_poc_lsb;             ///< poc_lsb of the last reference pic for POC type 0
487
    int frame_num_offset;         ///< for POC type 2
488
    int prev_frame_num_offset;    ///< for POC type 2
489
    int prev_frame_num;           ///< frame_num of the last pic for POC type 1/2
490

    
491
    /**
492
     * frame_num for frames or 2*frame_num+1 for field pics.
493
     */
494
    int curr_pic_num;
495

    
496
    /**
497
     * max_frame_num or 2*max_frame_num for field pics.
498
     */
499
    int max_pic_num;
500

    
501
    int redundant_pic_count;
502

    
503
    Picture *short_ref[32];
504
    Picture *long_ref[32];
505
    Picture default_ref_list[2][32]; ///< base reference list for all slices of a coded picture
506
    Picture *delayed_pic[MAX_DELAYED_PIC_COUNT+2]; //FIXME size?
507
    int outputed_poc;
508

    
509
    /**
510
     * memory management control operations buffer.
511
     */
512
    MMCO mmco[MAX_MMCO_COUNT];
513
    int mmco_index;
514

    
515
    int long_ref_count;  ///< number of actual long term references
516
    int short_ref_count; ///< number of actual short term references
517

    
518
    int          cabac_init_idc;
519

    
520
    /**
521
     * @defgroup multithreading Members for slice based multithreading
522
     * @{
523
     */
524
    struct H264Context *thread_context[MAX_THREADS];
525

    
526
    /**
527
     * current slice number, used to initalize slice_num of each thread/context
528
     */
529
    int current_slice;
530

    
531
    /**
532
     * Max number of threads / contexts.
533
     * This is equal to AVCodecContext.thread_count unless
534
     * multithreaded decoding is impossible, in which case it is
535
     * reduced to 1.
536
     */
537
    int max_contexts;
538

    
539
    /**
540
     *  1 if the single thread fallback warning has already been
541
     *  displayed, 0 otherwise.
542
     */
543
    int single_decode_warning;
544

    
545
    int last_slice_type;
546
    /** @} */
547

    
548
    /**
549
     * pic_struct in picture timing SEI message
550
     */
551
    SEI_PicStructType sei_pic_struct;
552

    
553
    /**
554
     * Complement sei_pic_struct
555
     * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
556
     * However, soft telecined frames may have these values.
557
     * This is used in an attempt to flag soft telecine progressive.
558
     */
559
    int prev_interlaced_frame;
560

    
561
    /**
562
     * Bit set of clock types for fields/frames in picture timing SEI message.
563
     * For each found ct_type, appropriate bit is set (e.g., bit 1 for
564
     * interlaced).
565
     */
566
    int sei_ct_type;
567

    
568
    /**
569
     * dpb_output_delay in picture timing SEI message, see H.264 C.2.2
570
     */
571
    int sei_dpb_output_delay;
572

    
573
    /**
574
     * cpb_removal_delay in picture timing SEI message, see H.264 C.1.2
575
     */
576
    int sei_cpb_removal_delay;
577

    
578
    /**
579
     * recovery_frame_cnt from SEI message
580
     *
581
     * Set to -1 if no recovery point SEI message found or to number of frames
582
     * before playback synchronizes. Frames having recovery point are key
583
     * frames.
584
     */
585
    int sei_recovery_frame_cnt;
586

    
587
    int luma_weight_flag[2];   ///< 7.4.3.2 luma_weight_lX_flag
588
    int chroma_weight_flag[2]; ///< 7.4.3.2 chroma_weight_lX_flag
589

    
590
    // Timestamp stuff
591
    int sei_buffering_period_present;  ///< Buffering period SEI flag
592
    int initial_cpb_removal_delay[32]; ///< Initial timestamps for CPBs
593

    
594
    //SVQ3 specific fields
595
    int halfpel_flag;
596
    int thirdpel_flag;
597
    int unknown_svq3_flag;
598
    int next_slice_index;
599
    uint32_t svq3_watermark_key;
600
}H264Context;
601

    
602

    
603
extern const uint8_t ff_h264_chroma_qp[52];
604

    
605
/**
606
 * Decode SEI
607
 */
608
int ff_h264_decode_sei(H264Context *h);
609

    
610
/**
611
 * Decode SPS
612
 */
613
int ff_h264_decode_seq_parameter_set(H264Context *h);
614

    
615
/**
616
 * Decode PPS
617
 */
618
int ff_h264_decode_picture_parameter_set(H264Context *h, int bit_length);
619

    
620
/**
621
 * Decode a network abstraction layer unit.
622
 * @param consumed is the number of bytes used as input
623
 * @param length is the length of the array
624
 * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing?
625
 * @return decoded bytes, might be src+1 if no escapes
626
 */
627
const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length);
628

    
629
/**
630
 * Identify the exact end of the bitstream
631
 * @return the length of the trailing, or 0 if damaged
632
 */
633
int ff_h264_decode_rbsp_trailing(H264Context *h, const uint8_t *src);
634

    
635
/**
636
 * Free any data that may have been allocated in the H264 context like SPS, PPS etc.
637
 */
638
av_cold void ff_h264_free_context(H264Context *h);
639

    
640
/**
641
 * Reconstruct bitstream slice_type.
642
 */
643
int ff_h264_get_slice_type(const H264Context *h);
644

    
645
/**
646
 * Allocate tables.
647
 * needs width/height
648
 */
649
int ff_h264_alloc_tables(H264Context *h);
650

    
651
/**
652
 * Fill the default_ref_list.
653
 */
654
int ff_h264_fill_default_ref_list(H264Context *h);
655

    
656
int ff_h264_decode_ref_pic_list_reordering(H264Context *h);
657
void ff_h264_fill_mbaff_ref_list(H264Context *h);
658
void ff_h264_remove_all_refs(H264Context *h);
659

    
660
/**
661
 * Execute the reference picture marking (memory management control operations).
662
 */
663
int ff_h264_execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count);
664

    
665
int ff_h264_decode_ref_pic_marking(H264Context *h, GetBitContext *gb);
666

    
667
void ff_generate_sliding_window_mmcos(H264Context *h);
668

    
669

    
670
/**
671
 * Check if the top & left blocks are available if needed & change the dc mode so it only uses the available blocks.
672
 */
673
int ff_h264_check_intra4x4_pred_mode(H264Context *h);
674

    
675
/**
676
 * Check if the top & left blocks are available if needed & change the dc mode so it only uses the available blocks.
677
 */
678
int ff_h264_check_intra_pred_mode(H264Context *h, int mode);
679

    
680
void ff_h264_write_back_intra_pred_mode(H264Context *h);
681
void ff_h264_hl_decode_mb(H264Context *h);
682
int ff_h264_frame_start(H264Context *h);
683
int ff_h264_decode_extradata(H264Context *h);
684
av_cold int ff_h264_decode_init(AVCodecContext *avctx);
685
av_cold int ff_h264_decode_end(AVCodecContext *avctx);
686
av_cold void ff_h264_decode_init_vlc(void);
687

    
688
/**
689
 * Decode a macroblock
690
 * @return 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
691
 */
692
int ff_h264_decode_mb_cavlc(H264Context *h);
693

    
694
/**
695
 * Decode a CABAC coded macroblock
696
 * @return 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
697
 */
698
int ff_h264_decode_mb_cabac(H264Context *h);
699

    
700
void ff_h264_init_cabac_states(H264Context *h);
701

    
702
void ff_h264_direct_dist_scale_factor(H264Context * const h);
703
void ff_h264_direct_ref_list_init(H264Context * const h);
704
void ff_h264_pred_direct_motion(H264Context * const h, int *mb_type);
705

    
706
void ff_h264_filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
707
void ff_h264_filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
708

    
709
/**
710
 * Reset SEI values at the beginning of the frame.
711
 *
712
 * @param h H.264 context.
713
 */
714
void ff_h264_reset_sei(H264Context *h);
715

    
716

    
717
/*
718
o-o o-o
719
 / / /
720
o-o o-o
721
 ,---'
722
o-o o-o
723
 / / /
724
o-o o-o
725
*/
726

    
727
/* Scan8 organization:
728
 *   0 1 2 3 4 5 6 7
729
 * 0   u u y y y y y
730
 * 1 u U U y Y Y Y Y
731
 * 2 u U U y Y Y Y Y
732
 * 3   v v y Y Y Y Y
733
 * 4 v V V y Y Y Y Y
734
 * 5 v V V   DYDUDV
735
 * DY/DU/DV are for luma/chroma DC.
736
 */
737

    
738
//This table must be here because scan8[constant] must be known at compiletime
739
static const uint8_t scan8[16 + 2*4 + 3]={
740
 4+1*8, 5+1*8, 4+2*8, 5+2*8,
741
 6+1*8, 7+1*8, 6+2*8, 7+2*8,
742
 4+3*8, 5+3*8, 4+4*8, 5+4*8,
743
 6+3*8, 7+3*8, 6+4*8, 7+4*8,
744
 1+1*8, 2+1*8,
745
 1+2*8, 2+2*8,
746
 1+4*8, 2+4*8,
747
 1+5*8, 2+5*8,
748
 4+5*8, 5+5*8, 6+5*8
749
};
750

    
751
static av_always_inline uint32_t pack16to32(int a, int b){
752
#if HAVE_BIGENDIAN
753
   return (b&0xFFFF) + (a<<16);
754
#else
755
   return (a&0xFFFF) + (b<<16);
756
#endif
757
}
758

    
759
static av_always_inline uint16_t pack8to16(int a, int b){
760
#if HAVE_BIGENDIAN
761
   return (b&0xFF) + (a<<8);
762
#else
763
   return (a&0xFF) + (b<<8);
764
#endif
765
}
766

    
767
/**
768
 * gets the chroma qp.
769
 */
770
static inline int get_chroma_qp(H264Context *h, int t, int qscale){
771
    return h->pps.chroma_qp_table[t][qscale];
772
}
773

    
774
static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my);
775

    
776
static void fill_decode_neighbors(H264Context *h, int mb_type){
777
    MpegEncContext * const s = &h->s;
778
    const int mb_xy= h->mb_xy;
779
    int topleft_xy, top_xy, topright_xy, left_xy[2];
780
    static const uint8_t left_block_options[4][16]={
781
        {0,1,2,3,7,10,8,11,7+0*8, 7+1*8, 7+2*8, 7+3*8, 2+0*8, 2+3*8, 2+1*8, 2+2*8},
782
        {2,2,3,3,8,11,8,11,7+2*8, 7+2*8, 7+3*8, 7+3*8, 2+1*8, 2+2*8, 2+1*8, 2+2*8},
783
        {0,0,1,1,7,10,7,10,7+0*8, 7+0*8, 7+1*8, 7+1*8, 2+0*8, 2+3*8, 2+0*8, 2+3*8},
784
        {0,2,0,2,7,10,7,10,7+0*8, 7+2*8, 7+0*8, 7+2*8, 2+0*8, 2+3*8, 2+0*8, 2+3*8}
785
    };
786

    
787
    h->topleft_partition= -1;
788

    
789
    top_xy     = mb_xy  - (s->mb_stride << MB_FIELD);
790

    
791
    /* Wow, what a mess, why didn't they simplify the interlacing & intra
792
     * stuff, I can't imagine that these complex rules are worth it. */
793

    
794
    topleft_xy = top_xy - 1;
795
    topright_xy= top_xy + 1;
796
    left_xy[1] = left_xy[0] = mb_xy-1;
797
    h->left_block = left_block_options[0];
798
    if(FRAME_MBAFF){
799
        const int left_mb_field_flag     = IS_INTERLACED(s->current_picture.mb_type[mb_xy-1]);
800
        const int curr_mb_field_flag     = IS_INTERLACED(mb_type);
801
        if(s->mb_y&1){
802
            if (left_mb_field_flag != curr_mb_field_flag) {
803
                left_xy[1] = left_xy[0] = mb_xy - s->mb_stride - 1;
804
                if (curr_mb_field_flag) {
805
                    left_xy[1] += s->mb_stride;
806
                    h->left_block = left_block_options[3];
807
                } else {
808
                    topleft_xy += s->mb_stride;
809
                    // take top left mv from the middle of the mb, as opposed to all other modes which use the bottom right partition
810
                    h->topleft_partition = 0;
811
                    h->left_block = left_block_options[1];
812
                }
813
            }
814
        }else{
815
            if(curr_mb_field_flag){
816
                topleft_xy  += s->mb_stride & (((s->current_picture.mb_type[top_xy - 1]>>7)&1)-1);
817
                topright_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy + 1]>>7)&1)-1);
818
                top_xy      += s->mb_stride & (((s->current_picture.mb_type[top_xy    ]>>7)&1)-1);
819
            }
820
            if (left_mb_field_flag != curr_mb_field_flag) {
821
                if (curr_mb_field_flag) {
822
                    left_xy[1] += s->mb_stride;
823
                    h->left_block = left_block_options[3];
824
                } else {
825
                    h->left_block = left_block_options[2];
826
                }
827
            }
828
        }
829
    }
830

    
831
    h->topleft_mb_xy = topleft_xy;
832
    h->top_mb_xy     = top_xy;
833
    h->topright_mb_xy= topright_xy;
834
    h->left_mb_xy[0] = left_xy[0];
835
    h->left_mb_xy[1] = left_xy[1];
836
    //FIXME do we need all in the context?
837

    
838
    h->topleft_type = s->current_picture.mb_type[topleft_xy] ;
839
    h->top_type     = s->current_picture.mb_type[top_xy]     ;
840
    h->topright_type= s->current_picture.mb_type[topright_xy];
841
    h->left_type[0] = s->current_picture.mb_type[left_xy[0]] ;
842
    h->left_type[1] = s->current_picture.mb_type[left_xy[1]] ;
843

    
844
    if(FMO){
845
    if(h->slice_table[topleft_xy ] != h->slice_num) h->topleft_type = 0;
846
    if(h->slice_table[top_xy     ] != h->slice_num) h->top_type     = 0;
847
    if(h->slice_table[left_xy[0] ] != h->slice_num) h->left_type[0] = h->left_type[1] = 0;
848
    }else{
849
        if(h->slice_table[topleft_xy ] != h->slice_num){
850
            h->topleft_type = 0;
851
            if(h->slice_table[top_xy     ] != h->slice_num) h->top_type     = 0;
852
            if(h->slice_table[left_xy[0] ] != h->slice_num) h->left_type[0] = h->left_type[1] = 0;
853
        }
854
    }
855
    if(h->slice_table[topright_xy] != h->slice_num) h->topright_type= 0;
856
}
857

    
858
static void fill_decode_caches(H264Context *h, int mb_type){
859
    MpegEncContext * const s = &h->s;
860
    int topleft_xy, top_xy, topright_xy, left_xy[2];
861
    int topleft_type, top_type, topright_type, left_type[2];
862
    const uint8_t * left_block= h->left_block;
863
    int i;
864

    
865
    topleft_xy   = h->topleft_mb_xy ;
866
    top_xy       = h->top_mb_xy     ;
867
    topright_xy  = h->topright_mb_xy;
868
    left_xy[0]   = h->left_mb_xy[0] ;
869
    left_xy[1]   = h->left_mb_xy[1] ;
870
    topleft_type = h->topleft_type  ;
871
    top_type     = h->top_type      ;
872
    topright_type= h->topright_type ;
873
    left_type[0] = h->left_type[0]  ;
874
    left_type[1] = h->left_type[1]  ;
875

    
876
    if(!IS_SKIP(mb_type)){
877
        if(IS_INTRA(mb_type)){
878
            int type_mask= h->pps.constrained_intra_pred ? IS_INTRA(-1) : -1;
879
            h->topleft_samples_available=
880
            h->top_samples_available=
881
            h->left_samples_available= 0xFFFF;
882
            h->topright_samples_available= 0xEEEA;
883

    
884
            if(!(top_type & type_mask)){
885
                h->topleft_samples_available= 0xB3FF;
886
                h->top_samples_available= 0x33FF;
887
                h->topright_samples_available= 0x26EA;
888
            }
889
            if(IS_INTERLACED(mb_type) != IS_INTERLACED(left_type[0])){
890
                if(IS_INTERLACED(mb_type)){
891
                    if(!(left_type[0] & type_mask)){
892
                        h->topleft_samples_available&= 0xDFFF;
893
                        h->left_samples_available&= 0x5FFF;
894
                    }
895
                    if(!(left_type[1] & type_mask)){
896
                        h->topleft_samples_available&= 0xFF5F;
897
                        h->left_samples_available&= 0xFF5F;
898
                    }
899
                }else{
900
                    int left_typei = s->current_picture.mb_type[left_xy[0] + s->mb_stride];
901

    
902
                    assert(left_xy[0] == left_xy[1]);
903
                    if(!((left_typei & type_mask) && (left_type[0] & type_mask))){
904
                        h->topleft_samples_available&= 0xDF5F;
905
                        h->left_samples_available&= 0x5F5F;
906
                    }
907
                }
908
            }else{
909
                if(!(left_type[0] & type_mask)){
910
                    h->topleft_samples_available&= 0xDF5F;
911
                    h->left_samples_available&= 0x5F5F;
912
                }
913
            }
914

    
915
            if(!(topleft_type & type_mask))
916
                h->topleft_samples_available&= 0x7FFF;
917

    
918
            if(!(topright_type & type_mask))
919
                h->topright_samples_available&= 0xFBFF;
920

    
921
            if(IS_INTRA4x4(mb_type)){
922
                if(IS_INTRA4x4(top_type)){
923
                    AV_COPY32(h->intra4x4_pred_mode_cache+4+8*0, h->intra4x4_pred_mode + h->mb2br_xy[top_xy]);
924
                }else{
925
                    h->intra4x4_pred_mode_cache[4+8*0]=
926
                    h->intra4x4_pred_mode_cache[5+8*0]=
927
                    h->intra4x4_pred_mode_cache[6+8*0]=
928
                    h->intra4x4_pred_mode_cache[7+8*0]= 2 - 3*!(top_type & type_mask);
929
                }
930
                for(i=0; i<2; i++){
931
                    if(IS_INTRA4x4(left_type[i])){
932
                        int8_t *mode= h->intra4x4_pred_mode + h->mb2br_xy[left_xy[i]];
933
                        h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= mode[6-left_block[0+2*i]];
934
                        h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= mode[6-left_block[1+2*i]];
935
                    }else{
936
                        h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
937
                        h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= 2 - 3*!(left_type[i] & type_mask);
938
                    }
939
                }
940
            }
941
        }
942

    
943

    
944
/*
945
0 . T T. T T T T
946
1 L . .L . . . .
947
2 L . .L . . . .
948
3 . T TL . . . .
949
4 L . .L . . . .
950
5 L . .. . . . .
951
*/
952
//FIXME constraint_intra_pred & partitioning & nnz (let us hope this is just a typo in the spec)
953
    if(top_type){
954
        AV_COPY32(&h->non_zero_count_cache[4+8*0], &h->non_zero_count[top_xy][4+3*8]);
955
            h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][1+1*8];
956
            h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][2+1*8];
957

    
958
            h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][1+2*8];
959
            h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][2+2*8];
960
    }else {
961
            h->non_zero_count_cache[1+8*0]=
962
            h->non_zero_count_cache[2+8*0]=
963

    
964
            h->non_zero_count_cache[1+8*3]=
965
            h->non_zero_count_cache[2+8*3]=
966
            AV_WN32A(&h->non_zero_count_cache[4+8*0], CABAC && !IS_INTRA(mb_type) ? 0 : 0x40404040);
967
    }
968

    
969
    for (i=0; i<2; i++) {
970
        if(left_type[i]){
971
            h->non_zero_count_cache[3+8*1 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+0+2*i]];
972
            h->non_zero_count_cache[3+8*2 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+1+2*i]];
973
                h->non_zero_count_cache[0+8*1 +   8*i]= h->non_zero_count[left_xy[i]][left_block[8+4+2*i]];
974
                h->non_zero_count_cache[0+8*4 +   8*i]= h->non_zero_count[left_xy[i]][left_block[8+5+2*i]];
975
        }else{
976
                h->non_zero_count_cache[3+8*1 + 2*8*i]=
977
                h->non_zero_count_cache[3+8*2 + 2*8*i]=
978
                h->non_zero_count_cache[0+8*1 +   8*i]=
979
                h->non_zero_count_cache[0+8*4 +   8*i]= CABAC && !IS_INTRA(mb_type) ? 0 : 64;
980
        }
981
    }
982

    
983
    if( CABAC ) {
984
        // top_cbp
985
        if(top_type) {
986
            h->top_cbp = h->cbp_table[top_xy];
987
        } else {
988
            h->top_cbp = IS_INTRA(mb_type) ? 0x1CF : 0x00F;
989
        }
990
        // left_cbp
991
        if (left_type[0]) {
992
            h->left_cbp = (h->cbp_table[left_xy[0]] & 0x1f0)
993
                        |  ((h->cbp_table[left_xy[0]]>>(left_block[0]&(~1)))&2)
994
                        | (((h->cbp_table[left_xy[1]]>>(left_block[2]&(~1)))&2) << 2);
995
        } else {
996
            h->left_cbp = IS_INTRA(mb_type) ? 0x1CF : 0x00F;
997
        }
998
    }
999
    }
1000

    
1001
#if 1
1002
    if(IS_INTER(mb_type) || (IS_DIRECT(mb_type) && h->direct_spatial_mv_pred)){
1003
        int list;
1004
        for(list=0; list<h->list_count; list++){
1005
            if(!USES_LIST(mb_type, list)){
1006
                /*if(!h->mv_cache_clean[list]){
1007
                    memset(h->mv_cache [list],  0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
1008
                    memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
1009
                    h->mv_cache_clean[list]= 1;
1010
                }*/
1011
                continue;
1012
            }
1013
            assert(!(IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred));
1014

    
1015
            h->mv_cache_clean[list]= 0;
1016

    
1017
            if(USES_LIST(top_type, list)){
1018
                const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
1019
                AV_COPY128(h->mv_cache[list][scan8[0] + 0 - 1*8], s->current_picture.motion_val[list][b_xy + 0]);
1020
                    h->ref_cache[list][scan8[0] + 0 - 1*8]=
1021
                    h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][4*top_xy + 2];
1022
                    h->ref_cache[list][scan8[0] + 2 - 1*8]=
1023
                    h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][4*top_xy + 3];
1024
            }else{
1025
                AV_ZERO128(h->mv_cache[list][scan8[0] + 0 - 1*8]);
1026
                AV_WN32A(&h->ref_cache[list][scan8[0] + 0 - 1*8], ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101);
1027
            }
1028

    
1029
            if(mb_type & (MB_TYPE_16x8|MB_TYPE_8x8)){
1030
            for(i=0; i<2; i++){
1031
                int cache_idx = scan8[0] - 1 + i*2*8;
1032
                if(USES_LIST(left_type[i], list)){
1033
                    const int b_xy= h->mb2b_xy[left_xy[i]] + 3;
1034
                    const int b8_xy= 4*left_xy[i] + 1;
1035
                    AV_COPY32(h->mv_cache[list][cache_idx  ], s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0+i*2]]);
1036
                    AV_COPY32(h->mv_cache[list][cache_idx+8], s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1+i*2]]);
1037
                        h->ref_cache[list][cache_idx  ]= s->current_picture.ref_index[list][b8_xy + (left_block[0+i*2]&~1)];
1038
                        h->ref_cache[list][cache_idx+8]= s->current_picture.ref_index[list][b8_xy + (left_block[1+i*2]&~1)];
1039
                }else{
1040
                    AV_ZERO32(h->mv_cache [list][cache_idx  ]);
1041
                    AV_ZERO32(h->mv_cache [list][cache_idx+8]);
1042
                    h->ref_cache[list][cache_idx  ]=
1043
                    h->ref_cache[list][cache_idx+8]= (left_type[i]) ? LIST_NOT_USED : PART_NOT_AVAILABLE;
1044
                }
1045
            }
1046
            }else{
1047
                if(USES_LIST(left_type[0], list)){
1048
                    const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
1049
                    const int b8_xy= 4*left_xy[0] + 1;
1050
                    AV_COPY32(h->mv_cache[list][scan8[0] - 1], s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0]]);
1051
                    h->ref_cache[list][scan8[0] - 1]= s->current_picture.ref_index[list][b8_xy + (left_block[0]&~1)];
1052
                }else{
1053
                    AV_ZERO32(h->mv_cache [list][scan8[0] - 1]);
1054
                    h->ref_cache[list][scan8[0] - 1]= left_type[0] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
1055
                }
1056
            }
1057

    
1058
            if(USES_LIST(topright_type, list)){
1059
                const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride;
1060
                AV_COPY32(h->mv_cache[list][scan8[0] + 4 - 1*8], s->current_picture.motion_val[list][b_xy]);
1061
                h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][4*topright_xy + 2];
1062
            }else{
1063
                AV_ZERO32(h->mv_cache [list][scan8[0] + 4 - 1*8]);
1064
                h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
1065
            }
1066
            if(h->ref_cache[list][scan8[0] + 4 - 1*8] < 0){
1067
                if(USES_LIST(topleft_type, list)){
1068
                    const int b_xy = h->mb2b_xy [topleft_xy] + 3 + h->b_stride + (h->topleft_partition & 2*h->b_stride);
1069
                    const int b8_xy= 4*topleft_xy + 1 + (h->topleft_partition & 2);
1070
                    AV_COPY32(h->mv_cache[list][scan8[0] - 1 - 1*8], s->current_picture.motion_val[list][b_xy]);
1071
                    h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy];
1072
                }else{
1073
                    AV_ZERO32(h->mv_cache[list][scan8[0] - 1 - 1*8]);
1074
                    h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
1075
                }
1076
            }
1077

    
1078
            if((mb_type&(MB_TYPE_SKIP|MB_TYPE_DIRECT2)) && !FRAME_MBAFF)
1079
                continue;
1080

    
1081
            if(!(mb_type&(MB_TYPE_SKIP|MB_TYPE_DIRECT2))) {
1082
            h->ref_cache[list][scan8[4 ]] =
1083
            h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
1084
            AV_ZERO32(h->mv_cache [list][scan8[4 ]]);
1085
            AV_ZERO32(h->mv_cache [list][scan8[12]]);
1086

    
1087
            if( CABAC ) {
1088
                /* XXX beurk, Load mvd */
1089
                if(USES_LIST(top_type, list)){
1090
                    const int b_xy= h->mb2br_xy[top_xy];
1091
                    AV_COPY64(h->mvd_cache[list][scan8[0] + 0 - 1*8], h->mvd_table[list][b_xy + 0]);
1092
                }else{
1093
                    AV_ZERO64(h->mvd_cache[list][scan8[0] + 0 - 1*8]);
1094
                }
1095
                if(USES_LIST(left_type[0], list)){
1096
                    const int b_xy= h->mb2br_xy[left_xy[0]] + 6;
1097
                    AV_COPY16(h->mvd_cache[list][scan8[0] - 1 + 0*8], h->mvd_table[list][b_xy - left_block[0]]);
1098
                    AV_COPY16(h->mvd_cache[list][scan8[0] - 1 + 1*8], h->mvd_table[list][b_xy - left_block[1]]);
1099
                }else{
1100
                    AV_ZERO16(h->mvd_cache [list][scan8[0] - 1 + 0*8]);
1101
                    AV_ZERO16(h->mvd_cache [list][scan8[0] - 1 + 1*8]);
1102
                }
1103
                if(USES_LIST(left_type[1], list)){
1104
                    const int b_xy= h->mb2br_xy[left_xy[1]] + 6;
1105
                    AV_COPY16(h->mvd_cache[list][scan8[0] - 1 + 2*8], h->mvd_table[list][b_xy - left_block[2]]);
1106
                    AV_COPY16(h->mvd_cache[list][scan8[0] - 1 + 3*8], h->mvd_table[list][b_xy - left_block[3]]);
1107
                }else{
1108
                    AV_ZERO16(h->mvd_cache [list][scan8[0] - 1 + 2*8]);
1109
                    AV_ZERO16(h->mvd_cache [list][scan8[0] - 1 + 3*8]);
1110
                }
1111
                AV_ZERO16(h->mvd_cache [list][scan8[4 ]]);
1112
                AV_ZERO16(h->mvd_cache [list][scan8[12]]);
1113
                if(h->slice_type_nos == FF_B_TYPE){
1114
                    fill_rectangle(&h->direct_cache[scan8[0]], 4, 4, 8, MB_TYPE_16x16>>1, 1);
1115

    
1116
                    if(IS_DIRECT(top_type)){
1117
                        AV_WN32A(&h->direct_cache[scan8[0] - 1*8], 0x01010101u*(MB_TYPE_DIRECT2>>1));
1118
                    }else if(IS_8X8(top_type)){
1119
                        int b8_xy = 4*top_xy;
1120
                        h->direct_cache[scan8[0] + 0 - 1*8]= h->direct_table[b8_xy + 2];
1121
                        h->direct_cache[scan8[0] + 2 - 1*8]= h->direct_table[b8_xy + 3];
1122
                    }else{
1123
                        AV_WN32A(&h->direct_cache[scan8[0] - 1*8], 0x01010101*(MB_TYPE_16x16>>1));
1124
                    }
1125

    
1126
                    if(IS_DIRECT(left_type[0]))
1127
                        h->direct_cache[scan8[0] - 1 + 0*8]= MB_TYPE_DIRECT2>>1;
1128
                    else if(IS_8X8(left_type[0]))
1129
                        h->direct_cache[scan8[0] - 1 + 0*8]= h->direct_table[4*left_xy[0] + 1 + (left_block[0]&~1)];
1130
                    else
1131
                        h->direct_cache[scan8[0] - 1 + 0*8]= MB_TYPE_16x16>>1;
1132

    
1133
                    if(IS_DIRECT(left_type[1]))
1134
                        h->direct_cache[scan8[0] - 1 + 2*8]= MB_TYPE_DIRECT2>>1;
1135
                    else if(IS_8X8(left_type[1]))
1136
                        h->direct_cache[scan8[0] - 1 + 2*8]= h->direct_table[4*left_xy[1] + 1 + (left_block[2]&~1)];
1137
                    else
1138
                        h->direct_cache[scan8[0] - 1 + 2*8]= MB_TYPE_16x16>>1;
1139
                }
1140
            }
1141
            }
1142
            if(FRAME_MBAFF){
1143
#define MAP_MVS\
1144
                    MAP_F2F(scan8[0] - 1 - 1*8, topleft_type)\
1145
                    MAP_F2F(scan8[0] + 0 - 1*8, top_type)\
1146
                    MAP_F2F(scan8[0] + 1 - 1*8, top_type)\
1147
                    MAP_F2F(scan8[0] + 2 - 1*8, top_type)\
1148
                    MAP_F2F(scan8[0] + 3 - 1*8, top_type)\
1149
                    MAP_F2F(scan8[0] + 4 - 1*8, topright_type)\
1150
                    MAP_F2F(scan8[0] - 1 + 0*8, left_type[0])\
1151
                    MAP_F2F(scan8[0] - 1 + 1*8, left_type[0])\
1152
                    MAP_F2F(scan8[0] - 1 + 2*8, left_type[1])\
1153
                    MAP_F2F(scan8[0] - 1 + 3*8, left_type[1])
1154
                if(MB_FIELD){
1155
#define MAP_F2F(idx, mb_type)\
1156
                    if(!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
1157
                        h->ref_cache[list][idx] <<= 1;\
1158
                        h->mv_cache[list][idx][1] /= 2;\
1159
                        h->mvd_cache[list][idx][1] >>=1;\
1160
                    }
1161
                    MAP_MVS
1162
#undef MAP_F2F
1163
                }else{
1164
#define MAP_F2F(idx, mb_type)\
1165
                    if(IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
1166
                        h->ref_cache[list][idx] >>= 1;\
1167
                        h->mv_cache[list][idx][1] <<= 1;\
1168
                        h->mvd_cache[list][idx][1] <<= 1;\
1169
                    }
1170
                    MAP_MVS
1171
#undef MAP_F2F
1172
                }
1173
            }
1174
        }
1175
    }
1176
#endif
1177

    
1178
        h->neighbor_transform_size= !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[0]);
1179
}
1180

    
1181
/**
1182
 * gets the predicted intra4x4 prediction mode.
1183
 */
1184
static inline int pred_intra_mode(H264Context *h, int n){
1185
    const int index8= scan8[n];
1186
    const int left= h->intra4x4_pred_mode_cache[index8 - 1];
1187
    const int top = h->intra4x4_pred_mode_cache[index8 - 8];
1188
    const int min= FFMIN(left, top);
1189

    
1190
    tprintf(h->s.avctx, "mode:%d %d min:%d\n", left ,top, min);
1191

    
1192
    if(min<0) return DC_PRED;
1193
    else      return min;
1194
}
1195

    
1196
static inline void write_back_non_zero_count(H264Context *h){
1197
    const int mb_xy= h->mb_xy;
1198

    
1199
    AV_COPY64(&h->non_zero_count[mb_xy][ 0], &h->non_zero_count_cache[0+8*1]);
1200
    AV_COPY64(&h->non_zero_count[mb_xy][ 8], &h->non_zero_count_cache[0+8*2]);
1201
    AV_COPY32(&h->non_zero_count[mb_xy][16], &h->non_zero_count_cache[0+8*5]);
1202
    AV_COPY32(&h->non_zero_count[mb_xy][20], &h->non_zero_count_cache[4+8*3]);
1203
    AV_COPY64(&h->non_zero_count[mb_xy][24], &h->non_zero_count_cache[0+8*4]);
1204
}
1205

    
1206
static inline void write_back_motion(H264Context *h, int mb_type){
1207
    MpegEncContext * const s = &h->s;
1208
    const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride; //try mb2b(8)_xy
1209
    const int b8_xy= 4*h->mb_xy;
1210
    int list;
1211

    
1212
    if(!USES_LIST(mb_type, 0))
1213
        fill_rectangle(&s->current_picture.ref_index[0][b8_xy], 2, 2, 2, (uint8_t)LIST_NOT_USED, 1);
1214

    
1215
    for(list=0; list<h->list_count; list++){
1216
        int y, b_stride;
1217
        int16_t (*mv_dst)[2];
1218
        int16_t (*mv_src)[2];
1219

    
1220
        if(!USES_LIST(mb_type, list))
1221
            continue;
1222

    
1223
        b_stride = h->b_stride;
1224
        mv_dst   = &s->current_picture.motion_val[list][b_xy];
1225
        mv_src   = &h->mv_cache[list][scan8[0]];
1226
        for(y=0; y<4; y++){
1227
            AV_COPY128(mv_dst + y*b_stride, mv_src + 8*y);
1228
        }
1229
        if( CABAC ) {
1230
            uint8_t (*mvd_dst)[2] = &h->mvd_table[list][FMO ? 8*h->mb_xy : h->mb2br_xy[h->mb_xy]];
1231
            uint8_t (*mvd_src)[2] = &h->mvd_cache[list][scan8[0]];
1232
            if(IS_SKIP(mb_type))
1233
                AV_ZERO128(mvd_dst);
1234
            else{
1235
            AV_COPY64(mvd_dst, mvd_src + 8*3);
1236
                AV_COPY16(mvd_dst + 3 + 3, mvd_src + 3 + 8*0);
1237
                AV_COPY16(mvd_dst + 3 + 2, mvd_src + 3 + 8*1);
1238
                AV_COPY16(mvd_dst + 3 + 1, mvd_src + 3 + 8*2);
1239
            }
1240
        }
1241

    
1242
        {
1243
            int8_t *ref_index = &s->current_picture.ref_index[list][b8_xy];
1244
            ref_index[0+0*2]= h->ref_cache[list][scan8[0]];
1245
            ref_index[1+0*2]= h->ref_cache[list][scan8[4]];
1246
            ref_index[0+1*2]= h->ref_cache[list][scan8[8]];
1247
            ref_index[1+1*2]= h->ref_cache[list][scan8[12]];
1248
        }
1249
    }
1250

    
1251
    if(h->slice_type_nos == FF_B_TYPE && CABAC){
1252
        if(IS_8X8(mb_type)){
1253
            uint8_t *direct_table = &h->direct_table[4*h->mb_xy];
1254
            direct_table[1] = h->sub_mb_type[1]>>1;
1255
            direct_table[2] = h->sub_mb_type[2]>>1;
1256
            direct_table[3] = h->sub_mb_type[3]>>1;
1257
        }
1258
    }
1259
}
1260

    
1261
static inline int get_dct8x8_allowed(H264Context *h){
1262
    if(h->sps.direct_8x8_inference_flag)
1263
        return !(AV_RN64A(h->sub_mb_type) & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8                )*0x0001000100010001ULL));
1264
    else
1265
        return !(AV_RN64A(h->sub_mb_type) & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8|MB_TYPE_DIRECT2)*0x0001000100010001ULL));
1266
}
1267

    
1268
/**
1269
 * decodes a P_SKIP or B_SKIP macroblock
1270
 */
1271
static void av_unused decode_mb_skip(H264Context *h){
1272
    MpegEncContext * const s = &h->s;
1273
    const int mb_xy= h->mb_xy;
1274
    int mb_type=0;
1275

    
1276
    memset(h->non_zero_count[mb_xy], 0, 32);
1277
    memset(h->non_zero_count_cache + 8, 0, 8*5); //FIXME ugly, remove pfui
1278

    
1279
    if(MB_FIELD)
1280
        mb_type|= MB_TYPE_INTERLACED;
1281

    
1282
    if( h->slice_type_nos == FF_B_TYPE )
1283
    {
1284
        // just for fill_caches. pred_direct_motion will set the real mb_type
1285
        mb_type|= MB_TYPE_L0L1|MB_TYPE_DIRECT2|MB_TYPE_SKIP;
1286
        if(h->direct_spatial_mv_pred){
1287
            fill_decode_neighbors(h, mb_type);
1288
        fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
1289
        }
1290
        ff_h264_pred_direct_motion(h, &mb_type);
1291
        mb_type|= MB_TYPE_SKIP;
1292
    }
1293
    else
1294
    {
1295
        int mx, my;
1296
        mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P1L0|MB_TYPE_SKIP;
1297

    
1298
        fill_decode_neighbors(h, mb_type);
1299
        fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
1300
        pred_pskip_motion(h, &mx, &my);
1301
        fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
1302
        fill_rectangle(  h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx,my), 4);
1303
    }
1304

    
1305
    write_back_motion(h, mb_type);
1306
    s->current_picture.mb_type[mb_xy]= mb_type;
1307
    s->current_picture.qscale_table[mb_xy]= s->qscale;
1308
    h->slice_table[ mb_xy ]= h->slice_num;
1309
    h->prev_mb_skipped= 1;
1310
}
1311

    
1312
#include "h264_mvpred.h" //For pred_pskip_motion()
1313

    
1314
#endif /* AVCODEC_H264_H */