Statistics
| Branch: | Revision:

ffmpeg / libavcodec / h264.h @ 2dc380ca

History | View | Annotate | Download (55.9 KB)

1
/*
2
 * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
3
 * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21

    
22
/**
23
 * @file libavcodec/h264.h
24
 * H.264 / AVC / MPEG4 part10 codec.
25
 * @author Michael Niedermayer <michaelni@gmx.at>
26
 */
27

    
28
#ifndef AVCODEC_H264_H
29
#define AVCODEC_H264_H
30

    
31
#include "dsputil.h"
32
#include "cabac.h"
33
#include "mpegvideo.h"
34
#include "h264pred.h"
35
#include "rectangle.h"
36

    
37
#define interlaced_dct interlaced_dct_is_a_bad_name
38
#define mb_intra mb_intra_is_not_initialized_see_mb_type
39

    
40
#define LUMA_DC_BLOCK_INDEX   25
41
#define CHROMA_DC_BLOCK_INDEX 26
42

    
43
#define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8
44
#define COEFF_TOKEN_VLC_BITS           8
45
#define TOTAL_ZEROS_VLC_BITS           9
46
#define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3
47
#define RUN_VLC_BITS                   3
48
#define RUN7_VLC_BITS                  6
49

    
50
#define MAX_SPS_COUNT 32
51
#define MAX_PPS_COUNT 256
52

    
53
#define MAX_MMCO_COUNT 66
54

    
55
#define MAX_DELAYED_PIC_COUNT 16
56

    
57
/* Compiling in interlaced support reduces the speed
58
 * of progressive decoding by about 2%. */
59
#define ALLOW_INTERLACE
60

    
61
#define ALLOW_NOCHROMA
62

    
63
/**
64
 * The maximum number of slices supported by the decoder.
65
 * must be a power of 2
66
 */
67
#define MAX_SLICES 16
68

    
69
#ifdef ALLOW_INTERLACE
70
#define MB_MBAFF h->mb_mbaff
71
#define MB_FIELD h->mb_field_decoding_flag
72
#define FRAME_MBAFF h->mb_aff_frame
73
#define FIELD_PICTURE (s->picture_structure != PICT_FRAME)
74
#else
75
#define MB_MBAFF 0
76
#define MB_FIELD 0
77
#define FRAME_MBAFF 0
78
#define FIELD_PICTURE 0
79
#undef  IS_INTERLACED
80
#define IS_INTERLACED(mb_type) 0
81
#endif
82
#define FIELD_OR_MBAFF_PICTURE (FRAME_MBAFF || FIELD_PICTURE)
83

    
84
#ifdef ALLOW_NOCHROMA
85
#define CHROMA h->sps.chroma_format_idc
86
#else
87
#define CHROMA 1
88
#endif
89

    
90
#ifndef CABAC
91
#define CABAC h->pps.cabac
92
#endif
93

    
94
#define EXTENDED_SAR          255
95

    
96
#define MB_TYPE_REF0       MB_TYPE_ACPRED //dirty but it fits in 16 bit
97
#define MB_TYPE_8x8DCT     0x01000000
98
#define IS_REF0(a)         ((a) & MB_TYPE_REF0)
99
#define IS_8x8DCT(a)       ((a) & MB_TYPE_8x8DCT)
100

    
101
/**
102
 * Value of Picture.reference when Picture is not a reference picture, but
103
 * is held for delayed output.
104
 */
105
#define DELAYED_PIC_REF 4
106

    
107

    
108
/* NAL unit types */
109
enum {
110
    NAL_SLICE=1,
111
    NAL_DPA,
112
    NAL_DPB,
113
    NAL_DPC,
114
    NAL_IDR_SLICE,
115
    NAL_SEI,
116
    NAL_SPS,
117
    NAL_PPS,
118
    NAL_AUD,
119
    NAL_END_SEQUENCE,
120
    NAL_END_STREAM,
121
    NAL_FILLER_DATA,
122
    NAL_SPS_EXT,
123
    NAL_AUXILIARY_SLICE=19
124
};
125

    
126
/**
127
 * SEI message types
128
 */
129
typedef enum {
130
    SEI_BUFFERING_PERIOD             =  0, ///< buffering period (H.264, D.1.1)
131
    SEI_TYPE_PIC_TIMING              =  1, ///< picture timing
132
    SEI_TYPE_USER_DATA_UNREGISTERED  =  5, ///< unregistered user data
133
    SEI_TYPE_RECOVERY_POINT          =  6  ///< recovery point (frame # to decoder sync)
134
} SEI_Type;
135

    
136
/**
137
 * pic_struct in picture timing SEI message
138
 */
139
typedef enum {
140
    SEI_PIC_STRUCT_FRAME             = 0, ///<  0: %frame
141
    SEI_PIC_STRUCT_TOP_FIELD         = 1, ///<  1: top field
142
    SEI_PIC_STRUCT_BOTTOM_FIELD      = 2, ///<  2: bottom field
143
    SEI_PIC_STRUCT_TOP_BOTTOM        = 3, ///<  3: top field, bottom field, in that order
144
    SEI_PIC_STRUCT_BOTTOM_TOP        = 4, ///<  4: bottom field, top field, in that order
145
    SEI_PIC_STRUCT_TOP_BOTTOM_TOP    = 5, ///<  5: top field, bottom field, top field repeated, in that order
146
    SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM = 6, ///<  6: bottom field, top field, bottom field repeated, in that order
147
    SEI_PIC_STRUCT_FRAME_DOUBLING    = 7, ///<  7: %frame doubling
148
    SEI_PIC_STRUCT_FRAME_TRIPLING    = 8  ///<  8: %frame tripling
149
} SEI_PicStructType;
150

    
151
/**
152
 * Sequence parameter set
153
 */
154
typedef struct SPS{
155

    
156
    int profile_idc;
157
    int level_idc;
158
    int chroma_format_idc;
159
    int transform_bypass;              ///< qpprime_y_zero_transform_bypass_flag
160
    int log2_max_frame_num;            ///< log2_max_frame_num_minus4 + 4
161
    int poc_type;                      ///< pic_order_cnt_type
162
    int log2_max_poc_lsb;              ///< log2_max_pic_order_cnt_lsb_minus4
163
    int delta_pic_order_always_zero_flag;
164
    int offset_for_non_ref_pic;
165
    int offset_for_top_to_bottom_field;
166
    int poc_cycle_length;              ///< num_ref_frames_in_pic_order_cnt_cycle
167
    int ref_frame_count;               ///< num_ref_frames
168
    int gaps_in_frame_num_allowed_flag;
169
    int mb_width;                      ///< pic_width_in_mbs_minus1 + 1
170
    int mb_height;                     ///< pic_height_in_map_units_minus1 + 1
171
    int frame_mbs_only_flag;
172
    int mb_aff;                        ///<mb_adaptive_frame_field_flag
173
    int direct_8x8_inference_flag;
174
    int crop;                   ///< frame_cropping_flag
175
    unsigned int crop_left;            ///< frame_cropping_rect_left_offset
176
    unsigned int crop_right;           ///< frame_cropping_rect_right_offset
177
    unsigned int crop_top;             ///< frame_cropping_rect_top_offset
178
    unsigned int crop_bottom;          ///< frame_cropping_rect_bottom_offset
179
    int vui_parameters_present_flag;
180
    AVRational sar;
181
    int video_signal_type_present_flag;
182
    int full_range;
183
    int colour_description_present_flag;
184
    enum AVColorPrimaries color_primaries;
185
    enum AVColorTransferCharacteristic color_trc;
186
    enum AVColorSpace colorspace;
187
    int timing_info_present_flag;
188
    uint32_t num_units_in_tick;
189
    uint32_t time_scale;
190
    int fixed_frame_rate_flag;
191
    short offset_for_ref_frame[256]; //FIXME dyn aloc?
192
    int bitstream_restriction_flag;
193
    int num_reorder_frames;
194
    int scaling_matrix_present;
195
    uint8_t scaling_matrix4[6][16];
196
    uint8_t scaling_matrix8[2][64];
197
    int nal_hrd_parameters_present_flag;
198
    int vcl_hrd_parameters_present_flag;
199
    int pic_struct_present_flag;
200
    int time_offset_length;
201
    int cpb_cnt;                       ///< See H.264 E.1.2
202
    int initial_cpb_removal_delay_length; ///< initial_cpb_removal_delay_length_minus1 +1
203
    int cpb_removal_delay_length;      ///< cpb_removal_delay_length_minus1 + 1
204
    int dpb_output_delay_length;       ///< dpb_output_delay_length_minus1 + 1
205
    int bit_depth_luma;                ///< bit_depth_luma_minus8 + 8
206
    int bit_depth_chroma;              ///< bit_depth_chroma_minus8 + 8
207
    int residual_color_transform_flag; ///< residual_colour_transform_flag
208
}SPS;
209

    
210
/**
211
 * Picture parameter set
212
 */
213
typedef struct PPS{
214
    unsigned int sps_id;
215
    int cabac;                  ///< entropy_coding_mode_flag
216
    int pic_order_present;      ///< pic_order_present_flag
217
    int slice_group_count;      ///< num_slice_groups_minus1 + 1
218
    int mb_slice_group_map_type;
219
    unsigned int ref_count[2];  ///< num_ref_idx_l0/1_active_minus1 + 1
220
    int weighted_pred;          ///< weighted_pred_flag
221
    int weighted_bipred_idc;
222
    int init_qp;                ///< pic_init_qp_minus26 + 26
223
    int init_qs;                ///< pic_init_qs_minus26 + 26
224
    int chroma_qp_index_offset[2];
225
    int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
226
    int constrained_intra_pred; ///< constrained_intra_pred_flag
227
    int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag
228
    int transform_8x8_mode;     ///< transform_8x8_mode_flag
229
    uint8_t scaling_matrix4[6][16];
230
    uint8_t scaling_matrix8[2][64];
231
    uint8_t chroma_qp_table[2][64];  ///< pre-scaled (with chroma_qp_index_offset) version of qp_table
232
    int chroma_qp_diff;
233
}PPS;
234

    
235
/**
236
 * Memory management control operation opcode.
237
 */
238
typedef enum MMCOOpcode{
239
    MMCO_END=0,
240
    MMCO_SHORT2UNUSED,
241
    MMCO_LONG2UNUSED,
242
    MMCO_SHORT2LONG,
243
    MMCO_SET_MAX_LONG,
244
    MMCO_RESET,
245
    MMCO_LONG,
246
} MMCOOpcode;
247

    
248
/**
249
 * Memory management control operation.
250
 */
251
typedef struct MMCO{
252
    MMCOOpcode opcode;
253
    int short_pic_num;  ///< pic_num without wrapping (pic_num & max_pic_num)
254
    int long_arg;       ///< index, pic_num, or num long refs depending on opcode
255
} MMCO;
256

    
257
/**
258
 * H264Context
259
 */
260
typedef struct H264Context{
261
    MpegEncContext s;
262
    int nal_ref_idc;
263
    int nal_unit_type;
264
    uint8_t *rbsp_buffer[2];
265
    unsigned int rbsp_buffer_size[2];
266

    
267
    /**
268
      * Used to parse AVC variant of h264
269
      */
270
    int is_avc; ///< this flag is != 0 if codec is avc1
271
    int got_avcC; ///< flag used to parse avcC data only once
272
    int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
273

    
274
    int chroma_qp[2]; //QPc
275

    
276
    int qp_thresh;      ///< QP threshold to skip loopfilter
277

    
278
    int prev_mb_skipped;
279
    int next_mb_skipped;
280

    
281
    //prediction stuff
282
    int chroma_pred_mode;
283
    int intra16x16_pred_mode;
284

    
285
    int top_mb_xy;
286
    int left_mb_xy[2];
287

    
288
    int top_type;
289
    int left_type[2];
290

    
291
    int8_t intra4x4_pred_mode_cache[5*8];
292
    int8_t (*intra4x4_pred_mode)[8];
293
    H264PredContext hpc;
294
    unsigned int topleft_samples_available;
295
    unsigned int top_samples_available;
296
    unsigned int topright_samples_available;
297
    unsigned int left_samples_available;
298
    uint8_t (*top_borders[2])[16+2*8];
299
    uint8_t left_border[2*(17+2*9)];
300

    
301
    /**
302
     * non zero coeff count cache.
303
     * is 64 if not available.
304
     */
305
    DECLARE_ALIGNED_8(uint8_t, non_zero_count_cache)[6*8];
306

    
307
    /*
308
    .UU.YYYY
309
    .UU.YYYY
310
    .vv.YYYY
311
    .VV.YYYY
312
    */
313
    uint8_t (*non_zero_count)[32];
314

    
315
    /**
316
     * Motion vector cache.
317
     */
318
    DECLARE_ALIGNED_16(int16_t, mv_cache)[2][5*8][2];
319
    DECLARE_ALIGNED_8(int8_t, ref_cache)[2][5*8];
320
#define LIST_NOT_USED -1 //FIXME rename?
321
#define PART_NOT_AVAILABLE -2
322

    
323
    /**
324
     * is 1 if the specific list MV&references are set to 0,0,-2.
325
     */
326
    int mv_cache_clean[2];
327

    
328
    /**
329
     * number of neighbors (top and/or left) that used 8x8 dct
330
     */
331
    int neighbor_transform_size;
332

    
333
    /**
334
     * block_offset[ 0..23] for frame macroblocks
335
     * block_offset[24..47] for field macroblocks
336
     */
337
    int block_offset[2*(16+8)];
338

    
339
    uint32_t *mb2b_xy; //FIXME are these 4 a good idea?
340
    uint32_t *mb2b8_xy;
341
    int b_stride; //FIXME use s->b4_stride
342
    int b8_stride;
343

    
344
    int mb_linesize;   ///< may be equal to s->linesize or s->linesize*2, for mbaff
345
    int mb_uvlinesize;
346

    
347
    int emu_edge_width;
348
    int emu_edge_height;
349

    
350
    int halfpel_flag;
351
    int thirdpel_flag;
352

    
353
    int unknown_svq3_flag;
354
    int next_slice_index;
355

    
356
    SPS *sps_buffers[MAX_SPS_COUNT];
357
    SPS sps; ///< current sps
358

    
359
    PPS *pps_buffers[MAX_PPS_COUNT];
360
    /**
361
     * current pps
362
     */
363
    PPS pps; //FIXME move to Picture perhaps? (->no) do we need that?
364

    
365
    uint32_t dequant4_buffer[6][52][16];
366
    uint32_t dequant8_buffer[2][52][64];
367
    uint32_t (*dequant4_coeff[6])[16];
368
    uint32_t (*dequant8_coeff[2])[64];
369
    int dequant_coeff_pps;     ///< reinit tables when pps changes
370

    
371
    int slice_num;
372
    uint16_t *slice_table_base;
373
    uint16_t *slice_table;     ///< slice_table_base + 2*mb_stride + 1
374
    int slice_type;
375
    int slice_type_nos;        ///< S free slice type (SI/SP are remapped to I/P)
376
    int slice_type_fixed;
377

    
378
    //interlacing specific flags
379
    int mb_aff_frame;
380
    int mb_field_decoding_flag;
381
    int mb_mbaff;              ///< mb_aff_frame && mb_field_decoding_flag
382

    
383
    DECLARE_ALIGNED_8(uint16_t, sub_mb_type)[4];
384

    
385
    //POC stuff
386
    int poc_lsb;
387
    int poc_msb;
388
    int delta_poc_bottom;
389
    int delta_poc[2];
390
    int frame_num;
391
    int prev_poc_msb;             ///< poc_msb of the last reference pic for POC type 0
392
    int prev_poc_lsb;             ///< poc_lsb of the last reference pic for POC type 0
393
    int frame_num_offset;         ///< for POC type 2
394
    int prev_frame_num_offset;    ///< for POC type 2
395
    int prev_frame_num;           ///< frame_num of the last pic for POC type 1/2
396

    
397
    /**
398
     * frame_num for frames or 2*frame_num+1 for field pics.
399
     */
400
    int curr_pic_num;
401

    
402
    /**
403
     * max_frame_num or 2*max_frame_num for field pics.
404
     */
405
    int max_pic_num;
406

    
407
    //Weighted pred stuff
408
    int use_weight;
409
    int use_weight_chroma;
410
    int luma_log2_weight_denom;
411
    int chroma_log2_weight_denom;
412
    int luma_weight[2][48];
413
    int luma_offset[2][48];
414
    int chroma_weight[2][48][2];
415
    int chroma_offset[2][48][2];
416
    int implicit_weight[48][48];
417

    
418
    //deblock
419
    int deblocking_filter;         ///< disable_deblocking_filter_idc with 1<->0
420
    int slice_alpha_c0_offset;
421
    int slice_beta_offset;
422

    
423
    int redundant_pic_count;
424

    
425
    int direct_spatial_mv_pred;
426
    int col_parity;
427
    int col_fieldoff;
428
    int dist_scale_factor[16];
429
    int dist_scale_factor_field[2][32];
430
    int map_col_to_list0[2][16+32];
431
    int map_col_to_list0_field[2][2][16+32];
432

    
433
    /**
434
     * num_ref_idx_l0/1_active_minus1 + 1
435
     */
436
    unsigned int ref_count[2];   ///< counts frames or fields, depending on current mb mode
437
    unsigned int list_count;
438
    uint8_t *list_counts;            ///< Array of list_count per MB specifying the slice type
439
    Picture *short_ref[32];
440
    Picture *long_ref[32];
441
    Picture default_ref_list[2][32]; ///< base reference list for all slices of a coded picture
442
    Picture ref_list[2][48];         /**< 0..15: frame refs, 16..47: mbaff field refs.
443
                                          Reordered version of default_ref_list
444
                                          according to picture reordering in slice header */
445
    int ref2frm[MAX_SLICES][2][64];  ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
446
    Picture *delayed_pic[MAX_DELAYED_PIC_COUNT+2]; //FIXME size?
447
    int outputed_poc;
448

    
449
    /**
450
     * memory management control operations buffer.
451
     */
452
    MMCO mmco[MAX_MMCO_COUNT];
453
    int mmco_index;
454

    
455
    int long_ref_count;  ///< number of actual long term references
456
    int short_ref_count; ///< number of actual short term references
457

    
458
    //data partitioning
459
    GetBitContext intra_gb;
460
    GetBitContext inter_gb;
461
    GetBitContext *intra_gb_ptr;
462
    GetBitContext *inter_gb_ptr;
463

    
464
    DECLARE_ALIGNED_16(DCTELEM, mb)[16*24];
465
    DCTELEM mb_padding[256];        ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either check that i is not too large or ensure that there is some unused stuff after mb
466

    
467
    /**
468
     * Cabac
469
     */
470
    CABACContext cabac;
471
    uint8_t      cabac_state[460];
472
    int          cabac_init_idc;
473

    
474
    /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0,1,2), 0x0? luma_cbp */
475
    uint16_t     *cbp_table;
476
    int cbp;
477
    int top_cbp;
478
    int left_cbp;
479
    /* chroma_pred_mode for i4x4 or i16x16, else 0 */
480
    uint8_t     *chroma_pred_mode_table;
481
    int         last_qscale_diff;
482
    int16_t     (*mvd_table[2])[2];
483
    DECLARE_ALIGNED_16(int16_t, mvd_cache)[2][5*8][2];
484
    uint8_t     *direct_table;
485
    uint8_t     direct_cache[5*8];
486

    
487
    uint8_t zigzag_scan[16];
488
    uint8_t zigzag_scan8x8[64];
489
    uint8_t zigzag_scan8x8_cavlc[64];
490
    uint8_t field_scan[16];
491
    uint8_t field_scan8x8[64];
492
    uint8_t field_scan8x8_cavlc[64];
493
    const uint8_t *zigzag_scan_q0;
494
    const uint8_t *zigzag_scan8x8_q0;
495
    const uint8_t *zigzag_scan8x8_cavlc_q0;
496
    const uint8_t *field_scan_q0;
497
    const uint8_t *field_scan8x8_q0;
498
    const uint8_t *field_scan8x8_cavlc_q0;
499

    
500
    int x264_build;
501

    
502
    /**
503
     * @defgroup multithreading Members for slice based multithreading
504
     * @{
505
     */
506
    struct H264Context *thread_context[MAX_THREADS];
507

    
508
    /**
509
     * current slice number, used to initalize slice_num of each thread/context
510
     */
511
    int current_slice;
512

    
513
    /**
514
     * Max number of threads / contexts.
515
     * This is equal to AVCodecContext.thread_count unless
516
     * multithreaded decoding is impossible, in which case it is
517
     * reduced to 1.
518
     */
519
    int max_contexts;
520

    
521
    /**
522
     *  1 if the single thread fallback warning has already been
523
     *  displayed, 0 otherwise.
524
     */
525
    int single_decode_warning;
526

    
527
    int last_slice_type;
528
    /** @} */
529

    
530
    int mb_xy;
531

    
532
    uint32_t svq3_watermark_key;
533

    
534
    /**
535
     * pic_struct in picture timing SEI message
536
     */
537
    SEI_PicStructType sei_pic_struct;
538

    
539
    /**
540
     * Complement sei_pic_struct
541
     * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
542
     * However, soft telecined frames may have these values.
543
     * This is used in an attempt to flag soft telecine progressive.
544
     */
545
    int prev_interlaced_frame;
546

    
547
    /**
548
     * Bit set of clock types for fields/frames in picture timing SEI message.
549
     * For each found ct_type, appropriate bit is set (e.g., bit 1 for
550
     * interlaced).
551
     */
552
    int sei_ct_type;
553

    
554
    /**
555
     * dpb_output_delay in picture timing SEI message, see H.264 C.2.2
556
     */
557
    int sei_dpb_output_delay;
558

    
559
    /**
560
     * cpb_removal_delay in picture timing SEI message, see H.264 C.1.2
561
     */
562
    int sei_cpb_removal_delay;
563

    
564
    /**
565
     * recovery_frame_cnt from SEI message
566
     *
567
     * Set to -1 if no recovery point SEI message found or to number of frames
568
     * before playback synchronizes. Frames having recovery point are key
569
     * frames.
570
     */
571
    int sei_recovery_frame_cnt;
572

    
573
    int is_complex;
574

    
575
    int luma_weight_flag[2];   ///< 7.4.3.2 luma_weight_lX_flag
576
    int chroma_weight_flag[2]; ///< 7.4.3.2 chroma_weight_lX_flag
577

    
578
    // Timestamp stuff
579
    int sei_buffering_period_present;  ///< Buffering period SEI flag
580
    int initial_cpb_removal_delay[32]; ///< Initial timestamps for CPBs
581
}H264Context;
582

    
583

    
584
extern const uint8_t ff_h264_chroma_qp[52];
585

    
586
void ff_svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp);
587

    
588
void ff_svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp, int dc);
589

    
590
/**
591
 * Decode SEI
592
 */
593
int ff_h264_decode_sei(H264Context *h);
594

    
595
/**
596
 * Decode SPS
597
 */
598
int ff_h264_decode_seq_parameter_set(H264Context *h);
599

    
600
/**
601
 * Decode PPS
602
 */
603
int ff_h264_decode_picture_parameter_set(H264Context *h, int bit_length);
604

    
605
/**
606
 * Decodes a network abstraction layer unit.
607
 * @param consumed is the number of bytes used as input
608
 * @param length is the length of the array
609
 * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing?
610
 * @returns decoded bytes, might be src+1 if no escapes
611
 */
612
const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length);
613

    
614
/**
615
 * identifies the exact end of the bitstream
616
 * @return the length of the trailing, or 0 if damaged
617
 */
618
int ff_h264_decode_rbsp_trailing(H264Context *h, const uint8_t *src);
619

    
620
/**
621
 * frees any data that may have been allocated in the H264 context like SPS, PPS etc.
622
 */
623
av_cold void ff_h264_free_context(H264Context *h);
624

    
625
/**
626
 * reconstructs bitstream slice_type.
627
 */
628
int ff_h264_get_slice_type(const H264Context *h);
629

    
630
/**
631
 * allocates tables.
632
 * needs width/height
633
 */
634
int ff_h264_alloc_tables(H264Context *h);
635

    
636
/**
637
 * fills the default_ref_list.
638
 */
639
int ff_h264_fill_default_ref_list(H264Context *h);
640

    
641
int ff_h264_decode_ref_pic_list_reordering(H264Context *h);
642
void ff_h264_fill_mbaff_ref_list(H264Context *h);
643
void ff_h264_remove_all_refs(H264Context *h);
644

    
645
/**
646
 * Executes the reference picture marking (memory management control operations).
647
 */
648
int ff_h264_execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count);
649

    
650
int ff_h264_decode_ref_pic_marking(H264Context *h, GetBitContext *gb);
651

    
652

    
653
/**
654
 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
655
 */
656
int ff_h264_check_intra4x4_pred_mode(H264Context *h);
657

    
658
/**
659
 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
660
 */
661
int ff_h264_check_intra_pred_mode(H264Context *h, int mode);
662

    
663
void ff_h264_write_back_intra_pred_mode(H264Context *h);
664
void ff_h264_hl_decode_mb(H264Context *h);
665
int ff_h264_frame_start(H264Context *h);
666
av_cold int ff_h264_decode_init(AVCodecContext *avctx);
667
av_cold int ff_h264_decode_end(AVCodecContext *avctx);
668
av_cold void ff_h264_decode_init_vlc(void);
669

    
670
/**
671
 * decodes a macroblock
672
 * @returns 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
673
 */
674
int ff_h264_decode_mb_cavlc(H264Context *h);
675

    
676
/**
677
 * decodes a CABAC coded macroblock
678
 * @returns 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
679
 */
680
int ff_h264_decode_mb_cabac(H264Context *h);
681

    
682
void ff_h264_init_cabac_states(H264Context *h);
683

    
684
void ff_h264_direct_dist_scale_factor(H264Context * const h);
685
void ff_h264_direct_ref_list_init(H264Context * const h);
686
void ff_h264_pred_direct_motion(H264Context * const h, int *mb_type);
687

    
688
void ff_h264_filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
689
void ff_h264_filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
690

    
691
/**
692
 * Reset SEI values at the beginning of the frame.
693
 *
694
 * @param h H.264 context.
695
 */
696
void ff_h264_reset_sei(H264Context *h);
697

    
698

    
699
/*
700
o-o o-o
701
 / / /
702
o-o o-o
703
 ,---'
704
o-o o-o
705
 / / /
706
o-o o-o
707
*/
708
//This table must be here because scan8[constant] must be known at compiletime
709
static const uint8_t scan8[16 + 2*4]={
710
 4+1*8, 5+1*8, 4+2*8, 5+2*8,
711
 6+1*8, 7+1*8, 6+2*8, 7+2*8,
712
 4+3*8, 5+3*8, 4+4*8, 5+4*8,
713
 6+3*8, 7+3*8, 6+4*8, 7+4*8,
714
 1+1*8, 2+1*8,
715
 1+2*8, 2+2*8,
716
 1+4*8, 2+4*8,
717
 1+5*8, 2+5*8,
718
};
719

    
720
static av_always_inline uint32_t pack16to32(int a, int b){
721
#if HAVE_BIGENDIAN
722
   return (b&0xFFFF) + (a<<16);
723
#else
724
   return (a&0xFFFF) + (b<<16);
725
#endif
726
}
727

    
728
/**
729
 * gets the chroma qp.
730
 */
731
static inline int get_chroma_qp(H264Context *h, int t, int qscale){
732
    return h->pps.chroma_qp_table[t][qscale];
733
}
734

    
735
static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my);
736

    
737
static void fill_decode_caches(H264Context *h, int mb_type){
738
    MpegEncContext * const s = &h->s;
739
    const int mb_xy= h->mb_xy;
740
    int topleft_xy, top_xy, topright_xy, left_xy[2];
741
    int topleft_type, top_type, topright_type, left_type[2];
742
    const uint8_t * left_block;
743
    int topleft_partition= -1;
744
    int i;
745
    static const uint8_t left_block_options[4][16]={
746
        {0,1,2,3,7,10,8,11,7+0*8, 7+1*8, 7+2*8, 7+3*8, 2+0*8, 2+3*8, 2+1*8, 2+2*8},
747
        {2,2,3,3,8,11,8,11,7+2*8, 7+2*8, 7+3*8, 7+3*8, 2+1*8, 2+2*8, 2+1*8, 2+2*8},
748
        {0,0,1,1,7,10,7,10,7+0*8, 7+0*8, 7+1*8, 7+1*8, 2+0*8, 2+3*8, 2+0*8, 2+3*8},
749
        {0,2,0,2,7,10,7,10,7+0*8, 7+2*8, 7+0*8, 7+2*8, 2+0*8, 2+3*8, 2+0*8, 2+3*8}
750
    };
751

    
752
    top_xy     = mb_xy  - (s->mb_stride << MB_FIELD);
753

    
754
    /* Wow, what a mess, why didn't they simplify the interlacing & intra
755
     * stuff, I can't imagine that these complex rules are worth it. */
756

    
757
    topleft_xy = top_xy - 1;
758
    topright_xy= top_xy + 1;
759
    left_xy[1] = left_xy[0] = mb_xy-1;
760
    left_block = left_block_options[0];
761
    if(FRAME_MBAFF){
762
        const int left_mb_field_flag     = IS_INTERLACED(s->current_picture.mb_type[mb_xy-1]);
763
        const int curr_mb_field_flag     = IS_INTERLACED(mb_type);
764
        if(s->mb_y&1){
765
            if (left_mb_field_flag != curr_mb_field_flag) {
766
                left_xy[1] = left_xy[0] = mb_xy - s->mb_stride - 1;
767
                if (curr_mb_field_flag) {
768
                    left_xy[1] += s->mb_stride;
769
                    left_block = left_block_options[3];
770
                } else {
771
                    topleft_xy += s->mb_stride;
772
                    // take top left mv from the middle of the mb, as opposed to all other modes which use the bottom right partition
773
                    topleft_partition = 0;
774
                    left_block = left_block_options[1];
775
                }
776
            }
777
        }else{
778
            if(curr_mb_field_flag){
779
                topleft_xy  += s->mb_stride & (((s->current_picture.mb_type[top_xy - 1]>>7)&1)-1);
780
                topright_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy + 1]>>7)&1)-1);
781
                top_xy      += s->mb_stride & (((s->current_picture.mb_type[top_xy    ]>>7)&1)-1);
782
            }
783
            if (left_mb_field_flag != curr_mb_field_flag) {
784
                left_xy[1] = left_xy[0] = mb_xy - 1;
785
                if (curr_mb_field_flag) {
786
                    left_xy[1] += s->mb_stride;
787
                    left_block = left_block_options[3];
788
                } else {
789
                    left_block = left_block_options[2];
790
                }
791
            }
792
        }
793
    }
794

    
795
    h->top_mb_xy = top_xy;
796
    h->left_mb_xy[0] = left_xy[0];
797
    h->left_mb_xy[1] = left_xy[1];
798
        topleft_type = h->slice_table[topleft_xy ] == h->slice_num ? s->current_picture.mb_type[topleft_xy] : 0;
799
        top_type     = h->slice_table[top_xy     ] == h->slice_num ? s->current_picture.mb_type[top_xy]     : 0;
800
        topright_type= h->slice_table[topright_xy] == h->slice_num ? s->current_picture.mb_type[topright_xy]: 0;
801
        left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0;
802
        left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0;
803

    
804
    if(!IS_SKIP(mb_type)){
805
        if(IS_INTRA(mb_type)){
806
            int type_mask= h->pps.constrained_intra_pred ? IS_INTRA(-1) : -1;
807
            h->topleft_samples_available=
808
            h->top_samples_available=
809
            h->left_samples_available= 0xFFFF;
810
            h->topright_samples_available= 0xEEEA;
811

    
812
            if(!(top_type & type_mask)){
813
                h->topleft_samples_available= 0xB3FF;
814
                h->top_samples_available= 0x33FF;
815
                h->topright_samples_available= 0x26EA;
816
            }
817
            if(IS_INTERLACED(mb_type) != IS_INTERLACED(left_type[0])){
818
                if(IS_INTERLACED(mb_type)){
819
                    if(!(left_type[0] & type_mask)){
820
                        h->topleft_samples_available&= 0xDFFF;
821
                        h->left_samples_available&= 0x5FFF;
822
                    }
823
                    if(!(left_type[1] & type_mask)){
824
                        h->topleft_samples_available&= 0xFF5F;
825
                        h->left_samples_available&= 0xFF5F;
826
                    }
827
                }else{
828
                    int left_typei = h->slice_table[left_xy[0] + s->mb_stride ] == h->slice_num
829
                                    ? s->current_picture.mb_type[left_xy[0] + s->mb_stride] : 0;
830
                    assert(left_xy[0] == left_xy[1]);
831
                    if(!((left_typei & type_mask) && (left_type[0] & type_mask))){
832
                        h->topleft_samples_available&= 0xDF5F;
833
                        h->left_samples_available&= 0x5F5F;
834
                    }
835
                }
836
            }else{
837
                if(!(left_type[0] & type_mask)){
838
                    h->topleft_samples_available&= 0xDF5F;
839
                    h->left_samples_available&= 0x5F5F;
840
                }
841
            }
842

    
843
            if(!(topleft_type & type_mask))
844
                h->topleft_samples_available&= 0x7FFF;
845

    
846
            if(!(topright_type & type_mask))
847
                h->topright_samples_available&= 0xFBFF;
848

    
849
            if(IS_INTRA4x4(mb_type)){
850
                if(IS_INTRA4x4(top_type)){
851
                    h->intra4x4_pred_mode_cache[4+8*0]= h->intra4x4_pred_mode[top_xy][4];
852
                    h->intra4x4_pred_mode_cache[5+8*0]= h->intra4x4_pred_mode[top_xy][5];
853
                    h->intra4x4_pred_mode_cache[6+8*0]= h->intra4x4_pred_mode[top_xy][6];
854
                    h->intra4x4_pred_mode_cache[7+8*0]= h->intra4x4_pred_mode[top_xy][3];
855
                }else{
856
                    int pred;
857
                    if(!(top_type & type_mask))
858
                        pred= -1;
859
                    else{
860
                        pred= 2;
861
                    }
862
                    h->intra4x4_pred_mode_cache[4+8*0]=
863
                    h->intra4x4_pred_mode_cache[5+8*0]=
864
                    h->intra4x4_pred_mode_cache[6+8*0]=
865
                    h->intra4x4_pred_mode_cache[7+8*0]= pred;
866
                }
867
                for(i=0; i<2; i++){
868
                    if(IS_INTRA4x4(left_type[i])){
869
                        h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[0+2*i]];
870
                        h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[1+2*i]];
871
                    }else{
872
                        int pred;
873
                        if(!(left_type[i] & type_mask))
874
                            pred= -1;
875
                        else{
876
                            pred= 2;
877
                        }
878
                        h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
879
                        h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= pred;
880
                    }
881
                }
882
            }
883
        }
884

    
885

    
886
/*
887
0 . T T. T T T T
888
1 L . .L . . . .
889
2 L . .L . . . .
890
3 . T TL . . . .
891
4 L . .L . . . .
892
5 L . .. . . . .
893
*/
894
//FIXME constraint_intra_pred & partitioning & nnz (let us hope this is just a typo in the spec)
895
    if(top_type){
896
        *(uint32_t*)&h->non_zero_count_cache[4+8*0]= *(uint32_t*)&h->non_zero_count[top_xy][4+3*8];
897
            h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][1+1*8];
898
            h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][2+1*8];
899

    
900
            h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][1+2*8];
901
            h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][2+2*8];
902
    }else {
903
            h->non_zero_count_cache[1+8*0]=
904
            h->non_zero_count_cache[2+8*0]=
905

    
906
            h->non_zero_count_cache[1+8*3]=
907
            h->non_zero_count_cache[2+8*3]=
908
            *(uint32_t*)&h->non_zero_count_cache[4+8*0]= CABAC && !IS_INTRA(mb_type) ? 0 : 0x40404040;
909
    }
910

    
911
    for (i=0; i<2; i++) {
912
        if(left_type[i]){
913
            h->non_zero_count_cache[3+8*1 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+0+2*i]];
914
            h->non_zero_count_cache[3+8*2 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+1+2*i]];
915
                h->non_zero_count_cache[0+8*1 +   8*i]= h->non_zero_count[left_xy[i]][left_block[8+4+2*i]];
916
                h->non_zero_count_cache[0+8*4 +   8*i]= h->non_zero_count[left_xy[i]][left_block[8+5+2*i]];
917
        }else{
918
                h->non_zero_count_cache[3+8*1 + 2*8*i]=
919
                h->non_zero_count_cache[3+8*2 + 2*8*i]=
920
                h->non_zero_count_cache[0+8*1 +   8*i]=
921
                h->non_zero_count_cache[0+8*4 +   8*i]= CABAC && !IS_INTRA(mb_type) ? 0 : 64;
922
        }
923
    }
924

    
925
    if( CABAC ) {
926
        // top_cbp
927
        if(top_type) {
928
            h->top_cbp = h->cbp_table[top_xy];
929
        } else if(IS_INTRA(mb_type)) {
930
            h->top_cbp = 0x1CF;
931
        } else {
932
            h->top_cbp = 0x00F;
933
        }
934
        // left_cbp
935
        if (left_type[0]) {
936
            h->left_cbp = h->cbp_table[left_xy[0]] & 0x1f0;
937
        } else if(IS_INTRA(mb_type)) {
938
            h->left_cbp = 0x1CF;
939
        } else {
940
            h->left_cbp = 0x00F;
941
        }
942
        if (left_type[0]) {
943
            h->left_cbp |= ((h->cbp_table[left_xy[0]]>>((left_block[0]&(~1))+1))&0x1) << 1;
944
        }
945
        if (left_type[1]) {
946
            h->left_cbp |= ((h->cbp_table[left_xy[1]]>>((left_block[2]&(~1))+1))&0x1) << 3;
947
        }
948
    }
949
    }
950

    
951
#if 1
952
    if(IS_INTER(mb_type) || (IS_DIRECT(mb_type) && h->direct_spatial_mv_pred)){
953
        int list;
954
        for(list=0; list<h->list_count; list++){
955
            if(!USES_LIST(mb_type, list)){
956
                /*if(!h->mv_cache_clean[list]){
957
                    memset(h->mv_cache [list],  0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
958
                    memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
959
                    h->mv_cache_clean[list]= 1;
960
                }*/
961
                continue;
962
            }
963
            assert(!(IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred));
964

    
965
            h->mv_cache_clean[list]= 0;
966

    
967
            if(USES_LIST(top_type, list)){
968
                const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
969
                const int b8_xy= h->mb2b8_xy[top_xy] + h->b8_stride;
970
                AV_COPY128(h->mv_cache[list][scan8[0] + 0 - 1*8], s->current_picture.motion_val[list][b_xy + 0]);
971
                    h->ref_cache[list][scan8[0] + 0 - 1*8]=
972
                    h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][b8_xy + 0];
973
                    h->ref_cache[list][scan8[0] + 2 - 1*8]=
974
                    h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][b8_xy + 1];
975
            }else{
976
                AV_ZERO128(h->mv_cache[list][scan8[0] + 0 - 1*8]);
977
                *(uint32_t*)&h->ref_cache[list][scan8[0] + 0 - 1*8]= ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101;
978
            }
979

    
980
            for(i=0; i<2; i++){
981
                int cache_idx = scan8[0] - 1 + i*2*8;
982
                if(USES_LIST(left_type[i], list)){
983
                    const int b_xy= h->mb2b_xy[left_xy[i]] + 3;
984
                    const int b8_xy= h->mb2b8_xy[left_xy[i]] + 1;
985
                    *(uint32_t*)h->mv_cache[list][cache_idx  ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0+i*2]];
986
                    *(uint32_t*)h->mv_cache[list][cache_idx+8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1+i*2]];
987
                        h->ref_cache[list][cache_idx  ]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[0+i*2]>>1)];
988
                        h->ref_cache[list][cache_idx+8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[1+i*2]>>1)];
989
                }else{
990
                    *(uint32_t*)h->mv_cache [list][cache_idx  ]=
991
                    *(uint32_t*)h->mv_cache [list][cache_idx+8]= 0;
992
                    h->ref_cache[list][cache_idx  ]=
993
                    h->ref_cache[list][cache_idx+8]= (left_type[i]) ? LIST_NOT_USED : PART_NOT_AVAILABLE;
994
                }
995
            }
996

    
997
            if(USES_LIST(topleft_type, list)){
998
                const int b_xy = h->mb2b_xy[topleft_xy] + 3 + h->b_stride + (topleft_partition & 2*h->b_stride);
999
                const int b8_xy= h->mb2b8_xy[topleft_xy] + 1 + (topleft_partition & h->b8_stride);
1000
                *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
1001
                h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy];
1002
            }else{
1003
                *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= 0;
1004
                h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
1005
            }
1006

    
1007
            if(USES_LIST(topright_type, list)){
1008
                const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride;
1009
                const int b8_xy= h->mb2b8_xy[topright_xy] + h->b8_stride;
1010
                *(uint32_t*)h->mv_cache[list][scan8[0] + 4 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
1011
                h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][b8_xy];
1012
            }else{
1013
                *(uint32_t*)h->mv_cache [list][scan8[0] + 4 - 1*8]= 0;
1014
                h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
1015
            }
1016

    
1017
            if((mb_type&(MB_TYPE_SKIP|MB_TYPE_DIRECT2)) && !FRAME_MBAFF)
1018
                continue;
1019

    
1020
            if(!(mb_type&(MB_TYPE_SKIP|MB_TYPE_DIRECT2))) {
1021
            h->ref_cache[list][scan8[5 ]+1] =
1022
            h->ref_cache[list][scan8[7 ]+1] =
1023
            h->ref_cache[list][scan8[13]+1] =  //FIXME remove past 3 (init somewhere else)
1024
            h->ref_cache[list][scan8[4 ]] =
1025
            h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
1026
            *(uint32_t*)h->mv_cache [list][scan8[5 ]+1]=
1027
            *(uint32_t*)h->mv_cache [list][scan8[7 ]+1]=
1028
            *(uint32_t*)h->mv_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
1029
            *(uint32_t*)h->mv_cache [list][scan8[4 ]]=
1030
            *(uint32_t*)h->mv_cache [list][scan8[12]]= 0;
1031

    
1032
            if( CABAC ) {
1033
                /* XXX beurk, Load mvd */
1034
                if(USES_LIST(top_type, list)){
1035
                    const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
1036
                    AV_COPY128(h->mvd_cache[list][scan8[0] + 0 - 1*8], h->mvd_table[list][b_xy + 0]);
1037
                }else{
1038
                    AV_ZERO128(h->mvd_cache[list][scan8[0] + 0 - 1*8]);
1039
                }
1040
                if(USES_LIST(left_type[0], list)){
1041
                    const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
1042
                    *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[0]];
1043
                    *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[1]];
1044
                }else{
1045
                    *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 0*8]=
1046
                    *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 1*8]= 0;
1047
                }
1048
                if(USES_LIST(left_type[1], list)){
1049
                    const int b_xy= h->mb2b_xy[left_xy[1]] + 3;
1050
                    *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[2]];
1051
                    *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[3]];
1052
                }else{
1053
                    *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 2*8]=
1054
                    *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 3*8]= 0;
1055
                }
1056
                *(uint32_t*)h->mvd_cache [list][scan8[5 ]+1]=
1057
                *(uint32_t*)h->mvd_cache [list][scan8[7 ]+1]=
1058
                *(uint32_t*)h->mvd_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
1059
                *(uint32_t*)h->mvd_cache [list][scan8[4 ]]=
1060
                *(uint32_t*)h->mvd_cache [list][scan8[12]]= 0;
1061

    
1062
                if(h->slice_type_nos == FF_B_TYPE){
1063
                    fill_rectangle(&h->direct_cache[scan8[0]], 4, 4, 8, MB_TYPE_16x16>>1, 1);
1064

    
1065
                    if(IS_DIRECT(top_type)){
1066
                        *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0x01010101*(MB_TYPE_DIRECT2>>1);
1067
                    }else if(IS_8X8(top_type)){
1068
                        int b8_xy = h->mb2b8_xy[top_xy] + h->b8_stride;
1069
                        h->direct_cache[scan8[0] + 0 - 1*8]= h->direct_table[b8_xy];
1070
                        h->direct_cache[scan8[0] + 2 - 1*8]= h->direct_table[b8_xy + 1];
1071
                    }else{
1072
                        *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0x01010101*(MB_TYPE_16x16>>1);
1073
                    }
1074

    
1075
                    if(IS_DIRECT(left_type[0]))
1076
                        h->direct_cache[scan8[0] - 1 + 0*8]= MB_TYPE_DIRECT2>>1;
1077
                    else if(IS_8X8(left_type[0]))
1078
                        h->direct_cache[scan8[0] - 1 + 0*8]= h->direct_table[h->mb2b8_xy[left_xy[0]] + 1 + h->b8_stride*(left_block[0]>>1)];
1079
                    else
1080
                        h->direct_cache[scan8[0] - 1 + 0*8]= MB_TYPE_16x16>>1;
1081

    
1082
                    if(IS_DIRECT(left_type[1]))
1083
                        h->direct_cache[scan8[0] - 1 + 2*8]= MB_TYPE_DIRECT2>>1;
1084
                    else if(IS_8X8(left_type[1]))
1085
                        h->direct_cache[scan8[0] - 1 + 2*8]= h->direct_table[h->mb2b8_xy[left_xy[1]] + 1 + h->b8_stride*(left_block[2]>>1)];
1086
                    else
1087
                        h->direct_cache[scan8[0] - 1 + 2*8]= MB_TYPE_16x16>>1;
1088
                }
1089
            }
1090
            }
1091
            if(FRAME_MBAFF){
1092
#define MAP_MVS\
1093
                    MAP_F2F(scan8[0] - 1 - 1*8, topleft_type)\
1094
                    MAP_F2F(scan8[0] + 0 - 1*8, top_type)\
1095
                    MAP_F2F(scan8[0] + 1 - 1*8, top_type)\
1096
                    MAP_F2F(scan8[0] + 2 - 1*8, top_type)\
1097
                    MAP_F2F(scan8[0] + 3 - 1*8, top_type)\
1098
                    MAP_F2F(scan8[0] + 4 - 1*8, topright_type)\
1099
                    MAP_F2F(scan8[0] - 1 + 0*8, left_type[0])\
1100
                    MAP_F2F(scan8[0] - 1 + 1*8, left_type[0])\
1101
                    MAP_F2F(scan8[0] - 1 + 2*8, left_type[1])\
1102
                    MAP_F2F(scan8[0] - 1 + 3*8, left_type[1])
1103
                if(MB_FIELD){
1104
#define MAP_F2F(idx, mb_type)\
1105
                    if(!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
1106
                        h->ref_cache[list][idx] <<= 1;\
1107
                        h->mv_cache[list][idx][1] /= 2;\
1108
                        h->mvd_cache[list][idx][1] /= 2;\
1109
                    }
1110
                    MAP_MVS
1111
#undef MAP_F2F
1112
                }else{
1113
#define MAP_F2F(idx, mb_type)\
1114
                    if(IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
1115
                        h->ref_cache[list][idx] >>= 1;\
1116
                        h->mv_cache[list][idx][1] <<= 1;\
1117
                        h->mvd_cache[list][idx][1] <<= 1;\
1118
                    }
1119
                    MAP_MVS
1120
#undef MAP_F2F
1121
                }
1122
            }
1123
        }
1124
    }
1125
#endif
1126

    
1127
        h->neighbor_transform_size= !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[0]);
1128
}
1129

    
1130
/**
1131
 *
1132
 * @returns non zero if the loop filter can be skiped
1133
 */
1134
static int fill_filter_caches(H264Context *h, int mb_type){
1135
    MpegEncContext * const s = &h->s;
1136
    const int mb_xy= h->mb_xy;
1137
    int top_xy, left_xy[2];
1138
    int top_type, left_type[2];
1139

    
1140
    top_xy     = mb_xy  - (s->mb_stride << MB_FIELD);
1141

    
1142
    //FIXME deblocking could skip the intra and nnz parts.
1143

    
1144
    /* Wow, what a mess, why didn't they simplify the interlacing & intra
1145
     * stuff, I can't imagine that these complex rules are worth it. */
1146

    
1147
    left_xy[1] = left_xy[0] = mb_xy-1;
1148
    if(FRAME_MBAFF){
1149
        const int left_mb_field_flag     = IS_INTERLACED(s->current_picture.mb_type[mb_xy-1]);
1150
        const int curr_mb_field_flag     = IS_INTERLACED(mb_type);
1151
        if(s->mb_y&1){
1152
            if (left_mb_field_flag != curr_mb_field_flag) {
1153
                left_xy[0] -= s->mb_stride;
1154
            }
1155
        }else{
1156
            if(curr_mb_field_flag){
1157
                top_xy      += s->mb_stride & (((s->current_picture.mb_type[top_xy    ]>>7)&1)-1);
1158
            }
1159
            if (left_mb_field_flag != curr_mb_field_flag) {
1160
                left_xy[1] += s->mb_stride;
1161
            }
1162
        }
1163
    }
1164

    
1165
    h->top_mb_xy = top_xy;
1166
    h->left_mb_xy[0] = left_xy[0];
1167
    h->left_mb_xy[1] = left_xy[1];
1168
    {
1169
        //for sufficiently low qp, filtering wouldn't do anything
1170
        //this is a conservative estimate: could also check beta_offset and more accurate chroma_qp
1171
        int qp_thresh = h->qp_thresh; //FIXME strictly we should store qp_thresh for each mb of a slice
1172
        int qp = s->current_picture.qscale_table[mb_xy];
1173
        if(qp <= qp_thresh
1174
           && (left_xy[0]<0 || ((qp + s->current_picture.qscale_table[left_xy[0]] + 1)>>1) <= qp_thresh)
1175
           && (top_xy   < 0 || ((qp + s->current_picture.qscale_table[top_xy    ] + 1)>>1) <= qp_thresh)){
1176
            if(!FRAME_MBAFF)
1177
                return 1;
1178
            if(   (left_xy[0]< 0            || ((qp + s->current_picture.qscale_table[left_xy[1]             ] + 1)>>1) <= qp_thresh)
1179
               && (top_xy    < s->mb_stride || ((qp + s->current_picture.qscale_table[top_xy    -s->mb_stride] + 1)>>1) <= qp_thresh))
1180
                return 1;
1181
        }
1182
    }
1183

    
1184
    if(h->deblocking_filter == 2){
1185
        h->top_type    = top_type     = h->slice_table[top_xy     ] == h->slice_num ? s->current_picture.mb_type[top_xy]     : 0;
1186
        h->left_type[0]= left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0;
1187
        h->left_type[1]= left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0;
1188
    }else{
1189
        h->top_type    = top_type     = h->slice_table[top_xy     ] < 0xFFFF ? s->current_picture.mb_type[top_xy]     : 0;
1190
        h->left_type[0]= left_type[0] = h->slice_table[left_xy[0] ] < 0xFFFF ? s->current_picture.mb_type[left_xy[0]] : 0;
1191
        h->left_type[1]= left_type[1] = h->slice_table[left_xy[1] ] < 0xFFFF ? s->current_picture.mb_type[left_xy[1]] : 0;
1192
    }
1193
    if(IS_INTRA(mb_type))
1194
        return 0;
1195

    
1196
    AV_COPY64(&h->non_zero_count_cache[0+8*1], &h->non_zero_count[mb_xy][ 0]);
1197
    AV_COPY64(&h->non_zero_count_cache[0+8*2], &h->non_zero_count[mb_xy][ 8]);
1198
    *((uint32_t*)&h->non_zero_count_cache[0+8*5])= *((uint32_t*)&h->non_zero_count[mb_xy][16]);
1199
    *((uint32_t*)&h->non_zero_count_cache[4+8*3])= *((uint32_t*)&h->non_zero_count[mb_xy][20]);
1200
    AV_COPY64(&h->non_zero_count_cache[0+8*4], &h->non_zero_count[mb_xy][24]);
1201

    
1202
    h->cbp= h->cbp_table[mb_xy];
1203

    
1204
    {
1205
        int list;
1206
        for(list=0; list<h->list_count; list++){
1207
            int8_t *ref;
1208
            int y, b_stride;
1209
            int16_t (*mv_dst)[2];
1210
            int16_t (*mv_src)[2];
1211

    
1212
            if(!USES_LIST(mb_type, list)){
1213
                fill_rectangle(  h->mv_cache[list][scan8[0]], 4, 4, 8, pack16to32(0,0), 4);
1214
                *(uint32_t*)&h->ref_cache[list][scan8[ 0]] =
1215
                *(uint32_t*)&h->ref_cache[list][scan8[ 2]] =
1216
                *(uint32_t*)&h->ref_cache[list][scan8[ 8]] =
1217
                *(uint32_t*)&h->ref_cache[list][scan8[10]] = ((LIST_NOT_USED)&0xFF)*0x01010101U;
1218
                continue;
1219
            }
1220

    
1221
            ref = &s->current_picture.ref_index[list][h->mb2b8_xy[mb_xy]];
1222
            {
1223
                int (*ref2frm)[64] = h->ref2frm[ h->slice_num&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
1224
                *(uint32_t*)&h->ref_cache[list][scan8[ 0]] =
1225
                *(uint32_t*)&h->ref_cache[list][scan8[ 2]] = (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101;
1226
                ref += h->b8_stride;
1227
                *(uint32_t*)&h->ref_cache[list][scan8[ 8]] =
1228
                *(uint32_t*)&h->ref_cache[list][scan8[10]] = (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101;
1229
            }
1230

    
1231
            b_stride = h->b_stride;
1232
            mv_dst   = &h->mv_cache[list][scan8[0]];
1233
            mv_src   = &s->current_picture.motion_val[list][4*s->mb_x + 4*s->mb_y*b_stride];
1234
            for(y=0; y<4; y++){
1235
                AV_COPY128(mv_dst + 8*y, mv_src + y*b_stride);
1236
            }
1237

    
1238
        }
1239
    }
1240

    
1241

    
1242
/*
1243
0 . T T. T T T T
1244
1 L . .L . . . .
1245
2 L . .L . . . .
1246
3 . T TL . . . .
1247
4 L . .L . . . .
1248
5 L . .. . . . .
1249
*/
1250
//FIXME constraint_intra_pred & partitioning & nnz (let us hope this is just a typo in the spec)
1251
    if(top_type){
1252
        *(uint32_t*)&h->non_zero_count_cache[4+8*0]= *(uint32_t*)&h->non_zero_count[top_xy][4+3*8];
1253
    }
1254

    
1255
    if(left_type[0]){
1256
        h->non_zero_count_cache[3+8*1]= h->non_zero_count[left_xy[0]][7+0*8];
1257
        h->non_zero_count_cache[3+8*2]= h->non_zero_count[left_xy[0]][7+1*8];
1258
        h->non_zero_count_cache[3+8*3]= h->non_zero_count[left_xy[0]][7+2*8];
1259
        h->non_zero_count_cache[3+8*4]= h->non_zero_count[left_xy[0]][7+3*8];
1260
    }
1261

    
1262
    // CAVLC 8x8dct requires NNZ values for residual decoding that differ from what the loop filter needs
1263
    if(!CABAC && h->pps.transform_8x8_mode){
1264
        if(IS_8x8DCT(top_type)){
1265
            h->non_zero_count_cache[4+8*0]=
1266
            h->non_zero_count_cache[5+8*0]= h->cbp_table[top_xy] & 4;
1267
            h->non_zero_count_cache[6+8*0]=
1268
            h->non_zero_count_cache[7+8*0]= h->cbp_table[top_xy] & 8;
1269
        }
1270
        if(IS_8x8DCT(left_type[0])){
1271
            h->non_zero_count_cache[3+8*1]=
1272
            h->non_zero_count_cache[3+8*2]= h->cbp_table[left_xy[0]]&2; //FIXME check MBAFF
1273
        }
1274
        if(IS_8x8DCT(left_type[1])){
1275
            h->non_zero_count_cache[3+8*3]=
1276
            h->non_zero_count_cache[3+8*4]= h->cbp_table[left_xy[1]]&8; //FIXME check MBAFF
1277
        }
1278

    
1279
        if(IS_8x8DCT(mb_type)){
1280
            h->non_zero_count_cache[scan8[0   ]]= h->non_zero_count_cache[scan8[1   ]]=
1281
            h->non_zero_count_cache[scan8[2   ]]= h->non_zero_count_cache[scan8[3   ]]= h->cbp & 1;
1282

    
1283
            h->non_zero_count_cache[scan8[0+ 4]]= h->non_zero_count_cache[scan8[1+ 4]]=
1284
            h->non_zero_count_cache[scan8[2+ 4]]= h->non_zero_count_cache[scan8[3+ 4]]= h->cbp & 2;
1285

    
1286
            h->non_zero_count_cache[scan8[0+ 8]]= h->non_zero_count_cache[scan8[1+ 8]]=
1287
            h->non_zero_count_cache[scan8[2+ 8]]= h->non_zero_count_cache[scan8[3+ 8]]= h->cbp & 4;
1288

    
1289
            h->non_zero_count_cache[scan8[0+12]]= h->non_zero_count_cache[scan8[1+12]]=
1290
            h->non_zero_count_cache[scan8[2+12]]= h->non_zero_count_cache[scan8[3+12]]= h->cbp & 8;
1291
        }
1292
    }
1293

    
1294
    if(IS_INTER(mb_type) || IS_DIRECT(mb_type)){
1295
        int list;
1296
        for(list=0; list<h->list_count; list++){
1297
            if(USES_LIST(top_type, list)){
1298
                const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
1299
                const int b8_xy= h->mb2b8_xy[top_xy] + h->b8_stride;
1300
                int (*ref2frm)[64] = h->ref2frm[ h->slice_table[top_xy]&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
1301
                AV_COPY128(h->mv_cache[list][scan8[0] + 0 - 1*8], s->current_picture.motion_val[list][b_xy + 0]);
1302
                h->ref_cache[list][scan8[0] + 0 - 1*8]=
1303
                h->ref_cache[list][scan8[0] + 1 - 1*8]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + 0]];
1304
                h->ref_cache[list][scan8[0] + 2 - 1*8]=
1305
                h->ref_cache[list][scan8[0] + 3 - 1*8]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + 1]];
1306
            }else{
1307
                AV_ZERO128(h->mv_cache[list][scan8[0] + 0 - 1*8]);
1308
                *(uint32_t*)&h->ref_cache[list][scan8[0] + 0 - 1*8]= ((LIST_NOT_USED)&0xFF)*0x01010101U;
1309
            }
1310

    
1311
            if(!IS_INTERLACED(mb_type^left_type[0])){
1312
                if(USES_LIST(left_type[0], list)){
1313
                    const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
1314
                    const int b8_xy= h->mb2b8_xy[left_xy[0]] + 1;
1315
                    int (*ref2frm)[64] = h->ref2frm[ h->slice_table[left_xy[0]]&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
1316
                    *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 0 ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*0];
1317
                    *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 8 ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*1];
1318
                    *(uint32_t*)h->mv_cache[list][scan8[0] - 1 +16 ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*2];
1319
                    *(uint32_t*)h->mv_cache[list][scan8[0] - 1 +24 ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*3];
1320
                    h->ref_cache[list][scan8[0] - 1 + 0 ]=
1321
                    h->ref_cache[list][scan8[0] - 1 + 8 ]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + h->b8_stride*0]];
1322
                    h->ref_cache[list][scan8[0] - 1 +16 ]=
1323
                    h->ref_cache[list][scan8[0] - 1 +24 ]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + h->b8_stride*1]];
1324
                }else{
1325
                    *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 0 ]=
1326
                    *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 8 ]=
1327
                    *(uint32_t*)h->mv_cache [list][scan8[0] - 1 +16 ]=
1328
                    *(uint32_t*)h->mv_cache [list][scan8[0] - 1 +24 ]= 0;
1329
                    h->ref_cache[list][scan8[0] - 1 + 0  ]=
1330
                    h->ref_cache[list][scan8[0] - 1 + 8  ]=
1331
                    h->ref_cache[list][scan8[0] - 1 + 16 ]=
1332
                    h->ref_cache[list][scan8[0] - 1 + 24 ]= LIST_NOT_USED;
1333
                }
1334
            }
1335
        }
1336
    }
1337

    
1338
    return 0;
1339
}
1340

    
1341
/**
1342
 * gets the predicted intra4x4 prediction mode.
1343
 */
1344
static inline int pred_intra_mode(H264Context *h, int n){
1345
    const int index8= scan8[n];
1346
    const int left= h->intra4x4_pred_mode_cache[index8 - 1];
1347
    const int top = h->intra4x4_pred_mode_cache[index8 - 8];
1348
    const int min= FFMIN(left, top);
1349

    
1350
    tprintf(h->s.avctx, "mode:%d %d min:%d\n", left ,top, min);
1351

    
1352
    if(min<0) return DC_PRED;
1353
    else      return min;
1354
}
1355

    
1356
static inline void write_back_non_zero_count(H264Context *h){
1357
    const int mb_xy= h->mb_xy;
1358

    
1359
    AV_COPY64(&h->non_zero_count[mb_xy][ 0], &h->non_zero_count_cache[0+8*1]);
1360
    AV_COPY64(&h->non_zero_count[mb_xy][ 8], &h->non_zero_count_cache[0+8*2]);
1361
    *((uint32_t*)&h->non_zero_count[mb_xy][16]) = *((uint32_t*)&h->non_zero_count_cache[0+8*5]);
1362
    *((uint32_t*)&h->non_zero_count[mb_xy][20]) = *((uint32_t*)&h->non_zero_count_cache[4+8*3]);
1363
    AV_COPY64(&h->non_zero_count[mb_xy][24], &h->non_zero_count_cache[0+8*4]);
1364
}
1365

    
1366
static inline void write_back_motion(H264Context *h, int mb_type){
1367
    MpegEncContext * const s = &h->s;
1368
    const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
1369
    const int b8_xy= 2*s->mb_x + 2*s->mb_y*h->b8_stride;
1370
    int list;
1371

    
1372
    if(!USES_LIST(mb_type, 0))
1373
        fill_rectangle(&s->current_picture.ref_index[0][b8_xy], 2, 2, h->b8_stride, (uint8_t)LIST_NOT_USED, 1);
1374

    
1375
    for(list=0; list<h->list_count; list++){
1376
        int y, b_stride;
1377
        int16_t (*mv_dst)[2];
1378
        int16_t (*mv_src)[2];
1379

    
1380
        if(!USES_LIST(mb_type, list))
1381
            continue;
1382

    
1383
        b_stride = h->b_stride;
1384
        mv_dst   = &s->current_picture.motion_val[list][b_xy];
1385
        mv_src   = &h->mv_cache[list][scan8[0]];
1386
        for(y=0; y<4; y++){
1387
            AV_COPY128(mv_dst + y*b_stride, mv_src + 8*y);
1388
        }
1389
        if( CABAC ) {
1390
            int16_t (*mvd_dst)[2] = &h->mvd_table[list][b_xy];
1391
            int16_t (*mvd_src)[2] = &h->mvd_cache[list][scan8[0]];
1392
            if(IS_SKIP(mb_type))
1393
                fill_rectangle(mvd_dst, 4, 4, h->b_stride, 0, 4);
1394
            else
1395
            for(y=0; y<4; y++){
1396
                AV_COPY128(mvd_dst + y*b_stride, mvd_src + 8*y);
1397
            }
1398
        }
1399

    
1400
        {
1401
            int8_t *ref_index = &s->current_picture.ref_index[list][b8_xy];
1402
            ref_index[0+0*h->b8_stride]= h->ref_cache[list][scan8[0]];
1403
            ref_index[1+0*h->b8_stride]= h->ref_cache[list][scan8[4]];
1404
            ref_index[0+1*h->b8_stride]= h->ref_cache[list][scan8[8]];
1405
            ref_index[1+1*h->b8_stride]= h->ref_cache[list][scan8[12]];
1406
        }
1407
    }
1408

    
1409
    if(h->slice_type_nos == FF_B_TYPE && CABAC){
1410
        if(IS_8X8(mb_type)){
1411
            uint8_t *direct_table = &h->direct_table[b8_xy];
1412
            direct_table[1+0*h->b8_stride] = h->sub_mb_type[1]>>1;
1413
            direct_table[0+1*h->b8_stride] = h->sub_mb_type[2]>>1;
1414
            direct_table[1+1*h->b8_stride] = h->sub_mb_type[3]>>1;
1415
        }
1416
    }
1417
}
1418

    
1419
static inline int get_dct8x8_allowed(H264Context *h){
1420
    if(h->sps.direct_8x8_inference_flag)
1421
        return !(*(uint64_t*)h->sub_mb_type & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8                )*0x0001000100010001ULL));
1422
    else
1423
        return !(*(uint64_t*)h->sub_mb_type & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8|MB_TYPE_DIRECT2)*0x0001000100010001ULL));
1424
}
1425

    
1426
static void predict_field_decoding_flag(H264Context *h){
1427
    MpegEncContext * const s = &h->s;
1428
    const int mb_xy= h->mb_xy;
1429
    int mb_type = (h->slice_table[mb_xy-1] == h->slice_num)
1430
                ? s->current_picture.mb_type[mb_xy-1]
1431
                : (h->slice_table[mb_xy-s->mb_stride] == h->slice_num)
1432
                ? s->current_picture.mb_type[mb_xy-s->mb_stride]
1433
                : 0;
1434
    h->mb_mbaff = h->mb_field_decoding_flag = IS_INTERLACED(mb_type) ? 1 : 0;
1435
}
1436

    
1437
/**
1438
 * decodes a P_SKIP or B_SKIP macroblock
1439
 */
1440
static void decode_mb_skip(H264Context *h){
1441
    MpegEncContext * const s = &h->s;
1442
    const int mb_xy= h->mb_xy;
1443
    int mb_type=0;
1444

    
1445
    memset(h->non_zero_count[mb_xy], 0, 32);
1446
    memset(h->non_zero_count_cache + 8, 0, 8*5); //FIXME ugly, remove pfui
1447

    
1448
    if(MB_FIELD)
1449
        mb_type|= MB_TYPE_INTERLACED;
1450

    
1451
    if( h->slice_type_nos == FF_B_TYPE )
1452
    {
1453
        // just for fill_caches. pred_direct_motion will set the real mb_type
1454
        mb_type|= MB_TYPE_L0L1|MB_TYPE_DIRECT2|MB_TYPE_SKIP;
1455
        if(h->direct_spatial_mv_pred)
1456
        fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
1457
        ff_h264_pred_direct_motion(h, &mb_type);
1458
        mb_type|= MB_TYPE_SKIP;
1459
    }
1460
    else
1461
    {
1462
        int mx, my;
1463
        mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P1L0|MB_TYPE_SKIP;
1464

    
1465
        fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
1466
        pred_pskip_motion(h, &mx, &my);
1467
        fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
1468
        fill_rectangle(  h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx,my), 4);
1469
    }
1470

    
1471
    write_back_motion(h, mb_type);
1472
    s->current_picture.mb_type[mb_xy]= mb_type;
1473
    s->current_picture.qscale_table[mb_xy]= s->qscale;
1474
    h->slice_table[ mb_xy ]= h->slice_num;
1475
    h->prev_mb_skipped= 1;
1476
}
1477

    
1478
#include "h264_mvpred.h" //For pred_pskip_motion()
1479

    
1480
#endif /* AVCODEC_H264_H */