Statistics
| Branch: | Revision:

ffmpeg / libavcodec / adpcm.c @ 2ed42113

History | View | Annotate | Download (61.2 KB)

1
/*
2
 * ADPCM codecs
3
 * Copyright (c) 2001-2003 The ffmpeg Project
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
#include "avcodec.h"
22
#include "bitstream.h"
23
#include "bytestream.h"
24

    
25
/**
26
 * @file adpcm.c
27
 * ADPCM codecs.
28
 * First version by Francois Revol (revol@free.fr)
29
 * Fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
30
 *   by Mike Melanson (melanson@pcisys.net)
31
 * CD-ROM XA ADPCM codec by BERO
32
 * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
33
 * EA ADPCM R1/R2/R3 decoder by Peter Ross (pross@xvid.org)
34
 * EA IMA EACS decoder by Peter Ross (pross@xvid.org)
35
 * EA IMA SEAD decoder by Peter Ross (pross@xvid.org)
36
 * EA ADPCM XAS decoder by Peter Ross (pross@xvid.org)
37
 * MAXIS EA ADPCM decoder by Robert Marston (rmarston@gmail.com)
38
 * THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl)
39
 *
40
 * Features and limitations:
41
 *
42
 * Reference documents:
43
 * http://www.pcisys.net/~melanson/codecs/simpleaudio.html
44
 * http://www.geocities.com/SiliconValley/8682/aud3.txt
45
 * http://openquicktime.sourceforge.net/plugins.htm
46
 * XAnim sources (xa_codec.c) http://www.rasnaimaging.com/people/lapus/download.html
47
 * http://www.cs.ucla.edu/~leec/mediabench/applications.html
48
 * SoX source code http://home.sprynet.com/~cbagwell/sox.html
49
 *
50
 * CD-ROM XA:
51
 * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html
52
 * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html
53
 * readstr http://www.geocities.co.jp/Playtown/2004/
54
 */
55

    
56
#define BLKSIZE 1024
57

    
58
/* step_table[] and index_table[] are from the ADPCM reference source */
59
/* This is the index table: */
60
static const int index_table[16] = {
61
    -1, -1, -1, -1, 2, 4, 6, 8,
62
    -1, -1, -1, -1, 2, 4, 6, 8,
63
};
64

    
65
/**
66
 * This is the step table. Note that many programs use slight deviations from
67
 * this table, but such deviations are negligible:
68
 */
69
static const int step_table[89] = {
70
    7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
71
    19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
72
    50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
73
    130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
74
    337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
75
    876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
76
    2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
77
    5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
78
    15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
79
};
80

    
81
/* These are for MS-ADPCM */
82
/* AdaptationTable[], AdaptCoeff1[], and AdaptCoeff2[] are from libsndfile */
83
static const int AdaptationTable[] = {
84
        230, 230, 230, 230, 307, 409, 512, 614,
85
        768, 614, 512, 409, 307, 230, 230, 230
86
};
87

    
88
static const uint8_t AdaptCoeff1[] = {
89
        64, 128, 0, 48, 60, 115, 98
90
};
91

    
92
static const int8_t AdaptCoeff2[] = {
93
        0, -64, 0, 16, 0, -52, -58
94
};
95

    
96
/* These are for CD-ROM XA ADPCM */
97
static const int xa_adpcm_table[5][2] = {
98
   {   0,   0 },
99
   {  60,   0 },
100
   { 115, -52 },
101
   {  98, -55 },
102
   { 122, -60 }
103
};
104

    
105
static const int ea_adpcm_table[] = {
106
    0, 240, 460, 392, 0, 0, -208, -220, 0, 1,
107
    3, 4, 7, 8, 10, 11, 0, -1, -3, -4
108
};
109

    
110
static const int ct_adpcm_table[8] = {
111
    0x00E6, 0x00E6, 0x00E6, 0x00E6,
112
    0x0133, 0x0199, 0x0200, 0x0266
113
};
114

    
115
// padded to zero where table size is less then 16
116
static const int swf_index_tables[4][16] = {
117
    /*2*/ { -1, 2 },
118
    /*3*/ { -1, -1, 2, 4 },
119
    /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
120
    /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
121
};
122

    
123
static const int yamaha_indexscale[] = {
124
    230, 230, 230, 230, 307, 409, 512, 614,
125
    230, 230, 230, 230, 307, 409, 512, 614
126
};
127

    
128
static const int yamaha_difflookup[] = {
129
    1, 3, 5, 7, 9, 11, 13, 15,
130
    -1, -3, -5, -7, -9, -11, -13, -15
131
};
132

    
133
/* end of tables */
134

    
135
typedef struct ADPCMChannelStatus {
136
    int predictor;
137
    short int step_index;
138
    int step;
139
    /* for encoding */
140
    int prev_sample;
141

    
142
    /* MS version */
143
    short sample1;
144
    short sample2;
145
    int coeff1;
146
    int coeff2;
147
    int idelta;
148
} ADPCMChannelStatus;
149

    
150
typedef struct ADPCMContext {
151
    ADPCMChannelStatus status[6];
152
} ADPCMContext;
153

    
154
/* XXX: implement encoding */
155

    
156
#if CONFIG_ENCODERS
157
static int adpcm_encode_init(AVCodecContext *avctx)
158
{
159
    if (avctx->channels > 2)
160
        return -1; /* only stereo or mono =) */
161

    
162
    if(avctx->trellis && (unsigned)avctx->trellis > 16U){
163
        av_log(avctx, AV_LOG_ERROR, "invalid trellis size\n");
164
        return -1;
165
    }
166

    
167
    switch(avctx->codec->id) {
168
    case CODEC_ID_ADPCM_IMA_WAV:
169
        avctx->frame_size = (BLKSIZE - 4 * avctx->channels) * 8 / (4 * avctx->channels) + 1; /* each 16 bits sample gives one nibble */
170
                                                             /* and we have 4 bytes per channel overhead */
171
        avctx->block_align = BLKSIZE;
172
        /* seems frame_size isn't taken into account... have to buffer the samples :-( */
173
        break;
174
    case CODEC_ID_ADPCM_IMA_QT:
175
        avctx->frame_size = 64;
176
        avctx->block_align = 34 * avctx->channels;
177
        break;
178
    case CODEC_ID_ADPCM_MS:
179
        avctx->frame_size = (BLKSIZE - 7 * avctx->channels) * 2 / avctx->channels + 2; /* each 16 bits sample gives one nibble */
180
                                                             /* and we have 7 bytes per channel overhead */
181
        avctx->block_align = BLKSIZE;
182
        break;
183
    case CODEC_ID_ADPCM_YAMAHA:
184
        avctx->frame_size = BLKSIZE * avctx->channels;
185
        avctx->block_align = BLKSIZE;
186
        break;
187
    case CODEC_ID_ADPCM_SWF:
188
        if (avctx->sample_rate != 11025 &&
189
            avctx->sample_rate != 22050 &&
190
            avctx->sample_rate != 44100) {
191
            av_log(avctx, AV_LOG_ERROR, "Sample rate must be 11025, 22050 or 44100\n");
192
            return -1;
193
        }
194
        avctx->frame_size = 512 * (avctx->sample_rate / 11025);
195
        break;
196
    default:
197
        return -1;
198
        break;
199
    }
200

    
201
    avctx->coded_frame= avcodec_alloc_frame();
202
    avctx->coded_frame->key_frame= 1;
203

    
204
    return 0;
205
}
206

    
207
static int adpcm_encode_close(AVCodecContext *avctx)
208
{
209
    av_freep(&avctx->coded_frame);
210

    
211
    return 0;
212
}
213

    
214

    
215
static inline unsigned char adpcm_ima_compress_sample(ADPCMChannelStatus *c, short sample)
216
{
217
    int delta = sample - c->prev_sample;
218
    int nibble = FFMIN(7, abs(delta)*4/step_table[c->step_index]) + (delta<0)*8;
219
    c->prev_sample += ((step_table[c->step_index] * yamaha_difflookup[nibble]) / 8);
220
    c->prev_sample = av_clip_int16(c->prev_sample);
221
    c->step_index = av_clip(c->step_index + index_table[nibble], 0, 88);
222
    return nibble;
223
}
224

    
225
static inline unsigned char adpcm_ms_compress_sample(ADPCMChannelStatus *c, short sample)
226
{
227
    int predictor, nibble, bias;
228

    
229
    predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
230

    
231
    nibble= sample - predictor;
232
    if(nibble>=0) bias= c->idelta/2;
233
    else          bias=-c->idelta/2;
234

    
235
    nibble= (nibble + bias) / c->idelta;
236
    nibble= av_clip(nibble, -8, 7)&0x0F;
237

    
238
    predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
239

    
240
    c->sample2 = c->sample1;
241
    c->sample1 = av_clip_int16(predictor);
242

    
243
    c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
244
    if (c->idelta < 16) c->idelta = 16;
245

    
246
    return nibble;
247
}
248

    
249
static inline unsigned char adpcm_yamaha_compress_sample(ADPCMChannelStatus *c, short sample)
250
{
251
    int nibble, delta;
252

    
253
    if(!c->step) {
254
        c->predictor = 0;
255
        c->step = 127;
256
    }
257

    
258
    delta = sample - c->predictor;
259

    
260
    nibble = FFMIN(7, abs(delta)*4/c->step) + (delta<0)*8;
261

    
262
    c->predictor += ((c->step * yamaha_difflookup[nibble]) / 8);
263
    c->predictor = av_clip_int16(c->predictor);
264
    c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
265
    c->step = av_clip(c->step, 127, 24567);
266

    
267
    return nibble;
268
}
269

    
270
typedef struct TrellisPath {
271
    int nibble;
272
    int prev;
273
} TrellisPath;
274

    
275
typedef struct TrellisNode {
276
    uint32_t ssd;
277
    int path;
278
    int sample1;
279
    int sample2;
280
    int step;
281
} TrellisNode;
282

    
283
static void adpcm_compress_trellis(AVCodecContext *avctx, const short *samples,
284
                                   uint8_t *dst, ADPCMChannelStatus *c, int n)
285
{
286
#define FREEZE_INTERVAL 128
287
    //FIXME 6% faster if frontier is a compile-time constant
288
    const int frontier = 1 << avctx->trellis;
289
    const int stride = avctx->channels;
290
    const int version = avctx->codec->id;
291
    const int max_paths = frontier*FREEZE_INTERVAL;
292
    TrellisPath paths[max_paths], *p;
293
    TrellisNode node_buf[2][frontier];
294
    TrellisNode *nodep_buf[2][frontier];
295
    TrellisNode **nodes = nodep_buf[0]; // nodes[] is always sorted by .ssd
296
    TrellisNode **nodes_next = nodep_buf[1];
297
    int pathn = 0, froze = -1, i, j, k;
298

    
299
    assert(!(max_paths&(max_paths-1)));
300

    
301
    memset(nodep_buf, 0, sizeof(nodep_buf));
302
    nodes[0] = &node_buf[1][0];
303
    nodes[0]->ssd = 0;
304
    nodes[0]->path = 0;
305
    nodes[0]->step = c->step_index;
306
    nodes[0]->sample1 = c->sample1;
307
    nodes[0]->sample2 = c->sample2;
308
    if((version == CODEC_ID_ADPCM_IMA_WAV) || (version == CODEC_ID_ADPCM_IMA_QT) || (version == CODEC_ID_ADPCM_SWF))
309
        nodes[0]->sample1 = c->prev_sample;
310
    if(version == CODEC_ID_ADPCM_MS)
311
        nodes[0]->step = c->idelta;
312
    if(version == CODEC_ID_ADPCM_YAMAHA) {
313
        if(c->step == 0) {
314
            nodes[0]->step = 127;
315
            nodes[0]->sample1 = 0;
316
        } else {
317
            nodes[0]->step = c->step;
318
            nodes[0]->sample1 = c->predictor;
319
        }
320
    }
321

    
322
    for(i=0; i<n; i++) {
323
        TrellisNode *t = node_buf[i&1];
324
        TrellisNode **u;
325
        int sample = samples[i*stride];
326
        memset(nodes_next, 0, frontier*sizeof(TrellisNode*));
327
        for(j=0; j<frontier && nodes[j]; j++) {
328
            // higher j have higher ssd already, so they're unlikely to use a suboptimal next sample too
329
            const int range = (j < frontier/2) ? 1 : 0;
330
            const int step = nodes[j]->step;
331
            int nidx;
332
            if(version == CODEC_ID_ADPCM_MS) {
333
                const int predictor = ((nodes[j]->sample1 * c->coeff1) + (nodes[j]->sample2 * c->coeff2)) / 64;
334
                const int div = (sample - predictor) / step;
335
                const int nmin = av_clip(div-range, -8, 6);
336
                const int nmax = av_clip(div+range, -7, 7);
337
                for(nidx=nmin; nidx<=nmax; nidx++) {
338
                    const int nibble = nidx & 0xf;
339
                    int dec_sample = predictor + nidx * step;
340
#define STORE_NODE(NAME, STEP_INDEX)\
341
                    int d;\
342
                    uint32_t ssd;\
343
                    dec_sample = av_clip_int16(dec_sample);\
344
                    d = sample - dec_sample;\
345
                    ssd = nodes[j]->ssd + d*d;\
346
                    if(nodes_next[frontier-1] && ssd >= nodes_next[frontier-1]->ssd)\
347
                        continue;\
348
                    /* Collapse any two states with the same previous sample value. \
349
                     * One could also distinguish states by step and by 2nd to last
350
                     * sample, but the effects of that are negligible. */\
351
                    for(k=0; k<frontier && nodes_next[k]; k++) {\
352
                        if(dec_sample == nodes_next[k]->sample1) {\
353
                            assert(ssd >= nodes_next[k]->ssd);\
354
                            goto next_##NAME;\
355
                        }\
356
                    }\
357
                    for(k=0; k<frontier; k++) {\
358
                        if(!nodes_next[k] || ssd < nodes_next[k]->ssd) {\
359
                            TrellisNode *u = nodes_next[frontier-1];\
360
                            if(!u) {\
361
                                assert(pathn < max_paths);\
362
                                u = t++;\
363
                                u->path = pathn++;\
364
                            }\
365
                            u->ssd = ssd;\
366
                            u->step = STEP_INDEX;\
367
                            u->sample2 = nodes[j]->sample1;\
368
                            u->sample1 = dec_sample;\
369
                            paths[u->path].nibble = nibble;\
370
                            paths[u->path].prev = nodes[j]->path;\
371
                            memmove(&nodes_next[k+1], &nodes_next[k], (frontier-k-1)*sizeof(TrellisNode*));\
372
                            nodes_next[k] = u;\
373
                            break;\
374
                        }\
375
                    }\
376
                    next_##NAME:;
377
                    STORE_NODE(ms, FFMAX(16, (AdaptationTable[nibble] * step) >> 8));
378
                }
379
            } else if((version == CODEC_ID_ADPCM_IMA_WAV)|| (version == CODEC_ID_ADPCM_IMA_QT)|| (version == CODEC_ID_ADPCM_SWF)) {
380
#define LOOP_NODES(NAME, STEP_TABLE, STEP_INDEX)\
381
                const int predictor = nodes[j]->sample1;\
382
                const int div = (sample - predictor) * 4 / STEP_TABLE;\
383
                int nmin = av_clip(div-range, -7, 6);\
384
                int nmax = av_clip(div+range, -6, 7);\
385
                if(nmin<=0) nmin--; /* distinguish -0 from +0 */\
386
                if(nmax<0) nmax--;\
387
                for(nidx=nmin; nidx<=nmax; nidx++) {\
388
                    const int nibble = nidx<0 ? 7-nidx : nidx;\
389
                    int dec_sample = predictor + (STEP_TABLE * yamaha_difflookup[nibble]) / 8;\
390
                    STORE_NODE(NAME, STEP_INDEX);\
391
                }
392
                LOOP_NODES(ima, step_table[step], av_clip(step + index_table[nibble], 0, 88));
393
            } else { //CODEC_ID_ADPCM_YAMAHA
394
                LOOP_NODES(yamaha, step, av_clip((step * yamaha_indexscale[nibble]) >> 8, 127, 24567));
395
#undef LOOP_NODES
396
#undef STORE_NODE
397
            }
398
        }
399

    
400
        u = nodes;
401
        nodes = nodes_next;
402
        nodes_next = u;
403

    
404
        // prevent overflow
405
        if(nodes[0]->ssd > (1<<28)) {
406
            for(j=1; j<frontier && nodes[j]; j++)
407
                nodes[j]->ssd -= nodes[0]->ssd;
408
            nodes[0]->ssd = 0;
409
        }
410

    
411
        // merge old paths to save memory
412
        if(i == froze + FREEZE_INTERVAL) {
413
            p = &paths[nodes[0]->path];
414
            for(k=i; k>froze; k--) {
415
                dst[k] = p->nibble;
416
                p = &paths[p->prev];
417
            }
418
            froze = i;
419
            pathn = 0;
420
            // other nodes might use paths that don't coincide with the frozen one.
421
            // checking which nodes do so is too slow, so just kill them all.
422
            // this also slightly improves quality, but I don't know why.
423
            memset(nodes+1, 0, (frontier-1)*sizeof(TrellisNode*));
424
        }
425
    }
426

    
427
    p = &paths[nodes[0]->path];
428
    for(i=n-1; i>froze; i--) {
429
        dst[i] = p->nibble;
430
        p = &paths[p->prev];
431
    }
432

    
433
    c->predictor = nodes[0]->sample1;
434
    c->sample1 = nodes[0]->sample1;
435
    c->sample2 = nodes[0]->sample2;
436
    c->step_index = nodes[0]->step;
437
    c->step = nodes[0]->step;
438
    c->idelta = nodes[0]->step;
439
}
440

    
441
static int adpcm_encode_frame(AVCodecContext *avctx,
442
                            unsigned char *frame, int buf_size, void *data)
443
{
444
    int n, i, st;
445
    short *samples;
446
    unsigned char *dst;
447
    ADPCMContext *c = avctx->priv_data;
448

    
449
    dst = frame;
450
    samples = (short *)data;
451
    st= avctx->channels == 2;
452
/*    n = (BLKSIZE - 4 * avctx->channels) / (2 * 8 * avctx->channels); */
453

    
454
    switch(avctx->codec->id) {
455
    case CODEC_ID_ADPCM_IMA_WAV:
456
        n = avctx->frame_size / 8;
457
            c->status[0].prev_sample = (signed short)samples[0]; /* XXX */
458
/*            c->status[0].step_index = 0; *//* XXX: not sure how to init the state machine */
459
            bytestream_put_le16(&dst, c->status[0].prev_sample);
460
            *dst++ = (unsigned char)c->status[0].step_index;
461
            *dst++ = 0; /* unknown */
462
            samples++;
463
            if (avctx->channels == 2) {
464
                c->status[1].prev_sample = (signed short)samples[0];
465
/*                c->status[1].step_index = 0; */
466
                bytestream_put_le16(&dst, c->status[1].prev_sample);
467
                *dst++ = (unsigned char)c->status[1].step_index;
468
                *dst++ = 0;
469
                samples++;
470
            }
471

    
472
            /* stereo: 4 bytes (8 samples) for left, 4 bytes for right, 4 bytes left, ... */
473
            if(avctx->trellis > 0) {
474
                uint8_t buf[2][n*8];
475
                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n*8);
476
                if(avctx->channels == 2)
477
                    adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n*8);
478
                for(i=0; i<n; i++) {
479
                    *dst++ = buf[0][8*i+0] | (buf[0][8*i+1] << 4);
480
                    *dst++ = buf[0][8*i+2] | (buf[0][8*i+3] << 4);
481
                    *dst++ = buf[0][8*i+4] | (buf[0][8*i+5] << 4);
482
                    *dst++ = buf[0][8*i+6] | (buf[0][8*i+7] << 4);
483
                    if (avctx->channels == 2) {
484
                        *dst++ = buf[1][8*i+0] | (buf[1][8*i+1] << 4);
485
                        *dst++ = buf[1][8*i+2] | (buf[1][8*i+3] << 4);
486
                        *dst++ = buf[1][8*i+4] | (buf[1][8*i+5] << 4);
487
                        *dst++ = buf[1][8*i+6] | (buf[1][8*i+7] << 4);
488
                    }
489
                }
490
            } else
491
            for (; n>0; n--) {
492
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[0]);
493
                *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels]) << 4;
494
                dst++;
495
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 2]);
496
                *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 3]) << 4;
497
                dst++;
498
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 4]);
499
                *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 5]) << 4;
500
                dst++;
501
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 6]);
502
                *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 7]) << 4;
503
                dst++;
504
                /* right channel */
505
                if (avctx->channels == 2) {
506
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[1]);
507
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[3]) << 4;
508
                    dst++;
509
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[5]);
510
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[7]) << 4;
511
                    dst++;
512
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[9]);
513
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[11]) << 4;
514
                    dst++;
515
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[13]);
516
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[15]) << 4;
517
                    dst++;
518
                }
519
                samples += 8 * avctx->channels;
520
            }
521
        break;
522
    case CODEC_ID_ADPCM_IMA_QT:
523
    {
524
        int ch, i;
525
        PutBitContext pb;
526
        init_put_bits(&pb, dst, buf_size*8);
527

    
528
        for(ch=0; ch<avctx->channels; ch++){
529
            put_bits(&pb, 9, (c->status[ch].prev_sample + 0x10000) >> 7);
530
            put_bits(&pb, 7, c->status[ch].step_index);
531
            if(avctx->trellis > 0) {
532
                uint8_t buf[64];
533
                adpcm_compress_trellis(avctx, samples+ch, buf, &c->status[ch], 64);
534
                for(i=0; i<64; i++)
535
                    put_bits(&pb, 4, buf[i^1]);
536
                c->status[ch].prev_sample = c->status[ch].predictor & ~0x7F;
537
            } else {
538
                for (i=0; i<64; i+=2){
539
                    int t1, t2;
540
                    t1 = adpcm_ima_compress_sample(&c->status[ch], samples[avctx->channels*(i+0)+ch]);
541
                    t2 = adpcm_ima_compress_sample(&c->status[ch], samples[avctx->channels*(i+1)+ch]);
542
                    put_bits(&pb, 4, t2);
543
                    put_bits(&pb, 4, t1);
544
                }
545
                c->status[ch].prev_sample &= ~0x7F;
546
            }
547
        }
548

    
549
        dst += put_bits_count(&pb)>>3;
550
        break;
551
    }
552
    case CODEC_ID_ADPCM_SWF:
553
    {
554
        int i;
555
        PutBitContext pb;
556
        init_put_bits(&pb, dst, buf_size*8);
557

    
558
        n = avctx->frame_size-1;
559

    
560
        //Store AdpcmCodeSize
561
        put_bits(&pb, 2, 2);                //Set 4bits flash adpcm format
562

    
563
        //Init the encoder state
564
        for(i=0; i<avctx->channels; i++){
565
            c->status[i].step_index = av_clip(c->status[i].step_index, 0, 63); // clip step so it fits 6 bits
566
            put_sbits(&pb, 16, samples[i]);
567
            put_bits(&pb, 6, c->status[i].step_index);
568
            c->status[i].prev_sample = (signed short)samples[i];
569
        }
570

    
571
        if(avctx->trellis > 0) {
572
            uint8_t buf[2][n];
573
            adpcm_compress_trellis(avctx, samples+2, buf[0], &c->status[0], n);
574
            if (avctx->channels == 2)
575
                adpcm_compress_trellis(avctx, samples+3, buf[1], &c->status[1], n);
576
            for(i=0; i<n; i++) {
577
                put_bits(&pb, 4, buf[0][i]);
578
                if (avctx->channels == 2)
579
                    put_bits(&pb, 4, buf[1][i]);
580
            }
581
        } else {
582
            for (i=1; i<avctx->frame_size; i++) {
583
                put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels*i]));
584
                if (avctx->channels == 2)
585
                    put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[1], samples[2*i+1]));
586
            }
587
        }
588
        flush_put_bits(&pb);
589
        dst += put_bits_count(&pb)>>3;
590
        break;
591
    }
592
    case CODEC_ID_ADPCM_MS:
593
        for(i=0; i<avctx->channels; i++){
594
            int predictor=0;
595

    
596
            *dst++ = predictor;
597
            c->status[i].coeff1 = AdaptCoeff1[predictor];
598
            c->status[i].coeff2 = AdaptCoeff2[predictor];
599
        }
600
        for(i=0; i<avctx->channels; i++){
601
            if (c->status[i].idelta < 16)
602
                c->status[i].idelta = 16;
603

    
604
            bytestream_put_le16(&dst, c->status[i].idelta);
605
        }
606
        for(i=0; i<avctx->channels; i++){
607
            c->status[i].sample2= *samples++;
608
        }
609
        for(i=0; i<avctx->channels; i++){
610
            c->status[i].sample1= *samples++;
611

    
612
            bytestream_put_le16(&dst, c->status[i].sample1);
613
        }
614
        for(i=0; i<avctx->channels; i++)
615
            bytestream_put_le16(&dst, c->status[i].sample2);
616

    
617
        if(avctx->trellis > 0) {
618
            int n = avctx->block_align - 7*avctx->channels;
619
            uint8_t buf[2][n];
620
            if(avctx->channels == 1) {
621
                n *= 2;
622
                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
623
                for(i=0; i<n; i+=2)
624
                    *dst++ = (buf[0][i] << 4) | buf[0][i+1];
625
            } else {
626
                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
627
                adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n);
628
                for(i=0; i<n; i++)
629
                    *dst++ = (buf[0][i] << 4) | buf[1][i];
630
            }
631
        } else
632
        for(i=7*avctx->channels; i<avctx->block_align; i++) {
633
            int nibble;
634
            nibble = adpcm_ms_compress_sample(&c->status[ 0], *samples++)<<4;
635
            nibble|= adpcm_ms_compress_sample(&c->status[st], *samples++);
636
            *dst++ = nibble;
637
        }
638
        break;
639
    case CODEC_ID_ADPCM_YAMAHA:
640
        n = avctx->frame_size / 2;
641
        if(avctx->trellis > 0) {
642
            uint8_t buf[2][n*2];
643
            n *= 2;
644
            if(avctx->channels == 1) {
645
                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
646
                for(i=0; i<n; i+=2)
647
                    *dst++ = buf[0][i] | (buf[0][i+1] << 4);
648
            } else {
649
                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
650
                adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n);
651
                for(i=0; i<n; i++)
652
                    *dst++ = buf[0][i] | (buf[1][i] << 4);
653
            }
654
        } else
655
        for (; n>0; n--) {
656
            for(i = 0; i < avctx->channels; i++) {
657
                int nibble;
658
                nibble  = adpcm_yamaha_compress_sample(&c->status[i], samples[i]);
659
                nibble |= adpcm_yamaha_compress_sample(&c->status[i], samples[i+avctx->channels]) << 4;
660
                *dst++ = nibble;
661
            }
662
            samples += 2 * avctx->channels;
663
        }
664
        break;
665
    default:
666
        return -1;
667
    }
668
    return dst - frame;
669
}
670
#endif //CONFIG_ENCODERS
671

    
672
static av_cold int adpcm_decode_init(AVCodecContext * avctx)
673
{
674
    ADPCMContext *c = avctx->priv_data;
675
    unsigned int max_channels = 2;
676

    
677
    switch(avctx->codec->id) {
678
    case CODEC_ID_ADPCM_EA_R1:
679
    case CODEC_ID_ADPCM_EA_R2:
680
    case CODEC_ID_ADPCM_EA_R3:
681
        max_channels = 6;
682
        break;
683
    }
684
    if(avctx->channels > max_channels){
685
        return -1;
686
    }
687

    
688
    switch(avctx->codec->id) {
689
    case CODEC_ID_ADPCM_CT:
690
        c->status[0].step = c->status[1].step = 511;
691
        break;
692
    case CODEC_ID_ADPCM_IMA_WS:
693
        if (avctx->extradata && avctx->extradata_size == 2 * 4) {
694
            c->status[0].predictor = AV_RL32(avctx->extradata);
695
            c->status[1].predictor = AV_RL32(avctx->extradata + 4);
696
        }
697
        break;
698
    default:
699
        break;
700
    }
701
    avctx->sample_fmt = SAMPLE_FMT_S16;
702
    return 0;
703
}
704

    
705
static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift)
706
{
707
    int step_index;
708
    int predictor;
709
    int sign, delta, diff, step;
710

    
711
    step = step_table[c->step_index];
712
    step_index = c->step_index + index_table[(unsigned)nibble];
713
    if (step_index < 0) step_index = 0;
714
    else if (step_index > 88) step_index = 88;
715

    
716
    sign = nibble & 8;
717
    delta = nibble & 7;
718
    /* perform direct multiplication instead of series of jumps proposed by
719
     * the reference ADPCM implementation since modern CPUs can do the mults
720
     * quickly enough */
721
    diff = ((2 * delta + 1) * step) >> shift;
722
    predictor = c->predictor;
723
    if (sign) predictor -= diff;
724
    else predictor += diff;
725

    
726
    c->predictor = av_clip_int16(predictor);
727
    c->step_index = step_index;
728

    
729
    return (short)c->predictor;
730
}
731

    
732
static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, char nibble)
733
{
734
    int predictor;
735

    
736
    predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
737
    predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
738

    
739
    c->sample2 = c->sample1;
740
    c->sample1 = av_clip_int16(predictor);
741
    c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
742
    if (c->idelta < 16) c->idelta = 16;
743

    
744
    return c->sample1;
745
}
746

    
747
static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble)
748
{
749
    int sign, delta, diff;
750
    int new_step;
751

    
752
    sign = nibble & 8;
753
    delta = nibble & 7;
754
    /* perform direct multiplication instead of series of jumps proposed by
755
     * the reference ADPCM implementation since modern CPUs can do the mults
756
     * quickly enough */
757
    diff = ((2 * delta + 1) * c->step) >> 3;
758
    /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
759
    c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff);
760
    c->predictor = av_clip_int16(c->predictor);
761
    /* calculate new step and clamp it to range 511..32767 */
762
    new_step = (ct_adpcm_table[nibble & 7] * c->step) >> 8;
763
    c->step = av_clip(new_step, 511, 32767);
764

    
765
    return (short)c->predictor;
766
}
767

    
768
static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift)
769
{
770
    int sign, delta, diff;
771

    
772
    sign = nibble & (1<<(size-1));
773
    delta = nibble & ((1<<(size-1))-1);
774
    diff = delta << (7 + c->step + shift);
775

    
776
    /* clamp result */
777
    c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256);
778

    
779
    /* calculate new step */
780
    if (delta >= (2*size - 3) && c->step < 3)
781
        c->step++;
782
    else if (delta == 0 && c->step > 0)
783
        c->step--;
784

    
785
    return (short) c->predictor;
786
}
787

    
788
static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble)
789
{
790
    if(!c->step) {
791
        c->predictor = 0;
792
        c->step = 127;
793
    }
794

    
795
    c->predictor += (c->step * yamaha_difflookup[nibble]) / 8;
796
    c->predictor = av_clip_int16(c->predictor);
797
    c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
798
    c->step = av_clip(c->step, 127, 24567);
799
    return c->predictor;
800
}
801

    
802
static void xa_decode(short *out, const unsigned char *in,
803
    ADPCMChannelStatus *left, ADPCMChannelStatus *right, int inc)
804
{
805
    int i, j;
806
    int shift,filter,f0,f1;
807
    int s_1,s_2;
808
    int d,s,t;
809

    
810
    for(i=0;i<4;i++) {
811

    
812
        shift  = 12 - (in[4+i*2] & 15);
813
        filter = in[4+i*2] >> 4;
814
        f0 = xa_adpcm_table[filter][0];
815
        f1 = xa_adpcm_table[filter][1];
816

    
817
        s_1 = left->sample1;
818
        s_2 = left->sample2;
819

    
820
        for(j=0;j<28;j++) {
821
            d = in[16+i+j*4];
822

    
823
            t = (signed char)(d<<4)>>4;
824
            s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
825
            s_2 = s_1;
826
            s_1 = av_clip_int16(s);
827
            *out = s_1;
828
            out += inc;
829
        }
830

    
831
        if (inc==2) { /* stereo */
832
            left->sample1 = s_1;
833
            left->sample2 = s_2;
834
            s_1 = right->sample1;
835
            s_2 = right->sample2;
836
            out = out + 1 - 28*2;
837
        }
838

    
839
        shift  = 12 - (in[5+i*2] & 15);
840
        filter = in[5+i*2] >> 4;
841

    
842
        f0 = xa_adpcm_table[filter][0];
843
        f1 = xa_adpcm_table[filter][1];
844

    
845
        for(j=0;j<28;j++) {
846
            d = in[16+i+j*4];
847

    
848
            t = (signed char)d >> 4;
849
            s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
850
            s_2 = s_1;
851
            s_1 = av_clip_int16(s);
852
            *out = s_1;
853
            out += inc;
854
        }
855

    
856
        if (inc==2) { /* stereo */
857
            right->sample1 = s_1;
858
            right->sample2 = s_2;
859
            out -= 1;
860
        } else {
861
            left->sample1 = s_1;
862
            left->sample2 = s_2;
863
        }
864
    }
865
}
866

    
867

    
868
/* DK3 ADPCM support macro */
869
#define DK3_GET_NEXT_NIBBLE() \
870
    if (decode_top_nibble_next) \
871
    { \
872
        nibble = last_byte >> 4; \
873
        decode_top_nibble_next = 0; \
874
    } \
875
    else \
876
    { \
877
        last_byte = *src++; \
878
        if (src >= buf + buf_size) break; \
879
        nibble = last_byte & 0x0F; \
880
        decode_top_nibble_next = 1; \
881
    }
882

    
883
static int adpcm_decode_frame(AVCodecContext *avctx,
884
                            void *data, int *data_size,
885
                            const uint8_t *buf, int buf_size)
886
{
887
    ADPCMContext *c = avctx->priv_data;
888
    ADPCMChannelStatus *cs;
889
    int n, m, channel, i;
890
    int block_predictor[2];
891
    short *samples;
892
    short *samples_end;
893
    const uint8_t *src;
894
    int st; /* stereo */
895

    
896
    /* DK3 ADPCM accounting variables */
897
    unsigned char last_byte = 0;
898
    unsigned char nibble;
899
    int decode_top_nibble_next = 0;
900
    int diff_channel;
901

    
902
    /* EA ADPCM state variables */
903
    uint32_t samples_in_chunk;
904
    int32_t previous_left_sample, previous_right_sample;
905
    int32_t current_left_sample, current_right_sample;
906
    int32_t next_left_sample, next_right_sample;
907
    int32_t coeff1l, coeff2l, coeff1r, coeff2r;
908
    uint8_t shift_left, shift_right;
909
    int count1, count2;
910
    int coeff[2][2], shift[2];//used in EA MAXIS ADPCM
911

    
912
    if (!buf_size)
913
        return 0;
914

    
915
    //should protect all 4bit ADPCM variants
916
    //8 is needed for CODEC_ID_ADPCM_IMA_WAV with 2 channels
917
    //
918
    if(*data_size/4 < buf_size + 8)
919
        return -1;
920

    
921
    samples = data;
922
    samples_end= samples + *data_size/2;
923
    *data_size= 0;
924
    src = buf;
925

    
926
    st = avctx->channels == 2 ? 1 : 0;
927

    
928
    switch(avctx->codec->id) {
929
    case CODEC_ID_ADPCM_IMA_QT:
930
        n = buf_size - 2*avctx->channels;
931
        for (channel = 0; channel < avctx->channels; channel++) {
932
            cs = &(c->status[channel]);
933
            /* (pppppp) (piiiiiii) */
934

    
935
            /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
936
            cs->predictor = (*src++) << 8;
937
            cs->predictor |= (*src & 0x80);
938
            cs->predictor &= 0xFF80;
939

    
940
            /* sign extension */
941
            if(cs->predictor & 0x8000)
942
                cs->predictor -= 0x10000;
943

    
944
            cs->predictor = av_clip_int16(cs->predictor);
945

    
946
            cs->step_index = (*src++) & 0x7F;
947

    
948
            if (cs->step_index > 88){
949
                av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
950
                cs->step_index = 88;
951
            }
952

    
953
            cs->step = step_table[cs->step_index];
954

    
955
            samples = (short*)data + channel;
956

    
957
            for(m=32; n>0 && m>0; n--, m--) { /* in QuickTime, IMA is encoded by chuncks of 34 bytes (=64 samples) */
958
                *samples = adpcm_ima_expand_nibble(cs, src[0] & 0x0F, 3);
959
                samples += avctx->channels;
960
                *samples = adpcm_ima_expand_nibble(cs, src[0] >> 4  , 3);
961
                samples += avctx->channels;
962
                src ++;
963
            }
964
        }
965
        if (st)
966
            samples--;
967
        break;
968
    case CODEC_ID_ADPCM_IMA_WAV:
969
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
970
            buf_size = avctx->block_align;
971

    
972
//        samples_per_block= (block_align-4*chanels)*8 / (bits_per_sample * chanels) + 1;
973

    
974
        for(i=0; i<avctx->channels; i++){
975
            cs = &(c->status[i]);
976
            cs->predictor = *samples++ = (int16_t)bytestream_get_le16(&src);
977

    
978
            cs->step_index = *src++;
979
            if (cs->step_index > 88){
980
                av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
981
                cs->step_index = 88;
982
            }
983
            if (*src++) av_log(avctx, AV_LOG_ERROR, "unused byte should be null but is %d!!\n", src[-1]); /* unused */
984
        }
985

    
986
        while(src < buf + buf_size){
987
            for(m=0; m<4; m++){
988
                for(i=0; i<=st; i++)
989
                    *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] & 0x0F, 3);
990
                for(i=0; i<=st; i++)
991
                    *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] >> 4  , 3);
992
                src++;
993
            }
994
            src += 4*st;
995
        }
996
        break;
997
    case CODEC_ID_ADPCM_4XM:
998
        cs = &(c->status[0]);
999
        c->status[0].predictor= (int16_t)bytestream_get_le16(&src);
1000
        if(st){
1001
            c->status[1].predictor= (int16_t)bytestream_get_le16(&src);
1002
        }
1003
        c->status[0].step_index= (int16_t)bytestream_get_le16(&src);
1004
        if(st){
1005
            c->status[1].step_index= (int16_t)bytestream_get_le16(&src);
1006
        }
1007
        if (cs->step_index < 0) cs->step_index = 0;
1008
        if (cs->step_index > 88) cs->step_index = 88;
1009

    
1010
        m= (buf_size - (src - buf))>>st;
1011
        for(i=0; i<m; i++) {
1012
            *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] & 0x0F, 4);
1013
            if (st)
1014
                *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] & 0x0F, 4);
1015
            *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] >> 4, 4);
1016
            if (st)
1017
                *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] >> 4, 4);
1018
        }
1019

    
1020
        src += m<<st;
1021

    
1022
        break;
1023
    case CODEC_ID_ADPCM_MS:
1024
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
1025
            buf_size = avctx->block_align;
1026
        n = buf_size - 7 * avctx->channels;
1027
        if (n < 0)
1028
            return -1;
1029
        block_predictor[0] = av_clip(*src++, 0, 6);
1030
        block_predictor[1] = 0;
1031
        if (st)
1032
            block_predictor[1] = av_clip(*src++, 0, 6);
1033
        c->status[0].idelta = (int16_t)bytestream_get_le16(&src);
1034
        if (st){
1035
            c->status[1].idelta = (int16_t)bytestream_get_le16(&src);
1036
        }
1037
        c->status[0].coeff1 = AdaptCoeff1[block_predictor[0]];
1038
        c->status[0].coeff2 = AdaptCoeff2[block_predictor[0]];
1039
        c->status[1].coeff1 = AdaptCoeff1[block_predictor[1]];
1040
        c->status[1].coeff2 = AdaptCoeff2[block_predictor[1]];
1041

    
1042
        c->status[0].sample1 = bytestream_get_le16(&src);
1043
        if (st) c->status[1].sample1 = bytestream_get_le16(&src);
1044
        c->status[0].sample2 = bytestream_get_le16(&src);
1045
        if (st) c->status[1].sample2 = bytestream_get_le16(&src);
1046

    
1047
        *samples++ = c->status[0].sample2;
1048
        if (st) *samples++ = c->status[1].sample2;
1049
        *samples++ = c->status[0].sample1;
1050
        if (st) *samples++ = c->status[1].sample1;
1051
        for(;n>0;n--) {
1052
            *samples++ = adpcm_ms_expand_nibble(&c->status[0 ], src[0] >> 4  );
1053
            *samples++ = adpcm_ms_expand_nibble(&c->status[st], src[0] & 0x0F);
1054
            src ++;
1055
        }
1056
        break;
1057
    case CODEC_ID_ADPCM_IMA_DK4:
1058
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
1059
            buf_size = avctx->block_align;
1060

    
1061
        c->status[0].predictor  = (int16_t)bytestream_get_le16(&src);
1062
        c->status[0].step_index = *src++;
1063
        src++;
1064
        *samples++ = c->status[0].predictor;
1065
        if (st) {
1066
            c->status[1].predictor  = (int16_t)bytestream_get_le16(&src);
1067
            c->status[1].step_index = *src++;
1068
            src++;
1069
            *samples++ = c->status[1].predictor;
1070
        }
1071
        while (src < buf + buf_size) {
1072

    
1073
            /* take care of the top nibble (always left or mono channel) */
1074
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1075
                src[0] >> 4, 3);
1076

    
1077
            /* take care of the bottom nibble, which is right sample for
1078
             * stereo, or another mono sample */
1079
            if (st)
1080
                *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1081
                    src[0] & 0x0F, 3);
1082
            else
1083
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1084
                    src[0] & 0x0F, 3);
1085

    
1086
            src++;
1087
        }
1088
        break;
1089
    case CODEC_ID_ADPCM_IMA_DK3:
1090
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
1091
            buf_size = avctx->block_align;
1092

    
1093
        if(buf_size + 16 > (samples_end - samples)*3/8)
1094
            return -1;
1095

    
1096
        c->status[0].predictor  = (int16_t)AV_RL16(src + 10);
1097
        c->status[1].predictor  = (int16_t)AV_RL16(src + 12);
1098
        c->status[0].step_index = src[14];
1099
        c->status[1].step_index = src[15];
1100
        /* sign extend the predictors */
1101
        src += 16;
1102
        diff_channel = c->status[1].predictor;
1103

    
1104
        /* the DK3_GET_NEXT_NIBBLE macro issues the break statement when
1105
         * the buffer is consumed */
1106
        while (1) {
1107

    
1108
            /* for this algorithm, c->status[0] is the sum channel and
1109
             * c->status[1] is the diff channel */
1110

    
1111
            /* process the first predictor of the sum channel */
1112
            DK3_GET_NEXT_NIBBLE();
1113
            adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1114

    
1115
            /* process the diff channel predictor */
1116
            DK3_GET_NEXT_NIBBLE();
1117
            adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
1118

    
1119
            /* process the first pair of stereo PCM samples */
1120
            diff_channel = (diff_channel + c->status[1].predictor) / 2;
1121
            *samples++ = c->status[0].predictor + c->status[1].predictor;
1122
            *samples++ = c->status[0].predictor - c->status[1].predictor;
1123

    
1124
            /* process the second predictor of the sum channel */
1125
            DK3_GET_NEXT_NIBBLE();
1126
            adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1127

    
1128
            /* process the second pair of stereo PCM samples */
1129
            diff_channel = (diff_channel + c->status[1].predictor) / 2;
1130
            *samples++ = c->status[0].predictor + c->status[1].predictor;
1131
            *samples++ = c->status[0].predictor - c->status[1].predictor;
1132
        }
1133
        break;
1134
    case CODEC_ID_ADPCM_IMA_ISS:
1135
        c->status[0].predictor  = (int16_t)AV_RL16(src + 0);
1136
        c->status[0].step_index = src[2];
1137
        src += 4;
1138
        if(st) {
1139
            c->status[1].predictor  = (int16_t)AV_RL16(src + 0);
1140
            c->status[1].step_index = src[2];
1141
            src += 4;
1142
        }
1143

    
1144
        while (src < buf + buf_size) {
1145

    
1146
            if (st) {
1147
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1148
                    src[0] >> 4  , 3);
1149
                *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1150
                    src[0] & 0x0F, 3);
1151
            } else {
1152
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1153
                    src[0] & 0x0F, 3);
1154
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1155
                    src[0] >> 4  , 3);
1156
            }
1157

    
1158
            src++;
1159
        }
1160
        break;
1161
    case CODEC_ID_ADPCM_IMA_WS:
1162
        /* no per-block initialization; just start decoding the data */
1163
        while (src < buf + buf_size) {
1164

    
1165
            if (st) {
1166
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1167
                    src[0] >> 4  , 3);
1168
                *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1169
                    src[0] & 0x0F, 3);
1170
            } else {
1171
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1172
                    src[0] >> 4  , 3);
1173
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1174
                    src[0] & 0x0F, 3);
1175
            }
1176

    
1177
            src++;
1178
        }
1179
        break;
1180
    case CODEC_ID_ADPCM_XA:
1181
        while (buf_size >= 128) {
1182
            xa_decode(samples, src, &c->status[0], &c->status[1],
1183
                avctx->channels);
1184
            src += 128;
1185
            samples += 28 * 8;
1186
            buf_size -= 128;
1187
        }
1188
        break;
1189
    case CODEC_ID_ADPCM_IMA_EA_EACS:
1190
        samples_in_chunk = bytestream_get_le32(&src) >> (1-st);
1191

    
1192
        if (samples_in_chunk > buf_size-4-(8<<st)) {
1193
            src += buf_size - 4;
1194
            break;
1195
        }
1196

    
1197
        for (i=0; i<=st; i++)
1198
            c->status[i].step_index = bytestream_get_le32(&src);
1199
        for (i=0; i<=st; i++)
1200
            c->status[i].predictor  = bytestream_get_le32(&src);
1201

    
1202
        for (; samples_in_chunk; samples_in_chunk--, src++) {
1203
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],  *src>>4,   3);
1204
            *samples++ = adpcm_ima_expand_nibble(&c->status[st], *src&0x0F, 3);
1205
        }
1206
        break;
1207
    case CODEC_ID_ADPCM_IMA_EA_SEAD:
1208
        for (; src < buf+buf_size; src++) {
1209
            *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[0] >> 4, 6);
1210
            *samples++ = adpcm_ima_expand_nibble(&c->status[st],src[0]&0x0F, 6);
1211
        }
1212
        break;
1213
    case CODEC_ID_ADPCM_EA:
1214
        samples_in_chunk = AV_RL32(src);
1215
        if (samples_in_chunk >= ((buf_size - 12) * 2)) {
1216
            src += buf_size;
1217
            break;
1218
        }
1219
        src += 4;
1220
        current_left_sample   = (int16_t)bytestream_get_le16(&src);
1221
        previous_left_sample  = (int16_t)bytestream_get_le16(&src);
1222
        current_right_sample  = (int16_t)bytestream_get_le16(&src);
1223
        previous_right_sample = (int16_t)bytestream_get_le16(&src);
1224

    
1225
        for (count1 = 0; count1 < samples_in_chunk/28;count1++) {
1226
            coeff1l = ea_adpcm_table[ *src >> 4       ];
1227
            coeff2l = ea_adpcm_table[(*src >> 4  ) + 4];
1228
            coeff1r = ea_adpcm_table[*src & 0x0F];
1229
            coeff2r = ea_adpcm_table[(*src & 0x0F) + 4];
1230
            src++;
1231

    
1232
            shift_left  = (*src >> 4  ) + 8;
1233
            shift_right = (*src & 0x0F) + 8;
1234
            src++;
1235

    
1236
            for (count2 = 0; count2 < 28; count2++) {
1237
                next_left_sample  = (int32_t)((*src & 0xF0) << 24) >> shift_left;
1238
                next_right_sample = (int32_t)((*src & 0x0F) << 28) >> shift_right;
1239
                src++;
1240

    
1241
                next_left_sample = (next_left_sample +
1242
                    (current_left_sample * coeff1l) +
1243
                    (previous_left_sample * coeff2l) + 0x80) >> 8;
1244
                next_right_sample = (next_right_sample +
1245
                    (current_right_sample * coeff1r) +
1246
                    (previous_right_sample * coeff2r) + 0x80) >> 8;
1247

    
1248
                previous_left_sample = current_left_sample;
1249
                current_left_sample = av_clip_int16(next_left_sample);
1250
                previous_right_sample = current_right_sample;
1251
                current_right_sample = av_clip_int16(next_right_sample);
1252
                *samples++ = (unsigned short)current_left_sample;
1253
                *samples++ = (unsigned short)current_right_sample;
1254
            }
1255
        }
1256
        break;
1257
    case CODEC_ID_ADPCM_EA_MAXIS_XA:
1258
        for(channel = 0; channel < avctx->channels; channel++) {
1259
            for (i=0; i<2; i++)
1260
                coeff[channel][i] = ea_adpcm_table[(*src >> 4) + 4*i];
1261
            shift[channel] = (*src & 0x0F) + 8;
1262
            src++;
1263
        }
1264
        for (count1 = 0; count1 < (buf_size - avctx->channels) / avctx->channels; count1++) {
1265
            for(i = 4; i >= 0; i-=4) { /* Pairwise samples LL RR (st) or LL LL (mono) */
1266
                for(channel = 0; channel < avctx->channels; channel++) {
1267
                    int32_t sample = (int32_t)(((*(src+channel) >> i) & 0x0F) << 0x1C) >> shift[channel];
1268
                    sample = (sample +
1269
                             c->status[channel].sample1 * coeff[channel][0] +
1270
                             c->status[channel].sample2 * coeff[channel][1] + 0x80) >> 8;
1271
                    c->status[channel].sample2 = c->status[channel].sample1;
1272
                    c->status[channel].sample1 = av_clip_int16(sample);
1273
                    *samples++ = c->status[channel].sample1;
1274
                }
1275
            }
1276
            src+=avctx->channels;
1277
        }
1278
        break;
1279
    case CODEC_ID_ADPCM_EA_R1:
1280
    case CODEC_ID_ADPCM_EA_R2:
1281
    case CODEC_ID_ADPCM_EA_R3: {
1282
        /* channel numbering
1283
           2chan: 0=fl, 1=fr
1284
           4chan: 0=fl, 1=rl, 2=fr, 3=rr
1285
           6chan: 0=fl, 1=c,  2=fr, 3=rl,  4=rr, 5=sub */
1286
        const int big_endian = avctx->codec->id == CODEC_ID_ADPCM_EA_R3;
1287
        int32_t previous_sample, current_sample, next_sample;
1288
        int32_t coeff1, coeff2;
1289
        uint8_t shift;
1290
        unsigned int channel;
1291
        uint16_t *samplesC;
1292
        const uint8_t *srcC;
1293

    
1294
        samples_in_chunk = (big_endian ? bytestream_get_be32(&src)
1295
                                       : bytestream_get_le32(&src)) / 28;
1296
        if (samples_in_chunk > UINT32_MAX/(28*avctx->channels) ||
1297
            28*samples_in_chunk*avctx->channels > samples_end-samples) {
1298
            src += buf_size - 4;
1299
            break;
1300
        }
1301

    
1302
        for (channel=0; channel<avctx->channels; channel++) {
1303
            srcC  = src + (avctx->channels-channel) * 4;
1304
            srcC += (big_endian ? bytestream_get_be32(&src)
1305
                                : bytestream_get_le32(&src));
1306
            samplesC = samples + channel;
1307

    
1308
            if (avctx->codec->id == CODEC_ID_ADPCM_EA_R1) {
1309
                current_sample  = (int16_t)bytestream_get_le16(&srcC);
1310
                previous_sample = (int16_t)bytestream_get_le16(&srcC);
1311
            } else {
1312
                current_sample  = c->status[channel].predictor;
1313
                previous_sample = c->status[channel].prev_sample;
1314
            }
1315

    
1316
            for (count1=0; count1<samples_in_chunk; count1++) {
1317
                if (*srcC == 0xEE) {  /* only seen in R2 and R3 */
1318
                    srcC++;
1319
                    current_sample  = (int16_t)bytestream_get_be16(&srcC);
1320
                    previous_sample = (int16_t)bytestream_get_be16(&srcC);
1321

    
1322
                    for (count2=0; count2<28; count2++) {
1323
                        *samplesC = (int16_t)bytestream_get_be16(&srcC);
1324
                        samplesC += avctx->channels;
1325
                    }
1326
                } else {
1327
                    coeff1 = ea_adpcm_table[ *srcC>>4     ];
1328
                    coeff2 = ea_adpcm_table[(*srcC>>4) + 4];
1329
                    shift = (*srcC++ & 0x0F) + 8;
1330

    
1331
                    for (count2=0; count2<28; count2++) {
1332
                        if (count2 & 1)
1333
                            next_sample = (int32_t)((*srcC++ & 0x0F) << 28) >> shift;
1334
                        else
1335
                            next_sample = (int32_t)((*srcC   & 0xF0) << 24) >> shift;
1336

    
1337
                        next_sample += (current_sample  * coeff1) +
1338
                                       (previous_sample * coeff2);
1339
                        next_sample = av_clip_int16(next_sample >> 8);
1340

    
1341
                        previous_sample = current_sample;
1342
                        current_sample  = next_sample;
1343
                        *samplesC = current_sample;
1344
                        samplesC += avctx->channels;
1345
                    }
1346
                }
1347
            }
1348

    
1349
            if (avctx->codec->id != CODEC_ID_ADPCM_EA_R1) {
1350
                c->status[channel].predictor   = current_sample;
1351
                c->status[channel].prev_sample = previous_sample;
1352
            }
1353
        }
1354

    
1355
        src = src + buf_size - (4 + 4*avctx->channels);
1356
        samples += 28 * samples_in_chunk * avctx->channels;
1357
        break;
1358
    }
1359
    case CODEC_ID_ADPCM_EA_XAS:
1360
        if (samples_end-samples < 32*4*avctx->channels
1361
            || buf_size < (4+15)*4*avctx->channels) {
1362
            src += buf_size;
1363
            break;
1364
        }
1365
        for (channel=0; channel<avctx->channels; channel++) {
1366
            int coeff[2][4], shift[4];
1367
            short *s2, *s = &samples[channel];
1368
            for (n=0; n<4; n++, s+=32*avctx->channels) {
1369
                for (i=0; i<2; i++)
1370
                    coeff[i][n] = ea_adpcm_table[(src[0]&0x0F)+4*i];
1371
                shift[n] = (src[2]&0x0F) + 8;
1372
                for (s2=s, i=0; i<2; i++, src+=2, s2+=avctx->channels)
1373
                    s2[0] = (src[0]&0xF0) + (src[1]<<8);
1374
            }
1375

    
1376
            for (m=2; m<32; m+=2) {
1377
                s = &samples[m*avctx->channels + channel];
1378
                for (n=0; n<4; n++, src++, s+=32*avctx->channels) {
1379
                    for (s2=s, i=0; i<8; i+=4, s2+=avctx->channels) {
1380
                        int level = (int32_t)((*src & (0xF0>>i)) << (24+i)) >> shift[n];
1381
                        int pred  = s2[-1*avctx->channels] * coeff[0][n]
1382
                                  + s2[-2*avctx->channels] * coeff[1][n];
1383
                        s2[0] = av_clip_int16((level + pred + 0x80) >> 8);
1384
                    }
1385
                }
1386
            }
1387
        }
1388
        samples += 32*4*avctx->channels;
1389
        break;
1390
    case CODEC_ID_ADPCM_IMA_AMV:
1391
    case CODEC_ID_ADPCM_IMA_SMJPEG:
1392
        c->status[0].predictor = (int16_t)bytestream_get_le16(&src);
1393
        c->status[0].step_index = bytestream_get_le16(&src);
1394

    
1395
        if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
1396
            src+=4;
1397

    
1398
        while (src < buf + buf_size) {
1399
            char hi, lo;
1400
            lo = *src & 0x0F;
1401
            hi = *src >> 4;
1402

    
1403
            if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
1404
                FFSWAP(char, hi, lo);
1405

    
1406
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1407
                lo, 3);
1408
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1409
                hi, 3);
1410
            src++;
1411
        }
1412
        break;
1413
    case CODEC_ID_ADPCM_CT:
1414
        while (src < buf + buf_size) {
1415
            if (st) {
1416
                *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1417
                    src[0] >> 4);
1418
                *samples++ = adpcm_ct_expand_nibble(&c->status[1],
1419
                    src[0] & 0x0F);
1420
            } else {
1421
                *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1422
                    src[0] >> 4);
1423
                *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1424
                    src[0] & 0x0F);
1425
            }
1426
            src++;
1427
        }
1428
        break;
1429
    case CODEC_ID_ADPCM_SBPRO_4:
1430
    case CODEC_ID_ADPCM_SBPRO_3:
1431
    case CODEC_ID_ADPCM_SBPRO_2:
1432
        if (!c->status[0].step_index) {
1433
            /* the first byte is a raw sample */
1434
            *samples++ = 128 * (*src++ - 0x80);
1435
            if (st)
1436
              *samples++ = 128 * (*src++ - 0x80);
1437
            c->status[0].step_index = 1;
1438
        }
1439
        if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_4) {
1440
            while (src < buf + buf_size) {
1441
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1442
                    src[0] >> 4, 4, 0);
1443
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1444
                    src[0] & 0x0F, 4, 0);
1445
                src++;
1446
            }
1447
        } else if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_3) {
1448
            while (src < buf + buf_size && samples + 2 < samples_end) {
1449
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1450
                     src[0] >> 5        , 3, 0);
1451
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1452
                    (src[0] >> 2) & 0x07, 3, 0);
1453
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1454
                    src[0] & 0x03, 2, 0);
1455
                src++;
1456
            }
1457
        } else {
1458
            while (src < buf + buf_size && samples + 3 < samples_end) {
1459
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1460
                     src[0] >> 6        , 2, 2);
1461
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1462
                    (src[0] >> 4) & 0x03, 2, 2);
1463
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1464
                    (src[0] >> 2) & 0x03, 2, 2);
1465
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1466
                    src[0] & 0x03, 2, 2);
1467
                src++;
1468
            }
1469
        }
1470
        break;
1471
    case CODEC_ID_ADPCM_SWF:
1472
    {
1473
        GetBitContext gb;
1474
        const int *table;
1475
        int k0, signmask, nb_bits, count;
1476
        int size = buf_size*8;
1477

    
1478
        init_get_bits(&gb, buf, size);
1479

    
1480
        //read bits & initial values
1481
        nb_bits = get_bits(&gb, 2)+2;
1482
        //av_log(NULL,AV_LOG_INFO,"nb_bits: %d\n", nb_bits);
1483
        table = swf_index_tables[nb_bits-2];
1484
        k0 = 1 << (nb_bits-2);
1485
        signmask = 1 << (nb_bits-1);
1486

    
1487
        while (get_bits_count(&gb) <= size - 22*avctx->channels) {
1488
            for (i = 0; i < avctx->channels; i++) {
1489
                *samples++ = c->status[i].predictor = get_sbits(&gb, 16);
1490
                c->status[i].step_index = get_bits(&gb, 6);
1491
            }
1492

    
1493
            for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) {
1494
                int i;
1495

    
1496
                for (i = 0; i < avctx->channels; i++) {
1497
                    // similar to IMA adpcm
1498
                    int delta = get_bits(&gb, nb_bits);
1499
                    int step = step_table[c->status[i].step_index];
1500
                    long vpdiff = 0; // vpdiff = (delta+0.5)*step/4
1501
                    int k = k0;
1502

    
1503
                    do {
1504
                        if (delta & k)
1505
                            vpdiff += step;
1506
                        step >>= 1;
1507
                        k >>= 1;
1508
                    } while(k);
1509
                    vpdiff += step;
1510

    
1511
                    if (delta & signmask)
1512
                        c->status[i].predictor -= vpdiff;
1513
                    else
1514
                        c->status[i].predictor += vpdiff;
1515

    
1516
                    c->status[i].step_index += table[delta & (~signmask)];
1517

    
1518
                    c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
1519
                    c->status[i].predictor = av_clip_int16(c->status[i].predictor);
1520

    
1521
                    *samples++ = c->status[i].predictor;
1522
                    if (samples >= samples_end) {
1523
                        av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n");
1524
                        return -1;
1525
                    }
1526
                }
1527
            }
1528
        }
1529
        src += buf_size;
1530
        break;
1531
    }
1532
    case CODEC_ID_ADPCM_YAMAHA:
1533
        while (src < buf + buf_size) {
1534
            if (st) {
1535
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1536
                        src[0] & 0x0F);
1537
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[1],
1538
                        src[0] >> 4  );
1539
            } else {
1540
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1541
                        src[0] & 0x0F);
1542
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1543
                        src[0] >> 4  );
1544
            }
1545
            src++;
1546
        }
1547
        break;
1548
    case CODEC_ID_ADPCM_THP:
1549
    {
1550
        int table[2][16];
1551
        unsigned int samplecnt;
1552
        int prev[2][2];
1553
        int ch;
1554

    
1555
        if (buf_size < 80) {
1556
            av_log(avctx, AV_LOG_ERROR, "frame too small\n");
1557
            return -1;
1558
        }
1559

    
1560
        src+=4;
1561
        samplecnt = bytestream_get_be32(&src);
1562

    
1563
        for (i = 0; i < 32; i++)
1564
            table[0][i] = (int16_t)bytestream_get_be16(&src);
1565

    
1566
        /* Initialize the previous sample.  */
1567
        for (i = 0; i < 4; i++)
1568
            prev[0][i] = (int16_t)bytestream_get_be16(&src);
1569

    
1570
        if (samplecnt >= (samples_end - samples) /  (st + 1)) {
1571
            av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n");
1572
            return -1;
1573
        }
1574

    
1575
        for (ch = 0; ch <= st; ch++) {
1576
            samples = (unsigned short *) data + ch;
1577

    
1578
            /* Read in every sample for this channel.  */
1579
            for (i = 0; i < samplecnt / 14; i++) {
1580
                int index = (*src >> 4) & 7;
1581
                unsigned int exp = 28 - (*src++ & 15);
1582
                int factor1 = table[ch][index * 2];
1583
                int factor2 = table[ch][index * 2 + 1];
1584

    
1585
                /* Decode 14 samples.  */
1586
                for (n = 0; n < 14; n++) {
1587
                    int32_t sampledat;
1588
                    if(n&1) sampledat=  *src++    <<28;
1589
                    else    sampledat= (*src&0xF0)<<24;
1590

    
1591
                    sampledat = ((prev[ch][0]*factor1
1592
                                + prev[ch][1]*factor2) >> 11) + (sampledat>>exp);
1593
                    *samples = av_clip_int16(sampledat);
1594
                    prev[ch][1] = prev[ch][0];
1595
                    prev[ch][0] = *samples++;
1596

    
1597
                    /* In case of stereo, skip one sample, this sample
1598
                       is for the other channel.  */
1599
                    samples += st;
1600
                }
1601
            }
1602
        }
1603

    
1604
        /* In the previous loop, in case stereo is used, samples is
1605
           increased exactly one time too often.  */
1606
        samples -= st;
1607
        break;
1608
    }
1609

    
1610
    default:
1611
        return -1;
1612
    }
1613
    *data_size = (uint8_t *)samples - (uint8_t *)data;
1614
    return src - buf;
1615
}
1616

    
1617

    
1618

    
1619
#if CONFIG_ENCODERS
1620
#define ADPCM_ENCODER(id,name,long_name_)       \
1621
AVCodec name ## _encoder = {                    \
1622
    #name,                                      \
1623
    CODEC_TYPE_AUDIO,                           \
1624
    id,                                         \
1625
    sizeof(ADPCMContext),                       \
1626
    adpcm_encode_init,                          \
1627
    adpcm_encode_frame,                         \
1628
    adpcm_encode_close,                         \
1629
    NULL,                                       \
1630
    .sample_fmts = (enum SampleFormat[]){SAMPLE_FMT_S16,SAMPLE_FMT_NONE}, \
1631
    .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
1632
};
1633
#else
1634
#define ADPCM_ENCODER(id,name,long_name_)
1635
#endif
1636

    
1637
#if CONFIG_DECODERS
1638
#define ADPCM_DECODER(id,name,long_name_)       \
1639
AVCodec name ## _decoder = {                    \
1640
    #name,                                      \
1641
    CODEC_TYPE_AUDIO,                           \
1642
    id,                                         \
1643
    sizeof(ADPCMContext),                       \
1644
    adpcm_decode_init,                          \
1645
    NULL,                                       \
1646
    NULL,                                       \
1647
    adpcm_decode_frame,                         \
1648
    .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
1649
};
1650
#else
1651
#define ADPCM_DECODER(id,name,long_name_)
1652
#endif
1653

    
1654
#define ADPCM_CODEC(id,name,long_name_)         \
1655
    ADPCM_ENCODER(id,name,long_name_) ADPCM_DECODER(id,name,long_name_)
1656

    
1657
/* Note: Do not forget to add new entries to the Makefile as well. */
1658
ADPCM_DECODER(CODEC_ID_ADPCM_4XM, adpcm_4xm, "4X Movie ADPCM");
1659
ADPCM_DECODER(CODEC_ID_ADPCM_CT, adpcm_ct, "Creative Technology ADPCM");
1660
ADPCM_DECODER(CODEC_ID_ADPCM_EA, adpcm_ea, "Electronic Arts ADPCM");
1661
ADPCM_DECODER(CODEC_ID_ADPCM_EA_MAXIS_XA, adpcm_ea_maxis_xa, "Electronic Arts Maxis CDROM XA ADPCM");
1662
ADPCM_DECODER(CODEC_ID_ADPCM_EA_R1, adpcm_ea_r1, "Electronic Arts R1 ADPCM");
1663
ADPCM_DECODER(CODEC_ID_ADPCM_EA_R2, adpcm_ea_r2, "Electronic Arts R2 ADPCM");
1664
ADPCM_DECODER(CODEC_ID_ADPCM_EA_R3, adpcm_ea_r3, "Electronic Arts R3 ADPCM");
1665
ADPCM_DECODER(CODEC_ID_ADPCM_EA_XAS, adpcm_ea_xas, "Electronic Arts XAS ADPCM");
1666
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_AMV, adpcm_ima_amv, "IMA AMV ADPCM");
1667
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK3, adpcm_ima_dk3, "IMA Duck DK3 ADPCM");
1668
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK4, adpcm_ima_dk4, "IMA Duck DK4 ADPCM");
1669
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_EACS, adpcm_ima_ea_eacs, "IMA Electronic Arts EACS ADPCM");
1670
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_SEAD, adpcm_ima_ea_sead, "IMA Electronic Arts SEAD ADPCM");
1671
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_ISS, adpcm_ima_iss, "IMA Funcom ISS ADPCM");
1672
ADPCM_CODEC  (CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt, "IMA QuickTime ADPCM");
1673
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_SMJPEG, adpcm_ima_smjpeg, "IMA Loki SDL MJPEG ADPCM");
1674
ADPCM_CODEC  (CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav, "IMA Wav ADPCM");
1675
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_WS, adpcm_ima_ws, "IMA Westwood ADPCM");
1676
ADPCM_CODEC  (CODEC_ID_ADPCM_MS, adpcm_ms, "Microsoft ADPCM");
1677
ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_2, adpcm_sbpro_2, "Sound Blaster Pro 2-bit ADPCM");
1678
ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_3, adpcm_sbpro_3, "Sound Blaster Pro 2.6-bit ADPCM");
1679
ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_4, adpcm_sbpro_4, "Sound Blaster Pro 4-bit ADPCM");
1680
ADPCM_CODEC  (CODEC_ID_ADPCM_SWF, adpcm_swf, "Shockwave Flash ADPCM");
1681
ADPCM_DECODER(CODEC_ID_ADPCM_THP, adpcm_thp, "Nintendo Gamecube THP ADPCM");
1682
ADPCM_DECODER(CODEC_ID_ADPCM_XA, adpcm_xa, "CDROM XA ADPCM");
1683
ADPCM_CODEC  (CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha, "Yamaha ADPCM");