Statistics
| Branch: | Revision:

ffmpeg / libavcodec / fft.c @ 2ed6f399

History | View | Annotate | Download (9.15 KB)

1
/*
2
 * FFT/IFFT transforms
3
 * Copyright (c) 2008 Loren Merritt
4
 * Copyright (c) 2002 Fabrice Bellard
5
 * Partly based on libdjbfft by D. J. Bernstein
6
 *
7
 * This file is part of FFmpeg.
8
 *
9
 * FFmpeg is free software; you can redistribute it and/or
10
 * modify it under the terms of the GNU Lesser General Public
11
 * License as published by the Free Software Foundation; either
12
 * version 2.1 of the License, or (at your option) any later version.
13
 *
14
 * FFmpeg is distributed in the hope that it will be useful,
15
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17
 * Lesser General Public License for more details.
18
 *
19
 * You should have received a copy of the GNU Lesser General Public
20
 * License along with FFmpeg; if not, write to the Free Software
21
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22
 */
23

    
24
/**
25
 * @file libavcodec/fft.c
26
 * FFT/IFFT transforms.
27
 */
28

    
29
#include <stdlib.h>
30
#include <string.h>
31
#include "libavutil/mathematics.h"
32
#include "fft.h"
33

    
34
/* cos(2*pi*x/n) for 0<=x<=n/4, followed by its reverse */
35
#if !CONFIG_HARDCODED_TABLES
36
COSTABLE(16);
37
COSTABLE(32);
38
COSTABLE(64);
39
COSTABLE(128);
40
COSTABLE(256);
41
COSTABLE(512);
42
COSTABLE(1024);
43
COSTABLE(2048);
44
COSTABLE(4096);
45
COSTABLE(8192);
46
COSTABLE(16384);
47
COSTABLE(32768);
48
COSTABLE(65536);
49
#endif
50
COSTABLE_CONST FFTSample * const ff_cos_tabs[] = {
51
    NULL, NULL, NULL, NULL,
52
    ff_cos_16, ff_cos_32, ff_cos_64, ff_cos_128, ff_cos_256, ff_cos_512, ff_cos_1024,
53
    ff_cos_2048, ff_cos_4096, ff_cos_8192, ff_cos_16384, ff_cos_32768, ff_cos_65536,
54
};
55

    
56
static int split_radix_permutation(int i, int n, int inverse)
57
{
58
    int m;
59
    if(n <= 2) return i&1;
60
    m = n >> 1;
61
    if(!(i&m))            return split_radix_permutation(i, m, inverse)*2;
62
    m >>= 1;
63
    if(inverse == !(i&m)) return split_radix_permutation(i, m, inverse)*4 + 1;
64
    else                  return split_radix_permutation(i, m, inverse)*4 - 1;
65
}
66

    
67
av_cold void ff_init_ff_cos_tabs(int index)
68
{
69
#if !CONFIG_HARDCODED_TABLES
70
    int i;
71
    int m = 1<<index;
72
    double freq = 2*M_PI/m;
73
    FFTSample *tab = ff_cos_tabs[index];
74
    for(i=0; i<=m/4; i++)
75
        tab[i] = cos(i*freq);
76
    for(i=1; i<m/4; i++)
77
        tab[m/2-i] = tab[i];
78
#endif
79
}
80

    
81
av_cold int ff_fft_init(FFTContext *s, int nbits, int inverse)
82
{
83
    int i, j, m, n;
84
    float alpha, c1, s1, s2;
85
    int av_unused has_vectors;
86

    
87
    if (nbits < 2 || nbits > 16)
88
        goto fail;
89
    s->nbits = nbits;
90
    n = 1 << nbits;
91

    
92
    s->tmp_buf = NULL;
93
    s->exptab  = av_malloc((n / 2) * sizeof(FFTComplex));
94
    if (!s->exptab)
95
        goto fail;
96
    s->revtab = av_malloc(n * sizeof(uint16_t));
97
    if (!s->revtab)
98
        goto fail;
99
    s->inverse = inverse;
100

    
101
    s2 = inverse ? 1.0 : -1.0;
102

    
103
    s->fft_permute = ff_fft_permute_c;
104
    s->fft_calc    = ff_fft_calc_c;
105
#if CONFIG_MDCT
106
    s->imdct_calc  = ff_imdct_calc_c;
107
    s->imdct_half  = ff_imdct_half_c;
108
    s->mdct_calc   = ff_mdct_calc_c;
109
#endif
110
    s->exptab1     = NULL;
111
    s->split_radix = 1;
112

    
113
    if (ARCH_ARM)     ff_fft_init_arm(s);
114
    if (HAVE_ALTIVEC) ff_fft_init_altivec(s);
115
    if (HAVE_MMX)     ff_fft_init_mmx(s);
116

    
117
    if (s->split_radix) {
118
        for(j=4; j<=nbits; j++) {
119
            ff_init_ff_cos_tabs(j);
120
        }
121
        for(i=0; i<n; i++)
122
            s->revtab[-split_radix_permutation(i, n, s->inverse) & (n-1)] = i;
123
        s->tmp_buf = av_malloc(n * sizeof(FFTComplex));
124
    } else {
125
        int np, nblocks, np2, l;
126
        FFTComplex *q;
127

    
128
        for(i=0; i<(n/2); i++) {
129
            alpha = 2 * M_PI * (float)i / (float)n;
130
            c1 = cos(alpha);
131
            s1 = sin(alpha) * s2;
132
            s->exptab[i].re = c1;
133
            s->exptab[i].im = s1;
134
        }
135

    
136
        np = 1 << nbits;
137
        nblocks = np >> 3;
138
        np2 = np >> 1;
139
        s->exptab1 = av_malloc(np * 2 * sizeof(FFTComplex));
140
        if (!s->exptab1)
141
            goto fail;
142
        q = s->exptab1;
143
        do {
144
            for(l = 0; l < np2; l += 2 * nblocks) {
145
                *q++ = s->exptab[l];
146
                *q++ = s->exptab[l + nblocks];
147

    
148
                q->re = -s->exptab[l].im;
149
                q->im = s->exptab[l].re;
150
                q++;
151
                q->re = -s->exptab[l + nblocks].im;
152
                q->im = s->exptab[l + nblocks].re;
153
                q++;
154
            }
155
            nblocks = nblocks >> 1;
156
        } while (nblocks != 0);
157
        av_freep(&s->exptab);
158

    
159
        /* compute bit reverse table */
160
        for(i=0;i<n;i++) {
161
            m=0;
162
            for(j=0;j<nbits;j++) {
163
                m |= ((i >> j) & 1) << (nbits-j-1);
164
            }
165
            s->revtab[i]=m;
166
        }
167
    }
168

    
169
    return 0;
170
 fail:
171
    av_freep(&s->revtab);
172
    av_freep(&s->exptab);
173
    av_freep(&s->exptab1);
174
    av_freep(&s->tmp_buf);
175
    return -1;
176
}
177

    
178
void ff_fft_permute_c(FFTContext *s, FFTComplex *z)
179
{
180
    int j, k, np;
181
    FFTComplex tmp;
182
    const uint16_t *revtab = s->revtab;
183
    np = 1 << s->nbits;
184

    
185
    if (s->tmp_buf) {
186
        /* TODO: handle split-radix permute in a more optimal way, probably in-place */
187
        for(j=0;j<np;j++) s->tmp_buf[revtab[j]] = z[j];
188
        memcpy(z, s->tmp_buf, np * sizeof(FFTComplex));
189
        return;
190
    }
191

    
192
    /* reverse */
193
    for(j=0;j<np;j++) {
194
        k = revtab[j];
195
        if (k < j) {
196
            tmp = z[k];
197
            z[k] = z[j];
198
            z[j] = tmp;
199
        }
200
    }
201
}
202

    
203
av_cold void ff_fft_end(FFTContext *s)
204
{
205
    av_freep(&s->revtab);
206
    av_freep(&s->exptab);
207
    av_freep(&s->exptab1);
208
    av_freep(&s->tmp_buf);
209
}
210

    
211
#define sqrthalf (float)M_SQRT1_2
212

    
213
#define BF(x,y,a,b) {\
214
    x = a - b;\
215
    y = a + b;\
216
}
217

    
218
#define BUTTERFLIES(a0,a1,a2,a3) {\
219
    BF(t3, t5, t5, t1);\
220
    BF(a2.re, a0.re, a0.re, t5);\
221
    BF(a3.im, a1.im, a1.im, t3);\
222
    BF(t4, t6, t2, t6);\
223
    BF(a3.re, a1.re, a1.re, t4);\
224
    BF(a2.im, a0.im, a0.im, t6);\
225
}
226

    
227
// force loading all the inputs before storing any.
228
// this is slightly slower for small data, but avoids store->load aliasing
229
// for addresses separated by large powers of 2.
230
#define BUTTERFLIES_BIG(a0,a1,a2,a3) {\
231
    FFTSample r0=a0.re, i0=a0.im, r1=a1.re, i1=a1.im;\
232
    BF(t3, t5, t5, t1);\
233
    BF(a2.re, a0.re, r0, t5);\
234
    BF(a3.im, a1.im, i1, t3);\
235
    BF(t4, t6, t2, t6);\
236
    BF(a3.re, a1.re, r1, t4);\
237
    BF(a2.im, a0.im, i0, t6);\
238
}
239

    
240
#define TRANSFORM(a0,a1,a2,a3,wre,wim) {\
241
    t1 = a2.re * wre + a2.im * wim;\
242
    t2 = a2.im * wre - a2.re * wim;\
243
    t5 = a3.re * wre - a3.im * wim;\
244
    t6 = a3.im * wre + a3.re * wim;\
245
    BUTTERFLIES(a0,a1,a2,a3)\
246
}
247

    
248
#define TRANSFORM_ZERO(a0,a1,a2,a3) {\
249
    t1 = a2.re;\
250
    t2 = a2.im;\
251
    t5 = a3.re;\
252
    t6 = a3.im;\
253
    BUTTERFLIES(a0,a1,a2,a3)\
254
}
255

    
256
/* z[0...8n-1], w[1...2n-1] */
257
#define PASS(name)\
258
static void name(FFTComplex *z, const FFTSample *wre, unsigned int n)\
259
{\
260
    FFTSample t1, t2, t3, t4, t5, t6;\
261
    int o1 = 2*n;\
262
    int o2 = 4*n;\
263
    int o3 = 6*n;\
264
    const FFTSample *wim = wre+o1;\
265
    n--;\
266
\
267
    TRANSFORM_ZERO(z[0],z[o1],z[o2],z[o3]);\
268
    TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
269
    do {\
270
        z += 2;\
271
        wre += 2;\
272
        wim -= 2;\
273
        TRANSFORM(z[0],z[o1],z[o2],z[o3],wre[0],wim[0]);\
274
        TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
275
    } while(--n);\
276
}
277

    
278
PASS(pass)
279
#undef BUTTERFLIES
280
#define BUTTERFLIES BUTTERFLIES_BIG
281
PASS(pass_big)
282

    
283
#define DECL_FFT(n,n2,n4)\
284
static void fft##n(FFTComplex *z)\
285
{\
286
    fft##n2(z);\
287
    fft##n4(z+n4*2);\
288
    fft##n4(z+n4*3);\
289
    pass(z,ff_cos_##n,n4/2);\
290
}
291

    
292
static void fft4(FFTComplex *z)
293
{
294
    FFTSample t1, t2, t3, t4, t5, t6, t7, t8;
295

    
296
    BF(t3, t1, z[0].re, z[1].re);
297
    BF(t8, t6, z[3].re, z[2].re);
298
    BF(z[2].re, z[0].re, t1, t6);
299
    BF(t4, t2, z[0].im, z[1].im);
300
    BF(t7, t5, z[2].im, z[3].im);
301
    BF(z[3].im, z[1].im, t4, t8);
302
    BF(z[3].re, z[1].re, t3, t7);
303
    BF(z[2].im, z[0].im, t2, t5);
304
}
305

    
306
static void fft8(FFTComplex *z)
307
{
308
    FFTSample t1, t2, t3, t4, t5, t6, t7, t8;
309

    
310
    fft4(z);
311

    
312
    BF(t1, z[5].re, z[4].re, -z[5].re);
313
    BF(t2, z[5].im, z[4].im, -z[5].im);
314
    BF(t3, z[7].re, z[6].re, -z[7].re);
315
    BF(t4, z[7].im, z[6].im, -z[7].im);
316
    BF(t8, t1, t3, t1);
317
    BF(t7, t2, t2, t4);
318
    BF(z[4].re, z[0].re, z[0].re, t1);
319
    BF(z[4].im, z[0].im, z[0].im, t2);
320
    BF(z[6].re, z[2].re, z[2].re, t7);
321
    BF(z[6].im, z[2].im, z[2].im, t8);
322

    
323
    TRANSFORM(z[1],z[3],z[5],z[7],sqrthalf,sqrthalf);
324
}
325

    
326
#if !CONFIG_SMALL
327
static void fft16(FFTComplex *z)
328
{
329
    FFTSample t1, t2, t3, t4, t5, t6;
330

    
331
    fft8(z);
332
    fft4(z+8);
333
    fft4(z+12);
334

    
335
    TRANSFORM_ZERO(z[0],z[4],z[8],z[12]);
336
    TRANSFORM(z[2],z[6],z[10],z[14],sqrthalf,sqrthalf);
337
    TRANSFORM(z[1],z[5],z[9],z[13],ff_cos_16[1],ff_cos_16[3]);
338
    TRANSFORM(z[3],z[7],z[11],z[15],ff_cos_16[3],ff_cos_16[1]);
339
}
340
#else
341
DECL_FFT(16,8,4)
342
#endif
343
DECL_FFT(32,16,8)
344
DECL_FFT(64,32,16)
345
DECL_FFT(128,64,32)
346
DECL_FFT(256,128,64)
347
DECL_FFT(512,256,128)
348
#if !CONFIG_SMALL
349
#define pass pass_big
350
#endif
351
DECL_FFT(1024,512,256)
352
DECL_FFT(2048,1024,512)
353
DECL_FFT(4096,2048,1024)
354
DECL_FFT(8192,4096,2048)
355
DECL_FFT(16384,8192,4096)
356
DECL_FFT(32768,16384,8192)
357
DECL_FFT(65536,32768,16384)
358

    
359
static void (* const fft_dispatch[])(FFTComplex*) = {
360
    fft4, fft8, fft16, fft32, fft64, fft128, fft256, fft512, fft1024,
361
    fft2048, fft4096, fft8192, fft16384, fft32768, fft65536,
362
};
363

    
364
void ff_fft_calc_c(FFTContext *s, FFTComplex *z)
365
{
366
    fft_dispatch[s->nbits-2](z);
367
}
368