Statistics
| Branch: | Revision:

ffmpeg / libavcodec / adpcm.c @ 2ff4524e

History | View | Annotate | Download (35.9 KB)

1
/*
2
 * ADPCM codecs
3
 * Copyright (c) 2001-2003 The ffmpeg Project
4
 *
5
 * This library is free software; you can redistribute it and/or
6
 * modify it under the terms of the GNU Lesser General Public
7
 * License as published by the Free Software Foundation; either
8
 * version 2 of the License, or (at your option) any later version.
9
 *
10
 * This library is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13
 * Lesser General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU Lesser General Public
16
 * License along with this library; if not, write to the Free Software
17
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
18
 */
19
#include "avcodec.h"
20
#include "bitstream.h"
21

    
22
/**
23
 * @file adpcm.c
24
 * ADPCM codecs.
25
 * First version by Francois Revol (revol@free.fr)
26
 * Fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
27
 *   by Mike Melanson (melanson@pcisys.net)
28
 * CD-ROM XA ADPCM codec by BERO
29
 * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
30
 *
31
 * Features and limitations:
32
 *
33
 * Reference documents:
34
 * http://www.pcisys.net/~melanson/codecs/simpleaudio.html
35
 * http://www.geocities.com/SiliconValley/8682/aud3.txt
36
 * http://openquicktime.sourceforge.net/plugins.htm
37
 * XAnim sources (xa_codec.c) http://www.rasnaimaging.com/people/lapus/download.html
38
 * http://www.cs.ucla.edu/~leec/mediabench/applications.html
39
 * SoX source code http://home.sprynet.com/~cbagwell/sox.html
40
 *
41
 * CD-ROM XA:
42
 * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html
43
 * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html
44
 * readstr http://www.geocities.co.jp/Playtown/2004/
45
 */
46

    
47
#define BLKSIZE 1024
48

    
49
#define CLAMP_TO_SHORT(value) \
50
if (value > 32767) \
51
    value = 32767; \
52
else if (value < -32768) \
53
    value = -32768; \
54

    
55
/* step_table[] and index_table[] are from the ADPCM reference source */
56
/* This is the index table: */
57
static const int index_table[16] = {
58
    -1, -1, -1, -1, 2, 4, 6, 8,
59
    -1, -1, -1, -1, 2, 4, 6, 8,
60
};
61

    
62
/** 
63
 * This is the step table. Note that many programs use slight deviations from
64
 * this table, but such deviations are negligible:
65
 */
66
static const int step_table[89] = {
67
    7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
68
    19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
69
    50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
70
    130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
71
    337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
72
    876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
73
    2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
74
    5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
75
    15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
76
};
77

    
78
/* These are for MS-ADPCM */
79
/* AdaptationTable[], AdaptCoeff1[], and AdaptCoeff2[] are from libsndfile */
80
static const int AdaptationTable[] = {
81
        230, 230, 230, 230, 307, 409, 512, 614,
82
        768, 614, 512, 409, 307, 230, 230, 230
83
};
84

    
85
static const int AdaptCoeff1[] = {
86
        256, 512, 0, 192, 240, 460, 392
87
};
88

    
89
static const int AdaptCoeff2[] = {
90
        0, -256, 0, 64, 0, -208, -232
91
};
92

    
93
/* These are for CD-ROM XA ADPCM */
94
static const int xa_adpcm_table[5][2] = {
95
   {   0,   0 },
96
   {  60,   0 },
97
   { 115, -52 },
98
   {  98, -55 },
99
   { 122, -60 }
100
};
101

    
102
static const int ea_adpcm_table[] = {
103
    0, 240, 460, 392, 0, 0, -208, -220, 0, 1,
104
    3, 4, 7, 8, 10, 11, 0, -1, -3, -4
105
};
106

    
107
static const int ct_adpcm_table[8] = {
108
    0x00E6, 0x00E6, 0x00E6, 0x00E6,
109
    0x0133, 0x0199, 0x0200, 0x0266
110
};
111

    
112
// padded to zero where table size is less then 16
113
static const int swf_index_tables[4][16] = {
114
    /*2*/ { -1, 2 },
115
    /*3*/ { -1, -1, 2, 4 },
116
    /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
117
    /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
118
};
119

    
120
static const int yamaha_indexscale[] = {
121
    230, 230, 230, 230, 307, 409, 512, 614,
122
    230, 230, 230, 230, 307, 409, 512, 614
123
};
124

    
125
static const int yamaha_difflookup[] = {
126
    1, 3, 5, 7, 9, 11, 13, 15,
127
    -1, -3, -5, -7, -9, -11, -13, -15
128
};
129

    
130
/* end of tables */
131

    
132
typedef struct ADPCMChannelStatus {
133
    int predictor;
134
    short int step_index;
135
    int step;
136
    /* for encoding */
137
    int prev_sample;
138

    
139
    /* MS version */
140
    short sample1;
141
    short sample2;
142
    int coeff1;
143
    int coeff2;
144
    int idelta;
145
} ADPCMChannelStatus;
146

    
147
typedef struct ADPCMContext {
148
    int channel; /* for stereo MOVs, decode left, then decode right, then tell it's decoded */
149
    ADPCMChannelStatus status[2];
150
    short sample_buffer[32]; /* hold left samples while waiting for right samples */
151

    
152
    /* SWF only */
153
    int nb_bits;
154
    int nb_samples;
155
} ADPCMContext;
156

    
157
/* XXX: implement encoding */
158

    
159
#ifdef CONFIG_ENCODERS
160
static int adpcm_encode_init(AVCodecContext *avctx)
161
{
162
    if (avctx->channels > 2)
163
        return -1; /* only stereo or mono =) */
164
    switch(avctx->codec->id) {
165
    case CODEC_ID_ADPCM_IMA_QT:
166
        av_log(avctx, AV_LOG_ERROR, "ADPCM: codec adpcm_ima_qt unsupported for encoding !\n");
167
        avctx->frame_size = 64; /* XXX: can multiple of avctx->channels * 64 (left and right blocks are interleaved) */
168
        return -1;
169
        break;
170
    case CODEC_ID_ADPCM_IMA_WAV:
171
        avctx->frame_size = (BLKSIZE - 4 * avctx->channels) * 8 / (4 * avctx->channels) + 1; /* each 16 bits sample gives one nibble */
172
                                                             /* and we have 4 bytes per channel overhead */
173
        avctx->block_align = BLKSIZE;
174
        /* seems frame_size isn't taken into account... have to buffer the samples :-( */
175
        break;
176
    case CODEC_ID_ADPCM_MS:
177
        avctx->frame_size = (BLKSIZE - 7 * avctx->channels) * 2 / avctx->channels + 2; /* each 16 bits sample gives one nibble */
178
                                                             /* and we have 7 bytes per channel overhead */
179
        avctx->block_align = BLKSIZE;
180
        break;
181
    case CODEC_ID_ADPCM_YAMAHA:
182
        avctx->frame_size = BLKSIZE * avctx->channels;
183
        avctx->block_align = BLKSIZE;
184
        break;
185
    default:
186
        return -1;
187
        break;
188
    }
189

    
190
    avctx->coded_frame= avcodec_alloc_frame();
191
    avctx->coded_frame->key_frame= 1;
192

    
193
    return 0;
194
}
195

    
196
static int adpcm_encode_close(AVCodecContext *avctx)
197
{
198
    av_freep(&avctx->coded_frame);
199

    
200
    return 0;
201
}
202

    
203

    
204
static inline unsigned char adpcm_ima_compress_sample(ADPCMChannelStatus *c, short sample)
205
{
206
    int step_index;
207
    unsigned char nibble;
208
    
209
    int sign = 0; /* sign bit of the nibble (MSB) */
210
    int delta, predicted_delta;
211

    
212
    delta = sample - c->prev_sample;
213

    
214
    if (delta < 0) {
215
        sign = 1;
216
        delta = -delta;
217
    }
218

    
219
    step_index = c->step_index;
220

    
221
    /* nibble = 4 * delta / step_table[step_index]; */
222
    nibble = (delta << 2) / step_table[step_index];
223

    
224
    if (nibble > 7)
225
        nibble = 7;
226

    
227
    step_index += index_table[nibble];
228
    if (step_index < 0)
229
        step_index = 0;
230
    if (step_index > 88)
231
        step_index = 88;
232

    
233
    /* what the decoder will find */
234
    predicted_delta = ((step_table[step_index] * nibble) / 4) + (step_table[step_index] / 8);
235

    
236
    if (sign)
237
        c->prev_sample -= predicted_delta;
238
    else
239
        c->prev_sample += predicted_delta;
240

    
241
    CLAMP_TO_SHORT(c->prev_sample);
242

    
243

    
244
    nibble += sign << 3; /* sign * 8 */   
245

    
246
    /* save back */
247
    c->step_index = step_index;
248

    
249
    return nibble;
250
}
251

    
252
static inline unsigned char adpcm_ms_compress_sample(ADPCMChannelStatus *c, short sample)
253
{
254
    int predictor, nibble, bias;
255

    
256
    predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 256;
257
    
258
    nibble= sample - predictor;
259
    if(nibble>=0) bias= c->idelta/2;
260
    else          bias=-c->idelta/2;
261
        
262
    nibble= (nibble + bias) / c->idelta;
263
    nibble= clip(nibble, -8, 7)&0x0F;
264
    
265
    predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
266
    CLAMP_TO_SHORT(predictor);
267

    
268
    c->sample2 = c->sample1;
269
    c->sample1 = predictor;
270

    
271
    c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
272
    if (c->idelta < 16) c->idelta = 16;
273

    
274
    return nibble;
275
}
276

    
277
static inline unsigned char adpcm_yamaha_compress_sample(ADPCMChannelStatus *c, short sample)
278
{
279
    int i1 = 0, j1;
280

    
281
    if(!c->step) {
282
        c->predictor = 0;
283
        c->step = 127;
284
    }
285
    j1 = sample - c->predictor;
286

    
287
    j1 = (j1 * 8) / c->step;
288
    i1 = abs(j1) / 2;
289
    if (i1 > 7)
290
        i1 = 7;
291
    if (j1 < 0)
292
        i1 += 8;
293

    
294
    c->predictor = c->predictor + ((c->step * yamaha_difflookup[i1]) / 8);
295
    CLAMP_TO_SHORT(c->predictor);
296
    c->step = (c->step * yamaha_indexscale[i1]) >> 8;
297
    c->step = clip(c->step, 127, 24567);
298

    
299
    return i1;
300
}
301

    
302
static int adpcm_encode_frame(AVCodecContext *avctx,
303
                            unsigned char *frame, int buf_size, void *data)
304
{
305
    int n, i, st;
306
    short *samples;
307
    unsigned char *dst;
308
    ADPCMContext *c = avctx->priv_data;
309

    
310
    dst = frame;
311
    samples = (short *)data;
312
    st= avctx->channels == 2;
313
/*    n = (BLKSIZE - 4 * avctx->channels) / (2 * 8 * avctx->channels); */
314

    
315
    switch(avctx->codec->id) {
316
    case CODEC_ID_ADPCM_IMA_QT: /* XXX: can't test until we get .mov writer */
317
        break;
318
    case CODEC_ID_ADPCM_IMA_WAV:
319
        n = avctx->frame_size / 8;
320
            c->status[0].prev_sample = (signed short)samples[0]; /* XXX */
321
/*            c->status[0].step_index = 0; *//* XXX: not sure how to init the state machine */
322
            *dst++ = (c->status[0].prev_sample) & 0xFF; /* little endian */
323
            *dst++ = (c->status[0].prev_sample >> 8) & 0xFF;
324
            *dst++ = (unsigned char)c->status[0].step_index;
325
            *dst++ = 0; /* unknown */
326
            samples++;
327
            if (avctx->channels == 2) {
328
                c->status[1].prev_sample = (signed short)samples[1];
329
/*                c->status[1].step_index = 0; */
330
                *dst++ = (c->status[1].prev_sample) & 0xFF;
331
                *dst++ = (c->status[1].prev_sample >> 8) & 0xFF;
332
                *dst++ = (unsigned char)c->status[1].step_index;
333
                *dst++ = 0;
334
                samples++;
335
            }
336
        
337
            /* stereo: 4 bytes (8 samples) for left, 4 bytes for right, 4 bytes left, ... */
338
            for (; n>0; n--) {
339
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[0]) & 0x0F;
340
                *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels]) << 4) & 0xF0;
341
                dst++;
342
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 2]) & 0x0F;
343
                *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 3]) << 4) & 0xF0;
344
                dst++;
345
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 4]) & 0x0F;
346
                *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 5]) << 4) & 0xF0;
347
                dst++;
348
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 6]) & 0x0F;
349
                *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 7]) << 4) & 0xF0;
350
                dst++;
351
                /* right channel */
352
                if (avctx->channels == 2) {
353
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[1]);
354
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[3]) << 4;
355
                    dst++;
356
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[5]);
357
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[7]) << 4;
358
                    dst++;
359
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[9]);
360
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[11]) << 4;
361
                    dst++;
362
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[13]);
363
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[15]) << 4;
364
                    dst++;
365
                }
366
                samples += 8 * avctx->channels;
367
            }
368
        break;
369
    case CODEC_ID_ADPCM_MS:
370
        for(i=0; i<avctx->channels; i++){
371
            int predictor=0;
372

    
373
            *dst++ = predictor;
374
            c->status[i].coeff1 = AdaptCoeff1[predictor];
375
            c->status[i].coeff2 = AdaptCoeff2[predictor];
376
        }
377
        for(i=0; i<avctx->channels; i++){
378
            if (c->status[i].idelta < 16) 
379
                c->status[i].idelta = 16;
380
            
381
            *dst++ = c->status[i].idelta & 0xFF;
382
            *dst++ = c->status[i].idelta >> 8;
383
        }
384
        for(i=0; i<avctx->channels; i++){
385
            c->status[i].sample1= *samples++;
386

    
387
            *dst++ = c->status[i].sample1 & 0xFF;
388
            *dst++ = c->status[i].sample1 >> 8;
389
        }
390
        for(i=0; i<avctx->channels; i++){
391
            c->status[i].sample2= *samples++;
392

    
393
            *dst++ = c->status[i].sample2 & 0xFF;
394
            *dst++ = c->status[i].sample2 >> 8;
395
        }
396

    
397
        for(i=7*avctx->channels; i<avctx->block_align; i++) {
398
            int nibble;
399
            nibble = adpcm_ms_compress_sample(&c->status[ 0], *samples++)<<4;
400
            nibble|= adpcm_ms_compress_sample(&c->status[st], *samples++);
401
            *dst++ = nibble;
402
        }
403
        break;
404
    case CODEC_ID_ADPCM_YAMAHA:
405
        n = avctx->frame_size / 2;
406
        for (; n>0; n--) {
407
            for(i = 0; i < avctx->channels; i++) {
408
                int nibble;
409
                nibble  = adpcm_yamaha_compress_sample(&c->status[i], samples[i]) << 4;
410
                nibble |= adpcm_yamaha_compress_sample(&c->status[i], samples[i+avctx->channels]);
411
                *dst++ = nibble;
412
            }
413
            samples += 2 * avctx->channels;
414
        }
415
        break;
416
    default:
417
        return -1;
418
    }
419
    return dst - frame;
420
}
421
#endif //CONFIG_ENCODERS
422

    
423
static int adpcm_decode_init(AVCodecContext * avctx)
424
{
425
    ADPCMContext *c = avctx->priv_data;
426

    
427
    c->channel = 0;
428
    c->status[0].predictor = c->status[1].predictor = 0;
429
    c->status[0].step_index = c->status[1].step_index = 0;
430
    c->status[0].step = c->status[1].step = 0;
431

    
432
    switch(avctx->codec->id) {
433
    case CODEC_ID_ADPCM_CT:
434
        c->status[0].step = c->status[1].step = 511;
435
        break;
436
    default:
437
        break;
438
    }
439
    return 0;
440
}
441

    
442
static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift)
443
{
444
    int step_index;
445
    int predictor;
446
    int sign, delta, diff, step;
447

    
448
    step = step_table[c->step_index];
449
    step_index = c->step_index + index_table[(unsigned)nibble];
450
    if (step_index < 0) step_index = 0;
451
    else if (step_index > 88) step_index = 88;
452

    
453
    sign = nibble & 8;
454
    delta = nibble & 7;
455
    /* perform direct multiplication instead of series of jumps proposed by
456
     * the reference ADPCM implementation since modern CPUs can do the mults
457
     * quickly enough */
458
    diff = ((2 * delta + 1) * step) >> shift;
459
    predictor = c->predictor;
460
    if (sign) predictor -= diff;
461
    else predictor += diff;
462

    
463
    CLAMP_TO_SHORT(predictor);
464
    c->predictor = predictor;
465
    c->step_index = step_index;
466

    
467
    return (short)predictor;
468
}
469

    
470
static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, char nibble)
471
{
472
    int predictor;
473

    
474
    predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 256;
475
    predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
476
    CLAMP_TO_SHORT(predictor);
477

    
478
    c->sample2 = c->sample1;
479
    c->sample1 = predictor;
480
    c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
481
    if (c->idelta < 16) c->idelta = 16;
482

    
483
    return (short)predictor;
484
}
485

    
486
static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble)
487
{
488
    int predictor;
489
    int sign, delta, diff;
490
    int new_step;
491

    
492
    sign = nibble & 8;
493
    delta = nibble & 7;
494
    /* perform direct multiplication instead of series of jumps proposed by
495
     * the reference ADPCM implementation since modern CPUs can do the mults
496
     * quickly enough */
497
    diff = ((2 * delta + 1) * c->step) >> 3;
498
    predictor = c->predictor;
499
    /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
500
    if(sign)
501
        predictor = ((predictor * 254) >> 8) - diff;
502
    else
503
            predictor = ((predictor * 254) >> 8) + diff;
504
    /* calculate new step and clamp it to range 511..32767 */
505
    new_step = (ct_adpcm_table[nibble & 7] * c->step) >> 8;
506
    c->step = new_step;
507
    if(c->step < 511)
508
        c->step = 511;
509
    if(c->step > 32767)
510
        c->step = 32767;
511

    
512
    CLAMP_TO_SHORT(predictor);
513
    c->predictor = predictor;
514
    return (short)predictor;
515
}
516

    
517
static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble)
518
{
519
    if(!c->step) {
520
        c->predictor = 0;
521
        c->step = 127;
522
    }
523

    
524
    c->predictor += (c->step * yamaha_difflookup[nibble]) / 8;
525
    CLAMP_TO_SHORT(c->predictor);
526
    c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
527
    c->step = clip(c->step, 127, 24567);
528
    return c->predictor;
529
}
530

    
531
static void xa_decode(short *out, const unsigned char *in, 
532
    ADPCMChannelStatus *left, ADPCMChannelStatus *right, int inc)
533
{
534
    int i, j;
535
    int shift,filter,f0,f1;
536
    int s_1,s_2;
537
    int d,s,t;
538

    
539
    for(i=0;i<4;i++) {
540

    
541
        shift  = 12 - (in[4+i*2] & 15);
542
        filter = in[4+i*2] >> 4;
543
        f0 = xa_adpcm_table[filter][0];
544
        f1 = xa_adpcm_table[filter][1];
545

    
546
        s_1 = left->sample1;
547
        s_2 = left->sample2;
548

    
549
        for(j=0;j<28;j++) {
550
            d = in[16+i+j*4];
551

    
552
            t = (signed char)(d<<4)>>4;
553
            s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
554
            CLAMP_TO_SHORT(s);
555
            *out = s;
556
            out += inc;
557
            s_2 = s_1;
558
            s_1 = s;
559
        }
560

    
561
        if (inc==2) { /* stereo */
562
            left->sample1 = s_1;
563
            left->sample2 = s_2;
564
            s_1 = right->sample1;
565
            s_2 = right->sample2;
566
            out = out + 1 - 28*2;
567
        }
568

    
569
        shift  = 12 - (in[5+i*2] & 15);
570
        filter = in[5+i*2] >> 4;
571

    
572
        f0 = xa_adpcm_table[filter][0];
573
        f1 = xa_adpcm_table[filter][1];
574

    
575
        for(j=0;j<28;j++) {
576
            d = in[16+i+j*4];
577

    
578
            t = (signed char)d >> 4;
579
            s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
580
            CLAMP_TO_SHORT(s);
581
            *out = s;
582
            out += inc;
583
            s_2 = s_1;
584
            s_1 = s;
585
        }
586

    
587
        if (inc==2) { /* stereo */
588
            right->sample1 = s_1;
589
            right->sample2 = s_2;
590
            out -= 1;
591
        } else {
592
            left->sample1 = s_1;
593
            left->sample2 = s_2;
594
        }
595
    }
596
}
597

    
598

    
599
/* DK3 ADPCM support macro */
600
#define DK3_GET_NEXT_NIBBLE() \
601
    if (decode_top_nibble_next) \
602
    { \
603
        nibble = (last_byte >> 4) & 0x0F; \
604
        decode_top_nibble_next = 0; \
605
    } \
606
    else \
607
    { \
608
        last_byte = *src++; \
609
        if (src >= buf + buf_size) break; \
610
        nibble = last_byte & 0x0F; \
611
        decode_top_nibble_next = 1; \
612
    }
613

    
614
static int adpcm_decode_frame(AVCodecContext *avctx,
615
                            void *data, int *data_size,
616
                            uint8_t *buf, int buf_size)
617
{
618
    ADPCMContext *c = avctx->priv_data;
619
    ADPCMChannelStatus *cs;
620
    int n, m, channel, i;
621
    int block_predictor[2];
622
    short *samples;
623
    uint8_t *src;
624
    int st; /* stereo */
625

    
626
    /* DK3 ADPCM accounting variables */
627
    unsigned char last_byte = 0;
628
    unsigned char nibble;
629
    int decode_top_nibble_next = 0;
630
    int diff_channel;
631

    
632
    /* EA ADPCM state variables */
633
    uint32_t samples_in_chunk;
634
    int32_t previous_left_sample, previous_right_sample;
635
    int32_t current_left_sample, current_right_sample;
636
    int32_t next_left_sample, next_right_sample;
637
    int32_t coeff1l, coeff2l, coeff1r, coeff2r;
638
    uint8_t shift_left, shift_right;
639
    int count1, count2;
640

    
641
    if (!buf_size)
642
        return 0;
643

    
644
    samples = data;
645
    src = buf;
646

    
647
    st = avctx->channels == 2;
648

    
649
    switch(avctx->codec->id) {
650
    case CODEC_ID_ADPCM_IMA_QT:
651
        n = (buf_size - 2);/* >> 2*avctx->channels;*/
652
        channel = c->channel;
653
        cs = &(c->status[channel]);
654
        /* (pppppp) (piiiiiii) */
655

    
656
        /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
657
        cs->predictor = (*src++) << 8;
658
        cs->predictor |= (*src & 0x80);
659
        cs->predictor &= 0xFF80;
660

    
661
        /* sign extension */
662
        if(cs->predictor & 0x8000)
663
            cs->predictor -= 0x10000;
664

    
665
        CLAMP_TO_SHORT(cs->predictor);
666

    
667
        cs->step_index = (*src++) & 0x7F;
668

    
669
        if (cs->step_index > 88) av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
670
        if (cs->step_index > 88) cs->step_index = 88;
671

    
672
        cs->step = step_table[cs->step_index];
673

    
674
        if (st && channel)
675
            samples++;
676

    
677
        for(m=32; n>0 && m>0; n--, m--) { /* in QuickTime, IMA is encoded by chuncks of 34 bytes (=64 samples) */
678
            *samples = adpcm_ima_expand_nibble(cs, src[0] & 0x0F, 3);
679
            samples += avctx->channels;
680
            *samples = adpcm_ima_expand_nibble(cs, (src[0] >> 4) & 0x0F, 3);
681
            samples += avctx->channels;
682
            src ++;
683
        }
684

    
685
        if(st) { /* handle stereo interlacing */
686
            c->channel = (channel + 1) % 2; /* we get one packet for left, then one for right data */
687
            if(channel == 1) { /* wait for the other packet before outputing anything */
688
                return src - buf;
689
            }
690
        }
691
        break;
692
    case CODEC_ID_ADPCM_IMA_WAV:
693
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
694
            buf_size = avctx->block_align;
695

    
696
        for(i=0; i<avctx->channels; i++){
697
            cs = &(c->status[i]);
698
            cs->predictor = *src++;
699
            cs->predictor |= (*src++) << 8;
700
            if(cs->predictor & 0x8000)
701
                cs->predictor -= 0x10000;
702
            CLAMP_TO_SHORT(cs->predictor);
703

    
704
        // XXX: is this correct ??: *samples++ = cs->predictor;
705

    
706
            cs->step_index = *src++;
707
            if (cs->step_index < 0) cs->step_index = 0;
708
            if (cs->step_index > 88) cs->step_index = 88;
709
            if (*src++) av_log(avctx, AV_LOG_ERROR, "unused byte should be null !!\n"); /* unused */
710
        }
711

    
712
        for(m=4; src < (buf + buf_size);) {
713
            *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[0] & 0x0F, 3);
714
            if (st)
715
                *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[4] & 0x0F, 3);
716
            *samples++ = adpcm_ima_expand_nibble(&c->status[0], (src[0] >> 4) & 0x0F, 3);
717
            if (st) {
718
                *samples++ = adpcm_ima_expand_nibble(&c->status[1], (src[4] >> 4) & 0x0F, 3);
719
                if (!--m) {
720
                    m=4;
721
                    src+=4;
722
                }
723
            }
724
            src++;
725
        }
726
        break;
727
    case CODEC_ID_ADPCM_4XM:
728
        cs = &(c->status[0]);
729
        c->status[0].predictor= (int16_t)(src[0] + (src[1]<<8)); src+=2;
730
        if(st){
731
            c->status[1].predictor= (int16_t)(src[0] + (src[1]<<8)); src+=2;
732
        }
733
        c->status[0].step_index= (int16_t)(src[0] + (src[1]<<8)); src+=2;
734
        if(st){
735
            c->status[1].step_index= (int16_t)(src[0] + (src[1]<<8)); src+=2;
736
        }
737
        if (cs->step_index < 0) cs->step_index = 0;
738
        if (cs->step_index > 88) cs->step_index = 88;
739

    
740
        m= (buf_size - (src - buf))>>st;
741
        for(i=0; i<m; i++) {
742
            *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] & 0x0F, 4);
743
            if (st)
744
                *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] & 0x0F, 4);
745
            *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] >> 4, 4);
746
            if (st)
747
                *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] >> 4, 4);
748
        }
749

    
750
        src += m<<st;
751

    
752
        break;
753
    case CODEC_ID_ADPCM_MS:
754
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
755
            buf_size = avctx->block_align;
756
        n = buf_size - 7 * avctx->channels;
757
        if (n < 0)
758
            return -1;
759
        block_predictor[0] = clip(*src++, 0, 7);
760
        block_predictor[1] = 0;
761
        if (st)
762
            block_predictor[1] = clip(*src++, 0, 7);
763
        c->status[0].idelta = (int16_t)((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
764
        src+=2;
765
        if (st){
766
            c->status[1].idelta = (int16_t)((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
767
            src+=2;
768
        }
769
        c->status[0].coeff1 = AdaptCoeff1[block_predictor[0]];
770
        c->status[0].coeff2 = AdaptCoeff2[block_predictor[0]];
771
        c->status[1].coeff1 = AdaptCoeff1[block_predictor[1]];
772
        c->status[1].coeff2 = AdaptCoeff2[block_predictor[1]];
773
        
774
        c->status[0].sample1 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
775
        src+=2;
776
        if (st) c->status[1].sample1 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
777
        if (st) src+=2;
778
        c->status[0].sample2 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
779
        src+=2;
780
        if (st) c->status[1].sample2 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
781
        if (st) src+=2;
782

    
783
        *samples++ = c->status[0].sample1;
784
        if (st) *samples++ = c->status[1].sample1;
785
        *samples++ = c->status[0].sample2;
786
        if (st) *samples++ = c->status[1].sample2;
787
        for(;n>0;n--) {
788
            *samples++ = adpcm_ms_expand_nibble(&c->status[0], (src[0] >> 4) & 0x0F);
789
            *samples++ = adpcm_ms_expand_nibble(&c->status[st], src[0] & 0x0F);
790
            src ++;
791
        }
792
        break;
793
    case CODEC_ID_ADPCM_IMA_DK4:
794
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
795
            buf_size = avctx->block_align;
796

    
797
        c->status[0].predictor = (int16_t)(src[0] | (src[1] << 8));
798
        c->status[0].step_index = src[2];
799
        src += 4;
800
        *samples++ = c->status[0].predictor;
801
        if (st) {
802
            c->status[1].predictor = (int16_t)(src[0] | (src[1] << 8));
803
            c->status[1].step_index = src[2];
804
            src += 4;
805
            *samples++ = c->status[1].predictor;
806
        }
807
        while (src < buf + buf_size) {
808

    
809
            /* take care of the top nibble (always left or mono channel) */
810
            *samples++ = adpcm_ima_expand_nibble(&c->status[0], 
811
                (src[0] >> 4) & 0x0F, 3);
812

    
813
            /* take care of the bottom nibble, which is right sample for
814
             * stereo, or another mono sample */
815
            if (st)
816
                *samples++ = adpcm_ima_expand_nibble(&c->status[1], 
817
                    src[0] & 0x0F, 3);
818
            else
819
                *samples++ = adpcm_ima_expand_nibble(&c->status[0], 
820
                    src[0] & 0x0F, 3);
821

    
822
            src++;
823
        }
824
        break;
825
    case CODEC_ID_ADPCM_IMA_DK3:
826
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
827
            buf_size = avctx->block_align;
828

    
829
        c->status[0].predictor = (int16_t)(src[10] | (src[11] << 8));
830
        c->status[1].predictor = (int16_t)(src[12] | (src[13] << 8));
831
        c->status[0].step_index = src[14];
832
        c->status[1].step_index = src[15];
833
        /* sign extend the predictors */
834
        src += 16;
835
        diff_channel = c->status[1].predictor;
836

    
837
        /* the DK3_GET_NEXT_NIBBLE macro issues the break statement when
838
         * the buffer is consumed */
839
        while (1) {
840

    
841
            /* for this algorithm, c->status[0] is the sum channel and
842
             * c->status[1] is the diff channel */
843

    
844
            /* process the first predictor of the sum channel */
845
            DK3_GET_NEXT_NIBBLE();
846
            adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
847

    
848
            /* process the diff channel predictor */
849
            DK3_GET_NEXT_NIBBLE();
850
            adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
851

    
852
            /* process the first pair of stereo PCM samples */
853
            diff_channel = (diff_channel + c->status[1].predictor) / 2;
854
            *samples++ = c->status[0].predictor + c->status[1].predictor;
855
            *samples++ = c->status[0].predictor - c->status[1].predictor;
856

    
857
            /* process the second predictor of the sum channel */
858
            DK3_GET_NEXT_NIBBLE();
859
            adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
860

    
861
            /* process the second pair of stereo PCM samples */
862
            diff_channel = (diff_channel + c->status[1].predictor) / 2;
863
            *samples++ = c->status[0].predictor + c->status[1].predictor;
864
            *samples++ = c->status[0].predictor - c->status[1].predictor;
865
        }
866
        break;
867
    case CODEC_ID_ADPCM_IMA_WS:
868
        /* no per-block initialization; just start decoding the data */
869
        while (src < buf + buf_size) {
870

    
871
            if (st) {
872
                *samples++ = adpcm_ima_expand_nibble(&c->status[0], 
873
                    (src[0] >> 4) & 0x0F, 3);
874
                *samples++ = adpcm_ima_expand_nibble(&c->status[1], 
875
                    src[0] & 0x0F, 3);
876
            } else {
877
                *samples++ = adpcm_ima_expand_nibble(&c->status[0], 
878
                    (src[0] >> 4) & 0x0F, 3);
879
                *samples++ = adpcm_ima_expand_nibble(&c->status[0], 
880
                    src[0] & 0x0F, 3);
881
            }
882

    
883
            src++;
884
        }
885
        break;
886
    case CODEC_ID_ADPCM_XA:
887
        c->status[0].sample1 = c->status[0].sample2 = 
888
        c->status[1].sample1 = c->status[1].sample2 = 0;
889
        while (buf_size >= 128) {
890
            xa_decode(samples, src, &c->status[0], &c->status[1], 
891
                avctx->channels);
892
            src += 128;
893
            samples += 28 * 8;
894
            buf_size -= 128;
895
        }
896
        break;
897
    case CODEC_ID_ADPCM_EA:
898
        samples_in_chunk = LE_32(src);
899
        if (samples_in_chunk >= ((buf_size - 12) * 2)) {
900
            src += buf_size;
901
            break;
902
        }
903
        src += 4;
904
        current_left_sample = (int16_t)LE_16(src);
905
        src += 2;
906
        previous_left_sample = (int16_t)LE_16(src);
907
        src += 2;
908
        current_right_sample = (int16_t)LE_16(src);
909
        src += 2;
910
        previous_right_sample = (int16_t)LE_16(src);
911
        src += 2;
912

    
913
        for (count1 = 0; count1 < samples_in_chunk/28;count1++) {
914
            coeff1l = ea_adpcm_table[(*src >> 4) & 0x0F];
915
            coeff2l = ea_adpcm_table[((*src >> 4) & 0x0F) + 4];
916
            coeff1r = ea_adpcm_table[*src & 0x0F];
917
            coeff2r = ea_adpcm_table[(*src & 0x0F) + 4];
918
            src++;
919

    
920
            shift_left = ((*src >> 4) & 0x0F) + 8;
921
            shift_right = (*src & 0x0F) + 8;
922
            src++;
923

    
924
            for (count2 = 0; count2 < 28; count2++) {
925
                next_left_sample = (((*src & 0xF0) << 24) >> shift_left);
926
                next_right_sample = (((*src & 0x0F) << 28) >> shift_right);
927
                src++;
928

    
929
                next_left_sample = (next_left_sample + 
930
                    (current_left_sample * coeff1l) + 
931
                    (previous_left_sample * coeff2l) + 0x80) >> 8;
932
                next_right_sample = (next_right_sample + 
933
                    (current_right_sample * coeff1r) + 
934
                    (previous_right_sample * coeff2r) + 0x80) >> 8;
935
                CLAMP_TO_SHORT(next_left_sample);
936
                CLAMP_TO_SHORT(next_right_sample);
937

    
938
                previous_left_sample = current_left_sample;
939
                current_left_sample = next_left_sample;
940
                previous_right_sample = current_right_sample;
941
                current_right_sample = next_right_sample;
942
                *samples++ = (unsigned short)current_left_sample;
943
                *samples++ = (unsigned short)current_right_sample;
944
            }
945
        }
946
        break;
947
    case CODEC_ID_ADPCM_IMA_SMJPEG:
948
        c->status[0].predictor = *src;
949
        src += 2;
950
        c->status[0].step_index = *src++;
951
        src++;  /* skip another byte before getting to the meat */
952
        while (src < buf + buf_size) {
953
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],
954
                *src & 0x0F, 3);
955
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],
956
                (*src >> 4) & 0x0F, 3);
957
            src++;
958
        }
959
        break;
960
    case CODEC_ID_ADPCM_CT:
961
        while (src < buf + buf_size) {
962
            if (st) {
963
                *samples++ = adpcm_ct_expand_nibble(&c->status[0], 
964
                    (src[0] >> 4) & 0x0F);
965
                *samples++ = adpcm_ct_expand_nibble(&c->status[1], 
966
                    src[0] & 0x0F);
967
            } else {
968
                *samples++ = adpcm_ct_expand_nibble(&c->status[0], 
969
                    (src[0] >> 4) & 0x0F);
970
                *samples++ = adpcm_ct_expand_nibble(&c->status[0], 
971
                    src[0] & 0x0F);
972
            }
973
            src++;
974
        }
975
        break;
976
    case CODEC_ID_ADPCM_SWF:
977
    {
978
        GetBitContext gb;
979
        const int *table;
980
        int k0, signmask;
981
        int size = buf_size*8;
982
        
983
        init_get_bits(&gb, buf, size);
984

    
985
        // first frame, read bits & inital values
986
        if (!c->nb_bits)
987
        {
988
            c->nb_bits = get_bits(&gb, 2)+2;
989
//            av_log(NULL,AV_LOG_INFO,"nb_bits: %d\n", c->nb_bits);
990
        }
991
        
992
        table = swf_index_tables[c->nb_bits-2];
993
        k0 = 1 << (c->nb_bits-2);
994
        signmask = 1 << (c->nb_bits-1);
995
        
996
        while (get_bits_count(&gb) <= size)
997
        {
998
            int i;
999

    
1000
            c->nb_samples++;
1001
            // wrap around at every 4096 samples...
1002
            if ((c->nb_samples & 0xfff) == 1)
1003
            {
1004
                for (i = 0; i <= st; i++)
1005
                {
1006
                    *samples++ = c->status[i].predictor = get_sbits(&gb, 16);
1007
                    c->status[i].step_index = get_bits(&gb, 6);
1008
                }
1009
            }
1010

    
1011
            // similar to IMA adpcm
1012
            for (i = 0; i <= st; i++)
1013
            {
1014
                int delta = get_bits(&gb, c->nb_bits);
1015
                int step = step_table[c->status[i].step_index];
1016
                long vpdiff = 0; // vpdiff = (delta+0.5)*step/4
1017
                int k = k0;
1018
                
1019
                do {
1020
                    if (delta & k)
1021
                        vpdiff += step;
1022
                    step >>= 1;
1023
                    k >>= 1;
1024
                } while(k);
1025
                vpdiff += step;
1026
                
1027
                if (delta & signmask)
1028
                    c->status[i].predictor -= vpdiff;
1029
                else
1030
                    c->status[i].predictor += vpdiff;
1031
                
1032
                c->status[i].step_index += table[delta & (~signmask)];
1033
                
1034
                c->status[i].step_index = clip(c->status[i].step_index, 0, 88);
1035
                c->status[i].predictor = clip(c->status[i].predictor, -32768, 32767);
1036
                
1037
                *samples++ = c->status[i].predictor;
1038
            }
1039
        }
1040
        
1041
//        src += get_bits_count(&gb)*8;
1042
        src += size;
1043
        
1044
        break;
1045
    }
1046
    case CODEC_ID_ADPCM_YAMAHA:
1047
        while (src < buf + buf_size) {
1048
            if (st) {
1049
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1050
                        (src[0] >> 4) & 0x0F);
1051
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[1],
1052
                        src[0] & 0x0F);
1053
            } else {
1054
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1055
                        (src[0] >> 4) & 0x0F);
1056
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1057
                        src[0] & 0x0F);
1058
            }
1059
            src++;
1060
        }
1061
        break;
1062
    default:
1063
        return -1;
1064
    }
1065
    *data_size = (uint8_t *)samples - (uint8_t *)data;
1066
    return src - buf;
1067
}
1068

    
1069

    
1070

    
1071
#ifdef CONFIG_ENCODERS
1072
#define ADPCM_ENCODER(id,name)                  \
1073
AVCodec name ## _encoder = {                    \
1074
    #name,                                      \
1075
    CODEC_TYPE_AUDIO,                           \
1076
    id,                                         \
1077
    sizeof(ADPCMContext),                       \
1078
    adpcm_encode_init,                          \
1079
    adpcm_encode_frame,                         \
1080
    adpcm_encode_close,                         \
1081
    NULL,                                       \
1082
};
1083
#else
1084
#define ADPCM_ENCODER(id,name)
1085
#endif
1086

    
1087
#ifdef CONFIG_DECODERS
1088
#define ADPCM_DECODER(id,name)                  \
1089
AVCodec name ## _decoder = {                    \
1090
    #name,                                      \
1091
    CODEC_TYPE_AUDIO,                           \
1092
    id,                                         \
1093
    sizeof(ADPCMContext),                       \
1094
    adpcm_decode_init,                          \
1095
    NULL,                                       \
1096
    NULL,                                       \
1097
    adpcm_decode_frame,                         \
1098
};
1099
#else
1100
#define ADPCM_DECODER(id,name)
1101
#endif
1102

    
1103
#define ADPCM_CODEC(id, name)                   \
1104
ADPCM_ENCODER(id,name) ADPCM_DECODER(id,name)
1105

    
1106
ADPCM_CODEC(CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt);
1107
ADPCM_CODEC(CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav);
1108
ADPCM_CODEC(CODEC_ID_ADPCM_IMA_DK3, adpcm_ima_dk3);
1109
ADPCM_CODEC(CODEC_ID_ADPCM_IMA_DK4, adpcm_ima_dk4);
1110
ADPCM_CODEC(CODEC_ID_ADPCM_IMA_WS, adpcm_ima_ws);
1111
ADPCM_CODEC(CODEC_ID_ADPCM_IMA_SMJPEG, adpcm_ima_smjpeg);
1112
ADPCM_CODEC(CODEC_ID_ADPCM_MS, adpcm_ms);
1113
ADPCM_CODEC(CODEC_ID_ADPCM_4XM, adpcm_4xm);
1114
ADPCM_CODEC(CODEC_ID_ADPCM_XA, adpcm_xa);
1115
ADPCM_CODEC(CODEC_ID_ADPCM_ADX, adpcm_adx);
1116
ADPCM_CODEC(CODEC_ID_ADPCM_EA, adpcm_ea);
1117
ADPCM_CODEC(CODEC_ID_ADPCM_CT, adpcm_ct);
1118
ADPCM_CODEC(CODEC_ID_ADPCM_SWF, adpcm_swf);
1119
ADPCM_CODEC(CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha);
1120

    
1121
#undef ADPCM_CODEC