Statistics
| Branch: | Revision:

ffmpeg / libavcodec / vc1.c @ 3662aa76

History | View | Annotate | Download (144 KB)

1
/*
2
 * VC-1 and WMV3 decoder
3
 * Copyright (c) 2006-2007 Konstantin Shishkov
4
 * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
5
 *
6
 * This file is part of FFmpeg.
7
 *
8
 * FFmpeg is free software; you can redistribute it and/or
9
 * modify it under the terms of the GNU Lesser General Public
10
 * License as published by the Free Software Foundation; either
11
 * version 2.1 of the License, or (at your option) any later version.
12
 *
13
 * FFmpeg is distributed in the hope that it will be useful,
14
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16
 * Lesser General Public License for more details.
17
 *
18
 * You should have received a copy of the GNU Lesser General Public
19
 * License along with FFmpeg; if not, write to the Free Software
20
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21
 */
22

    
23
/**
24
 * @file vc1.c
25
 * VC-1 and WMV3 decoder
26
 *
27
 */
28
#include "dsputil.h"
29
#include "avcodec.h"
30
#include "mpegvideo.h"
31
#include "vc1.h"
32
#include "vc1data.h"
33
#include "vc1acdata.h"
34
#include "msmpeg4data.h"
35

    
36
#undef NDEBUG
37
#include <assert.h>
38

    
39
#define MB_INTRA_VLC_BITS 9
40
#define DC_VLC_BITS 9
41
#define AC_VLC_BITS 9
42
static const uint16_t table_mb_intra[64][2];
43

    
44

    
45
/**
46
 * Get unary code of limited length
47
 * @fixme FIXME Slow and ugly
48
 * @param gb GetBitContext
49
 * @param[in] stop The bitstop value (unary code of 1's or 0's)
50
 * @param[in] len Maximum length
51
 * @return Unary length/index
52
 */
53
static int get_prefix(GetBitContext *gb, int stop, int len)
54
{
55
#if 1
56
    int i;
57

    
58
    for(i = 0; i < len && get_bits1(gb) != stop; i++);
59
    return i;
60
/*  int i = 0, tmp = !stop;
61

62
  while (i != len && tmp != stop)
63
  {
64
    tmp = get_bits(gb, 1);
65
    i++;
66
  }
67
  if (i == len && tmp != stop) return len+1;
68
  return i;*/
69
#else
70
  unsigned int buf;
71
  int log;
72

    
73
  OPEN_READER(re, gb);
74
  UPDATE_CACHE(re, gb);
75
  buf=GET_CACHE(re, gb); //Still not sure
76
  if (stop) buf = ~buf;
77

    
78
  log= av_log2(-buf); //FIXME: -?
79
  if (log < limit){
80
    LAST_SKIP_BITS(re, gb, log+1);
81
    CLOSE_READER(re, gb);
82
    return log;
83
  }
84

    
85
  LAST_SKIP_BITS(re, gb, limit);
86
  CLOSE_READER(re, gb);
87
  return limit;
88
#endif
89
}
90

    
91
static inline int decode210(GetBitContext *gb){
92
    if (get_bits1(gb))
93
        return 0;
94
    else
95
        return 2 - get_bits1(gb);
96
}
97

    
98
/**
99
 * Init VC-1 specific tables and VC1Context members
100
 * @param v The VC1Context to initialize
101
 * @return Status
102
 */
103
static int vc1_init_common(VC1Context *v)
104
{
105
    static int done = 0;
106
    int i = 0;
107

    
108
    v->hrd_rate = v->hrd_buffer = NULL;
109

    
110
    /* VLC tables */
111
    if(!done)
112
    {
113
        done = 1;
114
        init_vlc(&ff_vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
115
                 ff_vc1_bfraction_bits, 1, 1,
116
                 ff_vc1_bfraction_codes, 1, 1, 1);
117
        init_vlc(&ff_vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
118
                 ff_vc1_norm2_bits, 1, 1,
119
                 ff_vc1_norm2_codes, 1, 1, 1);
120
        init_vlc(&ff_vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
121
                 ff_vc1_norm6_bits, 1, 1,
122
                 ff_vc1_norm6_codes, 2, 2, 1);
123
        init_vlc(&ff_vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
124
                 ff_vc1_imode_bits, 1, 1,
125
                 ff_vc1_imode_codes, 1, 1, 1);
126
        for (i=0; i<3; i++)
127
        {
128
            init_vlc(&ff_vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
129
                     ff_vc1_ttmb_bits[i], 1, 1,
130
                     ff_vc1_ttmb_codes[i], 2, 2, 1);
131
            init_vlc(&ff_vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
132
                     ff_vc1_ttblk_bits[i], 1, 1,
133
                     ff_vc1_ttblk_codes[i], 1, 1, 1);
134
            init_vlc(&ff_vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
135
                     ff_vc1_subblkpat_bits[i], 1, 1,
136
                     ff_vc1_subblkpat_codes[i], 1, 1, 1);
137
        }
138
        for(i=0; i<4; i++)
139
        {
140
            init_vlc(&ff_vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
141
                     ff_vc1_4mv_block_pattern_bits[i], 1, 1,
142
                     ff_vc1_4mv_block_pattern_codes[i], 1, 1, 1);
143
            init_vlc(&ff_vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
144
                     ff_vc1_cbpcy_p_bits[i], 1, 1,
145
                     ff_vc1_cbpcy_p_codes[i], 2, 2, 1);
146
            init_vlc(&ff_vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
147
                     ff_vc1_mv_diff_bits[i], 1, 1,
148
                     ff_vc1_mv_diff_codes[i], 2, 2, 1);
149
        }
150
        for(i=0; i<8; i++)
151
            init_vlc(&ff_vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
152
                     &vc1_ac_tables[i][0][1], 8, 4,
153
                     &vc1_ac_tables[i][0][0], 8, 4, 1);
154
        init_vlc(&ff_msmp4_mb_i_vlc, MB_INTRA_VLC_BITS, 64,
155
                 &ff_msmp4_mb_i_table[0][1], 4, 2,
156
                 &ff_msmp4_mb_i_table[0][0], 4, 2, 1);
157
    }
158

    
159
    /* Other defaults */
160
    v->pq = -1;
161
    v->mvrange = 0; /* 7.1.1.18, p80 */
162

    
163
    return 0;
164
}
165

    
166
/***********************************************************************/
167
/**
168
 * @defgroup bitplane VC9 Bitplane decoding
169
 * @see 8.7, p56
170
 * @{
171
 */
172

    
173
/** @addtogroup bitplane
174
 * Imode types
175
 * @{
176
 */
177
enum Imode {
178
    IMODE_RAW,
179
    IMODE_NORM2,
180
    IMODE_DIFF2,
181
    IMODE_NORM6,
182
    IMODE_DIFF6,
183
    IMODE_ROWSKIP,
184
    IMODE_COLSKIP
185
};
186
/** @} */ //imode defines
187

    
188
/** Decode rows by checking if they are skipped
189
 * @param plane Buffer to store decoded bits
190
 * @param[in] width Width of this buffer
191
 * @param[in] height Height of this buffer
192
 * @param[in] stride of this buffer
193
 */
194
static void decode_rowskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
195
    int x, y;
196

    
197
    for (y=0; y<height; y++){
198
        if (!get_bits(gb, 1)) //rowskip
199
            memset(plane, 0, width);
200
        else
201
            for (x=0; x<width; x++)
202
                plane[x] = get_bits(gb, 1);
203
        plane += stride;
204
    }
205
}
206

    
207
/** Decode columns by checking if they are skipped
208
 * @param plane Buffer to store decoded bits
209
 * @param[in] width Width of this buffer
210
 * @param[in] height Height of this buffer
211
 * @param[in] stride of this buffer
212
 * @fixme FIXME: Optimize
213
 */
214
static void decode_colskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
215
    int x, y;
216

    
217
    for (x=0; x<width; x++){
218
        if (!get_bits(gb, 1)) //colskip
219
            for (y=0; y<height; y++)
220
                plane[y*stride] = 0;
221
        else
222
            for (y=0; y<height; y++)
223
                plane[y*stride] = get_bits(gb, 1);
224
        plane ++;
225
    }
226
}
227

    
228
/** Decode a bitplane's bits
229
 * @param bp Bitplane where to store the decode bits
230
 * @param v VC-1 context for bit reading and logging
231
 * @return Status
232
 * @fixme FIXME: Optimize
233
 */
234
static int bitplane_decoding(uint8_t* data, int *raw_flag, VC1Context *v)
235
{
236
    GetBitContext *gb = &v->s.gb;
237

    
238
    int imode, x, y, code, offset;
239
    uint8_t invert, *planep = data;
240
    int width, height, stride;
241

    
242
    width = v->s.mb_width;
243
    height = v->s.mb_height;
244
    stride = v->s.mb_stride;
245
    invert = get_bits(gb, 1);
246
    imode = get_vlc2(gb, ff_vc1_imode_vlc.table, VC1_IMODE_VLC_BITS, 1);
247

    
248
    *raw_flag = 0;
249
    switch (imode)
250
    {
251
    case IMODE_RAW:
252
        //Data is actually read in the MB layer (same for all tests == "raw")
253
        *raw_flag = 1; //invert ignored
254
        return invert;
255
    case IMODE_DIFF2:
256
    case IMODE_NORM2:
257
        if ((height * width) & 1)
258
        {
259
            *planep++ = get_bits(gb, 1);
260
            offset = 1;
261
        }
262
        else offset = 0;
263
        // decode bitplane as one long line
264
        for (y = offset; y < height * width; y += 2) {
265
            code = get_vlc2(gb, ff_vc1_norm2_vlc.table, VC1_NORM2_VLC_BITS, 1);
266
            *planep++ = code & 1;
267
            offset++;
268
            if(offset == width) {
269
                offset = 0;
270
                planep += stride - width;
271
            }
272
            *planep++ = code >> 1;
273
            offset++;
274
            if(offset == width) {
275
                offset = 0;
276
                planep += stride - width;
277
            }
278
        }
279
        break;
280
    case IMODE_DIFF6:
281
    case IMODE_NORM6:
282
        if(!(height % 3) && (width % 3)) { // use 2x3 decoding
283
            for(y = 0; y < height; y+= 3) {
284
                for(x = width & 1; x < width; x += 2) {
285
                    code = get_vlc2(gb, ff_vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
286
                    if(code < 0){
287
                        av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
288
                        return -1;
289
                    }
290
                    planep[x + 0] = (code >> 0) & 1;
291
                    planep[x + 1] = (code >> 1) & 1;
292
                    planep[x + 0 + stride] = (code >> 2) & 1;
293
                    planep[x + 1 + stride] = (code >> 3) & 1;
294
                    planep[x + 0 + stride * 2] = (code >> 4) & 1;
295
                    planep[x + 1 + stride * 2] = (code >> 5) & 1;
296
                }
297
                planep += stride * 3;
298
            }
299
            if(width & 1) decode_colskip(data, 1, height, stride, &v->s.gb);
300
        } else { // 3x2
301
            planep += (height & 1) * stride;
302
            for(y = height & 1; y < height; y += 2) {
303
                for(x = width % 3; x < width; x += 3) {
304
                    code = get_vlc2(gb, ff_vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
305
                    if(code < 0){
306
                        av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
307
                        return -1;
308
                    }
309
                    planep[x + 0] = (code >> 0) & 1;
310
                    planep[x + 1] = (code >> 1) & 1;
311
                    planep[x + 2] = (code >> 2) & 1;
312
                    planep[x + 0 + stride] = (code >> 3) & 1;
313
                    planep[x + 1 + stride] = (code >> 4) & 1;
314
                    planep[x + 2 + stride] = (code >> 5) & 1;
315
                }
316
                planep += stride * 2;
317
            }
318
            x = width % 3;
319
            if(x) decode_colskip(data  ,             x, height    , stride, &v->s.gb);
320
            if(height & 1) decode_rowskip(data+x, width - x, 1, stride, &v->s.gb);
321
        }
322
        break;
323
    case IMODE_ROWSKIP:
324
        decode_rowskip(data, width, height, stride, &v->s.gb);
325
        break;
326
    case IMODE_COLSKIP:
327
        decode_colskip(data, width, height, stride, &v->s.gb);
328
        break;
329
    default: break;
330
    }
331

    
332
    /* Applying diff operator */
333
    if (imode == IMODE_DIFF2 || imode == IMODE_DIFF6)
334
    {
335
        planep = data;
336
        planep[0] ^= invert;
337
        for (x=1; x<width; x++)
338
            planep[x] ^= planep[x-1];
339
        for (y=1; y<height; y++)
340
        {
341
            planep += stride;
342
            planep[0] ^= planep[-stride];
343
            for (x=1; x<width; x++)
344
            {
345
                if (planep[x-1] != planep[x-stride]) planep[x] ^= invert;
346
                else                                 planep[x] ^= planep[x-1];
347
            }
348
        }
349
    }
350
    else if (invert)
351
    {
352
        planep = data;
353
        for (x=0; x<stride*height; x++) planep[x] = !planep[x]; //FIXME stride
354
    }
355
    return (imode<<1) + invert;
356
}
357

    
358
/** @} */ //Bitplane group
359

    
360
/***********************************************************************/
361
/** VOP Dquant decoding
362
 * @param v VC-1 Context
363
 */
364
static int vop_dquant_decoding(VC1Context *v)
365
{
366
    GetBitContext *gb = &v->s.gb;
367
    int pqdiff;
368

    
369
    //variable size
370
    if (v->dquant == 2)
371
    {
372
        pqdiff = get_bits(gb, 3);
373
        if (pqdiff == 7) v->altpq = get_bits(gb, 5);
374
        else v->altpq = v->pq + pqdiff + 1;
375
    }
376
    else
377
    {
378
        v->dquantfrm = get_bits(gb, 1);
379
        if ( v->dquantfrm )
380
        {
381
            v->dqprofile = get_bits(gb, 2);
382
            switch (v->dqprofile)
383
            {
384
            case DQPROFILE_SINGLE_EDGE:
385
            case DQPROFILE_DOUBLE_EDGES:
386
                v->dqsbedge = get_bits(gb, 2);
387
                break;
388
            case DQPROFILE_ALL_MBS:
389
                v->dqbilevel = get_bits(gb, 1);
390
            default: break; //Forbidden ?
391
            }
392
            if (v->dqbilevel || v->dqprofile != DQPROFILE_ALL_MBS)
393
            {
394
                pqdiff = get_bits(gb, 3);
395
                if (pqdiff == 7) v->altpq = get_bits(gb, 5);
396
                else v->altpq = v->pq + pqdiff + 1;
397
            }
398
        }
399
    }
400
    return 0;
401
}
402

    
403
/** Put block onto picture
404
 */
405
static void vc1_put_block(VC1Context *v, DCTELEM block[6][64])
406
{
407
    uint8_t *Y;
408
    int ys, us, vs;
409
    DSPContext *dsp = &v->s.dsp;
410

    
411
    if(v->rangeredfrm) {
412
        int i, j, k;
413
        for(k = 0; k < 6; k++)
414
            for(j = 0; j < 8; j++)
415
                for(i = 0; i < 8; i++)
416
                    block[k][i + j*8] = ((block[k][i + j*8] - 128) << 1) + 128;
417

    
418
    }
419
    ys = v->s.current_picture.linesize[0];
420
    us = v->s.current_picture.linesize[1];
421
    vs = v->s.current_picture.linesize[2];
422
    Y = v->s.dest[0];
423

    
424
    dsp->put_pixels_clamped(block[0], Y, ys);
425
    dsp->put_pixels_clamped(block[1], Y + 8, ys);
426
    Y += ys * 8;
427
    dsp->put_pixels_clamped(block[2], Y, ys);
428
    dsp->put_pixels_clamped(block[3], Y + 8, ys);
429

    
430
    if(!(v->s.flags & CODEC_FLAG_GRAY)) {
431
        dsp->put_pixels_clamped(block[4], v->s.dest[1], us);
432
        dsp->put_pixels_clamped(block[5], v->s.dest[2], vs);
433
    }
434
}
435

    
436
/** Do motion compensation over 1 macroblock
437
 * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
438
 */
439
static void vc1_mc_1mv(VC1Context *v, int dir)
440
{
441
    MpegEncContext *s = &v->s;
442
    DSPContext *dsp = &v->s.dsp;
443
    uint8_t *srcY, *srcU, *srcV;
444
    int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
445

    
446
    if(!v->s.last_picture.data[0])return;
447

    
448
    mx = s->mv[dir][0][0];
449
    my = s->mv[dir][0][1];
450

    
451
    // store motion vectors for further use in B frames
452
    if(s->pict_type == P_TYPE) {
453
        s->current_picture.motion_val[1][s->block_index[0]][0] = mx;
454
        s->current_picture.motion_val[1][s->block_index[0]][1] = my;
455
    }
456
    uvmx = (mx + ((mx & 3) == 3)) >> 1;
457
    uvmy = (my + ((my & 3) == 3)) >> 1;
458
    if(v->fastuvmc) {
459
        uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
460
        uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
461
    }
462
    if(!dir) {
463
        srcY = s->last_picture.data[0];
464
        srcU = s->last_picture.data[1];
465
        srcV = s->last_picture.data[2];
466
    } else {
467
        srcY = s->next_picture.data[0];
468
        srcU = s->next_picture.data[1];
469
        srcV = s->next_picture.data[2];
470
    }
471

    
472
    src_x = s->mb_x * 16 + (mx >> 2);
473
    src_y = s->mb_y * 16 + (my >> 2);
474
    uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
475
    uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
476

    
477
    if(v->profile != PROFILE_ADVANCED){
478
        src_x   = av_clip(  src_x, -16, s->mb_width  * 16);
479
        src_y   = av_clip(  src_y, -16, s->mb_height * 16);
480
        uvsrc_x = av_clip(uvsrc_x,  -8, s->mb_width  *  8);
481
        uvsrc_y = av_clip(uvsrc_y,  -8, s->mb_height *  8);
482
    }else{
483
        src_x   = av_clip(  src_x, -17, s->avctx->coded_width);
484
        src_y   = av_clip(  src_y, -18, s->avctx->coded_height + 1);
485
        uvsrc_x = av_clip(uvsrc_x,  -8, s->avctx->coded_width  >> 1);
486
        uvsrc_y = av_clip(uvsrc_y,  -8, s->avctx->coded_height >> 1);
487
    }
488

    
489
    srcY += src_y * s->linesize + src_x;
490
    srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
491
    srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
492

    
493
    /* for grayscale we should not try to read from unknown area */
494
    if(s->flags & CODEC_FLAG_GRAY) {
495
        srcU = s->edge_emu_buffer + 18 * s->linesize;
496
        srcV = s->edge_emu_buffer + 18 * s->linesize;
497
    }
498

    
499
    if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
500
       || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
501
       || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
502
        uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
503

    
504
        srcY -= s->mspel * (1 + s->linesize);
505
        ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
506
                            src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
507
        srcY = s->edge_emu_buffer;
508
        ff_emulated_edge_mc(uvbuf     , srcU, s->uvlinesize, 8+1, 8+1,
509
                            uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
510
        ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
511
                            uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
512
        srcU = uvbuf;
513
        srcV = uvbuf + 16;
514
        /* if we deal with range reduction we need to scale source blocks */
515
        if(v->rangeredfrm) {
516
            int i, j;
517
            uint8_t *src, *src2;
518

    
519
            src = srcY;
520
            for(j = 0; j < 17 + s->mspel*2; j++) {
521
                for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
522
                src += s->linesize;
523
            }
524
            src = srcU; src2 = srcV;
525
            for(j = 0; j < 9; j++) {
526
                for(i = 0; i < 9; i++) {
527
                    src[i] = ((src[i] - 128) >> 1) + 128;
528
                    src2[i] = ((src2[i] - 128) >> 1) + 128;
529
                }
530
                src += s->uvlinesize;
531
                src2 += s->uvlinesize;
532
            }
533
        }
534
        /* if we deal with intensity compensation we need to scale source blocks */
535
        if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
536
            int i, j;
537
            uint8_t *src, *src2;
538

    
539
            src = srcY;
540
            for(j = 0; j < 17 + s->mspel*2; j++) {
541
                for(i = 0; i < 17 + s->mspel*2; i++) src[i] = v->luty[src[i]];
542
                src += s->linesize;
543
            }
544
            src = srcU; src2 = srcV;
545
            for(j = 0; j < 9; j++) {
546
                for(i = 0; i < 9; i++) {
547
                    src[i] = v->lutuv[src[i]];
548
                    src2[i] = v->lutuv[src2[i]];
549
                }
550
                src += s->uvlinesize;
551
                src2 += s->uvlinesize;
552
            }
553
        }
554
        srcY += s->mspel * (1 + s->linesize);
555
    }
556

    
557
    if(s->mspel) {
558
        dxy = ((my & 3) << 2) | (mx & 3);
559
        dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0]    , srcY    , s->linesize, v->rnd);
560
        dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
561
        srcY += s->linesize * 8;
562
        dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize    , srcY    , s->linesize, v->rnd);
563
        dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
564
    } else { // hpel mc - always used for luma
565
        dxy = (my & 2) | ((mx & 2) >> 1);
566

    
567
        if(!v->rnd)
568
            dsp->put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
569
        else
570
            dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
571
    }
572

    
573
    if(s->flags & CODEC_FLAG_GRAY) return;
574
    /* Chroma MC always uses qpel bilinear */
575
    uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
576
    uvmx = (uvmx&3)<<1;
577
    uvmy = (uvmy&3)<<1;
578
    if(!v->rnd){
579
        dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
580
        dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
581
    }else{
582
        dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
583
        dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
584
    }
585
}
586

    
587
/** Do motion compensation for 4-MV macroblock - luminance block
588
 */
589
static void vc1_mc_4mv_luma(VC1Context *v, int n)
590
{
591
    MpegEncContext *s = &v->s;
592
    DSPContext *dsp = &v->s.dsp;
593
    uint8_t *srcY;
594
    int dxy, mx, my, src_x, src_y;
595
    int off;
596

    
597
    if(!v->s.last_picture.data[0])return;
598
    mx = s->mv[0][n][0];
599
    my = s->mv[0][n][1];
600
    srcY = s->last_picture.data[0];
601

    
602
    off = s->linesize * 4 * (n&2) + (n&1) * 8;
603

    
604
    src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2);
605
    src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2);
606

    
607
    if(v->profile != PROFILE_ADVANCED){
608
        src_x   = av_clip(  src_x, -16, s->mb_width  * 16);
609
        src_y   = av_clip(  src_y, -16, s->mb_height * 16);
610
    }else{
611
        src_x   = av_clip(  src_x, -17, s->avctx->coded_width);
612
        src_y   = av_clip(  src_y, -18, s->avctx->coded_height + 1);
613
    }
614

    
615
    srcY += src_y * s->linesize + src_x;
616

    
617
    if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
618
       || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 8 - s->mspel*2
619
       || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 8 - s->mspel*2){
620
        srcY -= s->mspel * (1 + s->linesize);
621
        ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 9+s->mspel*2, 9+s->mspel*2,
622
                            src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
623
        srcY = s->edge_emu_buffer;
624
        /* if we deal with range reduction we need to scale source blocks */
625
        if(v->rangeredfrm) {
626
            int i, j;
627
            uint8_t *src;
628

    
629
            src = srcY;
630
            for(j = 0; j < 9 + s->mspel*2; j++) {
631
                for(i = 0; i < 9 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
632
                src += s->linesize;
633
            }
634
        }
635
        /* if we deal with intensity compensation we need to scale source blocks */
636
        if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
637
            int i, j;
638
            uint8_t *src;
639

    
640
            src = srcY;
641
            for(j = 0; j < 9 + s->mspel*2; j++) {
642
                for(i = 0; i < 9 + s->mspel*2; i++) src[i] = v->luty[src[i]];
643
                src += s->linesize;
644
            }
645
        }
646
        srcY += s->mspel * (1 + s->linesize);
647
    }
648

    
649
    if(s->mspel) {
650
        dxy = ((my & 3) << 2) | (mx & 3);
651
        dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, v->rnd);
652
    } else { // hpel mc - always used for luma
653
        dxy = (my & 2) | ((mx & 2) >> 1);
654
        if(!v->rnd)
655
            dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
656
        else
657
            dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
658
    }
659
}
660

    
661
static inline int median4(int a, int b, int c, int d)
662
{
663
    if(a < b) {
664
        if(c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
665
        else      return (FFMIN(b, c) + FFMAX(a, d)) / 2;
666
    } else {
667
        if(c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
668
        else      return (FFMIN(a, c) + FFMAX(b, d)) / 2;
669
    }
670
}
671

    
672

    
673
/** Do motion compensation for 4-MV macroblock - both chroma blocks
674
 */
675
static void vc1_mc_4mv_chroma(VC1Context *v)
676
{
677
    MpegEncContext *s = &v->s;
678
    DSPContext *dsp = &v->s.dsp;
679
    uint8_t *srcU, *srcV;
680
    int uvdxy, uvmx, uvmy, uvsrc_x, uvsrc_y;
681
    int i, idx, tx = 0, ty = 0;
682
    int mvx[4], mvy[4], intra[4];
683
    static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
684

    
685
    if(!v->s.last_picture.data[0])return;
686
    if(s->flags & CODEC_FLAG_GRAY) return;
687

    
688
    for(i = 0; i < 4; i++) {
689
        mvx[i] = s->mv[0][i][0];
690
        mvy[i] = s->mv[0][i][1];
691
        intra[i] = v->mb_type[0][s->block_index[i]];
692
    }
693

    
694
    /* calculate chroma MV vector from four luma MVs */
695
    idx = (intra[3] << 3) | (intra[2] << 2) | (intra[1] << 1) | intra[0];
696
    if(!idx) { // all blocks are inter
697
        tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
698
        ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
699
    } else if(count[idx] == 1) { // 3 inter blocks
700
        switch(idx) {
701
        case 0x1:
702
            tx = mid_pred(mvx[1], mvx[2], mvx[3]);
703
            ty = mid_pred(mvy[1], mvy[2], mvy[3]);
704
            break;
705
        case 0x2:
706
            tx = mid_pred(mvx[0], mvx[2], mvx[3]);
707
            ty = mid_pred(mvy[0], mvy[2], mvy[3]);
708
            break;
709
        case 0x4:
710
            tx = mid_pred(mvx[0], mvx[1], mvx[3]);
711
            ty = mid_pred(mvy[0], mvy[1], mvy[3]);
712
            break;
713
        case 0x8:
714
            tx = mid_pred(mvx[0], mvx[1], mvx[2]);
715
            ty = mid_pred(mvy[0], mvy[1], mvy[2]);
716
            break;
717
        }
718
    } else if(count[idx] == 2) {
719
        int t1 = 0, t2 = 0;
720
        for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;}
721
        for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;}
722
        tx = (mvx[t1] + mvx[t2]) / 2;
723
        ty = (mvy[t1] + mvy[t2]) / 2;
724
    } else {
725
        s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
726
        s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
727
        return; //no need to do MC for inter blocks
728
    }
729

    
730
    s->current_picture.motion_val[1][s->block_index[0]][0] = tx;
731
    s->current_picture.motion_val[1][s->block_index[0]][1] = ty;
732
    uvmx = (tx + ((tx&3) == 3)) >> 1;
733
    uvmy = (ty + ((ty&3) == 3)) >> 1;
734
    if(v->fastuvmc) {
735
        uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
736
        uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
737
    }
738

    
739
    uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
740
    uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
741

    
742
    if(v->profile != PROFILE_ADVANCED){
743
        uvsrc_x = av_clip(uvsrc_x,  -8, s->mb_width  *  8);
744
        uvsrc_y = av_clip(uvsrc_y,  -8, s->mb_height *  8);
745
    }else{
746
        uvsrc_x = av_clip(uvsrc_x,  -8, s->avctx->coded_width  >> 1);
747
        uvsrc_y = av_clip(uvsrc_y,  -8, s->avctx->coded_height >> 1);
748
    }
749

    
750
    srcU = s->last_picture.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
751
    srcV = s->last_picture.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
752
    if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
753
       || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
754
       || (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - 9){
755
        ff_emulated_edge_mc(s->edge_emu_buffer     , srcU, s->uvlinesize, 8+1, 8+1,
756
                            uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
757
        ff_emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1,
758
                            uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
759
        srcU = s->edge_emu_buffer;
760
        srcV = s->edge_emu_buffer + 16;
761

    
762
        /* if we deal with range reduction we need to scale source blocks */
763
        if(v->rangeredfrm) {
764
            int i, j;
765
            uint8_t *src, *src2;
766

    
767
            src = srcU; src2 = srcV;
768
            for(j = 0; j < 9; j++) {
769
                for(i = 0; i < 9; i++) {
770
                    src[i] = ((src[i] - 128) >> 1) + 128;
771
                    src2[i] = ((src2[i] - 128) >> 1) + 128;
772
                }
773
                src += s->uvlinesize;
774
                src2 += s->uvlinesize;
775
            }
776
        }
777
        /* if we deal with intensity compensation we need to scale source blocks */
778
        if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
779
            int i, j;
780
            uint8_t *src, *src2;
781

    
782
            src = srcU; src2 = srcV;
783
            for(j = 0; j < 9; j++) {
784
                for(i = 0; i < 9; i++) {
785
                    src[i] = v->lutuv[src[i]];
786
                    src2[i] = v->lutuv[src2[i]];
787
                }
788
                src += s->uvlinesize;
789
                src2 += s->uvlinesize;
790
            }
791
        }
792
    }
793

    
794
    /* Chroma MC always uses qpel bilinear */
795
    uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
796
    uvmx = (uvmx&3)<<1;
797
    uvmy = (uvmy&3)<<1;
798
    if(!v->rnd){
799
        dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
800
        dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
801
    }else{
802
        dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
803
        dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
804
    }
805
}
806

    
807
static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb);
808

    
809
/**
810
 * Decode Simple/Main Profiles sequence header
811
 * @see Figure 7-8, p16-17
812
 * @param avctx Codec context
813
 * @param gb GetBit context initialized from Codec context extra_data
814
 * @return Status
815
 */
816
static int decode_sequence_header(AVCodecContext *avctx, GetBitContext *gb)
817
{
818
    VC1Context *v = avctx->priv_data;
819

    
820
    av_log(avctx, AV_LOG_DEBUG, "Header: %0X\n", show_bits(gb, 32));
821
    v->profile = get_bits(gb, 2);
822
    if (v->profile == PROFILE_COMPLEX)
823
    {
824
        av_log(avctx, AV_LOG_ERROR, "WMV3 Complex Profile is not fully supported\n");
825
    }
826

    
827
    if (v->profile == PROFILE_ADVANCED)
828
    {
829
        return decode_sequence_header_adv(v, gb);
830
    }
831
    else
832
    {
833
        v->res_sm = get_bits(gb, 2); //reserved
834
        if (v->res_sm)
835
        {
836
            av_log(avctx, AV_LOG_ERROR,
837
                   "Reserved RES_SM=%i is forbidden\n", v->res_sm);
838
            return -1;
839
        }
840
    }
841

    
842
    // (fps-2)/4 (->30)
843
    v->frmrtq_postproc = get_bits(gb, 3); //common
844
    // (bitrate-32kbps)/64kbps
845
    v->bitrtq_postproc = get_bits(gb, 5); //common
846
    v->s.loop_filter = get_bits(gb, 1); //common
847
    if(v->s.loop_filter == 1 && v->profile == PROFILE_SIMPLE)
848
    {
849
        av_log(avctx, AV_LOG_ERROR,
850
               "LOOPFILTER shell not be enabled in simple profile\n");
851
    }
852

    
853
    v->res_x8 = get_bits(gb, 1); //reserved
854
    if (v->res_x8)
855
    {
856
        av_log(avctx, AV_LOG_ERROR,
857
               "1 for reserved RES_X8 is forbidden\n");
858
        //return -1;
859
    }
860
    v->multires = get_bits(gb, 1);
861
    v->res_fasttx = get_bits(gb, 1);
862
    if (!v->res_fasttx)
863
    {
864
        av_log(avctx, AV_LOG_ERROR,
865
               "0 for reserved RES_FASTTX is forbidden\n");
866
        //return -1;
867
    }
868

    
869
    v->fastuvmc =  get_bits(gb, 1); //common
870
    if (!v->profile && !v->fastuvmc)
871
    {
872
        av_log(avctx, AV_LOG_ERROR,
873
               "FASTUVMC unavailable in Simple Profile\n");
874
        return -1;
875
    }
876
    v->extended_mv =  get_bits(gb, 1); //common
877
    if (!v->profile && v->extended_mv)
878
    {
879
        av_log(avctx, AV_LOG_ERROR,
880
               "Extended MVs unavailable in Simple Profile\n");
881
        return -1;
882
    }
883
    v->dquant =  get_bits(gb, 2); //common
884
    v->vstransform =  get_bits(gb, 1); //common
885

    
886
    v->res_transtab = get_bits(gb, 1);
887
    if (v->res_transtab)
888
    {
889
        av_log(avctx, AV_LOG_ERROR,
890
               "1 for reserved RES_TRANSTAB is forbidden\n");
891
        return -1;
892
    }
893

    
894
    v->overlap = get_bits(gb, 1); //common
895

    
896
    v->s.resync_marker = get_bits(gb, 1);
897
    v->rangered = get_bits(gb, 1);
898
    if (v->rangered && v->profile == PROFILE_SIMPLE)
899
    {
900
        av_log(avctx, AV_LOG_INFO,
901
               "RANGERED should be set to 0 in simple profile\n");
902
    }
903

    
904
    v->s.max_b_frames = avctx->max_b_frames = get_bits(gb, 3); //common
905
    v->quantizer_mode = get_bits(gb, 2); //common
906

    
907
    v->finterpflag = get_bits(gb, 1); //common
908
    v->res_rtm_flag = get_bits(gb, 1); //reserved
909
    if (!v->res_rtm_flag)
910
    {
911
//            av_log(avctx, AV_LOG_ERROR,
912
//                   "0 for reserved RES_RTM_FLAG is forbidden\n");
913
        av_log(avctx, AV_LOG_ERROR,
914
               "Old WMV3 version detected, only I-frames will be decoded\n");
915
        //return -1;
916
    }
917
    //TODO: figure out what they mean (always 0x402F)
918
    if(!v->res_fasttx) skip_bits(gb, 16);
919
    av_log(avctx, AV_LOG_DEBUG,
920
               "Profile %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
921
               "LoopFilter=%i, MultiRes=%i, FastUVMC=%i, Extended MV=%i\n"
922
               "Rangered=%i, VSTransform=%i, Overlap=%i, SyncMarker=%i\n"
923
               "DQuant=%i, Quantizer mode=%i, Max B frames=%i\n",
924
               v->profile, v->frmrtq_postproc, v->bitrtq_postproc,
925
               v->s.loop_filter, v->multires, v->fastuvmc, v->extended_mv,
926
               v->rangered, v->vstransform, v->overlap, v->s.resync_marker,
927
               v->dquant, v->quantizer_mode, avctx->max_b_frames
928
               );
929
    return 0;
930
}
931

    
932
static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb)
933
{
934
    v->res_rtm_flag = 1;
935
    v->level = get_bits(gb, 3);
936
    if(v->level >= 5)
937
    {
938
        av_log(v->s.avctx, AV_LOG_ERROR, "Reserved LEVEL %i\n",v->level);
939
    }
940
    v->chromaformat = get_bits(gb, 2);
941
    if (v->chromaformat != 1)
942
    {
943
        av_log(v->s.avctx, AV_LOG_ERROR,
944
               "Only 4:2:0 chroma format supported\n");
945
        return -1;
946
    }
947

    
948
    // (fps-2)/4 (->30)
949
    v->frmrtq_postproc = get_bits(gb, 3); //common
950
    // (bitrate-32kbps)/64kbps
951
    v->bitrtq_postproc = get_bits(gb, 5); //common
952
    v->postprocflag = get_bits(gb, 1); //common
953

    
954
    v->s.avctx->coded_width = (get_bits(gb, 12) + 1) << 1;
955
    v->s.avctx->coded_height = (get_bits(gb, 12) + 1) << 1;
956
    v->s.avctx->width = v->s.avctx->coded_width;
957
    v->s.avctx->height = v->s.avctx->coded_height;
958
    v->broadcast = get_bits1(gb);
959
    v->interlace = get_bits1(gb);
960
    v->tfcntrflag = get_bits1(gb);
961
    v->finterpflag = get_bits1(gb);
962
    get_bits1(gb); // reserved
963

    
964
    v->s.h_edge_pos = v->s.avctx->coded_width;
965
    v->s.v_edge_pos = v->s.avctx->coded_height;
966

    
967
    av_log(v->s.avctx, AV_LOG_DEBUG,
968
               "Advanced Profile level %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
969
               "LoopFilter=%i, ChromaFormat=%i, Pulldown=%i, Interlace: %i\n"
970
               "TFCTRflag=%i, FINTERPflag=%i\n",
971
               v->level, v->frmrtq_postproc, v->bitrtq_postproc,
972
               v->s.loop_filter, v->chromaformat, v->broadcast, v->interlace,
973
               v->tfcntrflag, v->finterpflag
974
               );
975

    
976
    v->psf = get_bits1(gb);
977
    if(v->psf) { //PsF, 6.1.13
978
        av_log(v->s.avctx, AV_LOG_ERROR, "Progressive Segmented Frame mode: not supported (yet)\n");
979
        return -1;
980
    }
981
    v->s.max_b_frames = v->s.avctx->max_b_frames = 7;
982
    if(get_bits1(gb)) { //Display Info - decoding is not affected by it
983
        int w, h, ar = 0;
984
        av_log(v->s.avctx, AV_LOG_DEBUG, "Display extended info:\n");
985
        v->s.avctx->width  = v->s.width  = w = get_bits(gb, 14) + 1;
986
        v->s.avctx->height = v->s.height = h = get_bits(gb, 14) + 1;
987
        av_log(v->s.avctx, AV_LOG_DEBUG, "Display dimensions: %ix%i\n", w, h);
988
        if(get_bits1(gb))
989
            ar = get_bits(gb, 4);
990
        if(ar && ar < 14){
991
            v->s.avctx->sample_aspect_ratio = ff_vc1_pixel_aspect[ar];
992
        }else if(ar == 15){
993
            w = get_bits(gb, 8);
994
            h = get_bits(gb, 8);
995
            v->s.avctx->sample_aspect_ratio = (AVRational){w, h};
996
        }
997

    
998
        if(get_bits1(gb)){ //framerate stuff
999
            if(get_bits1(gb)) {
1000
                v->s.avctx->time_base.num = 32;
1001
                v->s.avctx->time_base.den = get_bits(gb, 16) + 1;
1002
            } else {
1003
                int nr, dr;
1004
                nr = get_bits(gb, 8);
1005
                dr = get_bits(gb, 4);
1006
                if(nr && nr < 8 && dr && dr < 3){
1007
                    v->s.avctx->time_base.num = ff_vc1_fps_dr[dr - 1];
1008
                    v->s.avctx->time_base.den = ff_vc1_fps_nr[nr - 1] * 1000;
1009
                }
1010
            }
1011
        }
1012

    
1013
        if(get_bits1(gb)){
1014
            v->color_prim = get_bits(gb, 8);
1015
            v->transfer_char = get_bits(gb, 8);
1016
            v->matrix_coef = get_bits(gb, 8);
1017
        }
1018
    }
1019

    
1020
    v->hrd_param_flag = get_bits1(gb);
1021
    if(v->hrd_param_flag) {
1022
        int i;
1023
        v->hrd_num_leaky_buckets = get_bits(gb, 5);
1024
        get_bits(gb, 4); //bitrate exponent
1025
        get_bits(gb, 4); //buffer size exponent
1026
        for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
1027
            get_bits(gb, 16); //hrd_rate[n]
1028
            get_bits(gb, 16); //hrd_buffer[n]
1029
        }
1030
    }
1031
    return 0;
1032
}
1033

    
1034
static int decode_entry_point(AVCodecContext *avctx, GetBitContext *gb)
1035
{
1036
    VC1Context *v = avctx->priv_data;
1037
    int i, blink, clentry, refdist;
1038

    
1039
    av_log(avctx, AV_LOG_DEBUG, "Entry point: %08X\n", show_bits_long(gb, 32));
1040
    blink = get_bits1(gb); // broken link
1041
    clentry = get_bits1(gb); // closed entry
1042
    v->panscanflag = get_bits1(gb);
1043
    refdist = get_bits1(gb); // refdist flag
1044
    v->s.loop_filter = get_bits1(gb);
1045
    v->fastuvmc = get_bits1(gb);
1046
    v->extended_mv = get_bits1(gb);
1047
    v->dquant = get_bits(gb, 2);
1048
    v->vstransform = get_bits1(gb);
1049
    v->overlap = get_bits1(gb);
1050
    v->quantizer_mode = get_bits(gb, 2);
1051

    
1052
    if(v->hrd_param_flag){
1053
        for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
1054
            get_bits(gb, 8); //hrd_full[n]
1055
        }
1056
    }
1057

    
1058
    if(get_bits1(gb)){
1059
        avctx->coded_width = (get_bits(gb, 12)+1)<<1;
1060
        avctx->coded_height = (get_bits(gb, 12)+1)<<1;
1061
    }
1062
    if(v->extended_mv)
1063
        v->extended_dmv = get_bits1(gb);
1064
    if(get_bits1(gb)) {
1065
        av_log(avctx, AV_LOG_ERROR, "Luma scaling is not supported, expect wrong picture\n");
1066
        skip_bits(gb, 3); // Y range, ignored for now
1067
    }
1068
    if(get_bits1(gb)) {
1069
        av_log(avctx, AV_LOG_ERROR, "Chroma scaling is not supported, expect wrong picture\n");
1070
        skip_bits(gb, 3); // UV range, ignored for now
1071
    }
1072

    
1073
    av_log(avctx, AV_LOG_DEBUG, "Entry point info:\n"
1074
        "BrokenLink=%i, ClosedEntry=%i, PanscanFlag=%i\n"
1075
        "RefDist=%i, Postproc=%i, FastUVMC=%i, ExtMV=%i\n"
1076
        "DQuant=%i, VSTransform=%i, Overlap=%i, Qmode=%i\n",
1077
        blink, clentry, v->panscanflag, refdist, v->s.loop_filter,
1078
        v->fastuvmc, v->extended_mv, v->dquant, v->vstransform, v->overlap, v->quantizer_mode);
1079

    
1080
    return 0;
1081
}
1082

    
1083
static int vc1_parse_frame_header(VC1Context *v, GetBitContext* gb)
1084
{
1085
    int pqindex, lowquant, status;
1086

    
1087
    if(v->finterpflag) v->interpfrm = get_bits(gb, 1);
1088
    skip_bits(gb, 2); //framecnt unused
1089
    v->rangeredfrm = 0;
1090
    if (v->rangered) v->rangeredfrm = get_bits(gb, 1);
1091
    v->s.pict_type = get_bits(gb, 1);
1092
    if (v->s.avctx->max_b_frames) {
1093
        if (!v->s.pict_type) {
1094
            if (get_bits(gb, 1)) v->s.pict_type = I_TYPE;
1095
            else v->s.pict_type = B_TYPE;
1096
        } else v->s.pict_type = P_TYPE;
1097
    } else v->s.pict_type = v->s.pict_type ? P_TYPE : I_TYPE;
1098

    
1099
    v->bi_type = 0;
1100
    if(v->s.pict_type == B_TYPE) {
1101
        v->bfraction = get_vlc2(gb, ff_vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
1102
        v->bfraction = ff_vc1_bfraction_lut[v->bfraction];
1103
        if(v->bfraction == 0) {
1104
            v->s.pict_type = BI_TYPE;
1105
        }
1106
    }
1107
    if(v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
1108
        get_bits(gb, 7); // skip buffer fullness
1109

    
1110
    /* calculate RND */
1111
    if(v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
1112
        v->rnd = 1;
1113
    if(v->s.pict_type == P_TYPE)
1114
        v->rnd ^= 1;
1115

    
1116
    /* Quantizer stuff */
1117
    pqindex = get_bits(gb, 5);
1118
    if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
1119
        v->pq = ff_vc1_pquant_table[0][pqindex];
1120
    else
1121
        v->pq = ff_vc1_pquant_table[1][pqindex];
1122

    
1123
    v->pquantizer = 1;
1124
    if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
1125
        v->pquantizer = pqindex < 9;
1126
    if (v->quantizer_mode == QUANT_NON_UNIFORM)
1127
        v->pquantizer = 0;
1128
    v->pqindex = pqindex;
1129
    if (pqindex < 9) v->halfpq = get_bits(gb, 1);
1130
    else v->halfpq = 0;
1131
    if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
1132
        v->pquantizer = get_bits(gb, 1);
1133
    v->dquantfrm = 0;
1134
    if (v->extended_mv == 1) v->mvrange = get_prefix(gb, 0, 3);
1135
    v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
1136
    v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
1137
    v->range_x = 1 << (v->k_x - 1);
1138
    v->range_y = 1 << (v->k_y - 1);
1139
    if (v->profile == PROFILE_ADVANCED)
1140
    {
1141
        if (v->postprocflag) v->postproc = get_bits(gb, 1);
1142
    }
1143
    else
1144
        if (v->multires && v->s.pict_type != B_TYPE) v->respic = get_bits(gb, 2);
1145

    
1146
    if(v->res_x8 && (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)){
1147
        if(get_bits1(gb))return -1;
1148
    }
1149
//av_log(v->s.avctx, AV_LOG_INFO, "%c Frame: QP=[%i]%i (+%i/2) %i\n",
1150
//        (v->s.pict_type == P_TYPE) ? 'P' : ((v->s.pict_type == I_TYPE) ? 'I' : 'B'), pqindex, v->pq, v->halfpq, v->rangeredfrm);
1151

    
1152
    if(v->s.pict_type == I_TYPE || v->s.pict_type == P_TYPE) v->use_ic = 0;
1153

    
1154
    switch(v->s.pict_type) {
1155
    case P_TYPE:
1156
        if (v->pq < 5) v->tt_index = 0;
1157
        else if(v->pq < 13) v->tt_index = 1;
1158
        else v->tt_index = 2;
1159

    
1160
        lowquant = (v->pq > 12) ? 0 : 1;
1161
        v->mv_mode = ff_vc1_mv_pmode_table[lowquant][get_prefix(gb, 1, 4)];
1162
        if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
1163
        {
1164
            int scale, shift, i;
1165
            v->mv_mode2 = ff_vc1_mv_pmode_table2[lowquant][get_prefix(gb, 1, 3)];
1166
            v->lumscale = get_bits(gb, 6);
1167
            v->lumshift = get_bits(gb, 6);
1168
            v->use_ic = 1;
1169
            /* fill lookup tables for intensity compensation */
1170
            if(!v->lumscale) {
1171
                scale = -64;
1172
                shift = (255 - v->lumshift * 2) << 6;
1173
                if(v->lumshift > 31)
1174
                    shift += 128 << 6;
1175
            } else {
1176
                scale = v->lumscale + 32;
1177
                if(v->lumshift > 31)
1178
                    shift = (v->lumshift - 64) << 6;
1179
                else
1180
                    shift = v->lumshift << 6;
1181
            }
1182
            for(i = 0; i < 256; i++) {
1183
                v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
1184
                v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
1185
            }
1186
        }
1187
        if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
1188
            v->s.quarter_sample = 0;
1189
        else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
1190
            if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
1191
                v->s.quarter_sample = 0;
1192
            else
1193
                v->s.quarter_sample = 1;
1194
        } else
1195
            v->s.quarter_sample = 1;
1196
        v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
1197

    
1198
        if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
1199
                 v->mv_mode2 == MV_PMODE_MIXED_MV)
1200
                || v->mv_mode == MV_PMODE_MIXED_MV)
1201
        {
1202
            status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
1203
            if (status < 0) return -1;
1204
            av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
1205
                   "Imode: %i, Invert: %i\n", status>>1, status&1);
1206
        } else {
1207
            v->mv_type_is_raw = 0;
1208
            memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
1209
        }
1210
        status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
1211
        if (status < 0) return -1;
1212
        av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
1213
               "Imode: %i, Invert: %i\n", status>>1, status&1);
1214

    
1215
        /* Hopefully this is correct for P frames */
1216
        v->s.mv_table_index = get_bits(gb, 2); //but using ff_vc1_ tables
1217
        v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
1218

    
1219
        if (v->dquant)
1220
        {
1221
            av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
1222
            vop_dquant_decoding(v);
1223
        }
1224

    
1225
        v->ttfrm = 0; //FIXME Is that so ?
1226
        if (v->vstransform)
1227
        {
1228
            v->ttmbf = get_bits(gb, 1);
1229
            if (v->ttmbf)
1230
            {
1231
                v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
1232
            }
1233
        } else {
1234
            v->ttmbf = 1;
1235
            v->ttfrm = TT_8X8;
1236
        }
1237
        break;
1238
    case B_TYPE:
1239
        if (v->pq < 5) v->tt_index = 0;
1240
        else if(v->pq < 13) v->tt_index = 1;
1241
        else v->tt_index = 2;
1242

    
1243
        lowquant = (v->pq > 12) ? 0 : 1;
1244
        v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
1245
        v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
1246
        v->s.mspel = v->s.quarter_sample;
1247

    
1248
        status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
1249
        if (status < 0) return -1;
1250
        av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
1251
               "Imode: %i, Invert: %i\n", status>>1, status&1);
1252
        status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
1253
        if (status < 0) return -1;
1254
        av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
1255
               "Imode: %i, Invert: %i\n", status>>1, status&1);
1256

    
1257
        v->s.mv_table_index = get_bits(gb, 2);
1258
        v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
1259

    
1260
        if (v->dquant)
1261
        {
1262
            av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
1263
            vop_dquant_decoding(v);
1264
        }
1265

    
1266
        v->ttfrm = 0;
1267
        if (v->vstransform)
1268
        {
1269
            v->ttmbf = get_bits(gb, 1);
1270
            if (v->ttmbf)
1271
            {
1272
                v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
1273
            }
1274
        } else {
1275
            v->ttmbf = 1;
1276
            v->ttfrm = TT_8X8;
1277
        }
1278
        break;
1279
    }
1280

    
1281
    /* AC Syntax */
1282
    v->c_ac_table_index = decode012(gb);
1283
    if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
1284
    {
1285
        v->y_ac_table_index = decode012(gb);
1286
    }
1287
    /* DC Syntax */
1288
    v->s.dc_table_index = get_bits(gb, 1);
1289

    
1290
    if(v->s.pict_type == BI_TYPE) {
1291
        v->s.pict_type = B_TYPE;
1292
        v->bi_type = 1;
1293
    }
1294
    return 0;
1295
}
1296

    
1297
static int vc1_parse_frame_header_adv(VC1Context *v, GetBitContext* gb)
1298
{
1299
    int pqindex, lowquant;
1300
    int status;
1301

    
1302
    v->p_frame_skipped = 0;
1303

    
1304
    if(v->interlace){
1305
        v->fcm = decode012(gb);
1306
        if(v->fcm) return -1; // interlaced frames/fields are not implemented
1307
    }
1308
    switch(get_prefix(gb, 0, 4)) {
1309
    case 0:
1310
        v->s.pict_type = P_TYPE;
1311
        break;
1312
    case 1:
1313
        v->s.pict_type = B_TYPE;
1314
        break;
1315
    case 2:
1316
        v->s.pict_type = I_TYPE;
1317
        break;
1318
    case 3:
1319
        v->s.pict_type = BI_TYPE;
1320
        break;
1321
    case 4:
1322
        v->s.pict_type = P_TYPE; // skipped pic
1323
        v->p_frame_skipped = 1;
1324
        return 0;
1325
    }
1326
    if(v->tfcntrflag)
1327
        get_bits(gb, 8);
1328
    if(v->broadcast) {
1329
        if(!v->interlace || v->psf) {
1330
            v->rptfrm = get_bits(gb, 2);
1331
        } else {
1332
            v->tff = get_bits1(gb);
1333
            v->rptfrm = get_bits1(gb);
1334
        }
1335
    }
1336
    if(v->panscanflag) {
1337
        //...
1338
    }
1339
    v->rnd = get_bits1(gb);
1340
    if(v->interlace)
1341
        v->uvsamp = get_bits1(gb);
1342
    if(v->finterpflag) v->interpfrm = get_bits(gb, 1);
1343
    if(v->s.pict_type == B_TYPE) {
1344
        v->bfraction = get_vlc2(gb, ff_vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
1345
        v->bfraction = ff_vc1_bfraction_lut[v->bfraction];
1346
        if(v->bfraction == 0) {
1347
            v->s.pict_type = BI_TYPE; /* XXX: should not happen here */
1348
        }
1349
    }
1350
    pqindex = get_bits(gb, 5);
1351
    v->pqindex = pqindex;
1352
    if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
1353
        v->pq = ff_vc1_pquant_table[0][pqindex];
1354
    else
1355
        v->pq = ff_vc1_pquant_table[1][pqindex];
1356

    
1357
    v->pquantizer = 1;
1358
    if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
1359
        v->pquantizer = pqindex < 9;
1360
    if (v->quantizer_mode == QUANT_NON_UNIFORM)
1361
        v->pquantizer = 0;
1362
    v->pqindex = pqindex;
1363
    if (pqindex < 9) v->halfpq = get_bits(gb, 1);
1364
    else v->halfpq = 0;
1365
    if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
1366
        v->pquantizer = get_bits(gb, 1);
1367

    
1368
    if(v->s.pict_type == I_TYPE || v->s.pict_type == P_TYPE) v->use_ic = 0;
1369

    
1370
    switch(v->s.pict_type) {
1371
    case I_TYPE:
1372
    case BI_TYPE:
1373
        status = bitplane_decoding(v->acpred_plane, &v->acpred_is_raw, v);
1374
        if (status < 0) return -1;
1375
        av_log(v->s.avctx, AV_LOG_DEBUG, "ACPRED plane encoding: "
1376
                "Imode: %i, Invert: %i\n", status>>1, status&1);
1377
        v->condover = CONDOVER_NONE;
1378
        if(v->overlap && v->pq <= 8) {
1379
            v->condover = decode012(gb);
1380
            if(v->condover == CONDOVER_SELECT) {
1381
                status = bitplane_decoding(v->over_flags_plane, &v->overflg_is_raw, v);
1382
                if (status < 0) return -1;
1383
                av_log(v->s.avctx, AV_LOG_DEBUG, "CONDOVER plane encoding: "
1384
                        "Imode: %i, Invert: %i\n", status>>1, status&1);
1385
            }
1386
        }
1387
        break;
1388
    case P_TYPE:
1389
        if(v->postprocflag)
1390
            v->postproc = get_bits1(gb);
1391
        if (v->extended_mv) v->mvrange = get_prefix(gb, 0, 3);
1392
        else v->mvrange = 0;
1393
        v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
1394
        v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
1395
        v->range_x = 1 << (v->k_x - 1);
1396
        v->range_y = 1 << (v->k_y - 1);
1397

    
1398
        if (v->pq < 5) v->tt_index = 0;
1399
        else if(v->pq < 13) v->tt_index = 1;
1400
        else v->tt_index = 2;
1401

    
1402
        lowquant = (v->pq > 12) ? 0 : 1;
1403
        v->mv_mode = ff_vc1_mv_pmode_table[lowquant][get_prefix(gb, 1, 4)];
1404
        if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
1405
        {
1406
            int scale, shift, i;
1407
            v->mv_mode2 = ff_vc1_mv_pmode_table2[lowquant][get_prefix(gb, 1, 3)];
1408
            v->lumscale = get_bits(gb, 6);
1409
            v->lumshift = get_bits(gb, 6);
1410
            /* fill lookup tables for intensity compensation */
1411
            if(!v->lumscale) {
1412
                scale = -64;
1413
                shift = (255 - v->lumshift * 2) << 6;
1414
                if(v->lumshift > 31)
1415
                    shift += 128 << 6;
1416
            } else {
1417
                scale = v->lumscale + 32;
1418
                if(v->lumshift > 31)
1419
                    shift = (v->lumshift - 64) << 6;
1420
                else
1421
                    shift = v->lumshift << 6;
1422
            }
1423
            for(i = 0; i < 256; i++) {
1424
                v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
1425
                v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
1426
            }
1427
            v->use_ic = 1;
1428
        }
1429
        if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
1430
            v->s.quarter_sample = 0;
1431
        else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
1432
            if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
1433
                v->s.quarter_sample = 0;
1434
            else
1435
                v->s.quarter_sample = 1;
1436
        } else
1437
            v->s.quarter_sample = 1;
1438
        v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
1439

    
1440
        if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
1441
                 v->mv_mode2 == MV_PMODE_MIXED_MV)
1442
                || v->mv_mode == MV_PMODE_MIXED_MV)
1443
        {
1444
            status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
1445
            if (status < 0) return -1;
1446
            av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
1447
                   "Imode: %i, Invert: %i\n", status>>1, status&1);
1448
        } else {
1449
            v->mv_type_is_raw = 0;
1450
            memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
1451
        }
1452
        status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
1453
        if (status < 0) return -1;
1454
        av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
1455
               "Imode: %i, Invert: %i\n", status>>1, status&1);
1456

    
1457
        /* Hopefully this is correct for P frames */
1458
        v->s.mv_table_index = get_bits(gb, 2); //but using ff_vc1_ tables
1459
        v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
1460
        if (v->dquant)
1461
        {
1462
            av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
1463
            vop_dquant_decoding(v);
1464
        }
1465

    
1466
        v->ttfrm = 0; //FIXME Is that so ?
1467
        if (v->vstransform)
1468
        {
1469
            v->ttmbf = get_bits(gb, 1);
1470
            if (v->ttmbf)
1471
            {
1472
                v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
1473
            }
1474
        } else {
1475
            v->ttmbf = 1;
1476
            v->ttfrm = TT_8X8;
1477
        }
1478
        break;
1479
    case B_TYPE:
1480
        if(v->postprocflag)
1481
            v->postproc = get_bits1(gb);
1482
        if (v->extended_mv) v->mvrange = get_prefix(gb, 0, 3);
1483
        else v->mvrange = 0;
1484
        v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
1485
        v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
1486
        v->range_x = 1 << (v->k_x - 1);
1487
        v->range_y = 1 << (v->k_y - 1);
1488

    
1489
        if (v->pq < 5) v->tt_index = 0;
1490
        else if(v->pq < 13) v->tt_index = 1;
1491
        else v->tt_index = 2;
1492

    
1493
        lowquant = (v->pq > 12) ? 0 : 1;
1494
        v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
1495
        v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
1496
        v->s.mspel = v->s.quarter_sample;
1497

    
1498
        status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
1499
        if (status < 0) return -1;
1500
        av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
1501
               "Imode: %i, Invert: %i\n", status>>1, status&1);
1502
        status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
1503
        if (status < 0) return -1;
1504
        av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
1505
               "Imode: %i, Invert: %i\n", status>>1, status&1);
1506

    
1507
        v->s.mv_table_index = get_bits(gb, 2);
1508
        v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
1509

    
1510
        if (v->dquant)
1511
        {
1512
            av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
1513
            vop_dquant_decoding(v);
1514
        }
1515

    
1516
        v->ttfrm = 0;
1517
        if (v->vstransform)
1518
        {
1519
            v->ttmbf = get_bits(gb, 1);
1520
            if (v->ttmbf)
1521
            {
1522
                v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
1523
            }
1524
        } else {
1525
            v->ttmbf = 1;
1526
            v->ttfrm = TT_8X8;
1527
        }
1528
        break;
1529
    }
1530

    
1531
    /* AC Syntax */
1532
    v->c_ac_table_index = decode012(gb);
1533
    if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
1534
    {
1535
        v->y_ac_table_index = decode012(gb);
1536
    }
1537
    /* DC Syntax */
1538
    v->s.dc_table_index = get_bits(gb, 1);
1539
    if ((v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE) && v->dquant) {
1540
        av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
1541
        vop_dquant_decoding(v);
1542
    }
1543

    
1544
    v->bi_type = 0;
1545
    if(v->s.pict_type == BI_TYPE) {
1546
        v->s.pict_type = B_TYPE;
1547
        v->bi_type = 1;
1548
    }
1549
    return 0;
1550
}
1551

    
1552
/***********************************************************************/
1553
/**
1554
 * @defgroup block VC-1 Block-level functions
1555
 * @see 7.1.4, p91 and 8.1.1.7, p(1)04
1556
 * @{
1557
 */
1558

    
1559
/**
1560
 * @def GET_MQUANT
1561
 * @brief Get macroblock-level quantizer scale
1562
 */
1563
#define GET_MQUANT()                                           \
1564
  if (v->dquantfrm)                                            \
1565
  {                                                            \
1566
    int edges = 0;                                             \
1567
    if (v->dqprofile == DQPROFILE_ALL_MBS)                     \
1568
    {                                                          \
1569
      if (v->dqbilevel)                                        \
1570
      {                                                        \
1571
        mquant = (get_bits(gb, 1)) ? v->altpq : v->pq;         \
1572
      }                                                        \
1573
      else                                                     \
1574
      {                                                        \
1575
        mqdiff = get_bits(gb, 3);                              \
1576
        if (mqdiff != 7) mquant = v->pq + mqdiff;              \
1577
        else mquant = get_bits(gb, 5);                         \
1578
      }                                                        \
1579
    }                                                          \
1580
    if(v->dqprofile == DQPROFILE_SINGLE_EDGE)                  \
1581
        edges = 1 << v->dqsbedge;                              \
1582
    else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES)            \
1583
        edges = (3 << v->dqsbedge) % 15;                       \
1584
    else if(v->dqprofile == DQPROFILE_FOUR_EDGES)              \
1585
        edges = 15;                                            \
1586
    if((edges&1) && !s->mb_x)                                  \
1587
        mquant = v->altpq;                                     \
1588
    if((edges&2) && s->first_slice_line)                       \
1589
        mquant = v->altpq;                                     \
1590
    if((edges&4) && s->mb_x == (s->mb_width - 1))              \
1591
        mquant = v->altpq;                                     \
1592
    if((edges&8) && s->mb_y == (s->mb_height - 1))             \
1593
        mquant = v->altpq;                                     \
1594
  }
1595

    
1596
/**
1597
 * @def GET_MVDATA(_dmv_x, _dmv_y)
1598
 * @brief Get MV differentials
1599
 * @see MVDATA decoding from 8.3.5.2, p(1)20
1600
 * @param _dmv_x Horizontal differential for decoded MV
1601
 * @param _dmv_y Vertical differential for decoded MV
1602
 */
1603
#define GET_MVDATA(_dmv_x, _dmv_y)                                  \
1604
  index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index].table,\
1605
                       VC1_MV_DIFF_VLC_BITS, 2);                    \
1606
  if (index > 36)                                                   \
1607
  {                                                                 \
1608
    mb_has_coeffs = 1;                                              \
1609
    index -= 37;                                                    \
1610
  }                                                                 \
1611
  else mb_has_coeffs = 0;                                           \
1612
  s->mb_intra = 0;                                                  \
1613
  if (!index) { _dmv_x = _dmv_y = 0; }                              \
1614
  else if (index == 35)                                             \
1615
  {                                                                 \
1616
    _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample);          \
1617
    _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample);          \
1618
  }                                                                 \
1619
  else if (index == 36)                                             \
1620
  {                                                                 \
1621
    _dmv_x = 0;                                                     \
1622
    _dmv_y = 0;                                                     \
1623
    s->mb_intra = 1;                                                \
1624
  }                                                                 \
1625
  else                                                              \
1626
  {                                                                 \
1627
    index1 = index%6;                                               \
1628
    if (!s->quarter_sample && index1 == 5) val = 1;                 \
1629
    else                                   val = 0;                 \
1630
    if(size_table[index1] - val > 0)                                \
1631
        val = get_bits(gb, size_table[index1] - val);               \
1632
    else                                   val = 0;                 \
1633
    sign = 0 - (val&1);                                             \
1634
    _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign;     \
1635
                                                                    \
1636
    index1 = index/6;                                               \
1637
    if (!s->quarter_sample && index1 == 5) val = 1;                 \
1638
    else                                   val = 0;                 \
1639
    if(size_table[index1] - val > 0)                                \
1640
        val = get_bits(gb, size_table[index1] - val);               \
1641
    else                                   val = 0;                 \
1642
    sign = 0 - (val&1);                                             \
1643
    _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign;     \
1644
  }
1645

    
1646
/** Predict and set motion vector
1647
 */
1648
static inline void vc1_pred_mv(MpegEncContext *s, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra)
1649
{
1650
    int xy, wrap, off = 0;
1651
    int16_t *A, *B, *C;
1652
    int px, py;
1653
    int sum;
1654

    
1655
    /* scale MV difference to be quad-pel */
1656
    dmv_x <<= 1 - s->quarter_sample;
1657
    dmv_y <<= 1 - s->quarter_sample;
1658

    
1659
    wrap = s->b8_stride;
1660
    xy = s->block_index[n];
1661

    
1662
    if(s->mb_intra){
1663
        s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
1664
        s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
1665
        s->current_picture.motion_val[1][xy][0] = 0;
1666
        s->current_picture.motion_val[1][xy][1] = 0;
1667
        if(mv1) { /* duplicate motion data for 1-MV block */
1668
            s->current_picture.motion_val[0][xy + 1][0] = 0;
1669
            s->current_picture.motion_val[0][xy + 1][1] = 0;
1670
            s->current_picture.motion_val[0][xy + wrap][0] = 0;
1671
            s->current_picture.motion_val[0][xy + wrap][1] = 0;
1672
            s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
1673
            s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
1674
            s->current_picture.motion_val[1][xy + 1][0] = 0;
1675
            s->current_picture.motion_val[1][xy + 1][1] = 0;
1676
            s->current_picture.motion_val[1][xy + wrap][0] = 0;
1677
            s->current_picture.motion_val[1][xy + wrap][1] = 0;
1678
            s->current_picture.motion_val[1][xy + wrap + 1][0] = 0;
1679
            s->current_picture.motion_val[1][xy + wrap + 1][1] = 0;
1680
        }
1681
        return;
1682
    }
1683

    
1684
    C = s->current_picture.motion_val[0][xy - 1];
1685
    A = s->current_picture.motion_val[0][xy - wrap];
1686
    if(mv1)
1687
        off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
1688
    else {
1689
        //in 4-MV mode different blocks have different B predictor position
1690
        switch(n){
1691
        case 0:
1692
            off = (s->mb_x > 0) ? -1 : 1;
1693
            break;
1694
        case 1:
1695
            off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
1696
            break;
1697
        case 2:
1698
            off = 1;
1699
            break;
1700
        case 3:
1701
            off = -1;
1702
        }
1703
    }
1704
    B = s->current_picture.motion_val[0][xy - wrap + off];
1705

    
1706
    if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds
1707
        if(s->mb_width == 1) {
1708
            px = A[0];
1709
            py = A[1];
1710
        } else {
1711
            px = mid_pred(A[0], B[0], C[0]);
1712
            py = mid_pred(A[1], B[1], C[1]);
1713
        }
1714
    } else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds
1715
        px = C[0];
1716
        py = C[1];
1717
    } else {
1718
        px = py = 0;
1719
    }
1720
    /* Pullback MV as specified in 8.3.5.3.4 */
1721
    {
1722
        int qx, qy, X, Y;
1723
        qx = (s->mb_x << 6) + ((n==1 || n==3) ? 32 : 0);
1724
        qy = (s->mb_y << 6) + ((n==2 || n==3) ? 32 : 0);
1725
        X = (s->mb_width << 6) - 4;
1726
        Y = (s->mb_height << 6) - 4;
1727
        if(mv1) {
1728
            if(qx + px < -60) px = -60 - qx;
1729
            if(qy + py < -60) py = -60 - qy;
1730
        } else {
1731
            if(qx + px < -28) px = -28 - qx;
1732
            if(qy + py < -28) py = -28 - qy;
1733
        }
1734
        if(qx + px > X) px = X - qx;
1735
        if(qy + py > Y) py = Y - qy;
1736
    }
1737
    /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
1738
    if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) {
1739
        if(is_intra[xy - wrap])
1740
            sum = FFABS(px) + FFABS(py);
1741
        else
1742
            sum = FFABS(px - A[0]) + FFABS(py - A[1]);
1743
        if(sum > 32) {
1744
            if(get_bits1(&s->gb)) {
1745
                px = A[0];
1746
                py = A[1];
1747
            } else {
1748
                px = C[0];
1749
                py = C[1];
1750
            }
1751
        } else {
1752
            if(is_intra[xy - 1])
1753
                sum = FFABS(px) + FFABS(py);
1754
            else
1755
                sum = FFABS(px - C[0]) + FFABS(py - C[1]);
1756
            if(sum > 32) {
1757
                if(get_bits1(&s->gb)) {
1758
                    px = A[0];
1759
                    py = A[1];
1760
                } else {
1761
                    px = C[0];
1762
                    py = C[1];
1763
                }
1764
            }
1765
        }
1766
    }
1767
    /* store MV using signed modulus of MV range defined in 4.11 */
1768
    s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
1769
    s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
1770
    if(mv1) { /* duplicate motion data for 1-MV block */
1771
        s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0];
1772
        s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1];
1773
        s->current_picture.motion_val[0][xy + wrap][0] = s->current_picture.motion_val[0][xy][0];
1774
        s->current_picture.motion_val[0][xy + wrap][1] = s->current_picture.motion_val[0][xy][1];
1775
        s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0];
1776
        s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1];
1777
    }
1778
}
1779

    
1780
/** Motion compensation for direct or interpolated blocks in B-frames
1781
 */
1782
static void vc1_interp_mc(VC1Context *v)
1783
{
1784
    MpegEncContext *s = &v->s;
1785
    DSPContext *dsp = &v->s.dsp;
1786
    uint8_t *srcY, *srcU, *srcV;
1787
    int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
1788

    
1789
    if(!v->s.next_picture.data[0])return;
1790

    
1791
    mx = s->mv[1][0][0];
1792
    my = s->mv[1][0][1];
1793
    uvmx = (mx + ((mx & 3) == 3)) >> 1;
1794
    uvmy = (my + ((my & 3) == 3)) >> 1;
1795
    if(v->fastuvmc) {
1796
        uvmx = uvmx + ((uvmx<0)?-(uvmx&1):(uvmx&1));
1797
        uvmy = uvmy + ((uvmy<0)?-(uvmy&1):(uvmy&1));
1798
    }
1799
    srcY = s->next_picture.data[0];
1800
    srcU = s->next_picture.data[1];
1801
    srcV = s->next_picture.data[2];
1802

    
1803
    src_x = s->mb_x * 16 + (mx >> 2);
1804
    src_y = s->mb_y * 16 + (my >> 2);
1805
    uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
1806
    uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
1807

    
1808
    if(v->profile != PROFILE_ADVANCED){
1809
        src_x   = av_clip(  src_x, -16, s->mb_width  * 16);
1810
        src_y   = av_clip(  src_y, -16, s->mb_height * 16);
1811
        uvsrc_x = av_clip(uvsrc_x,  -8, s->mb_width  *  8);
1812
        uvsrc_y = av_clip(uvsrc_y,  -8, s->mb_height *  8);
1813
    }else{
1814
        src_x   = av_clip(  src_x, -17, s->avctx->coded_width);
1815
        src_y   = av_clip(  src_y, -18, s->avctx->coded_height + 1);
1816
        uvsrc_x = av_clip(uvsrc_x,  -8, s->avctx->coded_width  >> 1);
1817
        uvsrc_y = av_clip(uvsrc_y,  -8, s->avctx->coded_height >> 1);
1818
    }
1819

    
1820
    srcY += src_y * s->linesize + src_x;
1821
    srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
1822
    srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
1823

    
1824
    /* for grayscale we should not try to read from unknown area */
1825
    if(s->flags & CODEC_FLAG_GRAY) {
1826
        srcU = s->edge_emu_buffer + 18 * s->linesize;
1827
        srcV = s->edge_emu_buffer + 18 * s->linesize;
1828
    }
1829

    
1830
    if(v->rangeredfrm
1831
       || (unsigned)src_x > s->h_edge_pos - (mx&3) - 16
1832
       || (unsigned)src_y > s->v_edge_pos - (my&3) - 16){
1833
        uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
1834

    
1835
        srcY -= s->mspel * (1 + s->linesize);
1836
        ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
1837
                            src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
1838
        srcY = s->edge_emu_buffer;
1839
        ff_emulated_edge_mc(uvbuf     , srcU, s->uvlinesize, 8+1, 8+1,
1840
                            uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
1841
        ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
1842
                            uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
1843
        srcU = uvbuf;
1844
        srcV = uvbuf + 16;
1845
        /* if we deal with range reduction we need to scale source blocks */
1846
        if(v->rangeredfrm) {
1847
            int i, j;
1848
            uint8_t *src, *src2;
1849

    
1850
            src = srcY;
1851
            for(j = 0; j < 17 + s->mspel*2; j++) {
1852
                for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
1853
                src += s->linesize;
1854
            }
1855
            src = srcU; src2 = srcV;
1856
            for(j = 0; j < 9; j++) {
1857
                for(i = 0; i < 9; i++) {
1858
                    src[i] = ((src[i] - 128) >> 1) + 128;
1859
                    src2[i] = ((src2[i] - 128) >> 1) + 128;
1860
                }
1861
                src += s->uvlinesize;
1862
                src2 += s->uvlinesize;
1863
            }
1864
        }
1865
        srcY += s->mspel * (1 + s->linesize);
1866
    }
1867

    
1868
    mx >>= 1;
1869
    my >>= 1;
1870
    dxy = ((my & 1) << 1) | (mx & 1);
1871

    
1872
    dsp->avg_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
1873

    
1874
    if(s->flags & CODEC_FLAG_GRAY) return;
1875
    /* Chroma MC always uses qpel blilinear */
1876
    uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
1877
    uvmx = (uvmx&3)<<1;
1878
    uvmy = (uvmy&3)<<1;
1879
    dsp->avg_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
1880
    dsp->avg_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
1881
}
1882

    
1883
static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs)
1884
{
1885
    int n = bfrac;
1886

    
1887
#if B_FRACTION_DEN==256
1888
    if(inv)
1889
        n -= 256;
1890
    if(!qs)
1891
        return 2 * ((value * n + 255) >> 9);
1892
    return (value * n + 128) >> 8;
1893
#else
1894
    if(inv)
1895
        n -= B_FRACTION_DEN;
1896
    if(!qs)
1897
        return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN));
1898
    return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN;
1899
#endif
1900
}
1901

    
1902
/** Reconstruct motion vector for B-frame and do motion compensation
1903
 */
1904
static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode)
1905
{
1906
    if(v->use_ic) {
1907
        v->mv_mode2 = v->mv_mode;
1908
        v->mv_mode = MV_PMODE_INTENSITY_COMP;
1909
    }
1910
    if(direct) {
1911
        vc1_mc_1mv(v, 0);
1912
        vc1_interp_mc(v);
1913
        if(v->use_ic) v->mv_mode = v->mv_mode2;
1914
        return;
1915
    }
1916
    if(mode == BMV_TYPE_INTERPOLATED) {
1917
        vc1_mc_1mv(v, 0);
1918
        vc1_interp_mc(v);
1919
        if(v->use_ic) v->mv_mode = v->mv_mode2;
1920
        return;
1921
    }
1922

    
1923
    if(v->use_ic && (mode == BMV_TYPE_BACKWARD)) v->mv_mode = v->mv_mode2;
1924
    vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
1925
    if(v->use_ic) v->mv_mode = v->mv_mode2;
1926
}
1927

    
1928
static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mvtype)
1929
{
1930
    MpegEncContext *s = &v->s;
1931
    int xy, wrap, off = 0;
1932
    int16_t *A, *B, *C;
1933
    int px, py;
1934
    int sum;
1935
    int r_x, r_y;
1936
    const uint8_t *is_intra = v->mb_type[0];
1937

    
1938
    r_x = v->range_x;
1939
    r_y = v->range_y;
1940
    /* scale MV difference to be quad-pel */
1941
    dmv_x[0] <<= 1 - s->quarter_sample;
1942
    dmv_y[0] <<= 1 - s->quarter_sample;
1943
    dmv_x[1] <<= 1 - s->quarter_sample;
1944
    dmv_y[1] <<= 1 - s->quarter_sample;
1945

    
1946
    wrap = s->b8_stride;
1947
    xy = s->block_index[0];
1948

    
1949
    if(s->mb_intra) {
1950
        s->current_picture.motion_val[0][xy][0] =
1951
        s->current_picture.motion_val[0][xy][1] =
1952
        s->current_picture.motion_val[1][xy][0] =
1953
        s->current_picture.motion_val[1][xy][1] = 0;
1954
        return;
1955
    }
1956
    s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
1957
    s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
1958
    s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
1959
    s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
1960

    
1961
    /* Pullback predicted motion vectors as specified in 8.4.5.4 */
1962
    s->mv[0][0][0] = av_clip(s->mv[0][0][0], -60 - (s->mb_x << 6), (s->mb_width  << 6) - 4 - (s->mb_x << 6));
1963
    s->mv[0][0][1] = av_clip(s->mv[0][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
1964
    s->mv[1][0][0] = av_clip(s->mv[1][0][0], -60 - (s->mb_x << 6), (s->mb_width  << 6) - 4 - (s->mb_x << 6));
1965
    s->mv[1][0][1] = av_clip(s->mv[1][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
1966
    if(direct) {
1967
        s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
1968
        s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
1969
        s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
1970
        s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
1971
        return;
1972
    }
1973

    
1974
    if((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
1975
        C = s->current_picture.motion_val[0][xy - 2];
1976
        A = s->current_picture.motion_val[0][xy - wrap*2];
1977
        off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
1978
        B = s->current_picture.motion_val[0][xy - wrap*2 + off];
1979

    
1980
        if(!s->mb_x) C[0] = C[1] = 0;
1981
        if(!s->first_slice_line) { // predictor A is not out of bounds
1982
            if(s->mb_width == 1) {
1983
                px = A[0];
1984
                py = A[1];
1985
            } else {
1986
                px = mid_pred(A[0], B[0], C[0]);
1987
                py = mid_pred(A[1], B[1], C[1]);
1988
            }
1989
        } else if(s->mb_x) { // predictor C is not out of bounds
1990
            px = C[0];
1991
            py = C[1];
1992
        } else {
1993
            px = py = 0;
1994
        }
1995
        /* Pullback MV as specified in 8.3.5.3.4 */
1996
        {
1997
            int qx, qy, X, Y;
1998
            if(v->profile < PROFILE_ADVANCED) {
1999
                qx = (s->mb_x << 5);
2000
                qy = (s->mb_y << 5);
2001
                X = (s->mb_width << 5) - 4;
2002
                Y = (s->mb_height << 5) - 4;
2003
                if(qx + px < -28) px = -28 - qx;
2004
                if(qy + py < -28) py = -28 - qy;
2005
                if(qx + px > X) px = X - qx;
2006
                if(qy + py > Y) py = Y - qy;
2007
            } else {
2008
                qx = (s->mb_x << 6);
2009
                qy = (s->mb_y << 6);
2010
                X = (s->mb_width << 6) - 4;
2011
                Y = (s->mb_height << 6) - 4;
2012
                if(qx + px < -60) px = -60 - qx;
2013
                if(qy + py < -60) py = -60 - qy;
2014
                if(qx + px > X) px = X - qx;
2015
                if(qy + py > Y) py = Y - qy;
2016
            }
2017
        }
2018
        /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
2019
        if(0 && !s->first_slice_line && s->mb_x) {
2020
            if(is_intra[xy - wrap])
2021
                sum = FFABS(px) + FFABS(py);
2022
            else
2023
                sum = FFABS(px - A[0]) + FFABS(py - A[1]);
2024
            if(sum > 32) {
2025
                if(get_bits1(&s->gb)) {
2026
                    px = A[0];
2027
                    py = A[1];
2028
                } else {
2029
                    px = C[0];
2030
                    py = C[1];
2031
                }
2032
            } else {
2033
                if(is_intra[xy - 2])
2034
                    sum = FFABS(px) + FFABS(py);
2035
                else
2036
                    sum = FFABS(px - C[0]) + FFABS(py - C[1]);
2037
                if(sum > 32) {
2038
                    if(get_bits1(&s->gb)) {
2039
                        px = A[0];
2040
                        py = A[1];
2041
                    } else {
2042
                        px = C[0];
2043
                        py = C[1];
2044
                    }
2045
                }
2046
            }
2047
        }
2048
        /* store MV using signed modulus of MV range defined in 4.11 */
2049
        s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
2050
        s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
2051
    }
2052
    if((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
2053
        C = s->current_picture.motion_val[1][xy - 2];
2054
        A = s->current_picture.motion_val[1][xy - wrap*2];
2055
        off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
2056
        B = s->current_picture.motion_val[1][xy - wrap*2 + off];
2057

    
2058
        if(!s->mb_x) C[0] = C[1] = 0;
2059
        if(!s->first_slice_line) { // predictor A is not out of bounds
2060
            if(s->mb_width == 1) {
2061
                px = A[0];
2062
                py = A[1];
2063
            } else {
2064
                px = mid_pred(A[0], B[0], C[0]);
2065
                py = mid_pred(A[1], B[1], C[1]);
2066
            }
2067
        } else if(s->mb_x) { // predictor C is not out of bounds
2068
            px = C[0];
2069
            py = C[1];
2070
        } else {
2071
            px = py = 0;
2072
        }
2073
        /* Pullback MV as specified in 8.3.5.3.4 */
2074
        {
2075
            int qx, qy, X, Y;
2076
            if(v->profile < PROFILE_ADVANCED) {
2077
                qx = (s->mb_x << 5);
2078
                qy = (s->mb_y << 5);
2079
                X = (s->mb_width << 5) - 4;
2080
                Y = (s->mb_height << 5) - 4;
2081
                if(qx + px < -28) px = -28 - qx;
2082
                if(qy + py < -28) py = -28 - qy;
2083
                if(qx + px > X) px = X - qx;
2084
                if(qy + py > Y) py = Y - qy;
2085
            } else {
2086
                qx = (s->mb_x << 6);
2087
                qy = (s->mb_y << 6);
2088
                X = (s->mb_width << 6) - 4;
2089
                Y = (s->mb_height << 6) - 4;
2090
                if(qx + px < -60) px = -60 - qx;
2091
                if(qy + py < -60) py = -60 - qy;
2092
                if(qx + px > X) px = X - qx;
2093
                if(qy + py > Y) py = Y - qy;
2094
            }
2095
        }
2096
        /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
2097
        if(0 && !s->first_slice_line && s->mb_x) {
2098
            if(is_intra[xy - wrap])
2099
                sum = FFABS(px) + FFABS(py);
2100
            else
2101
                sum = FFABS(px - A[0]) + FFABS(py - A[1]);
2102
            if(sum > 32) {
2103
                if(get_bits1(&s->gb)) {
2104
                    px = A[0];
2105
                    py = A[1];
2106
                } else {
2107
                    px = C[0];
2108
                    py = C[1];
2109
                }
2110
            } else {
2111
                if(is_intra[xy - 2])
2112
                    sum = FFABS(px) + FFABS(py);
2113
                else
2114
                    sum = FFABS(px - C[0]) + FFABS(py - C[1]);
2115
                if(sum > 32) {
2116
                    if(get_bits1(&s->gb)) {
2117
                        px = A[0];
2118
                        py = A[1];
2119
                    } else {
2120
                        px = C[0];
2121
                        py = C[1];
2122
                    }
2123
                }
2124
            }
2125
        }
2126
        /* store MV using signed modulus of MV range defined in 4.11 */
2127

    
2128
        s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
2129
        s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
2130
    }
2131
    s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
2132
    s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
2133
    s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
2134
    s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
2135
}
2136

    
2137
/** Get predicted DC value for I-frames only
2138
 * prediction dir: left=0, top=1
2139
 * @param s MpegEncContext
2140
 * @param[in] n block index in the current MB
2141
 * @param dc_val_ptr Pointer to DC predictor
2142
 * @param dir_ptr Prediction direction for use in AC prediction
2143
 */
2144
static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
2145
                              int16_t **dc_val_ptr, int *dir_ptr)
2146
{
2147
    int a, b, c, wrap, pred, scale;
2148
    int16_t *dc_val;
2149
    static const uint16_t dcpred[32] = {
2150
    -1, 1024,  512,  341,  256,  205,  171,  146,  128,
2151
         114,  102,   93,   85,   79,   73,   68,   64,
2152
          60,   57,   54,   51,   49,   47,   45,   43,
2153
          41,   39,   38,   37,   35,   34,   33
2154
    };
2155

    
2156
    /* find prediction - wmv3_dc_scale always used here in fact */
2157
    if (n < 4)     scale = s->y_dc_scale;
2158
    else           scale = s->c_dc_scale;
2159

    
2160
    wrap = s->block_wrap[n];
2161
    dc_val= s->dc_val[0] + s->block_index[n];
2162

    
2163
    /* B A
2164
     * C X
2165
     */
2166
    c = dc_val[ - 1];
2167
    b = dc_val[ - 1 - wrap];
2168
    a = dc_val[ - wrap];
2169

    
2170
    if (pq < 9 || !overlap)
2171
    {
2172
        /* Set outer values */
2173
        if (s->first_slice_line && (n!=2 && n!=3)) b=a=dcpred[scale];
2174
        if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale];
2175
    }
2176
    else
2177
    {
2178
        /* Set outer values */
2179
        if (s->first_slice_line && (n!=2 && n!=3)) b=a=0;
2180
        if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0;
2181
    }
2182

    
2183
    if (abs(a - b) <= abs(b - c)) {
2184
        pred = c;
2185
        *dir_ptr = 1;//left
2186
    } else {
2187
        pred = a;
2188
        *dir_ptr = 0;//top
2189
    }
2190

    
2191
    /* update predictor */
2192
    *dc_val_ptr = &dc_val[0];
2193
    return pred;
2194
}
2195

    
2196

    
2197
/** Get predicted DC value
2198
 * prediction dir: left=0, top=1
2199
 * @param s MpegEncContext
2200
 * @param[in] n block index in the current MB
2201
 * @param dc_val_ptr Pointer to DC predictor
2202
 * @param dir_ptr Prediction direction for use in AC prediction
2203
 */
2204
static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
2205
                              int a_avail, int c_avail,
2206
                              int16_t **dc_val_ptr, int *dir_ptr)
2207
{
2208
    int a, b, c, wrap, pred, scale;
2209
    int16_t *dc_val;
2210
    int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
2211
    int q1, q2 = 0;
2212

    
2213
    /* find prediction - wmv3_dc_scale always used here in fact */
2214
    if (n < 4)     scale = s->y_dc_scale;
2215
    else           scale = s->c_dc_scale;
2216

    
2217
    wrap = s->block_wrap[n];
2218
    dc_val= s->dc_val[0] + s->block_index[n];
2219

    
2220
    /* B A
2221
     * C X
2222
     */
2223
    c = dc_val[ - 1];
2224
    b = dc_val[ - 1 - wrap];
2225
    a = dc_val[ - wrap];
2226
    /* scale predictors if needed */
2227
    q1 = s->current_picture.qscale_table[mb_pos];
2228
    if(c_avail && (n!= 1 && n!=3)) {
2229
        q2 = s->current_picture.qscale_table[mb_pos - 1];
2230
        if(q2 && q2 != q1)
2231
            c = (c * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
2232
    }
2233
    if(a_avail && (n!= 2 && n!=3)) {
2234
        q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
2235
        if(q2 && q2 != q1)
2236
            a = (a * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
2237
    }
2238
    if(a_avail && c_avail && (n!=3)) {
2239
        int off = mb_pos;
2240
        if(n != 1) off--;
2241
        if(n != 2) off -= s->mb_stride;
2242
        q2 = s->current_picture.qscale_table[off];
2243
        if(q2 && q2 != q1)
2244
            b = (b * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
2245
    }
2246

    
2247
    if(a_avail && c_avail) {
2248
        if(abs(a - b) <= abs(b - c)) {
2249
            pred = c;
2250
            *dir_ptr = 1;//left
2251
        } else {
2252
            pred = a;
2253
            *dir_ptr = 0;//top
2254
        }
2255
    } else if(a_avail) {
2256
        pred = a;
2257
        *dir_ptr = 0;//top
2258
    } else if(c_avail) {
2259
        pred = c;
2260
        *dir_ptr = 1;//left
2261
    } else {
2262
        pred = 0;
2263
        *dir_ptr = 1;//left
2264
    }
2265

    
2266
    /* update predictor */
2267
    *dc_val_ptr = &dc_val[0];
2268
    return pred;
2269
}
2270

    
2271

    
2272
/**
2273
 * @defgroup std_mb VC1 Macroblock-level functions in Simple/Main Profiles
2274
 * @see 7.1.4, p91 and 8.1.1.7, p(1)04
2275
 * @{
2276
 */
2277

    
2278
static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
2279
{
2280
    int xy, wrap, pred, a, b, c;
2281

    
2282
    xy = s->block_index[n];
2283
    wrap = s->b8_stride;
2284

    
2285
    /* B C
2286
     * A X
2287
     */
2288
    a = s->coded_block[xy - 1       ];
2289
    b = s->coded_block[xy - 1 - wrap];
2290
    c = s->coded_block[xy     - wrap];
2291

    
2292
    if (b == c) {
2293
        pred = a;
2294
    } else {
2295
        pred = c;
2296
    }
2297

    
2298
    /* store value */
2299
    *coded_block_ptr = &s->coded_block[xy];
2300

    
2301
    return pred;
2302
}
2303

    
2304
/**
2305
 * Decode one AC coefficient
2306
 * @param v The VC1 context
2307
 * @param last Last coefficient
2308
 * @param skip How much zero coefficients to skip
2309
 * @param value Decoded AC coefficient value
2310
 * @see 8.1.3.4
2311
 */
2312
static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
2313
{
2314
    GetBitContext *gb = &v->s.gb;
2315
    int index, escape, run = 0, level = 0, lst = 0;
2316

    
2317
    index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
2318
    if (index != vc1_ac_sizes[codingset] - 1) {
2319
        run = vc1_index_decode_table[codingset][index][0];
2320
        level = vc1_index_decode_table[codingset][index][1];
2321
        lst = index >= vc1_last_decode_table[codingset];
2322
        if(get_bits(gb, 1))
2323
            level = -level;
2324
    } else {
2325
        escape = decode210(gb);
2326
        if (escape != 2) {
2327
            index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
2328
            run = vc1_index_decode_table[codingset][index][0];
2329
            level = vc1_index_decode_table[codingset][index][1];
2330
            lst = index >= vc1_last_decode_table[codingset];
2331
            if(escape == 0) {
2332
                if(lst)
2333
                    level += vc1_last_delta_level_table[codingset][run];
2334
                else
2335
                    level += vc1_delta_level_table[codingset][run];
2336
            } else {
2337
                if(lst)
2338
                    run += vc1_last_delta_run_table[codingset][level] + 1;
2339
                else
2340
                    run += vc1_delta_run_table[codingset][level] + 1;
2341
            }
2342
            if(get_bits(gb, 1))
2343
                level = -level;
2344
        } else {
2345
            int sign;
2346
            lst = get_bits(gb, 1);
2347
            if(v->s.esc3_level_length == 0) {
2348
                if(v->pq < 8 || v->dquantfrm) { // table 59
2349
                    v->s.esc3_level_length = get_bits(gb, 3);
2350
                    if(!v->s.esc3_level_length)
2351
                        v->s.esc3_level_length = get_bits(gb, 2) + 8;
2352
                } else { //table 60
2353
                    v->s.esc3_level_length = get_prefix(gb, 1, 6) + 2;
2354
                }
2355
                v->s.esc3_run_length = 3 + get_bits(gb, 2);
2356
            }
2357
            run = get_bits(gb, v->s.esc3_run_length);
2358
            sign = get_bits(gb, 1);
2359
            level = get_bits(gb, v->s.esc3_level_length);
2360
            if(sign)
2361
                level = -level;
2362
        }
2363
    }
2364

    
2365
    *last = lst;
2366
    *skip = run;
2367
    *value = level;
2368
}
2369

    
2370
/** Decode intra block in intra frames - should be faster than decode_intra_block
2371
 * @param v VC1Context
2372
 * @param block block to decode
2373
 * @param coded are AC coeffs present or not
2374
 * @param codingset set of VLC to decode data
2375
 */
2376
static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset)
2377
{
2378
    GetBitContext *gb = &v->s.gb;
2379
    MpegEncContext *s = &v->s;
2380
    int dc_pred_dir = 0; /* Direction of the DC prediction used */
2381
    int run_diff, i;
2382
    int16_t *dc_val;
2383
    int16_t *ac_val, *ac_val2;
2384
    int dcdiff;
2385

    
2386
    /* Get DC differential */
2387
    if (n < 4) {
2388
        dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
2389
    } else {
2390
        dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
2391
    }
2392
    if (dcdiff < 0){
2393
        av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
2394
        return -1;
2395
    }
2396
    if (dcdiff)
2397
    {
2398
        if (dcdiff == 119 /* ESC index value */)
2399
        {
2400
            /* TODO: Optimize */
2401
            if (v->pq == 1) dcdiff = get_bits(gb, 10);
2402
            else if (v->pq == 2) dcdiff = get_bits(gb, 9);
2403
            else dcdiff = get_bits(gb, 8);
2404
        }
2405
        else
2406
        {
2407
            if (v->pq == 1)
2408
                dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
2409
            else if (v->pq == 2)
2410
                dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
2411
        }
2412
        if (get_bits(gb, 1))
2413
            dcdiff = -dcdiff;
2414
    }
2415

    
2416
    /* Prediction */
2417
    dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
2418
    *dc_val = dcdiff;
2419

    
2420
    /* Store the quantized DC coeff, used for prediction */
2421
    if (n < 4) {
2422
        block[0] = dcdiff * s->y_dc_scale;
2423
    } else {
2424
        block[0] = dcdiff * s->c_dc_scale;
2425
    }
2426
    /* Skip ? */
2427
    run_diff = 0;
2428
    i = 0;
2429
    if (!coded) {
2430
        goto not_coded;
2431
    }
2432

    
2433
    //AC Decoding
2434
    i = 1;
2435

    
2436
    {
2437
        int last = 0, skip, value;
2438
        const int8_t *zz_table;
2439
        int scale;
2440
        int k;
2441

    
2442
        scale = v->pq * 2 + v->halfpq;
2443

    
2444
        if(v->s.ac_pred) {
2445
            if(!dc_pred_dir)
2446
                zz_table = ff_vc1_horizontal_zz;
2447
            else
2448
                zz_table = ff_vc1_vertical_zz;
2449
        } else
2450
            zz_table = ff_vc1_normal_zz;
2451

    
2452
        ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
2453
        ac_val2 = ac_val;
2454
        if(dc_pred_dir) //left
2455
            ac_val -= 16;
2456
        else //top
2457
            ac_val -= 16 * s->block_wrap[n];
2458

    
2459
        while (!last) {
2460
            vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
2461
            i += skip;
2462
            if(i > 63)
2463
                break;
2464
            block[zz_table[i++]] = value;
2465
        }
2466

    
2467
        /* apply AC prediction if needed */
2468
        if(s->ac_pred) {
2469
            if(dc_pred_dir) { //left
2470
                for(k = 1; k < 8; k++)
2471
                    block[k << 3] += ac_val[k];
2472
            } else { //top
2473
                for(k = 1; k < 8; k++)
2474
                    block[k] += ac_val[k + 8];
2475
            }
2476
        }
2477
        /* save AC coeffs for further prediction */
2478
        for(k = 1; k < 8; k++) {
2479
            ac_val2[k] = block[k << 3];
2480
            ac_val2[k + 8] = block[k];
2481
        }
2482

    
2483
        /* scale AC coeffs */
2484
        for(k = 1; k < 64; k++)
2485
            if(block[k]) {
2486
                block[k] *= scale;
2487
                if(!v->pquantizer)
2488
                    block[k] += (block[k] < 0) ? -v->pq : v->pq;
2489
            }
2490

    
2491
        if(s->ac_pred) i = 63;
2492
    }
2493

    
2494
not_coded:
2495
    if(!coded) {
2496
        int k, scale;
2497
        ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
2498
        ac_val2 = ac_val;
2499

    
2500
        scale = v->pq * 2 + v->halfpq;
2501
        memset(ac_val2, 0, 16 * 2);
2502
        if(dc_pred_dir) {//left
2503
            ac_val -= 16;
2504
            if(s->ac_pred)
2505
                memcpy(ac_val2, ac_val, 8 * 2);
2506
        } else {//top
2507
            ac_val -= 16 * s->block_wrap[n];
2508
            if(s->ac_pred)
2509
                memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
2510
        }
2511

    
2512
        /* apply AC prediction if needed */
2513
        if(s->ac_pred) {
2514
            if(dc_pred_dir) { //left
2515
                for(k = 1; k < 8; k++) {
2516
                    block[k << 3] = ac_val[k] * scale;
2517
                    if(!v->pquantizer && block[k << 3])
2518
                        block[k << 3] += (block[k << 3] < 0) ? -v->pq : v->pq;
2519
                }
2520
            } else { //top
2521
                for(k = 1; k < 8; k++) {
2522
                    block[k] = ac_val[k + 8] * scale;
2523
                    if(!v->pquantizer && block[k])
2524
                        block[k] += (block[k] < 0) ? -v->pq : v->pq;
2525
                }
2526
            }
2527
            i = 63;
2528
        }
2529
    }
2530
    s->block_last_index[n] = i;
2531

    
2532
    return 0;
2533
}
2534

    
2535
/** Decode intra block in intra frames - should be faster than decode_intra_block
2536
 * @param v VC1Context
2537
 * @param block block to decode
2538
 * @param coded are AC coeffs present or not
2539
 * @param codingset set of VLC to decode data
2540
 */
2541
static int vc1_decode_i_block_adv(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset, int mquant)
2542
{
2543
    GetBitContext *gb = &v->s.gb;
2544
    MpegEncContext *s = &v->s;
2545
    int dc_pred_dir = 0; /* Direction of the DC prediction used */
2546
    int run_diff, i;
2547
    int16_t *dc_val;
2548
    int16_t *ac_val, *ac_val2;
2549
    int dcdiff;
2550
    int a_avail = v->a_avail, c_avail = v->c_avail;
2551
    int use_pred = s->ac_pred;
2552
    int scale;
2553
    int q1, q2 = 0;
2554
    int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
2555

    
2556
    /* Get DC differential */
2557
    if (n < 4) {
2558
        dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
2559
    } else {
2560
        dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
2561
    }
2562
    if (dcdiff < 0){
2563
        av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
2564
        return -1;
2565
    }
2566
    if (dcdiff)
2567
    {
2568
        if (dcdiff == 119 /* ESC index value */)
2569
        {
2570
            /* TODO: Optimize */
2571
            if (mquant == 1) dcdiff = get_bits(gb, 10);
2572
            else if (mquant == 2) dcdiff = get_bits(gb, 9);
2573
            else dcdiff = get_bits(gb, 8);
2574
        }
2575
        else
2576
        {
2577
            if (mquant == 1)
2578
                dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
2579
            else if (mquant == 2)
2580
                dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
2581
        }
2582
        if (get_bits(gb, 1))
2583
            dcdiff = -dcdiff;
2584
    }
2585

    
2586
    /* Prediction */
2587
    dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
2588
    *dc_val = dcdiff;
2589

    
2590
    /* Store the quantized DC coeff, used for prediction */
2591
    if (n < 4) {
2592
        block[0] = dcdiff * s->y_dc_scale;
2593
    } else {
2594
        block[0] = dcdiff * s->c_dc_scale;
2595
    }
2596
    /* Skip ? */
2597
    run_diff = 0;
2598
    i = 0;
2599

    
2600
    //AC Decoding
2601
    i = 1;
2602

    
2603
    /* check if AC is needed at all */
2604
    if(!a_avail && !c_avail) use_pred = 0;
2605
    ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
2606
    ac_val2 = ac_val;
2607

    
2608
    scale = mquant * 2 + v->halfpq;
2609

    
2610
    if(dc_pred_dir) //left
2611
        ac_val -= 16;
2612
    else //top
2613
        ac_val -= 16 * s->block_wrap[n];
2614

    
2615
    q1 = s->current_picture.qscale_table[mb_pos];
2616
    if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
2617
    if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
2618
    if(dc_pred_dir && n==1) q2 = q1;
2619
    if(!dc_pred_dir && n==2) q2 = q1;
2620
    if(n==3) q2 = q1;
2621

    
2622
    if(coded) {
2623
        int last = 0, skip, value;
2624
        const int8_t *zz_table;
2625
        int k;
2626

    
2627
        if(v->s.ac_pred) {
2628
            if(!dc_pred_dir)
2629
                zz_table = ff_vc1_horizontal_zz;
2630
            else
2631
                zz_table = ff_vc1_vertical_zz;
2632
        } else
2633
            zz_table = ff_vc1_normal_zz;
2634

    
2635
        while (!last) {
2636
            vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
2637
            i += skip;
2638
            if(i > 63)
2639
                break;
2640
            block[zz_table[i++]] = value;
2641
        }
2642

    
2643
        /* apply AC prediction if needed */
2644
        if(use_pred) {
2645
            /* scale predictors if needed*/
2646
            if(q2 && q1!=q2) {
2647
                q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
2648
                q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
2649

    
2650
                if(dc_pred_dir) { //left
2651
                    for(k = 1; k < 8; k++)
2652
                        block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2653
                } else { //top
2654
                    for(k = 1; k < 8; k++)
2655
                        block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2656
                }
2657
            } else {
2658
                if(dc_pred_dir) { //left
2659
                    for(k = 1; k < 8; k++)
2660
                        block[k << 3] += ac_val[k];
2661
                } else { //top
2662
                    for(k = 1; k < 8; k++)
2663
                        block[k] += ac_val[k + 8];
2664
                }
2665
            }
2666
        }
2667
        /* save AC coeffs for further prediction */
2668
        for(k = 1; k < 8; k++) {
2669
            ac_val2[k] = block[k << 3];
2670
            ac_val2[k + 8] = block[k];
2671
        }
2672

    
2673
        /* scale AC coeffs */
2674
        for(k = 1; k < 64; k++)
2675
            if(block[k]) {
2676
                block[k] *= scale;
2677
                if(!v->pquantizer)
2678
                    block[k] += (block[k] < 0) ? -mquant : mquant;
2679
            }
2680

    
2681
        if(use_pred) i = 63;
2682
    } else { // no AC coeffs
2683
        int k;
2684

    
2685
        memset(ac_val2, 0, 16 * 2);
2686
        if(dc_pred_dir) {//left
2687
            if(use_pred) {
2688
                memcpy(ac_val2, ac_val, 8 * 2);
2689
                if(q2 && q1!=q2) {
2690
                    q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
2691
                    q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
2692
                    for(k = 1; k < 8; k++)
2693
                        ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2694
                }
2695
            }
2696
        } else {//top
2697
            if(use_pred) {
2698
                memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
2699
                if(q2 && q1!=q2) {
2700
                    q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
2701
                    q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
2702
                    for(k = 1; k < 8; k++)
2703
                        ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2704
                }
2705
            }
2706
        }
2707

    
2708
        /* apply AC prediction if needed */
2709
        if(use_pred) {
2710
            if(dc_pred_dir) { //left
2711
                for(k = 1; k < 8; k++) {
2712
                    block[k << 3] = ac_val2[k] * scale;
2713
                    if(!v->pquantizer && block[k << 3])
2714
                        block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
2715
                }
2716
            } else { //top
2717
                for(k = 1; k < 8; k++) {
2718
                    block[k] = ac_val2[k + 8] * scale;
2719
                    if(!v->pquantizer && block[k])
2720
                        block[k] += (block[k] < 0) ? -mquant : mquant;
2721
                }
2722
            }
2723
            i = 63;
2724
        }
2725
    }
2726
    s->block_last_index[n] = i;
2727

    
2728
    return 0;
2729
}
2730

    
2731
/** Decode intra block in inter frames - more generic version than vc1_decode_i_block
2732
 * @param v VC1Context
2733
 * @param block block to decode
2734
 * @param coded are AC coeffs present or not
2735
 * @param mquant block quantizer
2736
 * @param codingset set of VLC to decode data
2737
 */
2738
static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset)
2739
{
2740
    GetBitContext *gb = &v->s.gb;
2741
    MpegEncContext *s = &v->s;
2742
    int dc_pred_dir = 0; /* Direction of the DC prediction used */
2743
    int run_diff, i;
2744
    int16_t *dc_val;
2745
    int16_t *ac_val, *ac_val2;
2746
    int dcdiff;
2747
    int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
2748
    int a_avail = v->a_avail, c_avail = v->c_avail;
2749
    int use_pred = s->ac_pred;
2750
    int scale;
2751
    int q1, q2 = 0;
2752

    
2753
    /* XXX: Guard against dumb values of mquant */
2754
    mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
2755

    
2756
    /* Set DC scale - y and c use the same */
2757
    s->y_dc_scale = s->y_dc_scale_table[mquant];
2758
    s->c_dc_scale = s->c_dc_scale_table[mquant];
2759

    
2760
    /* Get DC differential */
2761
    if (n < 4) {
2762
        dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
2763
    } else {
2764
        dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
2765
    }
2766
    if (dcdiff < 0){
2767
        av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
2768
        return -1;
2769
    }
2770
    if (dcdiff)
2771
    {
2772
        if (dcdiff == 119 /* ESC index value */)
2773
        {
2774
            /* TODO: Optimize */
2775
            if (mquant == 1) dcdiff = get_bits(gb, 10);
2776
            else if (mquant == 2) dcdiff = get_bits(gb, 9);
2777
            else dcdiff = get_bits(gb, 8);
2778
        }
2779
        else
2780
        {
2781
            if (mquant == 1)
2782
                dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
2783
            else if (mquant == 2)
2784
                dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
2785
        }
2786
        if (get_bits(gb, 1))
2787
            dcdiff = -dcdiff;
2788
    }
2789

    
2790
    /* Prediction */
2791
    dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
2792
    *dc_val = dcdiff;
2793

    
2794
    /* Store the quantized DC coeff, used for prediction */
2795

    
2796
    if (n < 4) {
2797
        block[0] = dcdiff * s->y_dc_scale;
2798
    } else {
2799
        block[0] = dcdiff * s->c_dc_scale;
2800
    }
2801
    /* Skip ? */
2802
    run_diff = 0;
2803
    i = 0;
2804

    
2805
    //AC Decoding
2806
    i = 1;
2807

    
2808
    /* check if AC is needed at all and adjust direction if needed */
2809
    if(!a_avail) dc_pred_dir = 1;
2810
    if(!c_avail) dc_pred_dir = 0;
2811
    if(!a_avail && !c_avail) use_pred = 0;
2812
    ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
2813
    ac_val2 = ac_val;
2814

    
2815
    scale = mquant * 2 + v->halfpq;
2816

    
2817
    if(dc_pred_dir) //left
2818
        ac_val -= 16;
2819
    else //top
2820
        ac_val -= 16 * s->block_wrap[n];
2821

    
2822
    q1 = s->current_picture.qscale_table[mb_pos];
2823
    if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
2824
    if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
2825
    if(dc_pred_dir && n==1) q2 = q1;
2826
    if(!dc_pred_dir && n==2) q2 = q1;
2827
    if(n==3) q2 = q1;
2828

    
2829
    if(coded) {
2830
        int last = 0, skip, value;
2831
        const int8_t *zz_table;
2832
        int k;
2833

    
2834
        zz_table = ff_vc1_simple_progressive_8x8_zz;
2835

    
2836
        while (!last) {
2837
            vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
2838
            i += skip;
2839
            if(i > 63)
2840
                break;
2841
            block[zz_table[i++]] = value;
2842
        }
2843

    
2844
        /* apply AC prediction if needed */
2845
        if(use_pred) {
2846
            /* scale predictors if needed*/
2847
            if(q2 && q1!=q2) {
2848
                q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
2849
                q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
2850

    
2851
                if(dc_pred_dir) { //left
2852
                    for(k = 1; k < 8; k++)
2853
                        block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2854
                } else { //top
2855
                    for(k = 1; k < 8; k++)
2856
                        block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2857
                }
2858
            } else {
2859
                if(dc_pred_dir) { //left
2860
                    for(k = 1; k < 8; k++)
2861
                        block[k << 3] += ac_val[k];
2862
                } else { //top
2863
                    for(k = 1; k < 8; k++)
2864
                        block[k] += ac_val[k + 8];
2865
                }
2866
            }
2867
        }
2868
        /* save AC coeffs for further prediction */
2869
        for(k = 1; k < 8; k++) {
2870
            ac_val2[k] = block[k << 3];
2871
            ac_val2[k + 8] = block[k];
2872
        }
2873

    
2874
        /* scale AC coeffs */
2875
        for(k = 1; k < 64; k++)
2876
            if(block[k]) {
2877
                block[k] *= scale;
2878
                if(!v->pquantizer)
2879
                    block[k] += (block[k] < 0) ? -mquant : mquant;
2880
            }
2881

    
2882
        if(use_pred) i = 63;
2883
    } else { // no AC coeffs
2884
        int k;
2885

    
2886
        memset(ac_val2, 0, 16 * 2);
2887
        if(dc_pred_dir) {//left
2888
            if(use_pred) {
2889
                memcpy(ac_val2, ac_val, 8 * 2);
2890
                if(q2 && q1!=q2) {
2891
                    q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
2892
                    q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
2893
                    for(k = 1; k < 8; k++)
2894
                        ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2895
                }
2896
            }
2897
        } else {//top
2898
            if(use_pred) {
2899
                memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
2900
                if(q2 && q1!=q2) {
2901
                    q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
2902
                    q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
2903
                    for(k = 1; k < 8; k++)
2904
                        ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2905
                }
2906
            }
2907
        }
2908

    
2909
        /* apply AC prediction if needed */
2910
        if(use_pred) {
2911
            if(dc_pred_dir) { //left
2912
                for(k = 1; k < 8; k++) {
2913
                    block[k << 3] = ac_val2[k] * scale;
2914
                    if(!v->pquantizer && block[k << 3])
2915
                        block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
2916
                }
2917
            } else { //top
2918
                for(k = 1; k < 8; k++) {
2919
                    block[k] = ac_val2[k + 8] * scale;
2920
                    if(!v->pquantizer && block[k])
2921
                        block[k] += (block[k] < 0) ? -mquant : mquant;
2922
                }
2923
            }
2924
            i = 63;
2925
        }
2926
    }
2927
    s->block_last_index[n] = i;
2928

    
2929
    return 0;
2930
}
2931

    
2932
/** Decode P block
2933
 */
2934
static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block)
2935
{
2936
    MpegEncContext *s = &v->s;
2937
    GetBitContext *gb = &s->gb;
2938
    int i, j;
2939
    int subblkpat = 0;
2940
    int scale, off, idx, last, skip, value;
2941
    int ttblk = ttmb & 7;
2942

    
2943
    if(ttmb == -1) {
2944
        ttblk = ff_vc1_ttblk_to_tt[v->tt_index][get_vlc2(gb, ff_vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
2945
    }
2946
    if(ttblk == TT_4X4) {
2947
        subblkpat = ~(get_vlc2(gb, ff_vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
2948
    }
2949
    if((ttblk != TT_8X8 && ttblk != TT_4X4) && (v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))) {
2950
        subblkpat = decode012(gb);
2951
        if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits
2952
        if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4;
2953
        if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8;
2954
    }
2955
    scale = 2 * mquant + ((v->pq == mquant) ? v->halfpq : 0);
2956

    
2957
    // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
2958
    if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
2959
        subblkpat = 2 - (ttblk == TT_8X4_TOP);
2960
        ttblk = TT_8X4;
2961
    }
2962
    if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
2963
        subblkpat = 2 - (ttblk == TT_4X8_LEFT);
2964
        ttblk = TT_4X8;
2965
    }
2966
    switch(ttblk) {
2967
    case TT_8X8:
2968
        i = 0;
2969
        last = 0;
2970
        while (!last) {
2971
            vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
2972
            i += skip;
2973
            if(i > 63)
2974
                break;
2975
            idx = ff_vc1_simple_progressive_8x8_zz[i++];
2976
            block[idx] = value * scale;
2977
            if(!v->pquantizer)
2978
                block[idx] += (block[idx] < 0) ? -mquant : mquant;
2979
        }
2980
        s->dsp.vc1_inv_trans_8x8(block);
2981
        break;
2982
    case TT_4X4:
2983
        for(j = 0; j < 4; j++) {
2984
            last = subblkpat & (1 << (3 - j));
2985
            i = 0;
2986
            off = (j & 1) * 4 + (j & 2) * 16;
2987
            while (!last) {
2988
                vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
2989
                i += skip;
2990
                if(i > 15)
2991
                    break;
2992
                idx = ff_vc1_simple_progressive_4x4_zz[i++];
2993
                block[idx + off] = value * scale;
2994
                if(!v->pquantizer)
2995
                    block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
2996
            }
2997
            if(!(subblkpat & (1 << (3 - j))))
2998
                s->dsp.vc1_inv_trans_4x4(block, j);
2999
        }
3000
        break;
3001
    case TT_8X4:
3002
        for(j = 0; j < 2; j++) {
3003
            last = subblkpat & (1 << (1 - j));
3004
            i = 0;
3005
            off = j * 32;
3006
            while (!last) {
3007
                vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
3008
                i += skip;
3009
                if(i > 31)
3010
                    break;
3011
                if(v->profile < PROFILE_ADVANCED)
3012
                    idx = ff_vc1_simple_progressive_8x4_zz[i++];
3013
                else
3014
                    idx = ff_vc1_adv_progressive_8x4_zz[i++];
3015
                block[idx + off] = value * scale;
3016
                if(!v->pquantizer)
3017
                    block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
3018
            }
3019
            if(!(subblkpat & (1 << (1 - j))))
3020
                s->dsp.vc1_inv_trans_8x4(block, j);
3021
        }
3022
        break;
3023
    case TT_4X8:
3024
        for(j = 0; j < 2; j++) {
3025
            last = subblkpat & (1 << (1 - j));
3026
            i = 0;
3027
            off = j * 4;
3028
            while (!last) {
3029
                vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
3030
                i += skip;
3031
                if(i > 31)
3032
                    break;
3033
                if(v->profile < PROFILE_ADVANCED)
3034
                    idx = ff_vc1_simple_progressive_4x8_zz[i++];
3035
                else
3036
                    idx = ff_vc1_adv_progressive_4x8_zz[i++];
3037
                block[idx + off] = value * scale;
3038
                if(!v->pquantizer)
3039
                    block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
3040
            }
3041
            if(!(subblkpat & (1 << (1 - j))))
3042
                s->dsp.vc1_inv_trans_4x8(block, j);
3043
        }
3044
        break;
3045
    }
3046
    return 0;
3047
}
3048

    
3049

    
3050
/** Decode one P-frame MB (in Simple/Main profile)
3051
 */
3052
static int vc1_decode_p_mb(VC1Context *v)
3053
{
3054
    MpegEncContext *s = &v->s;
3055
    GetBitContext *gb = &s->gb;
3056
    int i, j;
3057
    int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
3058
    int cbp; /* cbp decoding stuff */
3059
    int mqdiff, mquant; /* MB quantization */
3060
    int ttmb = v->ttfrm; /* MB Transform type */
3061
    int status;
3062

    
3063
    static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
3064
      offset_table[6] = { 0, 1, 3, 7, 15, 31 };
3065
    int mb_has_coeffs = 1; /* last_flag */
3066
    int dmv_x, dmv_y; /* Differential MV components */
3067
    int index, index1; /* LUT indices */
3068
    int val, sign; /* temp values */
3069
    int first_block = 1;
3070
    int dst_idx, off;
3071
    int skipped, fourmv;
3072

    
3073
    mquant = v->pq; /* Loosy initialization */
3074

    
3075
    if (v->mv_type_is_raw)
3076
        fourmv = get_bits1(gb);
3077
    else
3078
        fourmv = v->mv_type_mb_plane[mb_pos];
3079
    if (v->skip_is_raw)
3080
        skipped = get_bits1(gb);
3081
    else
3082
        skipped = v->s.mbskip_table[mb_pos];
3083

    
3084
    s->dsp.clear_blocks(s->block[0]);
3085

    
3086
    if (!fourmv) /* 1MV mode */
3087
    {
3088
        if (!skipped)
3089
        {
3090
            GET_MVDATA(dmv_x, dmv_y);
3091

    
3092
            if (s->mb_intra) {
3093
                s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
3094
                s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
3095
            }
3096
            s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
3097
            vc1_pred_mv(s, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
3098

    
3099
            /* FIXME Set DC val for inter block ? */
3100
            if (s->mb_intra && !mb_has_coeffs)
3101
            {
3102
                GET_MQUANT();
3103
                s->ac_pred = get_bits(gb, 1);
3104
                cbp = 0;
3105
            }
3106
            else if (mb_has_coeffs)
3107
            {
3108
                if (s->mb_intra) s->ac_pred = get_bits(gb, 1);
3109
                cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
3110
                GET_MQUANT();
3111
            }
3112
            else
3113
            {
3114
                mquant = v->pq;
3115
                cbp = 0;
3116
            }
3117
            s->current_picture.qscale_table[mb_pos] = mquant;
3118

    
3119
            if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
3120
                ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table,
3121
                                VC1_TTMB_VLC_BITS, 2);
3122
            if(!s->mb_intra) vc1_mc_1mv(v, 0);
3123
            dst_idx = 0;
3124
            for (i=0; i<6; i++)
3125
            {
3126
                s->dc_val[0][s->block_index[i]] = 0;
3127
                dst_idx += i >> 2;
3128
                val = ((cbp >> (5 - i)) & 1);
3129
                off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
3130
                v->mb_type[0][s->block_index[i]] = s->mb_intra;
3131
                if(s->mb_intra) {
3132
                    /* check if prediction blocks A and C are available */
3133
                    v->a_avail = v->c_avail = 0;
3134
                    if(i == 2 || i == 3 || !s->first_slice_line)
3135
                        v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
3136
                    if(i == 1 || i == 3 || s->mb_x)
3137
                        v->c_avail = v->mb_type[0][s->block_index[i] - 1];
3138

    
3139
                    vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
3140
                    if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
3141
                    s->dsp.vc1_inv_trans_8x8(s->block[i]);
3142
                    if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
3143
                    for(j = 0; j < 64; j++) s->block[i][j] += 128;
3144
                    if(!v->res_fasttx && v->res_x8) for(j = 0; j < 64; j++) s->block[i][j] += 16;
3145
                    s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
3146
                    if(v->pq >= 9 && v->overlap) {
3147
                        if(v->c_avail)
3148
                            s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
3149
                        if(v->a_avail)
3150
                            s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
3151
                    }
3152
                } else if(val) {
3153
                    vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
3154
                    if(!v->ttmbf && ttmb < 8) ttmb = -1;
3155
                    first_block = 0;
3156
                    if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
3157
                        s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
3158
                }
3159
            }
3160
        }
3161
        else //Skipped
3162
        {
3163
            s->mb_intra = 0;
3164
            for(i = 0; i < 6; i++) {
3165
                v->mb_type[0][s->block_index[i]] = 0;
3166
                s->dc_val[0][s->block_index[i]] = 0;
3167
            }
3168
            s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
3169
            s->current_picture.qscale_table[mb_pos] = 0;
3170
            vc1_pred_mv(s, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
3171
            vc1_mc_1mv(v, 0);
3172
            return 0;
3173
        }
3174
    } //1MV mode
3175
    else //4MV mode
3176
    {
3177
        if (!skipped /* unskipped MB */)
3178
        {
3179
            int intra_count = 0, coded_inter = 0;
3180
            int is_intra[6], is_coded[6];
3181
            /* Get CBPCY */
3182
            cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
3183
            for (i=0; i<6; i++)
3184
            {
3185
                val = ((cbp >> (5 - i)) & 1);
3186
                s->dc_val[0][s->block_index[i]] = 0;
3187
                s->mb_intra = 0;
3188
                if(i < 4) {
3189
                    dmv_x = dmv_y = 0;
3190
                    s->mb_intra = 0;
3191
                    mb_has_coeffs = 0;
3192
                    if(val) {
3193
                        GET_MVDATA(dmv_x, dmv_y);
3194
                    }
3195
                    vc1_pred_mv(s, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
3196
                    if(!s->mb_intra) vc1_mc_4mv_luma(v, i);
3197
                    intra_count += s->mb_intra;
3198
                    is_intra[i] = s->mb_intra;
3199
                    is_coded[i] = mb_has_coeffs;
3200
                }
3201
                if(i&4){
3202
                    is_intra[i] = (intra_count >= 3);
3203
                    is_coded[i] = val;
3204
                }
3205
                if(i == 4) vc1_mc_4mv_chroma(v);
3206
                v->mb_type[0][s->block_index[i]] = is_intra[i];
3207
                if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i];
3208
            }
3209
            // if there are no coded blocks then don't do anything more
3210
            if(!intra_count && !coded_inter) return 0;
3211
            dst_idx = 0;
3212
            GET_MQUANT();
3213
            s->current_picture.qscale_table[mb_pos] = mquant;
3214
            /* test if block is intra and has pred */
3215
            {
3216
                int intrapred = 0;
3217
                for(i=0; i<6; i++)
3218
                    if(is_intra[i]) {
3219
                        if(((!s->first_slice_line || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
3220
                            || ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) {
3221
                            intrapred = 1;
3222
                            break;
3223
                        }
3224
                    }
3225
                if(intrapred)s->ac_pred = get_bits(gb, 1);
3226
                else s->ac_pred = 0;
3227
            }
3228
            if (!v->ttmbf && coded_inter)
3229
                ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
3230
            for (i=0; i<6; i++)
3231
            {
3232
                dst_idx += i >> 2;
3233
                off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
3234
                s->mb_intra = is_intra[i];
3235
                if (is_intra[i]) {
3236
                    /* check if prediction blocks A and C are available */
3237
                    v->a_avail = v->c_avail = 0;
3238
                    if(i == 2 || i == 3 || !s->first_slice_line)
3239
                        v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
3240
                    if(i == 1 || i == 3 || s->mb_x)
3241
                        v->c_avail = v->mb_type[0][s->block_index[i] - 1];
3242

    
3243
                    vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset);
3244
                    if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
3245
                    s->dsp.vc1_inv_trans_8x8(s->block[i]);
3246
                    if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
3247
                    for(j = 0; j < 64; j++) s->block[i][j] += 128;
3248
                    if(!v->res_fasttx && v->res_x8) for(j = 0; j < 64; j++) s->block[i][j] += 16;
3249
                    s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
3250
                    if(v->pq >= 9 && v->overlap) {
3251
                        if(v->c_avail)
3252
                            s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
3253
                        if(v->a_avail)
3254
                            s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
3255
                    }
3256
                } else if(is_coded[i]) {
3257
                    status = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
3258
                    if(!v->ttmbf && ttmb < 8) ttmb = -1;
3259
                    first_block = 0;
3260
                    if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
3261
                        s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
3262
                }
3263
            }
3264
            return status;
3265
        }
3266
        else //Skipped MB
3267
        {
3268
            s->mb_intra = 0;
3269
            s->current_picture.qscale_table[mb_pos] = 0;
3270
            for (i=0; i<6; i++) {
3271
                v->mb_type[0][s->block_index[i]] = 0;
3272
                s->dc_val[0][s->block_index[i]] = 0;
3273
            }
3274
            for (i=0; i<4; i++)
3275
            {
3276
                vc1_pred_mv(s, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]);
3277
                vc1_mc_4mv_luma(v, i);
3278
            }
3279
            vc1_mc_4mv_chroma(v);
3280
            s->current_picture.qscale_table[mb_pos] = 0;
3281
            return 0;
3282
        }
3283
    }
3284

    
3285
    /* Should never happen */
3286
    return -1;
3287
}
3288

    
3289
/** Decode one B-frame MB (in Main profile)
3290
 */
3291
static void vc1_decode_b_mb(VC1Context *v)
3292
{
3293
    MpegEncContext *s = &v->s;
3294
    GetBitContext *gb = &s->gb;
3295
    int i, j;
3296
    int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
3297
    int cbp = 0; /* cbp decoding stuff */
3298
    int mqdiff, mquant; /* MB quantization */
3299
    int ttmb = v->ttfrm; /* MB Transform type */
3300

    
3301
    static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
3302
      offset_table[6] = { 0, 1, 3, 7, 15, 31 };
3303
    int mb_has_coeffs = 0; /* last_flag */
3304
    int index, index1; /* LUT indices */
3305
    int val, sign; /* temp values */
3306
    int first_block = 1;
3307
    int dst_idx, off;
3308
    int skipped, direct;
3309
    int dmv_x[2], dmv_y[2];
3310
    int bmvtype = BMV_TYPE_BACKWARD;
3311

    
3312
    mquant = v->pq; /* Loosy initialization */
3313
    s->mb_intra = 0;
3314

    
3315
    if (v->dmb_is_raw)
3316
        direct = get_bits1(gb);
3317
    else
3318
        direct = v->direct_mb_plane[mb_pos];
3319
    if (v->skip_is_raw)
3320
        skipped = get_bits1(gb);
3321
    else
3322
        skipped = v->s.mbskip_table[mb_pos];
3323

    
3324
    s->dsp.clear_blocks(s->block[0]);
3325
    dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
3326
    for(i = 0; i < 6; i++) {
3327
        v->mb_type[0][s->block_index[i]] = 0;
3328
        s->dc_val[0][s->block_index[i]] = 0;
3329
    }
3330
    s->current_picture.qscale_table[mb_pos] = 0;
3331

    
3332
    if (!direct) {
3333
        if (!skipped) {
3334
            GET_MVDATA(dmv_x[0], dmv_y[0]);
3335
            dmv_x[1] = dmv_x[0];
3336
            dmv_y[1] = dmv_y[0];
3337
        }
3338
        if(skipped || !s->mb_intra) {
3339
            bmvtype = decode012(gb);
3340
            switch(bmvtype) {
3341
            case 0:
3342
                bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
3343
                break;
3344
            case 1:
3345
                bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
3346
                break;
3347
            case 2:
3348
                bmvtype = BMV_TYPE_INTERPOLATED;
3349
                dmv_x[0] = dmv_y[0] = 0;
3350
            }
3351
        }
3352
    }
3353
    for(i = 0; i < 6; i++)
3354
        v->mb_type[0][s->block_index[i]] = s->mb_intra;
3355

    
3356
    if (skipped) {
3357
        if(direct) bmvtype = BMV_TYPE_INTERPOLATED;
3358
        vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
3359
        vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
3360
        return;
3361
    }
3362
    if (direct) {
3363
        cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
3364
        GET_MQUANT();
3365
        s->mb_intra = 0;
3366
        mb_has_coeffs = 0;
3367
        s->current_picture.qscale_table[mb_pos] = mquant;
3368
        if(!v->ttmbf)
3369
            ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
3370
        dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
3371
        vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
3372
        vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
3373
    } else {
3374
        if(!mb_has_coeffs && !s->mb_intra) {
3375
            /* no coded blocks - effectively skipped */
3376
            vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
3377
            vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
3378
            return;
3379
        }
3380
        if(s->mb_intra && !mb_has_coeffs) {
3381
            GET_MQUANT();
3382
            s->current_picture.qscale_table[mb_pos] = mquant;
3383
            s->ac_pred = get_bits1(gb);
3384
            cbp = 0;
3385
            vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
3386
        } else {
3387
            if(bmvtype == BMV_TYPE_INTERPOLATED) {
3388
                GET_MVDATA(dmv_x[0], dmv_y[0]);
3389
                if(!mb_has_coeffs) {
3390
                    /* interpolated skipped block */
3391
                    vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
3392
                    vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
3393
                    return;
3394
                }
3395
            }
3396
            vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
3397
            if(!s->mb_intra) {
3398
                vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
3399
            }
3400
            if(s->mb_intra)
3401
                s->ac_pred = get_bits1(gb);
3402
            cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
3403
            GET_MQUANT();
3404
            s->current_picture.qscale_table[mb_pos] = mquant;
3405
            if(!v->ttmbf && !s->mb_intra && mb_has_coeffs)
3406
                ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
3407
        }
3408
    }
3409
    dst_idx = 0;
3410
    for (i=0; i<6; i++)
3411
    {
3412
        s->dc_val[0][s->block_index[i]] = 0;
3413
        dst_idx += i >> 2;
3414
        val = ((cbp >> (5 - i)) & 1);
3415
        off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
3416
        v->mb_type[0][s->block_index[i]] = s->mb_intra;
3417
        if(s->mb_intra) {
3418
            /* check if prediction blocks A and C are available */
3419
            v->a_avail = v->c_avail = 0;
3420
            if(i == 2 || i == 3 || !s->first_slice_line)
3421
                v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
3422
            if(i == 1 || i == 3 || s->mb_x)
3423
                v->c_avail = v->mb_type[0][s->block_index[i] - 1];
3424

    
3425
            vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
3426
            if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
3427
            s->dsp.vc1_inv_trans_8x8(s->block[i]);
3428
            if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
3429
            for(j = 0; j < 64; j++) s->block[i][j] += 128;
3430
            s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
3431
        } else if(val) {
3432
            vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
3433
            if(!v->ttmbf && ttmb < 8) ttmb = -1;
3434
            first_block = 0;
3435
            if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
3436
                s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
3437
        }
3438
    }
3439
}
3440

    
3441
/** Decode blocks of I-frame
3442
 */
3443
static void vc1_decode_i_blocks(VC1Context *v)
3444
{
3445
    int k, j;
3446
    MpegEncContext *s = &v->s;
3447
    int cbp, val;
3448
    uint8_t *coded_val;
3449
    int mb_pos;
3450

    
3451
    /* select codingmode used for VLC tables selection */
3452
    switch(v->y_ac_table_index){
3453
    case 0:
3454
        v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
3455
        break;
3456
    case 1:
3457
        v->codingset = CS_HIGH_MOT_INTRA;
3458
        break;
3459
    case 2:
3460
        v->codingset = CS_MID_RATE_INTRA;
3461
        break;
3462
    }
3463

    
3464
    switch(v->c_ac_table_index){
3465
    case 0:
3466
        v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
3467
        break;
3468
    case 1:
3469
        v->codingset2 = CS_HIGH_MOT_INTER;
3470
        break;
3471
    case 2:
3472
        v->codingset2 = CS_MID_RATE_INTER;
3473
        break;
3474
    }
3475

    
3476
    /* Set DC scale - y and c use the same */
3477
    s->y_dc_scale = s->y_dc_scale_table[v->pq];
3478
    s->c_dc_scale = s->c_dc_scale_table[v->pq];
3479

    
3480
    //do frame decode
3481
    s->mb_x = s->mb_y = 0;
3482
    s->mb_intra = 1;
3483
    s->first_slice_line = 1;
3484
    ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
3485
    for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
3486
        for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
3487
            ff_init_block_index(s);
3488
            ff_update_block_index(s);
3489
            s->dsp.clear_blocks(s->block[0]);
3490
            mb_pos = s->mb_x + s->mb_y * s->mb_width;
3491
            s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
3492
            s->current_picture.qscale_table[mb_pos] = v->pq;
3493
            s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
3494
            s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
3495

    
3496
            // do actual MB decoding and displaying
3497
            cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
3498
            v->s.ac_pred = get_bits(&v->s.gb, 1);
3499

    
3500
            for(k = 0; k < 6; k++) {
3501
                val = ((cbp >> (5 - k)) & 1);
3502

    
3503
                if (k < 4) {
3504
                    int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
3505
                    val = val ^ pred;
3506
                    *coded_val = val;
3507
                }
3508
                cbp |= val << (5 - k);
3509

    
3510
                vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2);
3511

    
3512
                s->dsp.vc1_inv_trans_8x8(s->block[k]);
3513
                if(!v->res_fasttx && !v->res_x8) for(j = 0; j < 64; j++) s->block[k][j] -= 16;
3514
                if(v->pq >= 9 && v->overlap) {
3515
                    for(j = 0; j < 64; j++) s->block[k][j] += 128;
3516
                }
3517
            }
3518

    
3519
            vc1_put_block(v, s->block);
3520
            if(v->pq >= 9 && v->overlap) {
3521
                if(s->mb_x) {
3522
                    s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
3523
                    s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
3524
                    if(!(s->flags & CODEC_FLAG_GRAY)) {
3525
                        s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
3526
                        s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
3527
                    }
3528
                }
3529
                s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
3530
                s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
3531
                if(!s->first_slice_line) {
3532
                    s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
3533
                    s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
3534
                    if(!(s->flags & CODEC_FLAG_GRAY)) {
3535
                        s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
3536
                        s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
3537
                    }
3538
                }
3539
                s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
3540
                s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
3541
            }
3542

    
3543
            if(get_bits_count(&s->gb) > v->bits) {
3544
                av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
3545
                return;
3546
            }
3547
        }
3548
        ff_draw_horiz_band(s, s->mb_y * 16, 16);
3549
        s->first_slice_line = 0;
3550
    }
3551
}
3552

    
3553
/** Decode blocks of I-frame for advanced profile
3554
 */
3555
static void vc1_decode_i_blocks_adv(VC1Context *v)
3556
{
3557
    int k, j;
3558
    MpegEncContext *s = &v->s;
3559
    int cbp, val;
3560
    uint8_t *coded_val;
3561
    int mb_pos;
3562
    int mquant = v->pq;
3563
    int mqdiff;
3564
    int overlap;
3565
    GetBitContext *gb = &s->gb;
3566

    
3567
    /* select codingmode used for VLC tables selection */
3568
    switch(v->y_ac_table_index){
3569
    case 0:
3570
        v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
3571
        break;
3572
    case 1:
3573
        v->codingset = CS_HIGH_MOT_INTRA;
3574
        break;
3575
    case 2:
3576
        v->codingset = CS_MID_RATE_INTRA;
3577
        break;
3578
    }
3579

    
3580
    switch(v->c_ac_table_index){
3581
    case 0:
3582
        v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
3583
        break;
3584
    case 1:
3585
        v->codingset2 = CS_HIGH_MOT_INTER;
3586
        break;
3587
    case 2:
3588
        v->codingset2 = CS_MID_RATE_INTER;
3589
        break;
3590
    }
3591

    
3592
    //do frame decode
3593
    s->mb_x = s->mb_y = 0;
3594
    s->mb_intra = 1;
3595
    s->first_slice_line = 1;
3596
    ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
3597
    for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
3598
        for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
3599
            ff_init_block_index(s);
3600
            ff_update_block_index(s);
3601
            s->dsp.clear_blocks(s->block[0]);
3602
            mb_pos = s->mb_x + s->mb_y * s->mb_stride;
3603
            s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
3604
            s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
3605
            s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
3606

    
3607
            // do actual MB decoding and displaying
3608
            cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
3609
            if(v->acpred_is_raw)
3610
                v->s.ac_pred = get_bits(&v->s.gb, 1);
3611
            else
3612
                v->s.ac_pred = v->acpred_plane[mb_pos];
3613

    
3614
            if(v->condover == CONDOVER_SELECT) {
3615
                if(v->overflg_is_raw)
3616
                    overlap = get_bits(&v->s.gb, 1);
3617
                else
3618
                    overlap = v->over_flags_plane[mb_pos];
3619
            } else
3620
                overlap = (v->condover == CONDOVER_ALL);
3621

    
3622
            GET_MQUANT();
3623

    
3624
            s->current_picture.qscale_table[mb_pos] = mquant;
3625
            /* Set DC scale - y and c use the same */
3626
            s->y_dc_scale = s->y_dc_scale_table[mquant];
3627
            s->c_dc_scale = s->c_dc_scale_table[mquant];
3628

    
3629
            for(k = 0; k < 6; k++) {
3630
                val = ((cbp >> (5 - k)) & 1);
3631

    
3632
                if (k < 4) {
3633
                    int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
3634
                    val = val ^ pred;
3635
                    *coded_val = val;
3636
                }
3637
                cbp |= val << (5 - k);
3638

    
3639
                v->a_avail = !s->first_slice_line || (k==2 || k==3);
3640
                v->c_avail = !!s->mb_x || (k==1 || k==3);
3641

    
3642
                vc1_decode_i_block_adv(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2, mquant);
3643

    
3644
                s->dsp.vc1_inv_trans_8x8(s->block[k]);
3645
                for(j = 0; j < 64; j++) s->block[k][j] += 128;
3646
            }
3647

    
3648
            vc1_put_block(v, s->block);
3649
            if(overlap) {
3650
                if(s->mb_x) {
3651
                    s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
3652
                    s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
3653
                    if(!(s->flags & CODEC_FLAG_GRAY)) {
3654
                        s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
3655
                        s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
3656
                    }
3657
                }
3658
                s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
3659
                s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
3660
                if(!s->first_slice_line) {
3661
                    s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
3662
                    s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
3663
                    if(!(s->flags & CODEC_FLAG_GRAY)) {
3664
                        s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
3665
                        s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
3666
                    }
3667
                }
3668
                s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
3669
                s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
3670
            }
3671

    
3672
            if(get_bits_count(&s->gb) > v->bits) {
3673
                av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
3674
                return;
3675
            }
3676
        }
3677
        ff_draw_horiz_band(s, s->mb_y * 16, 16);
3678
        s->first_slice_line = 0;
3679
    }
3680
}
3681

    
3682
static void vc1_decode_p_blocks(VC1Context *v)
3683
{
3684
    MpegEncContext *s = &v->s;
3685

    
3686
    /* select codingmode used for VLC tables selection */
3687
    switch(v->c_ac_table_index){
3688
    case 0:
3689
        v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
3690
        break;
3691
    case 1:
3692
        v->codingset = CS_HIGH_MOT_INTRA;
3693
        break;
3694
    case 2:
3695
        v->codingset = CS_MID_RATE_INTRA;
3696
        break;
3697
    }
3698

    
3699
    switch(v->c_ac_table_index){
3700
    case 0:
3701
        v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
3702
        break;
3703
    case 1:
3704
        v->codingset2 = CS_HIGH_MOT_INTER;
3705
        break;
3706
    case 2:
3707
        v->codingset2 = CS_MID_RATE_INTER;
3708
        break;
3709
    }
3710

    
3711
    ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
3712
    s->first_slice_line = 1;
3713
    for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
3714
        for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
3715
            ff_init_block_index(s);
3716
            ff_update_block_index(s);
3717
            s->dsp.clear_blocks(s->block[0]);
3718

    
3719
            vc1_decode_p_mb(v);
3720
            if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
3721
                av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
3722
                return;
3723
            }
3724
        }
3725
        ff_draw_horiz_band(s, s->mb_y * 16, 16);
3726
        s->first_slice_line = 0;
3727
    }
3728
}
3729

    
3730
static void vc1_decode_b_blocks(VC1Context *v)
3731
{
3732
    MpegEncContext *s = &v->s;
3733

    
3734
    /* select codingmode used for VLC tables selection */
3735
    switch(v->c_ac_table_index){
3736
    case 0:
3737
        v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
3738
        break;
3739
    case 1:
3740
        v->codingset = CS_HIGH_MOT_INTRA;
3741
        break;
3742
    case 2:
3743
        v->codingset = CS_MID_RATE_INTRA;
3744
        break;
3745
    }
3746

    
3747
    switch(v->c_ac_table_index){
3748
    case 0:
3749
        v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
3750
        break;
3751
    case 1:
3752
        v->codingset2 = CS_HIGH_MOT_INTER;
3753
        break;
3754
    case 2:
3755
        v->codingset2 = CS_MID_RATE_INTER;
3756
        break;
3757
    }
3758

    
3759
    ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
3760
    s->first_slice_line = 1;
3761
    for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
3762
        for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
3763
            ff_init_block_index(s);
3764
            ff_update_block_index(s);
3765
            s->dsp.clear_blocks(s->block[0]);
3766

    
3767
            vc1_decode_b_mb(v);
3768
            if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
3769
                av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
3770
                return;
3771
            }
3772
        }
3773
        ff_draw_horiz_band(s, s->mb_y * 16, 16);
3774
        s->first_slice_line = 0;
3775
    }
3776
}
3777

    
3778
static void vc1_decode_skip_blocks(VC1Context *v)
3779
{
3780
    MpegEncContext *s = &v->s;
3781

    
3782
    ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
3783
    s->first_slice_line = 1;
3784
    for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
3785
        s->mb_x = 0;
3786
        ff_init_block_index(s);
3787
        ff_update_block_index(s);
3788
        memcpy(s->dest[0], s->last_picture.data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
3789
        memcpy(s->dest[1], s->last_picture.data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
3790
        memcpy(s->dest[2], s->last_picture.data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
3791
        ff_draw_horiz_band(s, s->mb_y * 16, 16);
3792
        s->first_slice_line = 0;
3793
    }
3794
    s->pict_type = P_TYPE;
3795
}
3796

    
3797
static void vc1_decode_blocks(VC1Context *v)
3798
{
3799

    
3800
    v->s.esc3_level_length = 0;
3801

    
3802
    switch(v->s.pict_type) {
3803
    case I_TYPE:
3804
        if(v->profile == PROFILE_ADVANCED)
3805
            vc1_decode_i_blocks_adv(v);
3806
        else
3807
            vc1_decode_i_blocks(v);
3808
        break;
3809
    case P_TYPE:
3810
        if(v->p_frame_skipped)
3811
            vc1_decode_skip_blocks(v);
3812
        else
3813
            vc1_decode_p_blocks(v);
3814
        break;
3815
    case B_TYPE:
3816
        if(v->bi_type){
3817
            if(v->profile == PROFILE_ADVANCED)
3818
                vc1_decode_i_blocks_adv(v);
3819
            else
3820
                vc1_decode_i_blocks(v);
3821
        }else
3822
            vc1_decode_b_blocks(v);
3823
        break;
3824
    }
3825
}
3826

    
3827
/** Find VC-1 marker in buffer
3828
 * @return position where next marker starts or end of buffer if no marker found
3829
 */
3830
static av_always_inline uint8_t* find_next_marker(uint8_t *src, uint8_t *end)
3831
{
3832
    uint32_t mrk = 0xFFFFFFFF;
3833

    
3834
    if(end-src < 4) return end;
3835
    while(src < end){
3836
        mrk = (mrk << 8) | *src++;
3837
        if(IS_MARKER(mrk))
3838
            return src-4;
3839
    }
3840
    return end;
3841
}
3842

    
3843
static av_always_inline int vc1_unescape_buffer(uint8_t *src, int size, uint8_t *dst)
3844
{
3845
    int dsize = 0, i;
3846

    
3847
    if(size < 4){
3848
        for(dsize = 0; dsize < size; dsize++) *dst++ = *src++;
3849
        return size;
3850
    }
3851
    for(i = 0; i < size; i++, src++) {
3852
        if(src[0] == 3 && i >= 2 && !src[-1] && !src[-2] && i < size-1 && src[1] < 4) {
3853
            dst[dsize++] = src[1];
3854
            src++;
3855
            i++;
3856
        } else
3857
            dst[dsize++] = *src;
3858
    }
3859
    return dsize;
3860
}
3861

    
3862
/** Initialize a VC1/WMV3 decoder
3863
 * @todo TODO: Handle VC-1 IDUs (Transport level?)
3864
 * @todo TODO: Decypher remaining bits in extra_data
3865
 */
3866
static int vc1_decode_init(AVCodecContext *avctx)
3867
{
3868
    VC1Context *v = avctx->priv_data;
3869
    MpegEncContext *s = &v->s;
3870
    GetBitContext gb;
3871

    
3872
    if (!avctx->extradata_size || !avctx->extradata) return -1;
3873
    if (!(avctx->flags & CODEC_FLAG_GRAY))
3874
        avctx->pix_fmt = PIX_FMT_YUV420P;
3875
    else
3876
        avctx->pix_fmt = PIX_FMT_GRAY8;
3877
    v->s.avctx = avctx;
3878
    avctx->flags |= CODEC_FLAG_EMU_EDGE;
3879
    v->s.flags |= CODEC_FLAG_EMU_EDGE;
3880

    
3881
    if(ff_h263_decode_init(avctx) < 0)
3882
        return -1;
3883
    if (vc1_init_common(v) < 0) return -1;
3884

    
3885
    avctx->coded_width = avctx->width;
3886
    avctx->coded_height = avctx->height;
3887
    if (avctx->codec_id == CODEC_ID_WMV3)
3888
    {
3889
        int count = 0;
3890

    
3891
        // looks like WMV3 has a sequence header stored in the extradata
3892
        // advanced sequence header may be before the first frame
3893
        // the last byte of the extradata is a version number, 1 for the
3894
        // samples we can decode
3895

    
3896
        init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
3897

    
3898
        if (decode_sequence_header(avctx, &gb) < 0)
3899
          return -1;
3900

    
3901
        count = avctx->extradata_size*8 - get_bits_count(&gb);
3902
        if (count>0)
3903
        {
3904
            av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
3905
                   count, get_bits(&gb, count));
3906
        }
3907
        else if (count < 0)
3908
        {
3909
            av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
3910
        }
3911
    } else { // VC1/WVC1
3912
        uint8_t *start = avctx->extradata, *end = avctx->extradata + avctx->extradata_size;
3913
        uint8_t *next; int size, buf2_size;
3914
        uint8_t *buf2 = NULL;
3915
        int seq_inited = 0, ep_inited = 0;
3916

    
3917
        if(avctx->extradata_size < 16) {
3918
            av_log(avctx, AV_LOG_ERROR, "Extradata size too small: %i\n", avctx->extradata_size);
3919
            return -1;
3920
        }
3921

    
3922
        buf2 = av_mallocz(avctx->extradata_size + FF_INPUT_BUFFER_PADDING_SIZE);
3923
        if(start[0]) start++; // in WVC1 extradata first byte is its size
3924
        next = start;
3925
        for(; next < end; start = next){
3926
            next = find_next_marker(start + 4, end);
3927
            size = next - start - 4;
3928
            if(size <= 0) continue;
3929
            buf2_size = vc1_unescape_buffer(start + 4, size, buf2);
3930
            init_get_bits(&gb, buf2, buf2_size * 8);
3931
            switch(AV_RB32(start)){
3932
            case VC1_CODE_SEQHDR:
3933
                if(decode_sequence_header(avctx, &gb) < 0){
3934
                    av_free(buf2);
3935
                    return -1;
3936
                }
3937
                seq_inited = 1;
3938
                break;
3939
            case VC1_CODE_ENTRYPOINT:
3940
                if(decode_entry_point(avctx, &gb) < 0){
3941
                    av_free(buf2);
3942
                    return -1;
3943
                }
3944
                ep_inited = 1;
3945
                break;
3946
            }
3947
        }
3948
        av_free(buf2);
3949
        if(!seq_inited || !ep_inited){
3950
            av_log(avctx, AV_LOG_ERROR, "Incomplete extradata\n");
3951
            return -1;
3952
        }
3953
    }
3954
    avctx->has_b_frames= !!(avctx->max_b_frames);
3955
    s->low_delay = !avctx->has_b_frames;
3956

    
3957
    s->mb_width = (avctx->coded_width+15)>>4;
3958
    s->mb_height = (avctx->coded_height+15)>>4;
3959

    
3960
    /* Allocate mb bitplanes */
3961
    v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height);
3962
    v->direct_mb_plane = av_malloc(s->mb_stride * s->mb_height);
3963
    v->acpred_plane = av_malloc(s->mb_stride * s->mb_height);
3964
    v->over_flags_plane = av_malloc(s->mb_stride * s->mb_height);
3965

    
3966
    /* allocate block type info in that way so it could be used with s->block_index[] */
3967
    v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
3968
    v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
3969
    v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
3970
    v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
3971

    
3972
    /* Init coded blocks info */
3973
    if (v->profile == PROFILE_ADVANCED)
3974
    {
3975
//        if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
3976
//            return -1;
3977
//        if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
3978
//            return -1;
3979
    }
3980

    
3981
    return 0;
3982
}
3983

    
3984

    
3985
/** Decode a VC1/WMV3 frame
3986
 * @todo TODO: Handle VC-1 IDUs (Transport level?)
3987
 */
3988
static int vc1_decode_frame(AVCodecContext *avctx,
3989
                            void *data, int *data_size,
3990
                            uint8_t *buf, int buf_size)
3991
{
3992
    VC1Context *v = avctx->priv_data;
3993
    MpegEncContext *s = &v->s;
3994
    AVFrame *pict = data;
3995
    uint8_t *buf2 = NULL;
3996

    
3997
    /* no supplementary picture */
3998
    if (buf_size == 0) {
3999
        /* special case for last picture */
4000
        if (s->low_delay==0 && s->next_picture_ptr) {
4001
            *pict= *(AVFrame*)s->next_picture_ptr;
4002
            s->next_picture_ptr= NULL;
4003

    
4004
            *data_size = sizeof(AVFrame);
4005
        }
4006

    
4007
        return 0;
4008
    }
4009

    
4010
    /* We need to set current_picture_ptr before reading the header,
4011
     * otherwise we cannot store anything in there. */
4012
    if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){
4013
        int i= ff_find_unused_picture(s, 0);
4014
        s->current_picture_ptr= &s->picture[i];
4015
    }
4016

    
4017
    //for advanced profile we may need to parse and unescape data
4018
    if (avctx->codec_id == CODEC_ID_VC1) {
4019
        int buf_size2 = 0;
4020
        buf2 = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
4021

    
4022
        if(IS_MARKER(AV_RB32(buf))){ /* frame starts with marker and needs to be parsed */
4023
            uint8_t *start, *end, *next;
4024
            int size;
4025

    
4026
            next = buf;
4027
            for(start = buf, end = buf + buf_size; next < end; start = next){
4028
                next = find_next_marker(start + 4, end);
4029
                size = next - start - 4;
4030
                if(size <= 0) continue;
4031
                switch(AV_RB32(start)){
4032
                case VC1_CODE_FRAME:
4033
                    buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
4034
                    break;
4035
                case VC1_CODE_ENTRYPOINT: /* it should be before frame data */
4036
                    buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
4037
                    init_get_bits(&s->gb, buf2, buf_size2*8);
4038
                    decode_entry_point(avctx, &s->gb);
4039
                    break;
4040
                case VC1_CODE_SLICE:
4041
                    av_log(avctx, AV_LOG_ERROR, "Sliced decoding is not implemented (yet)\n");
4042
                    av_free(buf2);
4043
                    return -1;
4044
                }
4045
            }
4046
        }else if(v->interlace && ((buf[0] & 0xC0) == 0xC0)){ /* WVC1 interlaced stores both fields divided by marker */
4047
            uint8_t *divider;
4048

    
4049
            divider = find_next_marker(buf, buf + buf_size);
4050
            if((divider == (buf + buf_size)) || AV_RB32(divider) != VC1_CODE_FIELD){
4051
                av_log(avctx, AV_LOG_ERROR, "Error in WVC1 interlaced frame\n");
4052
                return -1;
4053
            }
4054

    
4055
            buf_size2 = vc1_unescape_buffer(buf, divider - buf, buf2);
4056
            // TODO
4057
            av_free(buf2);return -1;
4058
        }else{
4059
            buf_size2 = vc1_unescape_buffer(buf, buf_size, buf2);
4060
        }
4061
        init_get_bits(&s->gb, buf2, buf_size2*8);
4062
    } else
4063
        init_get_bits(&s->gb, buf, buf_size*8);
4064
    // do parse frame header
4065
    if(v->profile < PROFILE_ADVANCED) {
4066
        if(vc1_parse_frame_header(v, &s->gb) == -1) {
4067
            av_free(buf2);
4068
            return -1;
4069
        }
4070
    } else {
4071
        if(vc1_parse_frame_header_adv(v, &s->gb) == -1) {
4072
            av_free(buf2);
4073
            return -1;
4074
        }
4075
    }
4076

    
4077
    if(s->pict_type != I_TYPE && !v->res_rtm_flag){
4078
        av_free(buf2);
4079
        return -1;
4080
    }
4081

    
4082
    // for hurry_up==5
4083
    s->current_picture.pict_type= s->pict_type;
4084
    s->current_picture.key_frame= s->pict_type == I_TYPE;
4085

    
4086
    /* skip B-frames if we don't have reference frames */
4087
    if(s->last_picture_ptr==NULL && (s->pict_type==B_TYPE || s->dropable)){
4088
        av_free(buf2);
4089
        return -1;//buf_size;
4090
    }
4091
    /* skip b frames if we are in a hurry */
4092
    if(avctx->hurry_up && s->pict_type==B_TYPE) return -1;//buf_size;
4093
    if(   (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==B_TYPE)
4094
       || (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=I_TYPE)
4095
       ||  avctx->skip_frame >= AVDISCARD_ALL) {
4096
        av_free(buf2);
4097
        return buf_size;
4098
    }
4099
    /* skip everything if we are in a hurry>=5 */
4100
    if(avctx->hurry_up>=5) {
4101
        av_free(buf2);
4102
        return -1;//buf_size;
4103
    }
4104

    
4105
    if(s->next_p_frame_damaged){
4106
        if(s->pict_type==B_TYPE)
4107
            return buf_size;
4108
        else
4109
            s->next_p_frame_damaged=0;
4110
    }
4111

    
4112
    if(MPV_frame_start(s, avctx) < 0) {
4113
        av_free(buf2);
4114
        return -1;
4115
    }
4116

    
4117
    ff_er_frame_start(s);
4118

    
4119
    v->bits = buf_size * 8;
4120
    vc1_decode_blocks(v);
4121
//av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), buf_size*8);
4122
//  if(get_bits_count(&s->gb) > buf_size * 8)
4123
//      return -1;
4124
    ff_er_frame_end(s);
4125

    
4126
    MPV_frame_end(s);
4127

    
4128
assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type);
4129
assert(s->current_picture.pict_type == s->pict_type);
4130
    if (s->pict_type == B_TYPE || s->low_delay) {
4131
        *pict= *(AVFrame*)s->current_picture_ptr;
4132
    } else if (s->last_picture_ptr != NULL) {
4133
        *pict= *(AVFrame*)s->last_picture_ptr;
4134
    }
4135

    
4136
    if(s->last_picture_ptr || s->low_delay){
4137
        *data_size = sizeof(AVFrame);
4138
        ff_print_debug_info(s, pict);
4139
    }
4140

    
4141
    /* Return the Picture timestamp as the frame number */
4142
    /* we substract 1 because it is added on utils.c    */
4143
    avctx->frame_number = s->picture_number - 1;
4144

    
4145
    av_free(buf2);
4146
    return buf_size;
4147
}
4148

    
4149

    
4150
/** Close a VC1/WMV3 decoder
4151
 * @warning Initial try at using MpegEncContext stuff
4152
 */
4153
static int vc1_decode_end(AVCodecContext *avctx)
4154
{
4155
    VC1Context *v = avctx->priv_data;
4156

    
4157
    av_freep(&v->hrd_rate);
4158
    av_freep(&v->hrd_buffer);
4159
    MPV_common_end(&v->s);
4160
    av_freep(&v->mv_type_mb_plane);
4161
    av_freep(&v->direct_mb_plane);
4162
    av_freep(&v->acpred_plane);
4163
    av_freep(&v->over_flags_plane);
4164
    av_freep(&v->mb_type_base);
4165
    return 0;
4166
}
4167

    
4168

    
4169
AVCodec vc1_decoder = {
4170
    "vc1",
4171
    CODEC_TYPE_VIDEO,
4172
    CODEC_ID_VC1,
4173
    sizeof(VC1Context),
4174
    vc1_decode_init,
4175
    NULL,
4176
    vc1_decode_end,
4177
    vc1_decode_frame,
4178
    CODEC_CAP_DELAY,
4179
    NULL
4180
};
4181

    
4182
AVCodec wmv3_decoder = {
4183
    "wmv3",
4184
    CODEC_TYPE_VIDEO,
4185
    CODEC_ID_WMV3,
4186
    sizeof(VC1Context),
4187
    vc1_decode_init,
4188
    NULL,
4189
    vc1_decode_end,
4190
    vc1_decode_frame,
4191
    CODEC_CAP_DELAY,
4192
    NULL
4193
};