ffmpeg / libavcodec / mpegaudiodec.c @ 40914d97
History  View  Annotate  Download (77.4 KB)
1 
/*


2 
* MPEG Audio decoder

3 
* Copyright (c) 2001, 2002 Fabrice Bellard

4 
*

5 
* This file is part of FFmpeg.

6 
*

7 
* FFmpeg is free software; you can redistribute it and/or

8 
* modify it under the terms of the GNU Lesser General Public

9 
* License as published by the Free Software Foundation; either

10 
* version 2.1 of the License, or (at your option) any later version.

11 
*

12 
* FFmpeg is distributed in the hope that it will be useful,

13 
* but WITHOUT ANY WARRANTY; without even the implied warranty of

14 
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

15 
* Lesser General Public License for more details.

16 
*

17 
* You should have received a copy of the GNU Lesser General Public

18 
* License along with FFmpeg; if not, write to the Free Software

19 
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 021101301 USA

20 
*/

21  
22 
/**

23 
* @file

24 
* MPEG Audio decoder.

25 
*/

26  
27 
#include "avcodec.h" 
28 
#include "get_bits.h" 
29 
#include "dsputil.h" 
30  
31 
/*

32 
* TODO:

33 
*  in low precision mode, use more 16 bit multiplies in synth filter

34 
*  test lsf / mpeg25 extensively.

35 
*/

36  
37 
#include "mpegaudio.h" 
38 
#include "mpegaudiodecheader.h" 
39  
40 
#include "mathops.h" 
41  
42 
#if CONFIG_FLOAT

43 
# define SHR(a,b) ((a)*(1.0f/(1<<(b)))) 
44 
# define compute_antialias compute_antialias_float

45 
# define FIXR_OLD(a) ((int)((a) * FRAC_ONE + 0.5)) 
46 
# define FIXR(x) ((float)(x)) 
47 
# define FIXHR(x) ((float)(x)) 
48 
# define MULH3(x, y, s) ((s)*(y)*(x))

49 
# define MULLx(x, y, s) ((y)*(x))

50 
# define RENAME(a) a ## _float 
51 
#else

52 
# define SHR(a,b) ((a)>>(b))

53 
# define compute_antialias compute_antialias_integer

54 
/* WARNING: only correct for posititive numbers */

55 
# define FIXR_OLD(a) ((int)((a) * FRAC_ONE + 0.5)) 
56 
# define FIXR(a) ((int)((a) * FRAC_ONE + 0.5)) 
57 
# define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5)) 
58 
# define MULH3(x, y, s) MULH((s)*(x), y)

59 
# define MULLx(x, y, s) MULL(x,y,s)

60 
# define RENAME(a) a

61 
#endif

62  
63 
/****************/

64  
65 
#define HEADER_SIZE 4 
66  
67 
#include "mpegaudiodata.h" 
68 
#include "mpegaudiodectab.h" 
69  
70 
static void compute_antialias_integer(MPADecodeContext *s, GranuleDef *g); 
71 
static void compute_antialias_float(MPADecodeContext *s, GranuleDef *g); 
72  
73 
/* vlc structure for decoding layer 3 huffman tables */

74 
static VLC huff_vlc[16]; 
75 
static VLC_TYPE huff_vlc_tables[

76 
0+128+128+128+130+128+154+166+ 
77 
142+204+190+170+542+460+662+414 
78 
][2];

79 
static const int huff_vlc_tables_sizes[16] = { 
80 
0, 128, 128, 128, 130, 128, 154, 166, 
81 
142, 204, 190, 170, 542, 460, 662, 414 
82 
}; 
83 
static VLC huff_quad_vlc[2]; 
84 
static VLC_TYPE huff_quad_vlc_tables[128+16][2]; 
85 
static const int huff_quad_vlc_tables_sizes[2] = { 
86 
128, 16 
87 
}; 
88 
/* computed from band_size_long */

89 
static uint16_t band_index_long[9][23]; 
90 
#include "mpegaudio_tablegen.h" 
91 
/* intensity stereo coef table */

92 
static INTFLOAT is_table[2][16]; 
93 
static INTFLOAT is_table_lsf[2][2][16]; 
94 
static int32_t csa_table[8][4]; 
95 
static float csa_table_float[8][4]; 
96 
static INTFLOAT mdct_win[8][36]; 
97  
98 
/* lower 2 bits: modulo 3, higher bits: shift */

99 
static uint16_t scale_factor_modshift[64]; 
100 
/* [i][j]: 2^(j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2)  1) */

101 
static int32_t scale_factor_mult[15][3]; 
102 
/* mult table for layer 2 group quantization */

103  
104 
#define SCALE_GEN(v) \

105 
{ FIXR_OLD(1.0 * (v)), FIXR_OLD(0.7937005259 * (v)), FIXR_OLD(0.6299605249 * (v)) } 
106  
107 
static const int32_t scale_factor_mult2[3][3] = { 
108 
SCALE_GEN(4.0 / 3.0), /* 3 steps */ 
109 
SCALE_GEN(4.0 / 5.0), /* 5 steps */ 
110 
SCALE_GEN(4.0 / 9.0), /* 9 steps */ 
111 
}; 
112  
113 
DECLARE_ALIGNED(16, MPA_INT, RENAME(ff_mpa_synth_window))[512]; 
114  
115 
/**

116 
* Convert region offsets to region sizes and truncate

117 
* size to big_values.

118 
*/

119 
static void ff_region_offset2size(GranuleDef *g){ 
120 
int i, k, j=0; 
121 
g>region_size[2] = (576 / 2); 
122 
for(i=0;i<3;i++) { 
123 
k = FFMIN(g>region_size[i], g>big_values); 
124 
g>region_size[i] = k  j; 
125 
j = k; 
126 
} 
127 
} 
128  
129 
static void ff_init_short_region(MPADecodeContext *s, GranuleDef *g){ 
130 
if (g>block_type == 2) 
131 
g>region_size[0] = (36 / 2); 
132 
else {

133 
if (s>sample_rate_index <= 2) 
134 
g>region_size[0] = (36 / 2); 
135 
else if (s>sample_rate_index != 8) 
136 
g>region_size[0] = (54 / 2); 
137 
else

138 
g>region_size[0] = (108 / 2); 
139 
} 
140 
g>region_size[1] = (576 / 2); 
141 
} 
142  
143 
static void ff_init_long_region(MPADecodeContext *s, GranuleDef *g, int ra1, int ra2){ 
144 
int l;

145 
g>region_size[0] =

146 
band_index_long[s>sample_rate_index][ra1 + 1] >> 1; 
147 
/* should not overflow */

148 
l = FFMIN(ra1 + ra2 + 2, 22); 
149 
g>region_size[1] =

150 
band_index_long[s>sample_rate_index][l] >> 1;

151 
} 
152  
153 
static void ff_compute_band_indexes(MPADecodeContext *s, GranuleDef *g){ 
154 
if (g>block_type == 2) { 
155 
if (g>switch_point) {

156 
/* if switched mode, we handle the 36 first samples as

157 
long blocks. For 8000Hz, we handle the 48 first

158 
exponents as long blocks (XXX: check this!) */

159 
if (s>sample_rate_index <= 2) 
160 
g>long_end = 8;

161 
else if (s>sample_rate_index != 8) 
162 
g>long_end = 6;

163 
else

164 
g>long_end = 4; /* 8000 Hz */ 
165  
166 
g>short_start = 2 + (s>sample_rate_index != 8); 
167 
} else {

168 
g>long_end = 0;

169 
g>short_start = 0;

170 
} 
171 
} else {

172 
g>short_start = 13;

173 
g>long_end = 22;

174 
} 
175 
} 
176  
177 
/* layer 1 unscaling */

178 
/* n = number of bits of the mantissa minus 1 */

179 
static inline int l1_unscale(int n, int mant, int scale_factor) 
180 
{ 
181 
int shift, mod;

182 
int64_t val; 
183  
184 
shift = scale_factor_modshift[scale_factor]; 
185 
mod = shift & 3;

186 
shift >>= 2;

187 
val = MUL64(mant + (1 << n) + 1, scale_factor_mult[n1][mod]); 
188 
shift += n; 
189 
/* NOTE: at this point, 1 <= shift >= 21 + 15 */

190 
return (int)((val + (1LL << (shift  1))) >> shift); 
191 
} 
192  
193 
static inline int l2_unscale_group(int steps, int mant, int scale_factor) 
194 
{ 
195 
int shift, mod, val;

196  
197 
shift = scale_factor_modshift[scale_factor]; 
198 
mod = shift & 3;

199 
shift >>= 2;

200  
201 
val = (mant  (steps >> 1)) * scale_factor_mult2[steps >> 2][mod]; 
202 
/* NOTE: at this point, 0 <= shift <= 21 */

203 
if (shift > 0) 
204 
val = (val + (1 << (shift  1))) >> shift; 
205 
return val;

206 
} 
207  
208 
/* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */

209 
static inline int l3_unscale(int value, int exponent) 
210 
{ 
211 
unsigned int m; 
212 
int e;

213  
214 
e = table_4_3_exp [4*value + (exponent&3)]; 
215 
m = table_4_3_value[4*value + (exponent&3)]; 
216 
e = (exponent >> 2);

217 
assert(e>=1);

218 
if (e > 31) 
219 
return 0; 
220 
m = (m + (1 << (e1))) >> e; 
221  
222 
return m;

223 
} 
224  
225 
/* all integer n^(4/3) computation code */

226 
#define DEV_ORDER 13 
227  
228 
#define POW_FRAC_BITS 24 
229 
#define POW_FRAC_ONE (1 << POW_FRAC_BITS) 
230 
#define POW_FIX(a) ((int)((a) * POW_FRAC_ONE)) 
231 
#define POW_MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> POW_FRAC_BITS)

232  
233 
static int dev_4_3_coefs[DEV_ORDER]; 
234  
235 
#if 0 /* unused */

236 
static int pow_mult3[3] = {

237 
POW_FIX(1.0),

238 
POW_FIX(1.25992104989487316476),

239 
POW_FIX(1.58740105196819947474),

240 
};

241 
#endif

242  
243 
static av_cold void int_pow_init(void) 
244 
{ 
245 
int i, a;

246  
247 
a = POW_FIX(1.0); 
248 
for(i=0;i<DEV_ORDER;i++) { 
249 
a = POW_MULL(a, POW_FIX(4.0 / 3.0)  i * POW_FIX(1.0)) / (i + 1); 
250 
dev_4_3_coefs[i] = a; 
251 
} 
252 
} 
253  
254 
#if 0 /* unused, remove? */

255 
/* return the mantissa and the binary exponent */

256 
static int int_pow(int i, int *exp_ptr)

257 
{

258 
int e, er, eq, j;

259 
int a, a1;

260 

261 
/* renormalize */

262 
a = i;

263 
e = POW_FRAC_BITS;

264 
while (a < (1 << (POW_FRAC_BITS  1))) {

265 
a = a << 1;

266 
e;

267 
}

268 
a = (1 << POW_FRAC_BITS);

269 
a1 = 0;

270 
for(j = DEV_ORDER  1; j >= 0; j)

271 
a1 = POW_MULL(a, dev_4_3_coefs[j] + a1);

272 
a = (1 << POW_FRAC_BITS) + a1;

273 
/* exponent compute (exact) */

274 
e = e * 4;

275 
er = e % 3;

276 
eq = e / 3;

277 
a = POW_MULL(a, pow_mult3[er]);

278 
while (a >= 2 * POW_FRAC_ONE) {

279 
a = a >> 1;

280 
eq++;

281 
}

282 
/* convert to float */

283 
while (a < POW_FRAC_ONE) {

284 
a = a << 1;

285 
eq;

286 
}

287 
/* now POW_FRAC_ONE <= a < 2 * POW_FRAC_ONE */

288 
#if POW_FRAC_BITS > FRAC_BITS

289 
a = (a + (1 << (POW_FRAC_BITS  FRAC_BITS  1))) >> (POW_FRAC_BITS  FRAC_BITS);

290 
/* correct overflow */

291 
if (a >= 2 * (1 << FRAC_BITS)) {

292 
a = a >> 1;

293 
eq++;

294 
}

295 
#endif

296 
*exp_ptr = eq; 
297 
return a;

298 
} 
299 
#endif

300  
301 
static av_cold int decode_init(AVCodecContext * avctx) 
302 
{ 
303 
MPADecodeContext *s = avctx>priv_data; 
304 
static int init=0; 
305 
int i, j, k;

306  
307 
s>avctx = avctx; 
308  
309 
avctx>sample_fmt= OUT_FMT; 
310 
s>error_recognition= avctx>error_recognition; 
311  
312 
if (!init && !avctx>parse_only) {

313 
int offset;

314  
315 
/* scale factors table for layer 1/2 */

316 
for(i=0;i<64;i++) { 
317 
int shift, mod;

318 
/* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */

319 
shift = (i / 3);

320 
mod = i % 3;

321 
scale_factor_modshift[i] = mod  (shift << 2);

322 
} 
323  
324 
/* scale factor multiply for layer 1 */

325 
for(i=0;i<15;i++) { 
326 
int n, norm;

327 
n = i + 2;

328 
norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n)  1); 
329 
scale_factor_mult[i][0] = MULLx(norm, FIXR(1.0 * 2.0), FRAC_BITS); 
330 
scale_factor_mult[i][1] = MULLx(norm, FIXR(0.7937005259 * 2.0), FRAC_BITS); 
331 
scale_factor_mult[i][2] = MULLx(norm, FIXR(0.6299605249 * 2.0), FRAC_BITS); 
332 
dprintf(avctx, "%d: norm=%x s=%x %x %x\n",

333 
i, norm, 
334 
scale_factor_mult[i][0],

335 
scale_factor_mult[i][1],

336 
scale_factor_mult[i][2]);

337 
} 
338  
339 
RENAME(ff_mpa_synth_init)(RENAME(ff_mpa_synth_window)); 
340  
341 
/* huffman decode tables */

342 
offset = 0;

343 
for(i=1;i<16;i++) { 
344 
const HuffTable *h = &mpa_huff_tables[i];

345 
int xsize, x, y;

346 
uint8_t tmp_bits [512];

347 
uint16_t tmp_codes[512];

348  
349 
memset(tmp_bits , 0, sizeof(tmp_bits )); 
350 
memset(tmp_codes, 0, sizeof(tmp_codes)); 
351  
352 
xsize = h>xsize; 
353  
354 
j = 0;

355 
for(x=0;x<xsize;x++) { 
356 
for(y=0;y<xsize;y++){ 
357 
tmp_bits [(x << 5)  y  ((x&&y)<<4)]= h>bits [j ]; 
358 
tmp_codes[(x << 5)  y  ((x&&y)<<4)]= h>codes[j++]; 
359 
} 
360 
} 
361  
362 
/* XXX: fail test */

363 
huff_vlc[i].table = huff_vlc_tables+offset; 
364 
huff_vlc[i].table_allocated = huff_vlc_tables_sizes[i]; 
365 
init_vlc(&huff_vlc[i], 7, 512, 
366 
tmp_bits, 1, 1, tmp_codes, 2, 2, 
367 
INIT_VLC_USE_NEW_STATIC); 
368 
offset += huff_vlc_tables_sizes[i]; 
369 
} 
370 
assert(offset == FF_ARRAY_ELEMS(huff_vlc_tables)); 
371  
372 
offset = 0;

373 
for(i=0;i<2;i++) { 
374 
huff_quad_vlc[i].table = huff_quad_vlc_tables+offset; 
375 
huff_quad_vlc[i].table_allocated = huff_quad_vlc_tables_sizes[i]; 
376 
init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16, 
377 
mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1, 
378 
INIT_VLC_USE_NEW_STATIC); 
379 
offset += huff_quad_vlc_tables_sizes[i]; 
380 
} 
381 
assert(offset == FF_ARRAY_ELEMS(huff_quad_vlc_tables)); 
382  
383 
for(i=0;i<9;i++) { 
384 
k = 0;

385 
for(j=0;j<22;j++) { 
386 
band_index_long[i][j] = k; 
387 
k += band_size_long[i][j]; 
388 
} 
389 
band_index_long[i][22] = k;

390 
} 
391  
392 
/* compute n ^ (4/3) and store it in mantissa/exp format */

393  
394 
int_pow_init(); 
395 
mpegaudio_tableinit(); 
396  
397 
for(i=0;i<7;i++) { 
398 
float f;

399 
INTFLOAT v; 
400 
if (i != 6) { 
401 
f = tan((double)i * M_PI / 12.0); 
402 
v = FIXR(f / (1.0 + f)); 
403 
} else {

404 
v = FIXR(1.0); 
405 
} 
406 
is_table[0][i] = v;

407 
is_table[1][6  i] = v; 
408 
} 
409 
/* invalid values */

410 
for(i=7;i<16;i++) 
411 
is_table[0][i] = is_table[1][i] = 0.0; 
412  
413 
for(i=0;i<16;i++) { 
414 
double f;

415 
int e, k;

416  
417 
for(j=0;j<2;j++) { 
418 
e = (j + 1) * ((i + 1) >> 1); 
419 
f = pow(2.0, e / 4.0); 
420 
k = i & 1;

421 
is_table_lsf[j][k ^ 1][i] = FIXR(f);

422 
is_table_lsf[j][k][i] = FIXR(1.0); 
423 
dprintf(avctx, "is_table_lsf %d %d: %x %x\n",

424 
i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]); 
425 
} 
426 
} 
427  
428 
for(i=0;i<8;i++) { 
429 
float ci, cs, ca;

430 
ci = ci_table[i]; 
431 
cs = 1.0 / sqrt(1.0 + ci * ci); 
432 
ca = cs * ci; 
433 
csa_table[i][0] = FIXHR(cs/4); 
434 
csa_table[i][1] = FIXHR(ca/4); 
435 
csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4); 
436 
csa_table[i][3] = FIXHR(ca/4)  FIXHR(cs/4); 
437 
csa_table_float[i][0] = cs;

438 
csa_table_float[i][1] = ca;

439 
csa_table_float[i][2] = ca + cs;

440 
csa_table_float[i][3] = ca  cs;

441 
} 
442  
443 
/* compute mdct windows */

444 
for(i=0;i<36;i++) { 
445 
for(j=0; j<4; j++){ 
446 
double d;

447  
448 
if(j==2 && i%3 != 1) 
449 
continue;

450  
451 
d= sin(M_PI * (i + 0.5) / 36.0); 
452 
if(j==1){ 
453 
if (i>=30) d= 0; 
454 
else if(i>=24) d= sin(M_PI * (i  18 + 0.5) / 12.0); 
455 
else if(i>=18) d= 1; 
456 
}else if(j==3){ 
457 
if (i< 6) d= 0; 
458 
else if(i< 12) d= sin(M_PI * (i  6 + 0.5) / 12.0); 
459 
else if(i< 18) d= 1; 
460 
} 
461 
//merge last stage of imdct into the window coefficients

462 
d*= 0.5 / cos(M_PI*(2*i + 19)/72); 
463  
464 
if(j==2) 
465 
mdct_win[j][i/3] = FIXHR((d / (1<<5))); 
466 
else

467 
mdct_win[j][i ] = FIXHR((d / (1<<5))); 
468 
} 
469 
} 
470  
471 
/* NOTE: we do frequency inversion adter the MDCT by changing

472 
the sign of the right window coefs */

473 
for(j=0;j<4;j++) { 
474 
for(i=0;i<36;i+=2) { 
475 
mdct_win[j + 4][i] = mdct_win[j][i];

476 
mdct_win[j + 4][i + 1] = mdct_win[j][i + 1]; 
477 
} 
478 
} 
479  
480 
init = 1;

481 
} 
482  
483 
if (avctx>codec_id == CODEC_ID_MP3ADU)

484 
s>adu_mode = 1;

485 
return 0; 
486 
} 
487  
488 
/* tab[i][j] = 1.0 / (2.0 * cos(pi*(2*k+1) / 2^(6  j))) */

489  
490 
/* cos(i*pi/64) */

491  
492 
#define COS0_0 FIXHR(0.50060299823519630134/2) 
493 
#define COS0_1 FIXHR(0.50547095989754365998/2) 
494 
#define COS0_2 FIXHR(0.51544730992262454697/2) 
495 
#define COS0_3 FIXHR(0.53104259108978417447/2) 
496 
#define COS0_4 FIXHR(0.55310389603444452782/2) 
497 
#define COS0_5 FIXHR(0.58293496820613387367/2) 
498 
#define COS0_6 FIXHR(0.62250412303566481615/2) 
499 
#define COS0_7 FIXHR(0.67480834145500574602/2) 
500 
#define COS0_8 FIXHR(0.74453627100229844977/2) 
501 
#define COS0_9 FIXHR(0.83934964541552703873/2) 
502 
#define COS0_10 FIXHR(0.97256823786196069369/2) 
503 
#define COS0_11 FIXHR(1.16943993343288495515/4) 
504 
#define COS0_12 FIXHR(1.48416461631416627724/4) 
505 
#define COS0_13 FIXHR(2.05778100995341155085/8) 
506 
#define COS0_14 FIXHR(3.40760841846871878570/8) 
507 
#define COS0_15 FIXHR(10.19000812354805681150/32) 
508  
509 
#define COS1_0 FIXHR(0.50241928618815570551/2) 
510 
#define COS1_1 FIXHR(0.52249861493968888062/2) 
511 
#define COS1_2 FIXHR(0.56694403481635770368/2) 
512 
#define COS1_3 FIXHR(0.64682178335999012954/2) 
513 
#define COS1_4 FIXHR(0.78815462345125022473/2) 
514 
#define COS1_5 FIXHR(1.06067768599034747134/4) 
515 
#define COS1_6 FIXHR(1.72244709823833392782/4) 
516 
#define COS1_7 FIXHR(5.10114861868916385802/16) 
517  
518 
#define COS2_0 FIXHR(0.50979557910415916894/2) 
519 
#define COS2_1 FIXHR(0.60134488693504528054/2) 
520 
#define COS2_2 FIXHR(0.89997622313641570463/2) 
521 
#define COS2_3 FIXHR(2.56291544774150617881/8) 
522  
523 
#define COS3_0 FIXHR(0.54119610014619698439/2) 
524 
#define COS3_1 FIXHR(1.30656296487637652785/4) 
525  
526 
#define COS4_0 FIXHR(0.70710678118654752439/2) 
527  
528 
/* butterfly operator */

529 
#define BF(a, b, c, s)\

530 
{\ 
531 
tmp0 = tab[a] + tab[b];\ 
532 
tmp1 = tab[a]  tab[b];\ 
533 
tab[a] = tmp0;\ 
534 
tab[b] = MULH3(tmp1, c, 1<<(s));\

535 
} 
536  
537 
#define BF1(a, b, c, d)\

538 
{\ 
539 
BF(a, b, COS4_0, 1);\

540 
BF(c, d,COS4_0, 1);\

541 
tab[c] += tab[d];\ 
542 
} 
543  
544 
#define BF2(a, b, c, d)\

545 
{\ 
546 
BF(a, b, COS4_0, 1);\

547 
BF(c, d,COS4_0, 1);\

548 
tab[c] += tab[d];\ 
549 
tab[a] += tab[c];\ 
550 
tab[c] += tab[b];\ 
551 
tab[b] += tab[d];\ 
552 
} 
553  
554 
#define ADD(a, b) tab[a] += tab[b]

555  
556 
/* DCT32 without 1/sqrt(2) coef zero scaling. */

557 
static void dct32(INTFLOAT *out, INTFLOAT *tab) 
558 
{ 
559 
INTFLOAT tmp0, tmp1; 
560  
561 
/* pass 1 */

562 
BF( 0, 31, COS0_0 , 1); 
563 
BF(15, 16, COS0_15, 5); 
564 
/* pass 2 */

565 
BF( 0, 15, COS1_0 , 1); 
566 
BF(16, 31,COS1_0 , 1); 
567 
/* pass 1 */

568 
BF( 7, 24, COS0_7 , 1); 
569 
BF( 8, 23, COS0_8 , 1); 
570 
/* pass 2 */

571 
BF( 7, 8, COS1_7 , 4); 
572 
BF(23, 24,COS1_7 , 4); 
573 
/* pass 3 */

574 
BF( 0, 7, COS2_0 , 1); 
575 
BF( 8, 15,COS2_0 , 1); 
576 
BF(16, 23, COS2_0 , 1); 
577 
BF(24, 31,COS2_0 , 1); 
578 
/* pass 1 */

579 
BF( 3, 28, COS0_3 , 1); 
580 
BF(12, 19, COS0_12, 2); 
581 
/* pass 2 */

582 
BF( 3, 12, COS1_3 , 1); 
583 
BF(19, 28,COS1_3 , 1); 
584 
/* pass 1 */

585 
BF( 4, 27, COS0_4 , 1); 
586 
BF(11, 20, COS0_11, 2); 
587 
/* pass 2 */

588 
BF( 4, 11, COS1_4 , 1); 
589 
BF(20, 27,COS1_4 , 1); 
590 
/* pass 3 */

591 
BF( 3, 4, COS2_3 , 3); 
592 
BF(11, 12,COS2_3 , 3); 
593 
BF(19, 20, COS2_3 , 3); 
594 
BF(27, 28,COS2_3 , 3); 
595 
/* pass 4 */

596 
BF( 0, 3, COS3_0 , 1); 
597 
BF( 4, 7,COS3_0 , 1); 
598 
BF( 8, 11, COS3_0 , 1); 
599 
BF(12, 15,COS3_0 , 1); 
600 
BF(16, 19, COS3_0 , 1); 
601 
BF(20, 23,COS3_0 , 1); 
602 
BF(24, 27, COS3_0 , 1); 
603 
BF(28, 31,COS3_0 , 1); 
604  
605  
606  
607 
/* pass 1 */

608 
BF( 1, 30, COS0_1 , 1); 
609 
BF(14, 17, COS0_14, 3); 
610 
/* pass 2 */

611 
BF( 1, 14, COS1_1 , 1); 
612 
BF(17, 30,COS1_1 , 1); 
613 
/* pass 1 */

614 
BF( 6, 25, COS0_6 , 1); 
615 
BF( 9, 22, COS0_9 , 1); 
616 
/* pass 2 */

617 
BF( 6, 9, COS1_6 , 2); 
618 
BF(22, 25,COS1_6 , 2); 
619 
/* pass 3 */

620 
BF( 1, 6, COS2_1 , 1); 
621 
BF( 9, 14,COS2_1 , 1); 
622 
BF(17, 22, COS2_1 , 1); 
623 
BF(25, 30,COS2_1 , 1); 
624  
625 
/* pass 1 */

626 
BF( 2, 29, COS0_2 , 1); 
627 
BF(13, 18, COS0_13, 3); 
628 
/* pass 2 */

629 
BF( 2, 13, COS1_2 , 1); 
630 
BF(18, 29,COS1_2 , 1); 
631 
/* pass 1 */

632 
BF( 5, 26, COS0_5 , 1); 
633 
BF(10, 21, COS0_10, 1); 
634 
/* pass 2 */

635 
BF( 5, 10, COS1_5 , 2); 
636 
BF(21, 26,COS1_5 , 2); 
637 
/* pass 3 */

638 
BF( 2, 5, COS2_2 , 1); 
639 
BF(10, 13,COS2_2 , 1); 
640 
BF(18, 21, COS2_2 , 1); 
641 
BF(26, 29,COS2_2 , 1); 
642 
/* pass 4 */

643 
BF( 1, 2, COS3_1 , 2); 
644 
BF( 5, 6,COS3_1 , 2); 
645 
BF( 9, 10, COS3_1 , 2); 
646 
BF(13, 14,COS3_1 , 2); 
647 
BF(17, 18, COS3_1 , 2); 
648 
BF(21, 22,COS3_1 , 2); 
649 
BF(25, 26, COS3_1 , 2); 
650 
BF(29, 30,COS3_1 , 2); 
651  
652 
/* pass 5 */

653 
BF1( 0, 1, 2, 3); 
654 
BF2( 4, 5, 6, 7); 
655 
BF1( 8, 9, 10, 11); 
656 
BF2(12, 13, 14, 15); 
657 
BF1(16, 17, 18, 19); 
658 
BF2(20, 21, 22, 23); 
659 
BF1(24, 25, 26, 27); 
660 
BF2(28, 29, 30, 31); 
661  
662 
/* pass 6 */

663  
664 
ADD( 8, 12); 
665 
ADD(12, 10); 
666 
ADD(10, 14); 
667 
ADD(14, 9); 
668 
ADD( 9, 13); 
669 
ADD(13, 11); 
670 
ADD(11, 15); 
671  
672 
out[ 0] = tab[0]; 
673 
out[16] = tab[1]; 
674 
out[ 8] = tab[2]; 
675 
out[24] = tab[3]; 
676 
out[ 4] = tab[4]; 
677 
out[20] = tab[5]; 
678 
out[12] = tab[6]; 
679 
out[28] = tab[7]; 
680 
out[ 2] = tab[8]; 
681 
out[18] = tab[9]; 
682 
out[10] = tab[10]; 
683 
out[26] = tab[11]; 
684 
out[ 6] = tab[12]; 
685 
out[22] = tab[13]; 
686 
out[14] = tab[14]; 
687 
out[30] = tab[15]; 
688  
689 
ADD(24, 28); 
690 
ADD(28, 26); 
691 
ADD(26, 30); 
692 
ADD(30, 25); 
693 
ADD(25, 29); 
694 
ADD(29, 27); 
695 
ADD(27, 31); 
696  
697 
out[ 1] = tab[16] + tab[24]; 
698 
out[17] = tab[17] + tab[25]; 
699 
out[ 9] = tab[18] + tab[26]; 
700 
out[25] = tab[19] + tab[27]; 
701 
out[ 5] = tab[20] + tab[28]; 
702 
out[21] = tab[21] + tab[29]; 
703 
out[13] = tab[22] + tab[30]; 
704 
out[29] = tab[23] + tab[31]; 
705 
out[ 3] = tab[24] + tab[20]; 
706 
out[19] = tab[25] + tab[21]; 
707 
out[11] = tab[26] + tab[22]; 
708 
out[27] = tab[27] + tab[23]; 
709 
out[ 7] = tab[28] + tab[18]; 
710 
out[23] = tab[29] + tab[19]; 
711 
out[15] = tab[30] + tab[17]; 
712 
out[31] = tab[31]; 
713 
} 
714  
715 
#if CONFIG_FLOAT

716 
static inline float round_sample(float *sum) 
717 
{ 
718 
float sum1=*sum;

719 
*sum = 0;

720 
return sum1;

721 
} 
722  
723 
/* signed 16x16 > 32 multiply add accumulate */

724 
#define MACS(rt, ra, rb) rt+=(ra)*(rb)

725  
726 
/* signed 16x16 > 32 multiply */

727 
#define MULS(ra, rb) ((ra)*(rb))

728  
729 
#define MLSS(rt, ra, rb) rt=(ra)*(rb)

730  
731 
#elif FRAC_BITS <= 15 
732  
733 
static inline int round_sample(int *sum) 
734 
{ 
735 
int sum1;

736 
sum1 = (*sum) >> OUT_SHIFT; 
737 
*sum &= (1<<OUT_SHIFT)1; 
738 
return av_clip(sum1, OUT_MIN, OUT_MAX);

739 
} 
740  
741 
/* signed 16x16 > 32 multiply add accumulate */

742 
#define MACS(rt, ra, rb) MAC16(rt, ra, rb)

743  
744 
/* signed 16x16 > 32 multiply */

745 
#define MULS(ra, rb) MUL16(ra, rb)

746  
747 
#define MLSS(rt, ra, rb) MLS16(rt, ra, rb)

748  
749 
#else

750  
751 
static inline int round_sample(int64_t *sum) 
752 
{ 
753 
int sum1;

754 
sum1 = (int)((*sum) >> OUT_SHIFT);

755 
*sum &= (1<<OUT_SHIFT)1; 
756 
return av_clip(sum1, OUT_MIN, OUT_MAX);

757 
} 
758  
759 
# define MULS(ra, rb) MUL64(ra, rb)

760 
# define MACS(rt, ra, rb) MAC64(rt, ra, rb)

761 
# define MLSS(rt, ra, rb) MLS64(rt, ra, rb)

762 
#endif

763  
764 
#define SUM8(op, sum, w, p) \

765 
{ \ 
766 
op(sum, (w)[0 * 64], (p)[0 * 64]); \ 
767 
op(sum, (w)[1 * 64], (p)[1 * 64]); \ 
768 
op(sum, (w)[2 * 64], (p)[2 * 64]); \ 
769 
op(sum, (w)[3 * 64], (p)[3 * 64]); \ 
770 
op(sum, (w)[4 * 64], (p)[4 * 64]); \ 
771 
op(sum, (w)[5 * 64], (p)[5 * 64]); \ 
772 
op(sum, (w)[6 * 64], (p)[6 * 64]); \ 
773 
op(sum, (w)[7 * 64], (p)[7 * 64]); \ 
774 
} 
775  
776 
#define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \

777 
{ \ 
778 
INTFLOAT tmp;\ 
779 
tmp = p[0 * 64];\ 
780 
op1(sum1, (w1)[0 * 64], tmp);\ 
781 
op2(sum2, (w2)[0 * 64], tmp);\ 
782 
tmp = p[1 * 64];\ 
783 
op1(sum1, (w1)[1 * 64], tmp);\ 
784 
op2(sum2, (w2)[1 * 64], tmp);\ 
785 
tmp = p[2 * 64];\ 
786 
op1(sum1, (w1)[2 * 64], tmp);\ 
787 
op2(sum2, (w2)[2 * 64], tmp);\ 
788 
tmp = p[3 * 64];\ 
789 
op1(sum1, (w1)[3 * 64], tmp);\ 
790 
op2(sum2, (w2)[3 * 64], tmp);\ 
791 
tmp = p[4 * 64];\ 
792 
op1(sum1, (w1)[4 * 64], tmp);\ 
793 
op2(sum2, (w2)[4 * 64], tmp);\ 
794 
tmp = p[5 * 64];\ 
795 
op1(sum1, (w1)[5 * 64], tmp);\ 
796 
op2(sum2, (w2)[5 * 64], tmp);\ 
797 
tmp = p[6 * 64];\ 
798 
op1(sum1, (w1)[6 * 64], tmp);\ 
799 
op2(sum2, (w2)[6 * 64], tmp);\ 
800 
tmp = p[7 * 64];\ 
801 
op1(sum1, (w1)[7 * 64], tmp);\ 
802 
op2(sum2, (w2)[7 * 64], tmp);\ 
803 
} 
804  
805 
void av_cold RENAME(ff_mpa_synth_init)(MPA_INT *window)

806 
{ 
807 
int i;

808  
809 
/* max = 18760, max sum over all 16 coefs : 44736 */

810 
for(i=0;i<257;i++) { 
811 
INTFLOAT v; 
812 
v = ff_mpa_enwindow[i]; 
813 
#if CONFIG_FLOAT

814 
v *= 1.0 / (1LL<<(16 + FRAC_BITS)); 
815 
#elif WFRAC_BITS < 16 
816 
v = (v + (1 << (16  WFRAC_BITS  1))) >> (16  WFRAC_BITS); 
817 
#endif

818 
window[i] = v; 
819 
if ((i & 63) != 0) 
820 
v = v; 
821 
if (i != 0) 
822 
window[512  i] = v;

823 
} 
824 
} 
825  
826 
/* 32 sub band synthesis filter. Input: 32 sub band samples, Output:

827 
32 samples. */

828 
/* XXX: optimize by avoiding ring buffer usage */

829 
void RENAME(ff_mpa_synth_filter)(MPA_INT *synth_buf_ptr, int *synth_buf_offset, 
830 
MPA_INT *window, int *dither_state,

831 
OUT_INT *samples, int incr,

832 
INTFLOAT sb_samples[SBLIMIT]) 
833 
{ 
834 
register MPA_INT *synth_buf;

835 
register const MPA_INT *w, *w2, *p; 
836 
int j, offset;

837 
OUT_INT *samples2; 
838 
#if CONFIG_FLOAT

839 
float sum, sum2;

840 
#elif FRAC_BITS <= 15 
841 
int32_t tmp[32];

842 
int sum, sum2;

843 
#else

844 
int64_t sum, sum2; 
845 
#endif

846  
847 
offset = *synth_buf_offset; 
848 
synth_buf = synth_buf_ptr + offset; 
849  
850 
#if FRAC_BITS <= 15 && !CONFIG_FLOAT 
851 
dct32(tmp, sb_samples); 
852 
for(j=0;j<32;j++) { 
853 
/* NOTE: can cause a loss in precision if very high amplitude

854 
sound */

855 
synth_buf[j] = av_clip_int16(tmp[j]); 
856 
} 
857 
#else

858 
dct32(synth_buf, sb_samples); 
859 
#endif

860  
861 
/* copy to avoid wrap */

862 
memcpy(synth_buf + 512, synth_buf, 32 * sizeof(*synth_buf)); 
863  
864 
samples2 = samples + 31 * incr;

865 
w = window; 
866 
w2 = window + 31;

867  
868 
sum = *dither_state; 
869 
p = synth_buf + 16;

870 
SUM8(MACS, sum, w, p); 
871 
p = synth_buf + 48;

872 
SUM8(MLSS, sum, w + 32, p);

873 
*samples = round_sample(&sum); 
874 
samples += incr; 
875 
w++; 
876  
877 
/* we calculate two samples at the same time to avoid one memory

878 
access per two sample */

879 
for(j=1;j<16;j++) { 
880 
sum2 = 0;

881 
p = synth_buf + 16 + j;

882 
SUM8P2(sum, MACS, sum2, MLSS, w, w2, p); 
883 
p = synth_buf + 48  j;

884 
SUM8P2(sum, MLSS, sum2, MLSS, w + 32, w2 + 32, p); 
885  
886 
*samples = round_sample(&sum); 
887 
samples += incr; 
888 
sum += sum2; 
889 
*samples2 = round_sample(&sum); 
890 
samples2 = incr; 
891 
w++; 
892 
w2; 
893 
} 
894  
895 
p = synth_buf + 32;

896 
SUM8(MLSS, sum, w + 32, p);

897 
*samples = round_sample(&sum); 
898 
*dither_state= sum; 
899  
900 
offset = (offset  32) & 511; 
901 
*synth_buf_offset = offset; 
902 
} 
903  
904 
#define C3 FIXHR(0.86602540378443864676/2) 
905  
906 
/* 0.5 / cos(pi*(2*i+1)/36) */

907 
static const INTFLOAT icos36[9] = { 
908 
FIXR(0.50190991877167369479), 
909 
FIXR(0.51763809020504152469), //0 
910 
FIXR(0.55168895948124587824), 
911 
FIXR(0.61038729438072803416), 
912 
FIXR(0.70710678118654752439), //1 
913 
FIXR(0.87172339781054900991), 
914 
FIXR(1.18310079157624925896), 
915 
FIXR(1.93185165257813657349), //2 
916 
FIXR(5.73685662283492756461), 
917 
}; 
918  
919 
/* 0.5 / cos(pi*(2*i+1)/36) */

920 
static const INTFLOAT icos36h[9] = { 
921 
FIXHR(0.50190991877167369479/2), 
922 
FIXHR(0.51763809020504152469/2), //0 
923 
FIXHR(0.55168895948124587824/2), 
924 
FIXHR(0.61038729438072803416/2), 
925 
FIXHR(0.70710678118654752439/2), //1 
926 
FIXHR(0.87172339781054900991/2), 
927 
FIXHR(1.18310079157624925896/4), 
928 
FIXHR(1.93185165257813657349/4), //2 
929 
// FIXHR(5.73685662283492756461),

930 
}; 
931  
932 
/* 12 points IMDCT. We compute it "by hand" by factorizing obvious

933 
cases. */

934 
static void imdct12(INTFLOAT *out, INTFLOAT *in) 
935 
{ 
936 
INTFLOAT in0, in1, in2, in3, in4, in5, t1, t2; 
937  
938 
in0= in[0*3]; 
939 
in1= in[1*3] + in[0*3]; 
940 
in2= in[2*3] + in[1*3]; 
941 
in3= in[3*3] + in[2*3]; 
942 
in4= in[4*3] + in[3*3]; 
943 
in5= in[5*3] + in[4*3]; 
944 
in5 += in3; 
945 
in3 += in1; 
946  
947 
in2= MULH3(in2, C3, 2);

948 
in3= MULH3(in3, C3, 4);

949  
950 
t1 = in0  in4; 
951 
t2 = MULH3(in1  in5, icos36h[4], 2); 
952  
953 
out[ 7]=

954 
out[10]= t1 + t2;

955 
out[ 1]=

956 
out[ 4]= t1  t2;

957  
958 
in0 += SHR(in4, 1);

959 
in4 = in0 + in2; 
960 
in5 += 2*in1;

961 
in1 = MULH3(in5 + in3, icos36h[1], 1); 
962 
out[ 8]=

963 
out[ 9]= in4 + in1;

964 
out[ 2]=

965 
out[ 3]= in4  in1;

966  
967 
in0 = in2; 
968 
in5 = MULH3(in5  in3, icos36h[7], 2); 
969 
out[ 0]=

970 
out[ 5]= in0  in5;

971 
out[ 6]=

972 
out[11]= in0 + in5;

973 
} 
974  
975 
/* cos(pi*i/18) */

976 
#define C1 FIXHR(0.98480775301220805936/2) 
977 
#define C2 FIXHR(0.93969262078590838405/2) 
978 
#define C3 FIXHR(0.86602540378443864676/2) 
979 
#define C4 FIXHR(0.76604444311897803520/2) 
980 
#define C5 FIXHR(0.64278760968653932632/2) 
981 
#define C6 FIXHR(0.5/2) 
982 
#define C7 FIXHR(0.34202014332566873304/2) 
983 
#define C8 FIXHR(0.17364817766693034885/2) 
984  
985  
986 
/* using Lee like decomposition followed by hand coded 9 points DCT */

987 
static void imdct36(INTFLOAT *out, INTFLOAT *buf, INTFLOAT *in, INTFLOAT *win) 
988 
{ 
989 
int i, j;

990 
INTFLOAT t0, t1, t2, t3, s0, s1, s2, s3; 
991 
INTFLOAT tmp[18], *tmp1, *in1;

992  
993 
for(i=17;i>=1;i) 
994 
in[i] += in[i1];

995 
for(i=17;i>=3;i=2) 
996 
in[i] += in[i2];

997  
998 
for(j=0;j<2;j++) { 
999 
tmp1 = tmp + j; 
1000 
in1 = in + j; 
1001  
1002 
t2 = in1[2*4] + in1[2*8]  in1[2*2]; 
1003  
1004 
t3 = in1[2*0] + SHR(in1[2*6],1); 
1005 
t1 = in1[2*0]  in1[2*6]; 
1006 
tmp1[ 6] = t1  SHR(t2,1); 
1007 
tmp1[16] = t1 + t2;

1008  
1009 
t0 = MULH3(in1[2*2] + in1[2*4] , C2, 2); 
1010 
t1 = MULH3(in1[2*4]  in1[2*8] , 2*C8, 1); 
1011 
t2 = MULH3(in1[2*2] + in1[2*8] , C4, 2); 
1012  
1013 
tmp1[10] = t3  t0  t2;

1014 
tmp1[ 2] = t3 + t0 + t1;

1015 
tmp1[14] = t3 + t2  t1;

1016  
1017 
tmp1[ 4] = MULH3(in1[2*5] + in1[2*7]  in1[2*1], C3, 2); 
1018 
t2 = MULH3(in1[2*1] + in1[2*5], C1, 2); 
1019 
t3 = MULH3(in1[2*5]  in1[2*7], 2*C7, 1); 
1020 
t0 = MULH3(in1[2*3], C3, 2); 
1021  
1022 
t1 = MULH3(in1[2*1] + in1[2*7], C5, 2); 
1023  
1024 
tmp1[ 0] = t2 + t3 + t0;

1025 
tmp1[12] = t2 + t1  t0;

1026 
tmp1[ 8] = t3  t1  t0;

1027 
} 
1028  
1029 
i = 0;

1030 
for(j=0;j<4;j++) { 
1031 
t0 = tmp[i]; 
1032 
t1 = tmp[i + 2];

1033 
s0 = t1 + t0; 
1034 
s2 = t1  t0; 
1035  
1036 
t2 = tmp[i + 1];

1037 
t3 = tmp[i + 3];

1038 
s1 = MULH3(t3 + t2, icos36h[j], 2);

1039 
s3 = MULLx(t3  t2, icos36[8  j], FRAC_BITS);

1040  
1041 
t0 = s0 + s1; 
1042 
t1 = s0  s1; 
1043 
out[(9 + j)*SBLIMIT] = MULH3(t1, win[9 + j], 1) + buf[9 + j]; 
1044 
out[(8  j)*SBLIMIT] = MULH3(t1, win[8  j], 1) + buf[8  j]; 
1045 
buf[9 + j] = MULH3(t0, win[18 + 9 + j], 1); 
1046 
buf[8  j] = MULH3(t0, win[18 + 8  j], 1); 
1047  
1048 
t0 = s2 + s3; 
1049 
t1 = s2  s3; 
1050 
out[(9 + 8  j)*SBLIMIT] = MULH3(t1, win[9 + 8  j], 1) + buf[9 + 8  j]; 
1051 
out[( j)*SBLIMIT] = MULH3(t1, win[ j], 1) + buf[ j];

1052 
buf[9 + 8  j] = MULH3(t0, win[18 + 9 + 8  j], 1); 
1053 
buf[ + j] = MULH3(t0, win[18 + j], 1); 
1054 
i += 4;

1055 
} 
1056  
1057 
s0 = tmp[16];

1058 
s1 = MULH3(tmp[17], icos36h[4], 2); 
1059 
t0 = s0 + s1; 
1060 
t1 = s0  s1; 
1061 
out[(9 + 4)*SBLIMIT] = MULH3(t1, win[9 + 4], 1) + buf[9 + 4]; 
1062 
out[(8  4)*SBLIMIT] = MULH3(t1, win[8  4], 1) + buf[8  4]; 
1063 
buf[9 + 4] = MULH3(t0, win[18 + 9 + 4], 1); 
1064 
buf[8  4] = MULH3(t0, win[18 + 8  4], 1); 
1065 
} 
1066  
1067 
/* return the number of decoded frames */

1068 
static int mp_decode_layer1(MPADecodeContext *s) 
1069 
{ 
1070 
int bound, i, v, n, ch, j, mant;

1071 
uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT]; 
1072 
uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT]; 
1073  
1074 
if (s>mode == MPA_JSTEREO)

1075 
bound = (s>mode_ext + 1) * 4; 
1076 
else

1077 
bound = SBLIMIT; 
1078  
1079 
/* allocation bits */

1080 
for(i=0;i<bound;i++) { 
1081 
for(ch=0;ch<s>nb_channels;ch++) { 
1082 
allocation[ch][i] = get_bits(&s>gb, 4);

1083 
} 
1084 
} 
1085 
for(i=bound;i<SBLIMIT;i++) {

1086 
allocation[0][i] = get_bits(&s>gb, 4); 
1087 
} 
1088  
1089 
/* scale factors */

1090 
for(i=0;i<bound;i++) { 
1091 
for(ch=0;ch<s>nb_channels;ch++) { 
1092 
if (allocation[ch][i])

1093 
scale_factors[ch][i] = get_bits(&s>gb, 6);

1094 
} 
1095 
} 
1096 
for(i=bound;i<SBLIMIT;i++) {

1097 
if (allocation[0][i]) { 
1098 
scale_factors[0][i] = get_bits(&s>gb, 6); 
1099 
scale_factors[1][i] = get_bits(&s>gb, 6); 
1100 
} 
1101 
} 
1102  
1103 
/* compute samples */

1104 
for(j=0;j<12;j++) { 
1105 
for(i=0;i<bound;i++) { 
1106 
for(ch=0;ch<s>nb_channels;ch++) { 
1107 
n = allocation[ch][i]; 
1108 
if (n) {

1109 
mant = get_bits(&s>gb, n + 1);

1110 
v = l1_unscale(n, mant, scale_factors[ch][i]); 
1111 
} else {

1112 
v = 0;

1113 
} 
1114 
s>sb_samples[ch][j][i] = v; 
1115 
} 
1116 
} 
1117 
for(i=bound;i<SBLIMIT;i++) {

1118 
n = allocation[0][i];

1119 
if (n) {

1120 
mant = get_bits(&s>gb, n + 1);

1121 
v = l1_unscale(n, mant, scale_factors[0][i]);

1122 
s>sb_samples[0][j][i] = v;

1123 
v = l1_unscale(n, mant, scale_factors[1][i]);

1124 
s>sb_samples[1][j][i] = v;

1125 
} else {

1126 
s>sb_samples[0][j][i] = 0; 
1127 
s>sb_samples[1][j][i] = 0; 
1128 
} 
1129 
} 
1130 
} 
1131 
return 12; 
1132 
} 
1133  
1134 
static int mp_decode_layer2(MPADecodeContext *s) 
1135 
{ 
1136 
int sblimit; /* number of used subbands */ 
1137 
const unsigned char *alloc_table; 
1138 
int table, bit_alloc_bits, i, j, ch, bound, v;

1139 
unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT]; 
1140 
unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT]; 
1141 
unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf; 
1142 
int scale, qindex, bits, steps, k, l, m, b;

1143  
1144 
/* select decoding table */

1145 
table = ff_mpa_l2_select_table(s>bit_rate / 1000, s>nb_channels,

1146 
s>sample_rate, s>lsf); 
1147 
sblimit = ff_mpa_sblimit_table[table]; 
1148 
alloc_table = ff_mpa_alloc_tables[table]; 
1149  
1150 
if (s>mode == MPA_JSTEREO)

1151 
bound = (s>mode_ext + 1) * 4; 
1152 
else

1153 
bound = sblimit; 
1154  
1155 
dprintf(s>avctx, "bound=%d sblimit=%d\n", bound, sblimit);

1156  
1157 
/* sanity check */

1158 
if( bound > sblimit ) bound = sblimit;

1159  
1160 
/* parse bit allocation */

1161 
j = 0;

1162 
for(i=0;i<bound;i++) { 
1163 
bit_alloc_bits = alloc_table[j]; 
1164 
for(ch=0;ch<s>nb_channels;ch++) { 
1165 
bit_alloc[ch][i] = get_bits(&s>gb, bit_alloc_bits); 
1166 
} 
1167 
j += 1 << bit_alloc_bits;

1168 
} 
1169 
for(i=bound;i<sblimit;i++) {

1170 
bit_alloc_bits = alloc_table[j]; 
1171 
v = get_bits(&s>gb, bit_alloc_bits); 
1172 
bit_alloc[0][i] = v;

1173 
bit_alloc[1][i] = v;

1174 
j += 1 << bit_alloc_bits;

1175 
} 
1176  
1177 
/* scale codes */

1178 
for(i=0;i<sblimit;i++) { 
1179 
for(ch=0;ch<s>nb_channels;ch++) { 
1180 
if (bit_alloc[ch][i])

1181 
scale_code[ch][i] = get_bits(&s>gb, 2);

1182 
} 
1183 
} 
1184  
1185 
/* scale factors */

1186 
for(i=0;i<sblimit;i++) { 
1187 
for(ch=0;ch<s>nb_channels;ch++) { 
1188 
if (bit_alloc[ch][i]) {

1189 
sf = scale_factors[ch][i]; 
1190 
switch(scale_code[ch][i]) {

1191 
default:

1192 
case 0: 
1193 
sf[0] = get_bits(&s>gb, 6); 
1194 
sf[1] = get_bits(&s>gb, 6); 
1195 
sf[2] = get_bits(&s>gb, 6); 
1196 
break;

1197 
case 2: 
1198 
sf[0] = get_bits(&s>gb, 6); 
1199 
sf[1] = sf[0]; 
1200 
sf[2] = sf[0]; 
1201 
break;

1202 
case 1: 
1203 
sf[0] = get_bits(&s>gb, 6); 
1204 
sf[2] = get_bits(&s>gb, 6); 
1205 
sf[1] = sf[0]; 
1206 
break;

1207 
case 3: 
1208 
sf[0] = get_bits(&s>gb, 6); 
1209 
sf[2] = get_bits(&s>gb, 6); 
1210 
sf[1] = sf[2]; 
1211 
break;

1212 
} 
1213 
} 
1214 
} 
1215 
} 
1216  
1217 
/* samples */

1218 
for(k=0;k<3;k++) { 
1219 
for(l=0;l<12;l+=3) { 
1220 
j = 0;

1221 
for(i=0;i<bound;i++) { 
1222 
bit_alloc_bits = alloc_table[j]; 
1223 
for(ch=0;ch<s>nb_channels;ch++) { 
1224 
b = bit_alloc[ch][i]; 
1225 
if (b) {

1226 
scale = scale_factors[ch][i][k]; 
1227 
qindex = alloc_table[j+b]; 
1228 
bits = ff_mpa_quant_bits[qindex]; 
1229 
if (bits < 0) { 
1230 
/* 3 values at the same time */

1231 
v = get_bits(&s>gb, bits); 
1232 
steps = ff_mpa_quant_steps[qindex]; 
1233 
s>sb_samples[ch][k * 12 + l + 0][i] = 
1234 
l2_unscale_group(steps, v % steps, scale); 
1235 
v = v / steps; 
1236 
s>sb_samples[ch][k * 12 + l + 1][i] = 
1237 
l2_unscale_group(steps, v % steps, scale); 
1238 
v = v / steps; 
1239 
s>sb_samples[ch][k * 12 + l + 2][i] = 
1240 
l2_unscale_group(steps, v, scale); 
1241 
} else {

1242 
for(m=0;m<3;m++) { 
1243 
v = get_bits(&s>gb, bits); 
1244 
v = l1_unscale(bits  1, v, scale);

1245 
s>sb_samples[ch][k * 12 + l + m][i] = v;

1246 
} 
1247 
} 
1248 
} else {

1249 
s>sb_samples[ch][k * 12 + l + 0][i] = 0; 
1250 
s>sb_samples[ch][k * 12 + l + 1][i] = 0; 
1251 
s>sb_samples[ch][k * 12 + l + 2][i] = 0; 
1252 
} 
1253 
} 
1254 
/* next subband in alloc table */

1255 
j += 1 << bit_alloc_bits;

1256 
} 
1257 
/* XXX: find a way to avoid this duplication of code */

1258 
for(i=bound;i<sblimit;i++) {

1259 
bit_alloc_bits = alloc_table[j]; 
1260 
b = bit_alloc[0][i];

1261 
if (b) {

1262 
int mant, scale0, scale1;

1263 
scale0 = scale_factors[0][i][k];

1264 
scale1 = scale_factors[1][i][k];

1265 
qindex = alloc_table[j+b]; 
1266 
bits = ff_mpa_quant_bits[qindex]; 
1267 
if (bits < 0) { 
1268 
/* 3 values at the same time */

1269 
v = get_bits(&s>gb, bits); 
1270 
steps = ff_mpa_quant_steps[qindex]; 
1271 
mant = v % steps; 
1272 
v = v / steps; 
1273 
s>sb_samples[0][k * 12 + l + 0][i] = 
1274 
l2_unscale_group(steps, mant, scale0); 
1275 
s>sb_samples[1][k * 12 + l + 0][i] = 
1276 
l2_unscale_group(steps, mant, scale1); 
1277 
mant = v % steps; 
1278 
v = v / steps; 
1279 
s>sb_samples[0][k * 12 + l + 1][i] = 
1280 
l2_unscale_group(steps, mant, scale0); 
1281 
s>sb_samples[1][k * 12 + l + 1][i] = 
1282 
l2_unscale_group(steps, mant, scale1); 
1283 
s>sb_samples[0][k * 12 + l + 2][i] = 
1284 
l2_unscale_group(steps, v, scale0); 
1285 
s>sb_samples[1][k * 12 + l + 2][i] = 
1286 
l2_unscale_group(steps, v, scale1); 
1287 
} else {

1288 
for(m=0;m<3;m++) { 
1289 
mant = get_bits(&s>gb, bits); 
1290 
s>sb_samples[0][k * 12 + l + m][i] = 
1291 
l1_unscale(bits  1, mant, scale0);

1292 
s>sb_samples[1][k * 12 + l + m][i] = 
1293 
l1_unscale(bits  1, mant, scale1);

1294 
} 
1295 
} 
1296 
} else {

1297 
s>sb_samples[0][k * 12 + l + 0][i] = 0; 
1298 
s>sb_samples[0][k * 12 + l + 1][i] = 0; 
1299 
s>sb_samples[0][k * 12 + l + 2][i] = 0; 
1300 
s>sb_samples[1][k * 12 + l + 0][i] = 0; 
1301 
s>sb_samples[1][k * 12 + l + 1][i] = 0; 
1302 
s>sb_samples[1][k * 12 + l + 2][i] = 0; 
1303 
} 
1304 
/* next subband in alloc table */

1305 
j += 1 << bit_alloc_bits;

1306 
} 
1307 
/* fill remaining samples to zero */

1308 
for(i=sblimit;i<SBLIMIT;i++) {

1309 
for(ch=0;ch<s>nb_channels;ch++) { 
1310 
s>sb_samples[ch][k * 12 + l + 0][i] = 0; 
1311 
s>sb_samples[ch][k * 12 + l + 1][i] = 0; 
1312 
s>sb_samples[ch][k * 12 + l + 2][i] = 0; 
1313 
} 
1314 
} 
1315 
} 
1316 
} 
1317 
return 3 * 12; 
1318 
} 
1319  
1320 
#define SPLIT(dst,sf,n)\

1321 
if(n==3){\ 
1322 
int m= (sf*171)>>9;\ 
1323 
dst= sf  3*m;\

1324 
sf=m;\ 
1325 
}else if(n==4){\ 
1326 
dst= sf&3;\

1327 
sf>>=2;\

1328 
}else if(n==5){\ 
1329 
int m= (sf*205)>>10;\ 
1330 
dst= sf  5*m;\

1331 
sf=m;\ 
1332 
}else if(n==6){\ 
1333 
int m= (sf*171)>>10;\ 
1334 
dst= sf  6*m;\

1335 
sf=m;\ 
1336 
}else{\

1337 
dst=0;\

1338 
} 
1339  
1340 
static av_always_inline void lsf_sf_expand(int *slen, 
1341 
int sf, int n1, int n2, int n3) 
1342 
{ 
1343 
SPLIT(slen[3], sf, n3)

1344 
SPLIT(slen[2], sf, n2)

1345 
SPLIT(slen[1], sf, n1)

1346 
slen[0] = sf;

1347 
} 
1348  
1349 
static void exponents_from_scale_factors(MPADecodeContext *s, 
1350 
GranuleDef *g, 
1351 
int16_t *exponents) 
1352 
{ 
1353 
const uint8_t *bstab, *pretab;

1354 
int len, i, j, k, l, v0, shift, gain, gains[3]; 
1355 
int16_t *exp_ptr; 
1356  
1357 
exp_ptr = exponents; 
1358 
gain = g>global_gain  210;

1359 
shift = g>scalefac_scale + 1;

1360  
1361 
bstab = band_size_long[s>sample_rate_index]; 
1362 
pretab = mpa_pretab[g>preflag]; 
1363 
for(i=0;i<g>long_end;i++) { 
1364 
v0 = gain  ((g>scale_factors[i] + pretab[i]) << shift) + 400;

1365 
len = bstab[i]; 
1366 
for(j=len;j>0;j) 
1367 
*exp_ptr++ = v0; 
1368 
} 
1369  
1370 
if (g>short_start < 13) { 
1371 
bstab = band_size_short[s>sample_rate_index]; 
1372 
gains[0] = gain  (g>subblock_gain[0] << 3); 
1373 
gains[1] = gain  (g>subblock_gain[1] << 3); 
1374 
gains[2] = gain  (g>subblock_gain[2] << 3); 
1375 
k = g>long_end; 
1376 
for(i=g>short_start;i<13;i++) { 
1377 
len = bstab[i]; 
1378 
for(l=0;l<3;l++) { 
1379 
v0 = gains[l]  (g>scale_factors[k++] << shift) + 400;

1380 
for(j=len;j>0;j) 
1381 
*exp_ptr++ = v0; 
1382 
} 
1383 
} 
1384 
} 
1385 
} 
1386  
1387 
/* handle n = 0 too */

1388 
static inline int get_bitsz(GetBitContext *s, int n) 
1389 
{ 
1390 
if (n == 0) 
1391 
return 0; 
1392 
else

1393 
return get_bits(s, n);

1394 
} 
1395  
1396  
1397 
static void switch_buffer(MPADecodeContext *s, int *pos, int *end_pos, int *end_pos2){ 
1398 
if(s>in_gb.buffer && *pos >= s>gb.size_in_bits){

1399 
s>gb= s>in_gb; 
1400 
s>in_gb.buffer=NULL;

1401 
assert((get_bits_count(&s>gb) & 7) == 0); 
1402 
skip_bits_long(&s>gb, *pos  *end_pos); 
1403 
*end_pos2= 
1404 
*end_pos= *end_pos2 + get_bits_count(&s>gb)  *pos; 
1405 
*pos= get_bits_count(&s>gb); 
1406 
} 
1407 
} 
1408  
1409 
/* Following is a optimized code for

1410 
INTFLOAT v = *src

1411 
if(get_bits1(&s>gb))

1412 
v = v;

1413 
*dst = v;

1414 
*/

1415 
#if CONFIG_FLOAT

1416 
#define READ_FLIP_SIGN(dst,src)\

1417 
v = AV_RN32A(src) ^ (get_bits1(&s>gb)<<31);\

1418 
AV_WN32A(dst, v); 
1419 
#else

1420 
#define READ_FLIP_SIGN(dst,src)\

1421 
v= get_bits1(&s>gb);\ 
1422 
*(dst) = (*(src) ^ v)  v; 
1423 
#endif

1424  
1425 
static int huffman_decode(MPADecodeContext *s, GranuleDef *g, 
1426 
int16_t *exponents, int end_pos2)

1427 
{ 
1428 
int s_index;

1429 
int i;

1430 
int last_pos, bits_left;

1431 
VLC *vlc; 
1432 
int end_pos= FFMIN(end_pos2, s>gb.size_in_bits);

1433  
1434 
/* low frequencies (called big values) */

1435 
s_index = 0;

1436 
for(i=0;i<3;i++) { 
1437 
int j, k, l, linbits;

1438 
j = g>region_size[i]; 
1439 
if (j == 0) 
1440 
continue;

1441 
/* select vlc table */

1442 
k = g>table_select[i]; 
1443 
l = mpa_huff_data[k][0];

1444 
linbits = mpa_huff_data[k][1];

1445 
vlc = &huff_vlc[l]; 
1446  
1447 
if(!l){

1448 
memset(&g>sb_hybrid[s_index], 0, sizeof(*g>sb_hybrid)*2*j); 
1449 
s_index += 2*j;

1450 
continue;

1451 
} 
1452  
1453 
/* read huffcode and compute each couple */

1454 
for(;j>0;j) { 
1455 
int exponent, x, y;

1456 
int v;

1457 
int pos= get_bits_count(&s>gb);

1458  
1459 
if (pos >= end_pos){

1460 
// av_log(NULL, AV_LOG_ERROR, "pos: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);

1461 
switch_buffer(s, &pos, &end_pos, &end_pos2); 
1462 
// av_log(NULL, AV_LOG_ERROR, "new pos: %d %d\n", pos, end_pos);

1463 
if(pos >= end_pos)

1464 
break;

1465 
} 
1466 
y = get_vlc2(&s>gb, vlc>table, 7, 3); 
1467  
1468 
if(!y){

1469 
g>sb_hybrid[s_index ] = 
1470 
g>sb_hybrid[s_index+1] = 0; 
1471 
s_index += 2;

1472 
continue;

1473 
} 
1474  
1475 
exponent= exponents[s_index]; 
1476  
1477 
dprintf(s>avctx, "region=%d n=%d x=%d y=%d exp=%d\n",

1478 
i, g>region_size[i]  j, x, y, exponent); 
1479 
if(y&16){ 
1480 
x = y >> 5;

1481 
y = y & 0x0f;

1482 
if (x < 15){ 
1483 
READ_FLIP_SIGN(g>sb_hybrid+s_index, RENAME(expval_table)[ exponent ]+x) 
1484 
}else{

1485 
x += get_bitsz(&s>gb, linbits); 
1486 
v = l3_unscale(x, exponent); 
1487 
if (get_bits1(&s>gb))

1488 
v = v; 
1489 
g>sb_hybrid[s_index] = v; 
1490 
} 
1491 
if (y < 15){ 
1492 
READ_FLIP_SIGN(g>sb_hybrid+s_index+1, RENAME(expval_table)[ exponent ]+y)

1493 
}else{

1494 
y += get_bitsz(&s>gb, linbits); 
1495 
v = l3_unscale(y, exponent); 
1496 
if (get_bits1(&s>gb))

1497 
v = v; 
1498 
g>sb_hybrid[s_index+1] = v;

1499 
} 
1500 
}else{

1501 
x = y >> 5;

1502 
y = y & 0x0f;

1503 
x += y; 
1504 
if (x < 15){ 
1505 
READ_FLIP_SIGN(g>sb_hybrid+s_index+!!y, RENAME(expval_table)[ exponent ]+x) 
1506 
}else{

1507 
x += get_bitsz(&s>gb, linbits); 
1508 
v = l3_unscale(x, exponent); 
1509 
if (get_bits1(&s>gb))

1510 
v = v; 
1511 
g>sb_hybrid[s_index+!!y] = v; 
1512 
} 
1513 
g>sb_hybrid[s_index+ !y] = 0;

1514 
} 
1515 
s_index+=2;

1516 
} 
1517 
} 
1518  
1519 
/* high frequencies */

1520 
vlc = &huff_quad_vlc[g>count1table_select]; 
1521 
last_pos=0;

1522 
while (s_index <= 572) { 
1523 
int pos, code;

1524 
pos = get_bits_count(&s>gb); 
1525 
if (pos >= end_pos) {

1526 
if (pos > end_pos2 && last_pos){

1527 
/* some encoders generate an incorrect size for this

1528 
part. We must go back into the data */

1529 
s_index = 4;

1530 
skip_bits_long(&s>gb, last_pos  pos); 
1531 
av_log(s>avctx, AV_LOG_INFO, "overread, skip %d enddists: %d %d\n", last_pos  pos, end_pospos, end_pos2pos);

1532 
if(s>error_recognition >= FF_ER_COMPLIANT)

1533 
s_index=0;

1534 
break;

1535 
} 
1536 
// av_log(NULL, AV_LOG_ERROR, "pos2: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);

1537 
switch_buffer(s, &pos, &end_pos, &end_pos2); 
1538 
// av_log(NULL, AV_LOG_ERROR, "new pos2: %d %d %d\n", pos, end_pos, s_index);

1539 
if(pos >= end_pos)

1540 
break;

1541 
} 
1542 
last_pos= pos; 
1543  
1544 
code = get_vlc2(&s>gb, vlc>table, vlc>bits, 1);

1545 
dprintf(s>avctx, "t=%d code=%d\n", g>count1table_select, code);

1546 
g>sb_hybrid[s_index+0]=

1547 
g>sb_hybrid[s_index+1]=

1548 
g>sb_hybrid[s_index+2]=

1549 
g>sb_hybrid[s_index+3]= 0; 
1550 
while(code){

1551 
static const int idxtab[16]={3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0}; 
1552 
int v;

1553 
int pos= s_index+idxtab[code];

1554 
code ^= 8>>idxtab[code];

1555 
READ_FLIP_SIGN(g>sb_hybrid+pos, RENAME(exp_table)+exponents[pos]) 
1556 
} 
1557 
s_index+=4;

1558 
} 
1559 
/* skip extension bits */

1560 
bits_left = end_pos2  get_bits_count(&s>gb); 
1561 
//av_log(NULL, AV_LOG_ERROR, "left:%d buf:%p\n", bits_left, s>in_gb.buffer);

1562 
if (bits_left < 0 && s>error_recognition >= FF_ER_COMPLIANT) { 
1563 
av_log(s>avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);

1564 
s_index=0;

1565 
}else if(bits_left > 0 && s>error_recognition >= FF_ER_AGGRESSIVE){ 
1566 
av_log(s>avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);

1567 
s_index=0;

1568 
} 
1569 
memset(&g>sb_hybrid[s_index], 0, sizeof(*g>sb_hybrid)*(576  s_index)); 
1570 
skip_bits_long(&s>gb, bits_left); 
1571  
1572 
i= get_bits_count(&s>gb); 
1573 
switch_buffer(s, &i, &end_pos, &end_pos2); 
1574  
1575 
return 0; 
1576 
} 
1577  
1578 
/* Reorder short blocks from bitstream order to interleaved order. It

1579 
would be faster to do it in parsing, but the code would be far more

1580 
complicated */

1581 
static void reorder_block(MPADecodeContext *s, GranuleDef *g) 
1582 
{ 
1583 
int i, j, len;

1584 
INTFLOAT *ptr, *dst, *ptr1; 
1585 
INTFLOAT tmp[576];

1586  
1587 
if (g>block_type != 2) 
1588 
return;

1589  
1590 
if (g>switch_point) {

1591 
if (s>sample_rate_index != 8) { 
1592 
ptr = g>sb_hybrid + 36;

1593 
} else {

1594 
ptr = g>sb_hybrid + 48;

1595 
} 
1596 
} else {

1597 
ptr = g>sb_hybrid; 
1598 
} 
1599  
1600 
for(i=g>short_start;i<13;i++) { 
1601 
len = band_size_short[s>sample_rate_index][i]; 
1602 
ptr1 = ptr; 
1603 
dst = tmp; 
1604 
for(j=len;j>0;j) { 
1605 
*dst++ = ptr[0*len];

1606 
*dst++ = ptr[1*len];

1607 
*dst++ = ptr[2*len];

1608 
ptr++; 
1609 
} 
1610 
ptr+=2*len;

1611 
memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1)); 
1612 
} 
1613 
} 
1614  
1615 
#define ISQRT2 FIXR(0.70710678118654752440) 
1616  
1617 
static void compute_stereo(MPADecodeContext *s, 
1618 
GranuleDef *g0, GranuleDef *g1) 
1619 
{ 
1620 
int i, j, k, l;

1621 
int sf_max, sf, len, non_zero_found;

1622 
INTFLOAT (*is_tab)[16], *tab0, *tab1, tmp0, tmp1, v1, v2;

1623 
int non_zero_found_short[3]; 
1624  
1625 
/* intensity stereo */

1626 
if (s>mode_ext & MODE_EXT_I_STEREO) {

1627 
if (!s>lsf) {

1628 
is_tab = is_table; 
1629 
sf_max = 7;

1630 
} else {

1631 
is_tab = is_table_lsf[g1>scalefac_compress & 1];

1632 
sf_max = 16;

1633 
} 
1634  
1635 
tab0 = g0>sb_hybrid + 576;

1636 
tab1 = g1>sb_hybrid + 576;

1637  
1638 
non_zero_found_short[0] = 0; 
1639 
non_zero_found_short[1] = 0; 
1640 
non_zero_found_short[2] = 0; 
1641 
k = (13  g1>short_start) * 3 + g1>long_end  3; 
1642 
for(i = 12;i >= g1>short_start;i) { 
1643 
/* for last band, use previous scale factor */

1644 
if (i != 11) 
1645 
k = 3;

1646 
len = band_size_short[s>sample_rate_index][i]; 
1647 
for(l=2;l>=0;l) { 
1648 
tab0 = len; 
1649 
tab1 = len; 
1650 
if (!non_zero_found_short[l]) {

1651 
/* test if non zero band. if so, stop doing istereo */

1652 
for(j=0;j<len;j++) { 
1653 
if (tab1[j] != 0) { 
1654 
non_zero_found_short[l] = 1;

1655 
goto found1;

1656 
} 
1657 
} 
1658 
sf = g1>scale_factors[k + l]; 
1659 
if (sf >= sf_max)

1660 
goto found1;

1661  
1662 
v1 = is_tab[0][sf];

1663 
v2 = is_tab[1][sf];

1664 
for(j=0;j<len;j++) { 
1665 
tmp0 = tab0[j]; 
1666 
tab0[j] = MULLx(tmp0, v1, FRAC_BITS); 
1667 
tab1[j] = MULLx(tmp0, v2, FRAC_BITS); 
1668 
} 
1669 
} else {

1670 
found1:

1671 
if (s>mode_ext & MODE_EXT_MS_STEREO) {

1672 
/* lower part of the spectrum : do ms stereo

1673 
if enabled */

1674 
for(j=0;j<len;j++) { 
1675 
tmp0 = tab0[j]; 
1676 
tmp1 = tab1[j]; 
1677 
tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS); 
1678 
tab1[j] = MULLx(tmp0  tmp1, ISQRT2, FRAC_BITS); 
1679 
} 
1680 
} 
1681 
} 
1682 
} 
1683 
} 
1684  
1685 
non_zero_found = non_zero_found_short[0] 

1686 
non_zero_found_short[1] 

1687 
non_zero_found_short[2];

1688  
1689 
for(i = g1>long_end  1;i >= 0;i) { 
1690 
len = band_size_long[s>sample_rate_index][i]; 
1691 
tab0 = len; 
1692 
tab1 = len; 
1693 
/* test if non zero band. if so, stop doing istereo */

1694 
if (!non_zero_found) {

1695 
for(j=0;j<len;j++) { 
1696 
if (tab1[j] != 0) { 
1697 
non_zero_found = 1;

1698 
goto found2;

1699 
} 
1700 
} 
1701 
/* for last band, use previous scale factor */

1702 
k = (i == 21) ? 20 : i; 
1703 
sf = g1>scale_factors[k]; 
1704 
if (sf >= sf_max)

1705 
goto found2;

1706 
v1 = is_tab[0][sf];

1707 
v2 = is_tab[1][sf];

1708 
for(j=0;j<len;j++) { 
1709 
tmp0 = tab0[j]; 
1710 
tab0[j] = MULLx(tmp0, v1, FRAC_BITS); 
1711 
tab1[j] = MULLx(tmp0, v2, FRAC_BITS); 
1712 
} 
1713 
} else {

1714 
found2:

1715 
if (s>mode_ext & MODE_EXT_MS_STEREO) {

1716 
/* lower part of the spectrum : do ms stereo

1717 
if enabled */

1718 
for(j=0;j<len;j++) { 
1719 
tmp0 = tab0[j]; 
1720 
tmp1 = tab1[j]; 
1721 
tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS); 
1722 
tab1[j] = MULLx(tmp0  tmp1, ISQRT2, FRAC_BITS); 
1723 
} 
1724 
} 
1725 
} 
1726 
} 
1727 
} else if (s>mode_ext & MODE_EXT_MS_STEREO) { 
1728 
/* ms stereo ONLY */

1729 
/* NOTE: the 1/sqrt(2) normalization factor is included in the

1730 
global gain */

1731 
tab0 = g0>sb_hybrid; 
1732 
tab1 = g1>sb_hybrid; 
1733 
for(i=0;i<576;i++) { 
1734 
tmp0 = tab0[i]; 
1735 
tmp1 = tab1[i]; 
1736 
tab0[i] = tmp0 + tmp1; 
1737 
tab1[i] = tmp0  tmp1; 
1738 
} 
1739 
} 
1740 
} 
1741  
1742 
static void compute_antialias_integer(MPADecodeContext *s, 
1743 
GranuleDef *g) 
1744 
{ 
1745 
int32_t *ptr, *csa; 
1746 
int n, i;

1747  
1748 
/* we antialias only "long" bands */

1749 
if (g>block_type == 2) { 
1750 
if (!g>switch_point)

1751 
return;

1752 
/* XXX: check this for 8000Hz case */

1753 
n = 1;

1754 
} else {

1755 
n = SBLIMIT  1;

1756 
} 
1757  
1758 
ptr = g>sb_hybrid + 18;

1759 
for(i = n;i > 0;i) { 
1760 
int tmp0, tmp1, tmp2;

1761 
csa = &csa_table[0][0]; 
1762 
#define INT_AA(j) \

1763 
tmp0 = ptr[1j];\

1764 
tmp1 = ptr[ j];\ 
1765 
tmp2= MULH(tmp0 + tmp1, csa[0+4*j]);\ 
1766 
ptr[1j] = 4*(tmp2  MULH(tmp1, csa[2+4*j]));\ 
1767 
ptr[ j] = 4*(tmp2 + MULH(tmp0, csa[3+4*j])); 
1768  
1769 
INT_AA(0)

1770 
INT_AA(1)

1771 
INT_AA(2)

1772 
INT_AA(3)

1773 
INT_AA(4)

1774 
INT_AA(5)

1775 
INT_AA(6)

1776 
INT_AA(7)

1777  
1778 
ptr += 18;

1779 
} 
1780 
} 
1781  
1782 
static void compute_antialias_float(MPADecodeContext *s, 
1783 
GranuleDef *g) 
1784 
{ 
1785 
float *ptr;

1786 
int n, i;

1787  
1788 
/* we antialias only "long" bands */

1789 
if (g>block_type == 2) { 
1790 
if (!g>switch_point)

1791 
return;

1792 
/* XXX: check this for 8000Hz case */

1793 
n = 1;

1794 
} else {

1795 
n = SBLIMIT  1;

1796 
} 
1797  
1798 
ptr = g>sb_hybrid + 18;

1799 
for(i = n;i > 0;i) { 
1800 
float tmp0, tmp1;

1801 
float *csa = &csa_table_float[0][0]; 
1802 
#define FLOAT_AA(j)\

1803 
tmp0= ptr[1j];\

1804 
tmp1= ptr[ j];\ 
1805 
ptr[1j] = tmp0 * csa[0+4*j]  tmp1 * csa[1+4*j];\ 
1806 
ptr[ j] = tmp0 * csa[1+4*j] + tmp1 * csa[0+4*j]; 
1807  
1808 
FLOAT_AA(0)

1809 
FLOAT_AA(1)

1810 
FLOAT_AA(2)

1811 
FLOAT_AA(3)

1812 
FLOAT_AA(4)

1813 
FLOAT_AA(5)

1814 
FLOAT_AA(6)

1815 
FLOAT_AA(7)

1816  
1817 
ptr += 18;

1818 
} 
1819 
} 
1820  
1821 
static void compute_imdct(MPADecodeContext *s, 
1822 
GranuleDef *g, 
1823 
INTFLOAT *sb_samples, 
1824 
INTFLOAT *mdct_buf) 
1825 
{ 
1826 
INTFLOAT *win, *win1, *out_ptr, *ptr, *buf, *ptr1; 
1827 
INTFLOAT out2[12];

1828 
int i, j, mdct_long_end, sblimit;

1829  
1830 
/* find last non zero block */

1831 
ptr = g>sb_hybrid + 576;

1832 
ptr1 = g>sb_hybrid + 2 * 18; 
1833 
while (ptr >= ptr1) {

1834 
int32_t *p; 
1835 
ptr = 6;

1836 
p= (int32_t*)ptr; 
1837 
if(p[0]  p[1]  p[2]  p[3]  p[4]  p[5]) 
1838 
break;

1839 
} 
1840 
sblimit = ((ptr  g>sb_hybrid) / 18) + 1; 
1841  
1842 
if (g>block_type == 2) { 
1843 
/* XXX: check for 8000 Hz */

1844 
if (g>switch_point)

1845 
mdct_long_end = 2;

1846 
else

1847 
mdct_long_end = 0;

1848 
} else {

1849 
mdct_long_end = sblimit; 
1850 
} 
1851  
1852 
buf = mdct_buf; 
1853 
ptr = g>sb_hybrid; 
1854 
for(j=0;j<mdct_long_end;j++) { 
1855 
/* apply window & overlap with previous buffer */

1856 
out_ptr = sb_samples + j; 
1857 
/* select window */

1858 
if (g>switch_point && j < 2) 
1859 
win1 = mdct_win[0];

1860 
else

1861 
win1 = mdct_win[g>block_type]; 
1862 
/* select frequency inversion */

1863 
win = win1 + ((4 * 36) & (j & 1)); 
1864 
imdct36(out_ptr, buf, ptr, win); 
1865 
out_ptr += 18*SBLIMIT;

1866 
ptr += 18;

1867 
buf += 18;

1868 
} 
1869 
for(j=mdct_long_end;j<sblimit;j++) {

1870 
/* select frequency inversion */

1871 
win = mdct_win[2] + ((4 * 36) & (j & 1)); 
1872 
out_ptr = sb_samples + j; 
1873  
1874 
for(i=0; i<6; i++){ 
1875 
*out_ptr = buf[i]; 
1876 
out_ptr += SBLIMIT; 
1877 
} 
1878 
imdct12(out2, ptr + 0);

1879 
for(i=0;i<6;i++) { 
1880 
*out_ptr = MULH3(out2[i ], win[i ], 1) + buf[i + 6*1]; 
1881 
buf[i + 6*2] = MULH3(out2[i + 6], win[i + 6], 1); 
1882 
out_ptr += SBLIMIT; 
1883 
} 
1884 
imdct12(out2, ptr + 1);

1885 
for(i=0;i<6;i++) { 
1886 
*out_ptr = MULH3(out2[i ], win[i ], 1) + buf[i + 6*2]; 
1887 
buf[i + 6*0] = MULH3(out2[i + 6], win[i + 6], 1); 
1888 
out_ptr += SBLIMIT; 
1889 
} 
1890 
imdct12(out2, ptr + 2);

1891 
for(i=0;i<6;i++) { 
1892 
buf[i + 6*0] = MULH3(out2[i ], win[i ], 1) + buf[i + 6*0]; 
1893 
buf[i + 6*1] = MULH3(out2[i + 6], win[i + 6], 1); 
1894 
buf[i + 6*2] = 0; 
1895 
} 
1896 
ptr += 18;

1897 
buf += 18;

1898 
} 
1899 
/* zero bands */

1900 
for(j=sblimit;j<SBLIMIT;j++) {

1901 
/* overlap */

1902 
out_ptr = sb_samples + j; 
1903 
for(i=0;i<18;i++) { 
1904 
*out_ptr = buf[i]; 
1905 
buf[i] = 0;

1906 
out_ptr += SBLIMIT; 
1907 
} 
1908 
buf += 18;

1909 
} 
1910 
} 
1911  
1912 
/* main layer3 decoding function */

1913 
static int mp_decode_layer3(MPADecodeContext *s) 
1914 
{ 
1915 
int nb_granules, main_data_begin, private_bits;

1916 
int gr, ch, blocksplit_flag, i, j, k, n, bits_pos;

1917 
GranuleDef *g; 
1918 
int16_t exponents[576]; //FIXME try INTFLOAT 
1919  
1920 
/* read side info */

1921 
if (s>lsf) {

1922 
main_data_begin = get_bits(&s>gb, 8);

1923 
private_bits = get_bits(&s>gb, s>nb_channels); 
1924 
nb_granules = 1;

1925 
} else {

1926 
main_data_begin = get_bits(&s>gb, 9);

1927 
if (s>nb_channels == 2) 
1928 
private_bits = get_bits(&s>gb, 3);

1929 
else

1930 
private_bits = get_bits(&s>gb, 5);

1931 
nb_granules = 2;

1932 
for(ch=0;ch<s>nb_channels;ch++) { 
1933 
s>granules[ch][0].scfsi = 0;/* all scale factors are transmitted */ 
1934 
s>granules[ch][1].scfsi = get_bits(&s>gb, 4); 
1935 
} 
1936 
} 
1937  
1938 
for(gr=0;gr<nb_granules;gr++) { 
1939 
for(ch=0;ch<s>nb_channels;ch++) { 
1940 
dprintf(s>avctx, "gr=%d ch=%d: side_info\n", gr, ch);

1941 
g = &s>granules[ch][gr]; 
1942 
g>part2_3_length = get_bits(&s>gb, 12);

1943 
g>big_values = get_bits(&s>gb, 9);

1944 
if(g>big_values > 288){ 
1945 
av_log(s>avctx, AV_LOG_ERROR, "big_values too big\n");

1946 
return 1; 
1947 
} 
1948  
1949 
g>global_gain = get_bits(&s>gb, 8);

1950 
/* if MS stereo only is selected, we precompute the

1951 
1/sqrt(2) renormalization factor */

1952 
if ((s>mode_ext & (MODE_EXT_MS_STEREO  MODE_EXT_I_STEREO)) ==

1953 
MODE_EXT_MS_STEREO) 
1954 
g>global_gain = 2;

1955 
if (s>lsf)

1956 
g>scalefac_compress = get_bits(&s>gb, 9);

1957 
else

1958 
g>scalefac_compress = get_bits(&s>gb, 4);

1959 
blocksplit_flag = get_bits1(&s>gb); 
1960 
if (blocksplit_flag) {

1961 
g>block_type = get_bits(&s>gb, 2);

1962 
if (g>block_type == 0){ 
1963 
av_log(s>avctx, AV_LOG_ERROR, "invalid block type\n");

1964 
return 1; 
1965 
} 
1966 
g>switch_point = get_bits1(&s>gb); 
1967 
for(i=0;i<2;i++) 
1968 
g>table_select[i] = get_bits(&s>gb, 5);

1969 
for(i=0;i<3;i++) 
1970 
g>subblock_gain[i] = get_bits(&s>gb, 3);

1971 
ff_init_short_region(s, g); 
1972 
} else {

1973 
int region_address1, region_address2;

1974 
g>block_type = 0;

1975 
g>switch_point = 0;

1976 
for(i=0;i<3;i++) 
1977 
g>table_select[i] = get_bits(&s>gb, 5);

1978 
/* compute huffman coded region sizes */

1979 
region_address1 = get_bits(&s>gb, 4);

1980 
region_address2 = get_bits(&s>gb, 3);

1981 
dprintf(s>avctx, "region1=%d region2=%d\n",

1982 
region_address1, region_address2); 
1983 
ff_init_long_region(s, g, region_address1, region_address2); 
1984 
} 
1985 
ff_region_offset2size(g); 
1986 
ff_compute_band_indexes(s, g); 
1987  
1988 
g>preflag = 0;

1989 
if (!s>lsf)

1990 
g>preflag = get_bits1(&s>gb); 
1991 
g>scalefac_scale = get_bits1(&s>gb); 
1992 
g>count1table_select = get_bits1(&s>gb); 
1993 
dprintf(s>avctx, "block_type=%d switch_point=%d\n",

1994 
g>block_type, g>switch_point); 
1995 
} 
1996 
} 
1997  
1998 
if (!s>adu_mode) {

1999 
const uint8_t *ptr = s>gb.buffer + (get_bits_count(&s>gb)>>3); 
2000 
assert((get_bits_count(&s>gb) & 7) == 0); 
2001 
/* now we get bits from the main_data_begin offset */

2002 
dprintf(s>avctx, "seekback: %d\n", main_data_begin);

2003 
//av_log(NULL, AV_LOG_ERROR, "backstep:%d, lastbuf:%d\n", main_data_begin, s>last_buf_size);

2004  
2005 
memcpy(s>last_buf + s>last_buf_size, ptr, EXTRABYTES); 
2006 
s>in_gb= s>gb; 
2007 
init_get_bits(&s>gb, s>last_buf, s>last_buf_size*8);

2008 
skip_bits_long(&s>gb, 8*(s>last_buf_size  main_data_begin));

2009 
} 
2010  
2011 
for(gr=0;gr<nb_granules;gr++) { 
2012 
for(ch=0;ch<s>nb_channels;ch++) { 
2013 
g = &s>granules[ch][gr]; 
2014 
if(get_bits_count(&s>gb)<0){ 
2015 
av_log(s>avctx, AV_LOG_DEBUG, "mdb:%d, lastbuf:%d skipping granule %d\n",

2016 
main_data_begin, s>last_buf_size, gr); 
2017 
skip_bits_long(&s>gb, g>part2_3_length); 
2018 
memset(g>sb_hybrid, 0, sizeof(g>sb_hybrid)); 
2019 
if(get_bits_count(&s>gb) >= s>gb.size_in_bits && s>in_gb.buffer){

2020 
skip_bits_long(&s>in_gb, get_bits_count(&s>gb)  s>gb.size_in_bits); 
2021 
s>gb= s>in_gb; 
2022 
s>in_gb.buffer=NULL;

2023 
} 
2024 
continue;

2025 
} 
2026  
2027 
bits_pos = get_bits_count(&s>gb); 
2028  
2029 
if (!s>lsf) {

2030 
uint8_t *sc; 
2031 
int slen, slen1, slen2;

2032  
2033 
/* MPEG1 scale factors */

2034 
slen1 = slen_table[0][g>scalefac_compress];

2035 
slen2 = slen_table[1][g>scalefac_compress];

2036 
dprintf(s>avctx, "slen1=%d slen2=%d\n", slen1, slen2);

2037 
if (g>block_type == 2) { 
2038 
n = g>switch_point ? 17 : 18; 
2039 
j = 0;

2040 
if(slen1){

2041 
for(i=0;i<n;i++) 
2042 
g>scale_factors[j++] = get_bits(&s>gb, slen1); 
2043 
}else{

2044 
for(i=0;i<n;i++) 
2045 
g>scale_factors[j++] = 0;

2046 
} 
2047 
if(slen2){

2048 
for(i=0;i<18;i++) 
2049 
g>scale_factors[j++] = get_bits(&s>gb, slen2); 
2050 
for(i=0;i<3;i++) 
2051 
g>scale_factors[j++] = 0;

2052 
}else{

2053 
for(i=0;i<21;i++) 
2054 
g>scale_factors[j++] = 0;

2055 
} 
2056 
} else {

2057 
sc = s>granules[ch][0].scale_factors;

2058 
j = 0;

2059 
for(k=0;k<4;k++) { 
2060 
n = (k == 0 ? 6 : 5); 
2061 
if ((g>scfsi & (0x8 >> k)) == 0) { 
2062 
slen = (k < 2) ? slen1 : slen2;

2063 
if(slen){

2064 
for(i=0;i<n;i++) 
2065 
g>scale_factors[j++] = get_bits(&s>gb, slen); 
2066 
}else{

2067 
for(i=0;i<n;i++) 
2068 
g>scale_factors[j++] = 0;

2069 
} 
2070 
} else {

2071 
/* simply copy from last granule */

2072 
for(i=0;i<n;i++) { 
2073 
g>scale_factors[j] = sc[j]; 
2074 
j++; 
2075 
} 
2076 
} 
2077 
} 
2078 
g>scale_factors[j++] = 0;

2079 
} 
2080 
} else {

2081 
int tindex, tindex2, slen[4], sl, sf; 
2082  
2083 
/* LSF scale factors */

2084 
if (g>block_type == 2) { 
2085 
tindex = g>switch_point ? 2 : 1; 
2086 
} else {

2087 
tindex = 0;

2088 
} 
2089 
sf = g>scalefac_compress; 
2090 
if ((s>mode_ext & MODE_EXT_I_STEREO) && ch == 1) { 
2091 
/* intensity stereo case */

2092 
sf >>= 1;

2093 
if (sf < 180) { 
2094 
lsf_sf_expand(slen, sf, 6, 6, 0); 
2095 
tindex2 = 3;

2096 
} else if (sf < 244) { 
2097 
lsf_sf_expand(slen, sf  180, 4, 4, 0); 
2098 
tindex2 = 4;

2099 
} else {

2100 
lsf_sf_expand(slen, sf  244, 3, 0, 0); 
2101 
tindex2 = 5;

2102 
} 
2103 
} else {

2104 
/* normal case */

2105 
if (sf < 400) { 
2106 
lsf_sf_expand(slen, sf, 5, 4, 4); 
2107 
tindex2 = 0;

2108 
} else if (sf < 500) { 
2109 
lsf_sf_expand(slen, sf  400, 5, 4, 0); 
2110 
tindex2 = 1;

2111 
} else {

2112 
lsf_sf_expand(slen, sf  500, 3, 0, 0); 
2113 
tindex2 = 2;

2114 
g>preflag = 1;

2115 
} 
2116 
} 
2117  
2118 
j = 0;

2119 
for(k=0;k<4;k++) { 
2120 
n = lsf_nsf_table[tindex2][tindex][k]; 
2121 
sl = slen[k]; 
2122 
if(sl){

2123 
for(i=0;i<n;i++) 
2124 
g>scale_factors[j++] = get_bits(&s>gb, sl); 
2125 
}else{

2126 
for(i=0;i<n;i++) 
2127 
g>scale_factors[j++] = 0;

2128 
} 
2129 
} 
2130 
/* XXX: should compute exact size */

2131 
for(;j<40;j++) 
2132 
g>scale_factors[j] = 0;

2133 
} 
2134  
2135 
exponents_from_scale_factors(s, g, exponents); 
2136  
2137 
/* read Huffman coded residue */

2138 
huffman_decode(s, g, exponents, bits_pos + g>part2_3_length); 
2139 
} /* ch */

2140  
2141 
if (s>nb_channels == 2) 
2142 
compute_stereo(s, &s>granules[0][gr], &s>granules[1][gr]); 
2143  
2144 
for(ch=0;ch<s>nb_channels;ch++) { 
2145 
g = &s>granules[ch][gr]; 
2146  
2147 
reorder_block(s, g); 
2148 
compute_antialias(s, g); 
2149 
compute_imdct(s, g, &s>sb_samples[ch][18 * gr][0], s>mdct_buf[ch]); 
2150 
} 
2151 
} /* gr */

2152 
if(get_bits_count(&s>gb)<0) 
2153 
skip_bits_long(&s>gb, get_bits_count(&s>gb)); 
2154 
return nb_granules * 18; 
2155 
} 
2156  
2157 
static int mp_decode_frame(MPADecodeContext *s, 
2158 
OUT_INT *samples, const uint8_t *buf, int buf_size) 
2159 
{ 
2160 
int i, nb_frames, ch;

2161 
OUT_INT *samples_ptr; 
2162  
2163 
init_get_bits(&s>gb, buf + HEADER_SIZE, (buf_size  HEADER_SIZE)*8);

2164  
2165 
/* skip error protection field */

2166 
if (s>error_protection)

2167 
skip_bits(&s>gb, 16);

2168  
2169 
dprintf(s>avctx, "frame %d:\n", s>frame_count);

2170 
switch(s>layer) {

2171 
case 1: 
2172 
s>avctx>frame_size = 384;

2173 
nb_frames = mp_decode_layer1(s); 
2174 
break;

2175 
case 2: 
2176 
s>avctx>frame_size = 1152;

2177 
nb_frames = mp_decode_layer2(s); 
2178 
break;

2179 
case 3: 
2180 
s>avctx>frame_size = s>lsf ? 576 : 1152; 
2181 
default:

2182 
nb_frames = mp_decode_layer3(s); 
2183  
2184 
s>last_buf_size=0;

2185 
if(s>in_gb.buffer){

2186 
align_get_bits(&s>gb); 
2187 
i= get_bits_left(&s>gb)>>3;

2188 
if(i >= 0 && i <= BACKSTEP_SIZE){ 
2189 
memmove(s>last_buf, s>gb.buffer + (get_bits_count(&s>gb)>>3), i);

2190 
s>last_buf_size=i; 
2191 
}else

2192 
av_log(s>avctx, AV_LOG_ERROR, "invalid old backstep %d\n", i);

2193 
s>gb= s>in_gb; 
2194 
s>in_gb.buffer= NULL;

2195 
} 
2196  
2197 
align_get_bits(&s>gb); 
2198 
assert((get_bits_count(&s>gb) & 7) == 0); 
2199 
i= get_bits_left(&s>gb)>>3;

2200  
2201 
if(i<0  i > BACKSTEP_SIZE  nb_frames<0){ 
2202 
if(i<0) 
2203 
av_log(s>avctx, AV_LOG_ERROR, "invalid new backstep %d\n", i);

2204 
i= FFMIN(BACKSTEP_SIZE, buf_size  HEADER_SIZE); 
2205 
} 
2206 
assert(i <= buf_size  HEADER_SIZE && i>= 0);

2207 
memcpy(s>last_buf + s>last_buf_size, s>gb.buffer + buf_size  HEADER_SIZE  i, i); 
2208 
s>last_buf_size += i; 
2209  
2210 
break;

2211 
} 
2212  
2213 
/* apply the synthesis filter */

2214 
for(ch=0;ch<s>nb_channels;ch++) { 
2215 
samples_ptr = samples + ch; 
2216 
for(i=0;i<nb_frames;i++) { 
2217 
RENAME(ff_mpa_synth_filter)(s>synth_buf[ch], &(s>synth_buf_offset[ch]), 
2218 
RENAME(ff_mpa_synth_window), &s>dither_state, 
2219 
samples_ptr, s>nb_channels, 
2220 
s>sb_samples[ch][i]); 
2221 
samples_ptr += 32 * s>nb_channels;

2222 
} 
2223 
} 
2224  
2225 
return nb_frames * 32 * sizeof(OUT_INT) * s>nb_channels; 
2226 
} 
2227  
2228 
static int decode_frame(AVCodecContext * avctx, 
2229 
void *data, int *data_size, 
2230 
AVPacket *avpkt) 
2231 
{ 
2232 
const uint8_t *buf = avpkt>data;

2233 
int buf_size = avpkt>size;

2234 
MPADecodeContext *s = avctx>priv_data; 
2235 
uint32_t header; 
2236 
int out_size;

2237 
OUT_INT *out_samples = data; 
2238  
2239 
if(buf_size < HEADER_SIZE)

2240 
return 1; 
2241  
2242 
header = AV_RB32(buf); 
2243 
if(ff_mpa_check_header(header) < 0){ 
2244 
av_log(avctx, AV_LOG_ERROR, "Header missing\n");

2245 
return 1; 
2246 
} 
2247  
2248 
if (ff_mpegaudio_decode_header((MPADecodeHeader *)s, header) == 1) { 
2249 
/* free format: prepare to compute frame size */

2250 
s>frame_size = 1;

2251 
return 1; 
2252 
} 
2253 
/* update codec info */

2254 
avctx>channels = s>nb_channels; 
2255 
avctx>bit_rate = s>bit_rate; 
2256 
avctx>sub_id = s>layer; 
2257  
2258 
if(*data_size < 1152*avctx>channels*sizeof(OUT_INT)) 
2259 
return 1; 
2260 
*data_size = 0;

2261  
2262 
if(s>frame_size<=0  s>frame_size > buf_size){ 
2263 
av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");

2264 
return 1; 
2265 
}else if(s>frame_size < buf_size){ 
2266 
av_log(avctx, AV_LOG_ERROR, "incorrect frame size\n");

2267 
buf_size= s>frame_size; 
2268 
} 
2269  
2270 
out_size = mp_decode_frame(s, out_samples, buf, buf_size); 
2271 
if(out_size>=0){ 
2272 
*data_size = out_size; 
2273 
avctx>sample_rate = s>sample_rate; 
2274 
//FIXME maybe move the other codec info stuff from above here too

2275 
}else

2276 
av_log(avctx, AV_LOG_DEBUG, "Error while decoding MPEG audio frame.\n"); //FIXME return 1 / but also return the number of bytes consumed 
2277 
s>frame_size = 0;

2278 
return buf_size;

2279 
} 
2280  
2281 
static void flush(AVCodecContext *avctx){ 
2282 
MPADecodeContext *s = avctx>priv_data; 
2283 
memset(s>synth_buf, 0, sizeof(s>synth_buf)); 
2284 
s>last_buf_size= 0;

2285 
} 
2286  
2287 
#if CONFIG_MP3ADU_DECODER

2288 
static int decode_frame_adu(AVCodecContext * avctx, 
2289 
void *data, int *data_size, 
2290 
AVPacket *avpkt) 
2291 
{ 
2292 
const uint8_t *buf = avpkt>data;

2293 
int buf_size = avpkt>size;

2294 
MPADecodeContext *s = avctx>priv_data; 
2295 
uint32_t header; 
2296 
int len, out_size;

2297 
OUT_INT *out_samples = data; 
2298  
2299 
len = buf_size; 
2300  
2301 
// Discard too short frames

2302 
if (buf_size < HEADER_SIZE) {

2303 
*data_size = 0;

2304 
return buf_size;

2305 
} 
2306  
2307  
2308 
if (len > MPA_MAX_CODED_FRAME_SIZE)

2309 
len = MPA_MAX_CODED_FRAME_SIZE; 
2310  
2311 
// Get header and restore sync word

2312 
header = AV_RB32(buf)  0xffe00000;

2313  
2314 
if (ff_mpa_check_header(header) < 0) { // Bad header, discard frame 
2315 
*data_size = 0;

2316 
return buf_size;

2317 
} 
2318  
2319 
ff_mpegaudio_decode_header((MPADecodeHeader *)s, header); 
2320 
/* update codec info */

2321 
avctx>sample_rate = s>sample_rate; 
2322 
avctx>channels = s>nb_channels; 
2323 
avctx>bit_rate = s>bit_rate; 
2324 
avctx>sub_id = s>layer; 
2325  
2326 
s>frame_size = len; 
2327  
2328 
if (avctx>parse_only) {

2329 
out_size = buf_size; 
2330 
} else {

2331 
out_size = mp_decode_frame(s, out_samples, buf, buf_size); 
2332 
} 
2333  
2334 
*data_size = out_size; 
2335 
return buf_size;

2336 
} 
2337 
#endif /* CONFIG_MP3ADU_DECODER */ 
2338  
2339 
#if CONFIG_MP3ON4_DECODER

2340  
2341 
/**

2342 
* Context for MP3On4 decoder

2343 
*/

2344 
typedef struct MP3On4DecodeContext { 
2345 
int frames; ///< number of mp3 frames per block (number of mp3 decoder instances) 
2346 
int syncword; ///< syncword patch 
2347 
const uint8_t *coff; ///< channels offsets in output buffer 
2348 
MPADecodeContext *mp3decctx[5]; ///< MPADecodeContext for every decoder instance 
2349 
} MP3On4DecodeContext; 
2350  
2351 
#include "mpeg4audio.h" 
2352  
2353 
/* Next 3 arrays are indexed by channel config number (passed via codecdata) */

2354 
static const uint8_t mp3Frames[8] = {0,1,1,2,3,3,4,5}; /* number of mp3 decoder instances */ 
2355 
/* offsets into output buffer, assume output order is FL FR BL BR C LFE */

2356 
static const uint8_t chan_offset[8][5] = { 
2357 
{0},

2358 
{0}, // C 
2359 
{0}, // FLR 
2360 
{2,0}, // C FLR 
2361 
{2,0,3}, // C FLR BS 
2362 
{4,0,2}, // C FLR BLRS 
2363 
{4,0,2,5}, // C FLR BLRS LFE 
2364 
{4,0,2,6,5}, // C FLR BLRS BLR LFE 
2365 
}; 
2366  
2367  
2368 
static int decode_init_mp3on4(AVCodecContext * avctx) 
2369 
{ 
2370 
MP3On4DecodeContext *s = avctx>priv_data; 
2371 
MPEG4AudioConfig cfg; 
2372 
int i;

2373  
2374 
if ((avctx>extradata_size < 2)  (avctx>extradata == NULL)) { 
2375 
av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");

2376 
return 1; 
2377 
} 
2378  
2379 
ff_mpeg4audio_get_config(&cfg, avctx>extradata, avctx>extradata_size); 
2380 
if (!cfg.chan_config  cfg.chan_config > 7) { 
2381 
av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");

2382 
return 1; 
2383 
} 
2384 
s>frames = mp3Frames[cfg.chan_config]; 
2385 
s>coff = chan_offset[cfg.chan_config]; 
2386 
avctx>channels = ff_mpeg4audio_channels[cfg.chan_config]; 
2387  
2388 
if (cfg.sample_rate < 16000) 
2389 
s>syncword = 0xffe00000;

2390 
else

2391 
s>syncword = 0xfff00000;

2392  
2393 
/* Init the first mp3 decoder in standard way, so that all tables get builded

2394 
* We replace avctx>priv_data with the context of the first decoder so that

2395 
* decode_init() does not have to be changed.

2396 
* Other decoders will be initialized here copying data from the first context

2397 
*/

2398 
// Allocate zeroed memory for the first decoder context

2399 
s>mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext)); 
2400 
// Put decoder context in place to make init_decode() happy

2401 
avctx>priv_data = s>mp3decctx[0];

2402 
decode_init(avctx); 
2403 
// Restore mp3on4 context pointer

2404 
avctx>priv_data = s; 
2405 
s>mp3decctx[0]>adu_mode = 1; // Set adu mode 
2406  
2407 
/* Create a separate codec/context for each frame (first is already ok).

2408 
* Each frame is 1 or 2 channels  up to 5 frames allowed

2409 
*/

2410 
for (i = 1; i < s>frames; i++) { 
2411 
s>mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));

2412 
s>mp3decctx[i]>adu_mode = 1;

2413 
s>mp3decctx[i]>avctx = avctx; 
2414 
} 
2415  
2416 
return 0; 
2417 
} 
2418  
2419  
2420 
static av_cold int decode_close_mp3on4(AVCodecContext * avctx) 
2421 
{ 
2422 
MP3On4DecodeContext *s = avctx>priv_data; 
2423 
int i;

2424  
2425 
for (i = 0; i < s>frames; i++) 
2426 
if (s>mp3decctx[i])

2427 
av_free(s>mp3decctx[i]); 
2428  
2429 
return 0; 
2430 
} 
2431  
2432  
2433 
static int decode_frame_mp3on4(AVCodecContext * avctx, 
2434 
void *data, int *data_size, 
2435 
AVPacket *avpkt) 
2436 
{ 
2437 
const uint8_t *buf = avpkt>data;

2438 
int buf_size = avpkt>size;

2439 
MP3On4DecodeContext *s = avctx>priv_data; 
2440 
MPADecodeContext *m; 
2441 
int fsize, len = buf_size, out_size = 0; 
2442 
uint32_t header; 
2443 
OUT_INT *out_samples = data; 
2444 
OUT_INT decoded_buf[MPA_FRAME_SIZE * MPA_MAX_CHANNELS]; 
2445 
OUT_INT *outptr, *bp; 
2446 
int fr, j, n;

2447  
2448 
if(*data_size < MPA_FRAME_SIZE * MPA_MAX_CHANNELS * s>frames * sizeof(OUT_INT)) 
2449 
return 1; 
2450  
2451 
*data_size = 0;

2452 
// Discard too short frames

2453 
if (buf_size < HEADER_SIZE)

2454 
return 1; 
2455  
2456 
// If only one decoder interleave is not needed

2457 
outptr = s>frames == 1 ? out_samples : decoded_buf;

2458  
2459 
avctx>bit_rate = 0;

2460  
2461 
for (fr = 0; fr < s>frames; fr++) { 
2462 
fsize = AV_RB16(buf) >> 4;

2463 
fsize = FFMIN3(fsize, len, MPA_MAX_CODED_FRAME_SIZE); 
2464 
m = s>mp3decctx[fr]; 
2465 
assert (m != NULL);

2466  
2467 
header = (AV_RB32(buf) & 0x000fffff)  s>syncword; // patch header 
2468  
2469 
if (ff_mpa_check_header(header) < 0) // Bad header, discard block 
2470 
break;

2471  
2472 
ff_mpegaudio_decode_header((MPADecodeHeader *)m, header); 
2473 
out_size += mp_decode_frame(m, outptr, buf, fsize); 
2474 
buf += fsize; 
2475 
len = fsize; 
2476  
2477 
if(s>frames > 1) { 
2478 
n = m>avctx>frame_size*m>nb_channels; 
2479 
/* interleave output data */

2480 
bp = out_samples + s>coff[fr]; 
2481 
if(m>nb_channels == 1) { 
2482 
for(j = 0; j < n; j++) { 
2483 
*bp = decoded_buf[j]; 
2484 
bp += avctx>channels; 
2485 
} 
2486 
} else {

2487 
for(j = 0; j < n; j++) { 
2488 
bp[0] = decoded_buf[j++];

2489 
bp[1] = decoded_buf[j];

2490 
bp += avctx>channels; 
2491 
} 
2492 
} 
2493 
} 
2494 
avctx>bit_rate += m>bit_rate; 
2495 
} 
2496  
2497 
/* update codec info */

2498 
avctx>sample_rate = s>mp3decctx[0]>sample_rate;

2499  
2500 
*data_size = out_size; 
2501 
return buf_size;

2502 
} 
2503 
#endif /* CONFIG_MP3ON4_DECODER */ 
2504  
2505 
#if !CONFIG_FLOAT

2506 
#if CONFIG_MP1_DECODER

2507 
AVCodec mp1_decoder = 
2508 
{ 
2509 
"mp1",

2510 
AVMEDIA_TYPE_AUDIO, 
2511 
CODEC_ID_MP1, 
2512 
sizeof(MPADecodeContext),

2513 
decode_init, 
2514 
NULL,

2515 
NULL,

2516 
decode_frame, 
2517 
CODEC_CAP_PARSE_ONLY, 
2518 
.flush= flush, 
2519 
.long_name= NULL_IF_CONFIG_SMALL("MP1 (MPEG audio layer 1)"),

2520 
}; 
2521 
#endif

2522 
#if CONFIG_MP2_DECODER

2523 
AVCodec mp2_decoder = 
2524 
{ 
2525 
"mp2",

2526 
AVMEDIA_TYPE_AUDIO, 
2527 
CODEC_ID_MP2, 
2528 
sizeof(MPADecodeContext),

2529 
decode_init, 
2530 
NULL,

2531 
NULL,

2532 
decode_frame, 
2533 
CODEC_CAP_PARSE_ONLY, 
2534 
.flush= flush, 
2535 
.long_name= NULL_IF_CONFIG_SMALL("MP2 (MPEG audio layer 2)"),

2536 
}; 
2537 
#endif

2538 
#if CONFIG_MP3_DECODER

2539 
AVCodec mp3_decoder = 
2540 
{ 
2541 
"mp3",

2542 
AVMEDIA_TYPE_AUDIO, 
2543 
CODEC_ID_MP3, 
2544 
sizeof(MPADecodeContext),

2545 
decode_init, 
2546 
NULL,

2547 
NULL,

2548 
decode_frame, 
2549 
CODEC_CAP_PARSE_ONLY, 
2550 
.flush= flush, 
2551 
.long_name= NULL_IF_CONFIG_SMALL("MP3 (MPEG audio layer 3)"),

2552 
}; 
2553 
#endif

2554 
#if CONFIG_MP3ADU_DECODER

2555 
AVCodec mp3adu_decoder = 
2556 
{ 
2557 
"mp3adu",

2558 
AVMEDIA_TYPE_AUDIO, 
2559 
CODEC_ID_MP3ADU, 
2560 
sizeof(MPADecodeContext),

2561 
decode_init, 
2562 
NULL,

2563 
NULL,

2564 
decode_frame_adu, 
2565 
CODEC_CAP_PARSE_ONLY, 
2566 
.flush= flush, 
2567 
.long_name= NULL_IF_CONFIG_SMALL("ADU (Application Data Unit) MP3 (MPEG audio layer 3)"),

2568 
}; 
2569 
#endif

2570 
#if CONFIG_MP3ON4_DECODER

2571 
AVCodec mp3on4_decoder = 
2572 
{ 
2573 
"mp3on4",

2574 
AVMEDIA_TYPE_AUDIO, 
2575 
CODEC_ID_MP3ON4, 
2576 
sizeof(MP3On4DecodeContext),

2577 
decode_init_mp3on4, 
2578 
NULL,

2579 
decode_close_mp3on4, 
2580 
decode_frame_mp3on4, 
2581 
.flush= flush, 
2582 
.long_name= NULL_IF_CONFIG_SMALL("MP3onMP4"),

2583 
}; 
2584 
#endif

2585 
#endif
