Statistics
| Branch: | Revision:

ffmpeg / libavcodec / vp3.c @ 45c3c925

History | View | Annotate | Download (82.8 KB)

1
/*
2
 * Copyright (C) 2003-2004 the ffmpeg project
3
 *
4
 * This file is part of FFmpeg.
5
 *
6
 * FFmpeg is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2.1 of the License, or (at your option) any later version.
10
 *
11
 * FFmpeg is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with FFmpeg; if not, write to the Free Software
18
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19
 */
20

    
21
/**
22
 * @file libavcodec/vp3.c
23
 * On2 VP3 Video Decoder
24
 *
25
 * VP3 Video Decoder by Mike Melanson (mike at multimedia.cx)
26
 * For more information about the VP3 coding process, visit:
27
 *   http://wiki.multimedia.cx/index.php?title=On2_VP3
28
 *
29
 * Theora decoder by Alex Beregszaszi
30
 */
31

    
32
#include <stdio.h>
33
#include <stdlib.h>
34
#include <string.h>
35

    
36
#include "avcodec.h"
37
#include "dsputil.h"
38
#include "get_bits.h"
39

    
40
#include "vp3data.h"
41
#include "xiph.h"
42

    
43
#define FRAGMENT_PIXELS 8
44

    
45
static av_cold int vp3_decode_end(AVCodecContext *avctx);
46

    
47
typedef struct Coeff {
48
    struct Coeff *next;
49
    DCTELEM coeff;
50
    uint8_t index;
51
} Coeff;
52

    
53
//FIXME split things out into their own arrays
54
typedef struct Vp3Fragment {
55
    Coeff *next_coeff;
56
    /* address of first pixel taking into account which plane the fragment
57
     * lives on as well as the plane stride */
58
    int first_pixel;
59
    /* this is the macroblock that the fragment belongs to */
60
    uint16_t macroblock;
61
    uint8_t coding_method;
62
    int8_t motion_x;
63
    int8_t motion_y;
64
    uint8_t qpi;
65
} Vp3Fragment;
66

    
67
#define SB_NOT_CODED        0
68
#define SB_PARTIALLY_CODED  1
69
#define SB_FULLY_CODED      2
70

    
71
#define MODE_INTER_NO_MV      0
72
#define MODE_INTRA            1
73
#define MODE_INTER_PLUS_MV    2
74
#define MODE_INTER_LAST_MV    3
75
#define MODE_INTER_PRIOR_LAST 4
76
#define MODE_USING_GOLDEN     5
77
#define MODE_GOLDEN_MV        6
78
#define MODE_INTER_FOURMV     7
79
#define CODING_MODE_COUNT     8
80

    
81
/* special internal mode */
82
#define MODE_COPY             8
83

    
84
/* There are 6 preset schemes, plus a free-form scheme */
85
static const int ModeAlphabet[6][CODING_MODE_COUNT] =
86
{
87
    /* scheme 1: Last motion vector dominates */
88
    {    MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
89
         MODE_INTER_PLUS_MV,    MODE_INTER_NO_MV,
90
         MODE_INTRA,            MODE_USING_GOLDEN,
91
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
92

    
93
    /* scheme 2 */
94
    {    MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
95
         MODE_INTER_NO_MV,      MODE_INTER_PLUS_MV,
96
         MODE_INTRA,            MODE_USING_GOLDEN,
97
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
98

    
99
    /* scheme 3 */
100
    {    MODE_INTER_LAST_MV,    MODE_INTER_PLUS_MV,
101
         MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV,
102
         MODE_INTRA,            MODE_USING_GOLDEN,
103
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
104

    
105
    /* scheme 4 */
106
    {    MODE_INTER_LAST_MV,    MODE_INTER_PLUS_MV,
107
         MODE_INTER_NO_MV,      MODE_INTER_PRIOR_LAST,
108
         MODE_INTRA,            MODE_USING_GOLDEN,
109
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
110

    
111
    /* scheme 5: No motion vector dominates */
112
    {    MODE_INTER_NO_MV,      MODE_INTER_LAST_MV,
113
         MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV,
114
         MODE_INTRA,            MODE_USING_GOLDEN,
115
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
116

    
117
    /* scheme 6 */
118
    {    MODE_INTER_NO_MV,      MODE_USING_GOLDEN,
119
         MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
120
         MODE_INTER_PLUS_MV,    MODE_INTRA,
121
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
122

    
123
};
124

    
125
#define MIN_DEQUANT_VAL 2
126

    
127
typedef struct Vp3DecodeContext {
128
    AVCodecContext *avctx;
129
    int theora, theora_tables;
130
    int version;
131
    int width, height;
132
    AVFrame golden_frame;
133
    AVFrame last_frame;
134
    AVFrame current_frame;
135
    int keyframe;
136
    DSPContext dsp;
137
    int flipped_image;
138

    
139
    int qps[3];
140
    int nqps;
141
    int last_qps[3];
142

    
143
    int superblock_count;
144
    int y_superblock_width;
145
    int y_superblock_height;
146
    int c_superblock_width;
147
    int c_superblock_height;
148
    int u_superblock_start;
149
    int v_superblock_start;
150
    unsigned char *superblock_coding;
151

    
152
    int macroblock_count;
153
    int macroblock_width;
154
    int macroblock_height;
155

    
156
    int fragment_count;
157
    int fragment_width;
158
    int fragment_height;
159

    
160
    Vp3Fragment *all_fragments;
161
    uint8_t *coeff_counts;
162
    Coeff *coeffs;
163
    Coeff *next_coeff;
164
    int fragment_start[3];
165

    
166
    ScanTable scantable;
167

    
168
    /* tables */
169
    uint16_t coded_dc_scale_factor[64];
170
    uint32_t coded_ac_scale_factor[64];
171
    uint8_t base_matrix[384][64];
172
    uint8_t qr_count[2][3];
173
    uint8_t qr_size [2][3][64];
174
    uint16_t qr_base[2][3][64];
175

    
176
    /* this is a list of indexes into the all_fragments array indicating
177
     * which of the fragments are coded */
178
    int *coded_fragment_list;
179
    int coded_fragment_list_index;
180
    int pixel_addresses_initialized;
181

    
182
    /* track which fragments have already been decoded; called 'fast'
183
     * because this data structure avoids having to iterate through every
184
     * fragment in coded_fragment_list; once a fragment has been fully
185
     * decoded, it is removed from this list */
186
    int *fast_fragment_list;
187
    int fragment_list_y_head;
188
    int fragment_list_c_head;
189

    
190
    VLC dc_vlc[16];
191
    VLC ac_vlc_1[16];
192
    VLC ac_vlc_2[16];
193
    VLC ac_vlc_3[16];
194
    VLC ac_vlc_4[16];
195

    
196
    VLC superblock_run_length_vlc;
197
    VLC fragment_run_length_vlc;
198
    VLC mode_code_vlc;
199
    VLC motion_vector_vlc;
200

    
201
    /* these arrays need to be on 16-byte boundaries since SSE2 operations
202
     * index into them */
203
    DECLARE_ALIGNED_16(int16_t, qmat)[3][2][3][64];     //<qmat[qpi][is_inter][plane]
204

    
205
    /* This table contains superblock_count * 16 entries. Each set of 16
206
     * numbers corresponds to the fragment indexes 0..15 of the superblock.
207
     * An entry will be -1 to indicate that no entry corresponds to that
208
     * index. */
209
    int *superblock_fragments;
210

    
211
    /* This table contains superblock_count * 4 entries. Each set of 4
212
     * numbers corresponds to the macroblock indexes 0..3 of the superblock.
213
     * An entry will be -1 to indicate that no entry corresponds to that
214
     * index. */
215
    int *superblock_macroblocks;
216

    
217
    /* This table contains macroblock_count * 6 entries. Each set of 6
218
     * numbers corresponds to the fragment indexes 0..5 which comprise
219
     * the macroblock (4 Y fragments and 2 C fragments). */
220
    int *macroblock_fragments;
221
    /* This is an array that indicates how a particular macroblock
222
     * is coded. */
223
    unsigned char *macroblock_coding;
224

    
225
    int first_coded_y_fragment;
226
    int first_coded_c_fragment;
227
    int last_coded_y_fragment;
228
    int last_coded_c_fragment;
229

    
230
    uint8_t edge_emu_buffer[9*2048]; //FIXME dynamic alloc
231
    int8_t qscale_table[2048]; //FIXME dynamic alloc (width+15)/16
232

    
233
    /* Huffman decode */
234
    int hti;
235
    unsigned int hbits;
236
    int entries;
237
    int huff_code_size;
238
    uint16_t huffman_table[80][32][2];
239

    
240
    uint8_t filter_limit_values[64];
241
    DECLARE_ALIGNED_8(int, bounding_values_array)[256+2];
242
} Vp3DecodeContext;
243

    
244
/************************************************************************
245
 * VP3 specific functions
246
 ************************************************************************/
247

    
248
/*
249
 * This function sets up all of the various blocks mappings:
250
 * superblocks <-> fragments, macroblocks <-> fragments,
251
 * superblocks <-> macroblocks
252
 *
253
 * Returns 0 is successful; returns 1 if *anything* went wrong.
254
 */
255
static int init_block_mapping(Vp3DecodeContext *s)
256
{
257
    int i, j;
258
    signed int hilbert_walk_mb[4];
259

    
260
    int current_fragment = 0;
261
    int current_width = 0;
262
    int current_height = 0;
263
    int right_edge = 0;
264
    int bottom_edge = 0;
265
    int superblock_row_inc = 0;
266
    int mapping_index = 0;
267

    
268
    int current_macroblock;
269
    int c_fragment;
270

    
271
    static const signed char travel_width[16] = {
272
         1,  1,  0, -1,
273
         0,  0,  1,  0,
274
         1,  0,  1,  0,
275
         0, -1,  0,  1
276
    };
277

    
278
    static const signed char travel_height[16] = {
279
         0,  0,  1,  0,
280
         1,  1,  0, -1,
281
         0,  1,  0, -1,
282
        -1,  0, -1,  0
283
    };
284

    
285
    static const signed char travel_width_mb[4] = {
286
         1,  0,  1,  0
287
    };
288

    
289
    static const signed char travel_height_mb[4] = {
290
         0,  1,  0, -1
291
    };
292

    
293
    hilbert_walk_mb[0] = 1;
294
    hilbert_walk_mb[1] = s->macroblock_width;
295
    hilbert_walk_mb[2] = 1;
296
    hilbert_walk_mb[3] = -s->macroblock_width;
297

    
298
    /* iterate through each superblock (all planes) and map the fragments */
299
    for (i = 0; i < s->superblock_count; i++) {
300
        /* time to re-assign the limits? */
301
        if (i == 0) {
302

    
303
            /* start of Y superblocks */
304
            right_edge = s->fragment_width;
305
            bottom_edge = s->fragment_height;
306
            current_width = -1;
307
            current_height = 0;
308
            superblock_row_inc = 3 * s->fragment_width -
309
                (s->y_superblock_width * 4 - s->fragment_width);
310

    
311
            /* the first operation for this variable is to advance by 1 */
312
            current_fragment = -1;
313

    
314
        } else if (i == s->u_superblock_start) {
315

    
316
            /* start of U superblocks */
317
            right_edge = s->fragment_width / 2;
318
            bottom_edge = s->fragment_height / 2;
319
            current_width = -1;
320
            current_height = 0;
321
            superblock_row_inc = 3 * (s->fragment_width / 2) -
322
                (s->c_superblock_width * 4 - s->fragment_width / 2);
323

    
324
            /* the first operation for this variable is to advance by 1 */
325
            current_fragment = s->fragment_start[1] - 1;
326

    
327
        } else if (i == s->v_superblock_start) {
328

    
329
            /* start of V superblocks */
330
            right_edge = s->fragment_width / 2;
331
            bottom_edge = s->fragment_height / 2;
332
            current_width = -1;
333
            current_height = 0;
334
            superblock_row_inc = 3 * (s->fragment_width / 2) -
335
                (s->c_superblock_width * 4 - s->fragment_width / 2);
336

    
337
            /* the first operation for this variable is to advance by 1 */
338
            current_fragment = s->fragment_start[2] - 1;
339

    
340
        }
341

    
342
        if (current_width >= right_edge - 1) {
343
            /* reset width and move to next superblock row */
344
            current_width = -1;
345
            current_height += 4;
346

    
347
            /* fragment is now at the start of a new superblock row */
348
            current_fragment += superblock_row_inc;
349
        }
350

    
351
        /* iterate through all 16 fragments in a superblock */
352
        for (j = 0; j < 16; j++) {
353
            current_fragment += travel_width[j] + right_edge * travel_height[j];
354
            current_width += travel_width[j];
355
            current_height += travel_height[j];
356

    
357
            /* check if the fragment is in bounds */
358
            if ((current_width < right_edge) &&
359
                (current_height < bottom_edge)) {
360
                s->superblock_fragments[mapping_index] = current_fragment;
361
            } else {
362
                s->superblock_fragments[mapping_index] = -1;
363
            }
364

    
365
            mapping_index++;
366
        }
367
    }
368

    
369
    /* initialize the superblock <-> macroblock mapping; iterate through
370
     * all of the Y plane superblocks to build this mapping */
371
    right_edge = s->macroblock_width;
372
    bottom_edge = s->macroblock_height;
373
    current_width = -1;
374
    current_height = 0;
375
    superblock_row_inc = s->macroblock_width -
376
        (s->y_superblock_width * 2 - s->macroblock_width);
377
    mapping_index = 0;
378
    current_macroblock = -1;
379
    for (i = 0; i < s->u_superblock_start; i++) {
380

    
381
        if (current_width >= right_edge - 1) {
382
            /* reset width and move to next superblock row */
383
            current_width = -1;
384
            current_height += 2;
385

    
386
            /* macroblock is now at the start of a new superblock row */
387
            current_macroblock += superblock_row_inc;
388
        }
389

    
390
        /* iterate through each potential macroblock in the superblock */
391
        for (j = 0; j < 4; j++) {
392
            current_macroblock += hilbert_walk_mb[j];
393
            current_width += travel_width_mb[j];
394
            current_height += travel_height_mb[j];
395

    
396
            /* check if the macroblock is in bounds */
397
            if ((current_width < right_edge) &&
398
                (current_height < bottom_edge)) {
399
                s->superblock_macroblocks[mapping_index] = current_macroblock;
400
            } else {
401
                s->superblock_macroblocks[mapping_index] = -1;
402
            }
403

    
404
            mapping_index++;
405
        }
406
    }
407

    
408
    /* initialize the macroblock <-> fragment mapping */
409
    current_fragment = 0;
410
    current_macroblock = 0;
411
    mapping_index = 0;
412
    for (i = 0; i < s->fragment_height; i += 2) {
413

    
414
        for (j = 0; j < s->fragment_width; j += 2) {
415

    
416
            s->all_fragments[current_fragment].macroblock = current_macroblock;
417
            s->macroblock_fragments[mapping_index++] = current_fragment;
418

    
419
            if (j + 1 < s->fragment_width) {
420
                s->all_fragments[current_fragment + 1].macroblock = current_macroblock;
421
                s->macroblock_fragments[mapping_index++] = current_fragment + 1;
422
            } else
423
                s->macroblock_fragments[mapping_index++] = -1;
424

    
425
            if (i + 1 < s->fragment_height) {
426
                s->all_fragments[current_fragment + s->fragment_width].macroblock =
427
                    current_macroblock;
428
                s->macroblock_fragments[mapping_index++] =
429
                    current_fragment + s->fragment_width;
430
            } else
431
                s->macroblock_fragments[mapping_index++] = -1;
432

    
433
            if ((j + 1 < s->fragment_width) && (i + 1 < s->fragment_height)) {
434
                s->all_fragments[current_fragment + s->fragment_width + 1].macroblock =
435
                    current_macroblock;
436
                s->macroblock_fragments[mapping_index++] =
437
                    current_fragment + s->fragment_width + 1;
438
            } else
439
                s->macroblock_fragments[mapping_index++] = -1;
440

    
441
            /* C planes */
442
            c_fragment = s->fragment_start[1] +
443
                (i * s->fragment_width / 4) + (j / 2);
444
            s->all_fragments[c_fragment].macroblock = s->macroblock_count;
445
            s->macroblock_fragments[mapping_index++] = c_fragment;
446

    
447
            c_fragment = s->fragment_start[2] +
448
                (i * s->fragment_width / 4) + (j / 2);
449
            s->all_fragments[c_fragment].macroblock = s->macroblock_count;
450
            s->macroblock_fragments[mapping_index++] = c_fragment;
451

    
452
            if (j + 2 <= s->fragment_width)
453
                current_fragment += 2;
454
            else
455
                current_fragment++;
456
            current_macroblock++;
457
        }
458

    
459
        current_fragment += s->fragment_width;
460
    }
461

    
462
    return 0;  /* successful path out */
463
}
464

    
465
/*
466
 * This function wipes out all of the fragment data.
467
 */
468
static void init_frame(Vp3DecodeContext *s, GetBitContext *gb)
469
{
470
    int i;
471

    
472
    /* zero out all of the fragment information */
473
    s->coded_fragment_list_index = 0;
474
    for (i = 0; i < s->fragment_count; i++) {
475
        s->coeff_counts[i] = 0;
476
        s->all_fragments[i].motion_x = 127;
477
        s->all_fragments[i].motion_y = 127;
478
        s->all_fragments[i].next_coeff= NULL;
479
        s->all_fragments[i].qpi = 0;
480
        s->coeffs[i].index=
481
        s->coeffs[i].coeff=0;
482
        s->coeffs[i].next= NULL;
483
    }
484
}
485

    
486
/*
487
 * This function sets up the dequantization tables used for a particular
488
 * frame.
489
 */
490
static void init_dequantizer(Vp3DecodeContext *s, int qpi)
491
{
492
    int ac_scale_factor = s->coded_ac_scale_factor[s->qps[qpi]];
493
    int dc_scale_factor = s->coded_dc_scale_factor[s->qps[qpi]];
494
    int i, plane, inter, qri, bmi, bmj, qistart;
495

    
496
    for(inter=0; inter<2; inter++){
497
        for(plane=0; plane<3; plane++){
498
            int sum=0;
499
            for(qri=0; qri<s->qr_count[inter][plane]; qri++){
500
                sum+= s->qr_size[inter][plane][qri];
501
                if(s->qps[qpi] <= sum)
502
                    break;
503
            }
504
            qistart= sum - s->qr_size[inter][plane][qri];
505
            bmi= s->qr_base[inter][plane][qri  ];
506
            bmj= s->qr_base[inter][plane][qri+1];
507
            for(i=0; i<64; i++){
508
                int coeff= (  2*(sum    -s->qps[qpi])*s->base_matrix[bmi][i]
509
                            - 2*(qistart-s->qps[qpi])*s->base_matrix[bmj][i]
510
                            + s->qr_size[inter][plane][qri])
511
                           / (2*s->qr_size[inter][plane][qri]);
512

    
513
                int qmin= 8<<(inter + !i);
514
                int qscale= i ? ac_scale_factor : dc_scale_factor;
515

    
516
                s->qmat[qpi][inter][plane][s->dsp.idct_permutation[i]]= av_clip((qscale * coeff)/100 * 4, qmin, 4096);
517
            }
518
            // all DC coefficients use the same quant so as not to interfere with DC prediction
519
            s->qmat[qpi][inter][plane][0] = s->qmat[0][inter][plane][0];
520
        }
521
    }
522

    
523
    memset(s->qscale_table, (FFMAX(s->qmat[0][0][0][1], s->qmat[0][0][1][1])+8)/16, 512); //FIXME finetune
524
}
525

    
526
/*
527
 * This function initializes the loop filter boundary limits if the frame's
528
 * quality index is different from the previous frame's.
529
 *
530
 * The filter_limit_values may not be larger than 127.
531
 */
532
static void init_loop_filter(Vp3DecodeContext *s)
533
{
534
    int *bounding_values= s->bounding_values_array+127;
535
    int filter_limit;
536
    int x;
537
    int value;
538

    
539
    filter_limit = s->filter_limit_values[s->qps[0]];
540

    
541
    /* set up the bounding values */
542
    memset(s->bounding_values_array, 0, 256 * sizeof(int));
543
    for (x = 0; x < filter_limit; x++) {
544
        bounding_values[-x] = -x;
545
        bounding_values[x] = x;
546
    }
547
    for (x = value = filter_limit; x < 128 && value; x++, value--) {
548
        bounding_values[ x] =  value;
549
        bounding_values[-x] = -value;
550
    }
551
    if (value)
552
        bounding_values[128] = value;
553
    bounding_values[129] = bounding_values[130] = filter_limit * 0x02020202;
554
}
555

    
556
/*
557
 * This function unpacks all of the superblock/macroblock/fragment coding
558
 * information from the bitstream.
559
 */
560
static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb)
561
{
562
    int bit = 0;
563
    int current_superblock = 0;
564
    int current_run = 0;
565
    int decode_fully_flags = 0;
566
    int decode_partial_blocks = 0;
567
    int first_c_fragment_seen;
568

    
569
    int i, j;
570
    int current_fragment;
571

    
572
    if (s->keyframe) {
573
        memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count);
574

    
575
    } else {
576

    
577
        /* unpack the list of partially-coded superblocks */
578
        bit = get_bits1(gb);
579
        /* toggle the bit because as soon as the first run length is
580
         * fetched the bit will be toggled again */
581
        bit ^= 1;
582
        while (current_superblock < s->superblock_count) {
583
            if (current_run-- == 0) {
584
                bit ^= 1;
585
                current_run = get_vlc2(gb,
586
                    s->superblock_run_length_vlc.table, 6, 2);
587
                if (current_run == 33)
588
                    current_run += get_bits(gb, 12);
589

    
590
                /* if any of the superblocks are not partially coded, flag
591
                 * a boolean to decode the list of fully-coded superblocks */
592
                if (bit == 0) {
593
                    decode_fully_flags = 1;
594
                } else {
595

    
596
                    /* make a note of the fact that there are partially coded
597
                     * superblocks */
598
                    decode_partial_blocks = 1;
599
                }
600
            }
601
            s->superblock_coding[current_superblock++] = bit;
602
        }
603

    
604
        /* unpack the list of fully coded superblocks if any of the blocks were
605
         * not marked as partially coded in the previous step */
606
        if (decode_fully_flags) {
607

    
608
            current_superblock = 0;
609
            current_run = 0;
610
            bit = get_bits1(gb);
611
            /* toggle the bit because as soon as the first run length is
612
             * fetched the bit will be toggled again */
613
            bit ^= 1;
614
            while (current_superblock < s->superblock_count) {
615

    
616
                /* skip any superblocks already marked as partially coded */
617
                if (s->superblock_coding[current_superblock] == SB_NOT_CODED) {
618

    
619
                    if (current_run-- == 0) {
620
                        bit ^= 1;
621
                        current_run = get_vlc2(gb,
622
                            s->superblock_run_length_vlc.table, 6, 2);
623
                        if (current_run == 33)
624
                            current_run += get_bits(gb, 12);
625
                    }
626
                    s->superblock_coding[current_superblock] = 2*bit;
627
                }
628
                current_superblock++;
629
            }
630
        }
631

    
632
        /* if there were partial blocks, initialize bitstream for
633
         * unpacking fragment codings */
634
        if (decode_partial_blocks) {
635

    
636
            current_run = 0;
637
            bit = get_bits1(gb);
638
            /* toggle the bit because as soon as the first run length is
639
             * fetched the bit will be toggled again */
640
            bit ^= 1;
641
        }
642
    }
643

    
644
    /* figure out which fragments are coded; iterate through each
645
     * superblock (all planes) */
646
    s->coded_fragment_list_index = 0;
647
    s->next_coeff= s->coeffs + s->fragment_count;
648
    s->first_coded_y_fragment = s->first_coded_c_fragment = 0;
649
    s->last_coded_y_fragment = s->last_coded_c_fragment = -1;
650
    first_c_fragment_seen = 0;
651
    memset(s->macroblock_coding, MODE_COPY, s->macroblock_count);
652
    for (i = 0; i < s->superblock_count; i++) {
653

    
654
        /* iterate through all 16 fragments in a superblock */
655
        for (j = 0; j < 16; j++) {
656

    
657
            /* if the fragment is in bounds, check its coding status */
658
            current_fragment = s->superblock_fragments[i * 16 + j];
659
            if (current_fragment >= s->fragment_count) {
660
                av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_superblocks(): bad fragment number (%d >= %d)\n",
661
                    current_fragment, s->fragment_count);
662
                return 1;
663
            }
664
            if (current_fragment != -1) {
665
                if (s->superblock_coding[i] == SB_NOT_CODED) {
666

    
667
                    /* copy all the fragments from the prior frame */
668
                    s->all_fragments[current_fragment].coding_method =
669
                        MODE_COPY;
670

    
671
                } else if (s->superblock_coding[i] == SB_PARTIALLY_CODED) {
672

    
673
                    /* fragment may or may not be coded; this is the case
674
                     * that cares about the fragment coding runs */
675
                    if (current_run-- == 0) {
676
                        bit ^= 1;
677
                        current_run = get_vlc2(gb,
678
                            s->fragment_run_length_vlc.table, 5, 2);
679
                    }
680

    
681
                    if (bit) {
682
                        /* default mode; actual mode will be decoded in
683
                         * the next phase */
684
                        s->all_fragments[current_fragment].coding_method =
685
                            MODE_INTER_NO_MV;
686
                        s->all_fragments[current_fragment].next_coeff= s->coeffs + current_fragment;
687
                        s->coded_fragment_list[s->coded_fragment_list_index] =
688
                            current_fragment;
689
                        if ((current_fragment >= s->fragment_start[1]) &&
690
                            (s->last_coded_y_fragment == -1) &&
691
                            (!first_c_fragment_seen)) {
692
                            s->first_coded_c_fragment = s->coded_fragment_list_index;
693
                            s->last_coded_y_fragment = s->first_coded_c_fragment - 1;
694
                            first_c_fragment_seen = 1;
695
                        }
696
                        s->coded_fragment_list_index++;
697
                        s->macroblock_coding[s->all_fragments[current_fragment].macroblock] = MODE_INTER_NO_MV;
698
                    } else {
699
                        /* not coded; copy this fragment from the prior frame */
700
                        s->all_fragments[current_fragment].coding_method =
701
                            MODE_COPY;
702
                    }
703

    
704
                } else {
705

    
706
                    /* fragments are fully coded in this superblock; actual
707
                     * coding will be determined in next step */
708
                    s->all_fragments[current_fragment].coding_method =
709
                        MODE_INTER_NO_MV;
710
                    s->all_fragments[current_fragment].next_coeff= s->coeffs + current_fragment;
711
                    s->coded_fragment_list[s->coded_fragment_list_index] =
712
                        current_fragment;
713
                    if ((current_fragment >= s->fragment_start[1]) &&
714
                        (s->last_coded_y_fragment == -1) &&
715
                        (!first_c_fragment_seen)) {
716
                        s->first_coded_c_fragment = s->coded_fragment_list_index;
717
                        s->last_coded_y_fragment = s->first_coded_c_fragment - 1;
718
                        first_c_fragment_seen = 1;
719
                    }
720
                    s->coded_fragment_list_index++;
721
                    s->macroblock_coding[s->all_fragments[current_fragment].macroblock] = MODE_INTER_NO_MV;
722
                }
723
            }
724
        }
725
    }
726

    
727
    if (!first_c_fragment_seen)
728
        /* only Y fragments coded in this frame */
729
        s->last_coded_y_fragment = s->coded_fragment_list_index - 1;
730
    else
731
        /* end the list of coded C fragments */
732
        s->last_coded_c_fragment = s->coded_fragment_list_index - 1;
733

    
734
    for (i = 0; i < s->fragment_count - 1; i++) {
735
        s->fast_fragment_list[i] = i + 1;
736
    }
737
    s->fast_fragment_list[s->fragment_count - 1] = -1;
738

    
739
    if (s->last_coded_y_fragment == -1)
740
        s->fragment_list_y_head = -1;
741
    else {
742
        s->fragment_list_y_head = s->first_coded_y_fragment;
743
        s->fast_fragment_list[s->last_coded_y_fragment] = -1;
744
    }
745

    
746
    if (s->last_coded_c_fragment == -1)
747
        s->fragment_list_c_head = -1;
748
    else {
749
        s->fragment_list_c_head = s->first_coded_c_fragment;
750
        s->fast_fragment_list[s->last_coded_c_fragment] = -1;
751
    }
752

    
753
    return 0;
754
}
755

    
756
/*
757
 * This function unpacks all the coding mode data for individual macroblocks
758
 * from the bitstream.
759
 */
760
static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb)
761
{
762
    int i, j, k;
763
    int scheme;
764
    int current_macroblock;
765
    int current_fragment;
766
    int coding_mode;
767
    int custom_mode_alphabet[CODING_MODE_COUNT];
768

    
769
    if (s->keyframe) {
770
        for (i = 0; i < s->fragment_count; i++)
771
            s->all_fragments[i].coding_method = MODE_INTRA;
772

    
773
    } else {
774

    
775
        /* fetch the mode coding scheme for this frame */
776
        scheme = get_bits(gb, 3);
777

    
778
        /* is it a custom coding scheme? */
779
        if (scheme == 0) {
780
            for (i = 0; i < 8; i++)
781
                custom_mode_alphabet[i] = MODE_INTER_NO_MV;
782
            for (i = 0; i < 8; i++)
783
                custom_mode_alphabet[get_bits(gb, 3)] = i;
784
        }
785

    
786
        /* iterate through all of the macroblocks that contain 1 or more
787
         * coded fragments */
788
        for (i = 0; i < s->u_superblock_start; i++) {
789

    
790
            for (j = 0; j < 4; j++) {
791
                current_macroblock = s->superblock_macroblocks[i * 4 + j];
792
                if ((current_macroblock == -1) ||
793
                    (s->macroblock_coding[current_macroblock] == MODE_COPY))
794
                    continue;
795
                if (current_macroblock >= s->macroblock_count) {
796
                    av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_modes(): bad macroblock number (%d >= %d)\n",
797
                        current_macroblock, s->macroblock_count);
798
                    return 1;
799
                }
800

    
801
                /* mode 7 means get 3 bits for each coding mode */
802
                if (scheme == 7)
803
                    coding_mode = get_bits(gb, 3);
804
                else if(scheme == 0)
805
                    coding_mode = custom_mode_alphabet
806
                        [get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
807
                else
808
                    coding_mode = ModeAlphabet[scheme-1]
809
                        [get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
810

    
811
                s->macroblock_coding[current_macroblock] = coding_mode;
812
                for (k = 0; k < 6; k++) {
813
                    current_fragment =
814
                        s->macroblock_fragments[current_macroblock * 6 + k];
815
                    if (current_fragment == -1)
816
                        continue;
817
                    if (current_fragment >= s->fragment_count) {
818
                        av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_modes(): bad fragment number (%d >= %d)\n",
819
                            current_fragment, s->fragment_count);
820
                        return 1;
821
                    }
822
                    if (s->all_fragments[current_fragment].coding_method !=
823
                        MODE_COPY)
824
                        s->all_fragments[current_fragment].coding_method =
825
                            coding_mode;
826
                }
827
            }
828
        }
829
    }
830

    
831
    return 0;
832
}
833

    
834
/*
835
 * This function unpacks all the motion vectors for the individual
836
 * macroblocks from the bitstream.
837
 */
838
static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb)
839
{
840
    int i, j, k, l;
841
    int coding_mode;
842
    int motion_x[6];
843
    int motion_y[6];
844
    int last_motion_x = 0;
845
    int last_motion_y = 0;
846
    int prior_last_motion_x = 0;
847
    int prior_last_motion_y = 0;
848
    int current_macroblock;
849
    int current_fragment;
850

    
851
    if (s->keyframe)
852
        return 0;
853

    
854
    memset(motion_x, 0, 6 * sizeof(int));
855
    memset(motion_y, 0, 6 * sizeof(int));
856

    
857
    /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */
858
    coding_mode = get_bits1(gb);
859

    
860
    /* iterate through all of the macroblocks that contain 1 or more
861
     * coded fragments */
862
    for (i = 0; i < s->u_superblock_start; i++) {
863

    
864
        for (j = 0; j < 4; j++) {
865
            current_macroblock = s->superblock_macroblocks[i * 4 + j];
866
            if ((current_macroblock == -1) ||
867
                (s->macroblock_coding[current_macroblock] == MODE_COPY))
868
                continue;
869
            if (current_macroblock >= s->macroblock_count) {
870
                av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_vectors(): bad macroblock number (%d >= %d)\n",
871
                    current_macroblock, s->macroblock_count);
872
                return 1;
873
            }
874

    
875
            current_fragment = s->macroblock_fragments[current_macroblock * 6];
876
            if (current_fragment >= s->fragment_count) {
877
                av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_vectors(): bad fragment number (%d >= %d\n",
878
                    current_fragment, s->fragment_count);
879
                return 1;
880
            }
881
            switch (s->macroblock_coding[current_macroblock]) {
882

    
883
            case MODE_INTER_PLUS_MV:
884
            case MODE_GOLDEN_MV:
885
                /* all 6 fragments use the same motion vector */
886
                if (coding_mode == 0) {
887
                    motion_x[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
888
                    motion_y[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
889
                } else {
890
                    motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)];
891
                    motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)];
892
                }
893

    
894
                /* vector maintenance, only on MODE_INTER_PLUS_MV */
895
                if (s->macroblock_coding[current_macroblock] ==
896
                    MODE_INTER_PLUS_MV) {
897
                    prior_last_motion_x = last_motion_x;
898
                    prior_last_motion_y = last_motion_y;
899
                    last_motion_x = motion_x[0];
900
                    last_motion_y = motion_y[0];
901
                }
902
                break;
903

    
904
            case MODE_INTER_FOURMV:
905
                /* vector maintenance */
906
                prior_last_motion_x = last_motion_x;
907
                prior_last_motion_y = last_motion_y;
908

    
909
                /* fetch 4 vectors from the bitstream, one for each
910
                 * Y fragment, then average for the C fragment vectors */
911
                motion_x[4] = motion_y[4] = 0;
912
                for (k = 0; k < 4; k++) {
913
                    for (l = 0; l < s->coded_fragment_list_index; l++)
914
                        if (s->coded_fragment_list[l] == s->macroblock_fragments[6*current_macroblock + k])
915
                            break;
916
                    if (l < s->coded_fragment_list_index) {
917
                        if (coding_mode == 0) {
918
                            motion_x[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
919
                            motion_y[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
920
                        } else {
921
                            motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)];
922
                            motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)];
923
                        }
924
                        last_motion_x = motion_x[k];
925
                        last_motion_y = motion_y[k];
926
                    } else {
927
                        motion_x[k] = 0;
928
                        motion_y[k] = 0;
929
                    }
930
                    motion_x[4] += motion_x[k];
931
                    motion_y[4] += motion_y[k];
932
                }
933

    
934
                motion_x[5]=
935
                motion_x[4]= RSHIFT(motion_x[4], 2);
936
                motion_y[5]=
937
                motion_y[4]= RSHIFT(motion_y[4], 2);
938
                break;
939

    
940
            case MODE_INTER_LAST_MV:
941
                /* all 6 fragments use the last motion vector */
942
                motion_x[0] = last_motion_x;
943
                motion_y[0] = last_motion_y;
944

    
945
                /* no vector maintenance (last vector remains the
946
                 * last vector) */
947
                break;
948

    
949
            case MODE_INTER_PRIOR_LAST:
950
                /* all 6 fragments use the motion vector prior to the
951
                 * last motion vector */
952
                motion_x[0] = prior_last_motion_x;
953
                motion_y[0] = prior_last_motion_y;
954

    
955
                /* vector maintenance */
956
                prior_last_motion_x = last_motion_x;
957
                prior_last_motion_y = last_motion_y;
958
                last_motion_x = motion_x[0];
959
                last_motion_y = motion_y[0];
960
                break;
961

    
962
            default:
963
                /* covers intra, inter without MV, golden without MV */
964
                motion_x[0] = 0;
965
                motion_y[0] = 0;
966

    
967
                /* no vector maintenance */
968
                break;
969
            }
970

    
971
            /* assign the motion vectors to the correct fragments */
972
            for (k = 0; k < 6; k++) {
973
                current_fragment =
974
                    s->macroblock_fragments[current_macroblock * 6 + k];
975
                if (current_fragment == -1)
976
                    continue;
977
                if (current_fragment >= s->fragment_count) {
978
                    av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_vectors(): bad fragment number (%d >= %d)\n",
979
                        current_fragment, s->fragment_count);
980
                    return 1;
981
                }
982
                if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
983
                    s->all_fragments[current_fragment].motion_x = motion_x[k];
984
                    s->all_fragments[current_fragment].motion_y = motion_y[k];
985
                } else {
986
                    s->all_fragments[current_fragment].motion_x = motion_x[0];
987
                    s->all_fragments[current_fragment].motion_y = motion_y[0];
988
                }
989
            }
990
        }
991
    }
992

    
993
    return 0;
994
}
995

    
996
static int unpack_block_qpis(Vp3DecodeContext *s, GetBitContext *gb)
997
{
998
    int qpi, i, j, bit, run_length, blocks_decoded, num_blocks_at_qpi;
999
    int num_blocks = s->coded_fragment_list_index;
1000

    
1001
    for (qpi = 0; qpi < s->nqps-1 && num_blocks > 0; qpi++) {
1002
        i = blocks_decoded = num_blocks_at_qpi = 0;
1003

    
1004
        bit = get_bits1(gb);
1005

    
1006
        do {
1007
            run_length = get_vlc2(gb, s->superblock_run_length_vlc.table, 6, 2) + 1;
1008
            if (run_length == 34)
1009
                run_length += get_bits(gb, 12);
1010
            blocks_decoded += run_length;
1011

    
1012
            if (!bit)
1013
                num_blocks_at_qpi += run_length;
1014

    
1015
            for (j = 0; j < run_length; i++) {
1016
                if (i >= s->coded_fragment_list_index)
1017
                    return -1;
1018

    
1019
                if (s->all_fragments[s->coded_fragment_list[i]].qpi == qpi) {
1020
                    s->all_fragments[s->coded_fragment_list[i]].qpi += bit;
1021
                    j++;
1022
                }
1023
            }
1024

    
1025
            if (run_length == 4129)
1026
                bit = get_bits1(gb);
1027
            else
1028
                bit ^= 1;
1029
        } while (blocks_decoded < num_blocks);
1030

    
1031
        num_blocks -= num_blocks_at_qpi;
1032
    }
1033

    
1034
    return 0;
1035
}
1036

    
1037
/*
1038
 * This function is called by unpack_dct_coeffs() to extract the VLCs from
1039
 * the bitstream. The VLCs encode tokens which are used to unpack DCT
1040
 * data. This function unpacks all the VLCs for either the Y plane or both
1041
 * C planes, and is called for DC coefficients or different AC coefficient
1042
 * levels (since different coefficient types require different VLC tables.
1043
 *
1044
 * This function returns a residual eob run. E.g, if a particular token gave
1045
 * instructions to EOB the next 5 fragments and there were only 2 fragments
1046
 * left in the current fragment range, 3 would be returned so that it could
1047
 * be passed into the next call to this same function.
1048
 */
1049
static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb,
1050
                        VLC *table, int coeff_index,
1051
                        int y_plane,
1052
                        int eob_run)
1053
{
1054
    int i;
1055
    int token;
1056
    int zero_run = 0;
1057
    DCTELEM coeff = 0;
1058
    Vp3Fragment *fragment;
1059
    int bits_to_get;
1060
    int next_fragment;
1061
    int previous_fragment;
1062
    int fragment_num;
1063
    int *list_head;
1064

    
1065
    /* local references to structure members to avoid repeated deferences */
1066
    uint8_t *perm= s->scantable.permutated;
1067
    int *coded_fragment_list = s->coded_fragment_list;
1068
    Vp3Fragment *all_fragments = s->all_fragments;
1069
    uint8_t *coeff_counts = s->coeff_counts;
1070
    VLC_TYPE (*vlc_table)[2] = table->table;
1071
    int *fast_fragment_list = s->fast_fragment_list;
1072

    
1073
    if (y_plane) {
1074
        next_fragment = s->fragment_list_y_head;
1075
        list_head = &s->fragment_list_y_head;
1076
    } else {
1077
        next_fragment = s->fragment_list_c_head;
1078
        list_head = &s->fragment_list_c_head;
1079
    }
1080

    
1081
    i = next_fragment;
1082
    previous_fragment = -1;  /* this indicates that the previous fragment is actually the list head */
1083
    while (i != -1) {
1084
        fragment_num = coded_fragment_list[i];
1085

    
1086
        if (coeff_counts[fragment_num] > coeff_index) {
1087
            previous_fragment = i;
1088
            i = fast_fragment_list[i];
1089
            continue;
1090
        }
1091
        fragment = &all_fragments[fragment_num];
1092

    
1093
        if (!eob_run) {
1094
            /* decode a VLC into a token */
1095
            token = get_vlc2(gb, vlc_table, 5, 3);
1096
            /* use the token to get a zero run, a coefficient, and an eob run */
1097
            if (token <= 6) {
1098
                eob_run = eob_run_base[token];
1099
                if (eob_run_get_bits[token])
1100
                    eob_run += get_bits(gb, eob_run_get_bits[token]);
1101
                coeff = zero_run = 0;
1102
            } else {
1103
                bits_to_get = coeff_get_bits[token];
1104
                if (bits_to_get)
1105
                    bits_to_get = get_bits(gb, bits_to_get);
1106
                coeff = coeff_tables[token][bits_to_get];
1107

    
1108
                zero_run = zero_run_base[token];
1109
                if (zero_run_get_bits[token])
1110
                    zero_run += get_bits(gb, zero_run_get_bits[token]);
1111
            }
1112
        }
1113

    
1114
        if (!eob_run) {
1115
            coeff_counts[fragment_num] += zero_run;
1116
            if (coeff_counts[fragment_num] < 64){
1117
                fragment->next_coeff->coeff= coeff;
1118
                fragment->next_coeff->index= perm[coeff_counts[fragment_num]++]; //FIXME perm here already?
1119
                fragment->next_coeff->next= s->next_coeff;
1120
                s->next_coeff->next=NULL;
1121
                fragment->next_coeff= s->next_coeff++;
1122
            }
1123
            /* previous fragment is now this fragment */
1124
            previous_fragment = i;
1125
        } else {
1126
            coeff_counts[fragment_num] |= 128;
1127
            eob_run--;
1128
            /* remove this fragment from the list */
1129
            if (previous_fragment != -1)
1130
                fast_fragment_list[previous_fragment] = fast_fragment_list[i];
1131
            else
1132
                *list_head = fast_fragment_list[i];
1133
            /* previous fragment remains unchanged */
1134
        }
1135

    
1136
        i = fast_fragment_list[i];
1137
    }
1138

    
1139
    return eob_run;
1140
}
1141

    
1142
static void reverse_dc_prediction(Vp3DecodeContext *s,
1143
                                  int first_fragment,
1144
                                  int fragment_width,
1145
                                  int fragment_height);
1146
/*
1147
 * This function unpacks all of the DCT coefficient data from the
1148
 * bitstream.
1149
 */
1150
static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
1151
{
1152
    int i;
1153
    int dc_y_table;
1154
    int dc_c_table;
1155
    int ac_y_table;
1156
    int ac_c_table;
1157
    int residual_eob_run = 0;
1158
    VLC *y_tables[64];
1159
    VLC *c_tables[64];
1160

    
1161
    /* fetch the DC table indexes */
1162
    dc_y_table = get_bits(gb, 4);
1163
    dc_c_table = get_bits(gb, 4);
1164

    
1165
    /* unpack the Y plane DC coefficients */
1166
    residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0,
1167
        1, residual_eob_run);
1168

    
1169
    /* reverse prediction of the Y-plane DC coefficients */
1170
    reverse_dc_prediction(s, 0, s->fragment_width, s->fragment_height);
1171

    
1172
    /* unpack the C plane DC coefficients */
1173
    residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
1174
        0, residual_eob_run);
1175

    
1176
    /* reverse prediction of the C-plane DC coefficients */
1177
    if (!(s->avctx->flags & CODEC_FLAG_GRAY))
1178
    {
1179
        reverse_dc_prediction(s, s->fragment_start[1],
1180
            s->fragment_width / 2, s->fragment_height / 2);
1181
        reverse_dc_prediction(s, s->fragment_start[2],
1182
            s->fragment_width / 2, s->fragment_height / 2);
1183
    }
1184

    
1185
    /* fetch the AC table indexes */
1186
    ac_y_table = get_bits(gb, 4);
1187
    ac_c_table = get_bits(gb, 4);
1188

    
1189
    /* build tables of AC VLC tables */
1190
    for (i = 1; i <= 5; i++) {
1191
        y_tables[i] = &s->ac_vlc_1[ac_y_table];
1192
        c_tables[i] = &s->ac_vlc_1[ac_c_table];
1193
    }
1194
    for (i = 6; i <= 14; i++) {
1195
        y_tables[i] = &s->ac_vlc_2[ac_y_table];
1196
        c_tables[i] = &s->ac_vlc_2[ac_c_table];
1197
    }
1198
    for (i = 15; i <= 27; i++) {
1199
        y_tables[i] = &s->ac_vlc_3[ac_y_table];
1200
        c_tables[i] = &s->ac_vlc_3[ac_c_table];
1201
    }
1202
    for (i = 28; i <= 63; i++) {
1203
        y_tables[i] = &s->ac_vlc_4[ac_y_table];
1204
        c_tables[i] = &s->ac_vlc_4[ac_c_table];
1205
    }
1206

    
1207
    /* decode all AC coefficents */
1208
    for (i = 1; i <= 63; i++) {
1209
        if (s->fragment_list_y_head != -1)
1210
            residual_eob_run = unpack_vlcs(s, gb, y_tables[i], i,
1211
                1, residual_eob_run);
1212

    
1213
        if (s->fragment_list_c_head != -1)
1214
            residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i,
1215
                0, residual_eob_run);
1216
    }
1217

    
1218
    return 0;
1219
}
1220

    
1221
/*
1222
 * This function reverses the DC prediction for each coded fragment in
1223
 * the frame. Much of this function is adapted directly from the original
1224
 * VP3 source code.
1225
 */
1226
#define COMPATIBLE_FRAME(x) \
1227
  (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type)
1228
#define DC_COEFF(u) (s->coeffs[u].index ? 0 : s->coeffs[u].coeff) //FIXME do somethin to simplify this
1229

    
1230
static void reverse_dc_prediction(Vp3DecodeContext *s,
1231
                                  int first_fragment,
1232
                                  int fragment_width,
1233
                                  int fragment_height)
1234
{
1235

    
1236
#define PUL 8
1237
#define PU 4
1238
#define PUR 2
1239
#define PL 1
1240

    
1241
    int x, y;
1242
    int i = first_fragment;
1243

    
1244
    int predicted_dc;
1245

    
1246
    /* DC values for the left, up-left, up, and up-right fragments */
1247
    int vl, vul, vu, vur;
1248

    
1249
    /* indexes for the left, up-left, up, and up-right fragments */
1250
    int l, ul, u, ur;
1251

    
1252
    /*
1253
     * The 6 fields mean:
1254
     *   0: up-left multiplier
1255
     *   1: up multiplier
1256
     *   2: up-right multiplier
1257
     *   3: left multiplier
1258
     */
1259
    static const int predictor_transform[16][4] = {
1260
        {  0,  0,  0,  0},
1261
        {  0,  0,  0,128},        // PL
1262
        {  0,  0,128,  0},        // PUR
1263
        {  0,  0, 53, 75},        // PUR|PL
1264
        {  0,128,  0,  0},        // PU
1265
        {  0, 64,  0, 64},        // PU|PL
1266
        {  0,128,  0,  0},        // PU|PUR
1267
        {  0,  0, 53, 75},        // PU|PUR|PL
1268
        {128,  0,  0,  0},        // PUL
1269
        {  0,  0,  0,128},        // PUL|PL
1270
        { 64,  0, 64,  0},        // PUL|PUR
1271
        {  0,  0, 53, 75},        // PUL|PUR|PL
1272
        {  0,128,  0,  0},        // PUL|PU
1273
       {-104,116,  0,116},        // PUL|PU|PL
1274
        { 24, 80, 24,  0},        // PUL|PU|PUR
1275
       {-104,116,  0,116}         // PUL|PU|PUR|PL
1276
    };
1277

    
1278
    /* This table shows which types of blocks can use other blocks for
1279
     * prediction. For example, INTRA is the only mode in this table to
1280
     * have a frame number of 0. That means INTRA blocks can only predict
1281
     * from other INTRA blocks. There are 2 golden frame coding types;
1282
     * blocks encoding in these modes can only predict from other blocks
1283
     * that were encoded with these 1 of these 2 modes. */
1284
    static const unsigned char compatible_frame[9] = {
1285
        1,    /* MODE_INTER_NO_MV */
1286
        0,    /* MODE_INTRA */
1287
        1,    /* MODE_INTER_PLUS_MV */
1288
        1,    /* MODE_INTER_LAST_MV */
1289
        1,    /* MODE_INTER_PRIOR_MV */
1290
        2,    /* MODE_USING_GOLDEN */
1291
        2,    /* MODE_GOLDEN_MV */
1292
        1,    /* MODE_INTER_FOUR_MV */
1293
        3     /* MODE_COPY */
1294
    };
1295
    int current_frame_type;
1296

    
1297
    /* there is a last DC predictor for each of the 3 frame types */
1298
    short last_dc[3];
1299

    
1300
    int transform = 0;
1301

    
1302
    vul = vu = vur = vl = 0;
1303
    last_dc[0] = last_dc[1] = last_dc[2] = 0;
1304

    
1305
    /* for each fragment row... */
1306
    for (y = 0; y < fragment_height; y++) {
1307

    
1308
        /* for each fragment in a row... */
1309
        for (x = 0; x < fragment_width; x++, i++) {
1310

    
1311
            /* reverse prediction if this block was coded */
1312
            if (s->all_fragments[i].coding_method != MODE_COPY) {
1313

    
1314
                current_frame_type =
1315
                    compatible_frame[s->all_fragments[i].coding_method];
1316

    
1317
                transform= 0;
1318
                if(x){
1319
                    l= i-1;
1320
                    vl = DC_COEFF(l);
1321
                    if(COMPATIBLE_FRAME(l))
1322
                        transform |= PL;
1323
                }
1324
                if(y){
1325
                    u= i-fragment_width;
1326
                    vu = DC_COEFF(u);
1327
                    if(COMPATIBLE_FRAME(u))
1328
                        transform |= PU;
1329
                    if(x){
1330
                        ul= i-fragment_width-1;
1331
                        vul = DC_COEFF(ul);
1332
                        if(COMPATIBLE_FRAME(ul))
1333
                            transform |= PUL;
1334
                    }
1335
                    if(x + 1 < fragment_width){
1336
                        ur= i-fragment_width+1;
1337
                        vur = DC_COEFF(ur);
1338
                        if(COMPATIBLE_FRAME(ur))
1339
                            transform |= PUR;
1340
                    }
1341
                }
1342

    
1343
                if (transform == 0) {
1344

    
1345
                    /* if there were no fragments to predict from, use last
1346
                     * DC saved */
1347
                    predicted_dc = last_dc[current_frame_type];
1348
                } else {
1349

    
1350
                    /* apply the appropriate predictor transform */
1351
                    predicted_dc =
1352
                        (predictor_transform[transform][0] * vul) +
1353
                        (predictor_transform[transform][1] * vu) +
1354
                        (predictor_transform[transform][2] * vur) +
1355
                        (predictor_transform[transform][3] * vl);
1356

    
1357
                    predicted_dc /= 128;
1358

    
1359
                    /* check for outranging on the [ul u l] and
1360
                     * [ul u ur l] predictors */
1361
                    if ((transform == 15) || (transform == 13)) {
1362
                        if (FFABS(predicted_dc - vu) > 128)
1363
                            predicted_dc = vu;
1364
                        else if (FFABS(predicted_dc - vl) > 128)
1365
                            predicted_dc = vl;
1366
                        else if (FFABS(predicted_dc - vul) > 128)
1367
                            predicted_dc = vul;
1368
                    }
1369
                }
1370

    
1371
                /* at long last, apply the predictor */
1372
                if(s->coeffs[i].index){
1373
                    *s->next_coeff= s->coeffs[i];
1374
                    s->coeffs[i].index=0;
1375
                    s->coeffs[i].coeff=0;
1376
                    s->coeffs[i].next= s->next_coeff++;
1377
                }
1378
                s->coeffs[i].coeff += predicted_dc;
1379
                /* save the DC */
1380
                last_dc[current_frame_type] = DC_COEFF(i);
1381
                if(DC_COEFF(i) && !(s->coeff_counts[i]&127)){
1382
                    s->coeff_counts[i]= 129;
1383
//                    s->all_fragments[i].next_coeff= s->next_coeff;
1384
                    s->coeffs[i].next= s->next_coeff;
1385
                    (s->next_coeff++)->next=NULL;
1386
                }
1387
            }
1388
        }
1389
    }
1390
}
1391

    
1392
/*
1393
 * Perform the final rendering for a particular slice of data.
1394
 * The slice number ranges from 0..(macroblock_height - 1).
1395
 */
1396
static void render_slice(Vp3DecodeContext *s, int slice)
1397
{
1398
    int x;
1399
    int16_t *dequantizer;
1400
    DECLARE_ALIGNED_16(DCTELEM, block)[64];
1401
    int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef;
1402
    int motion_halfpel_index;
1403
    uint8_t *motion_source;
1404
    int plane;
1405
    int current_macroblock_entry = slice * s->macroblock_width * 6;
1406

    
1407
    if (slice >= s->macroblock_height)
1408
        return;
1409

    
1410
    for (plane = 0; plane < 3; plane++) {
1411
        uint8_t *output_plane = s->current_frame.data    [plane];
1412
        uint8_t *  last_plane = s->   last_frame.data    [plane];
1413
        uint8_t *golden_plane = s-> golden_frame.data    [plane];
1414
        int stride            = s->current_frame.linesize[plane];
1415
        int plane_width       = s->width  >> !!plane;
1416
        int plane_height      = s->height >> !!plane;
1417
        int y =        slice *  FRAGMENT_PIXELS << !plane ;
1418
        int slice_height = y + (FRAGMENT_PIXELS << !plane);
1419
        int i = s->macroblock_fragments[current_macroblock_entry + plane + 3*!!plane];
1420

    
1421
        if (!s->flipped_image) stride = -stride;
1422

    
1423

    
1424
        if(FFABS(stride) > 2048)
1425
            return; //various tables are fixed size
1426

    
1427
        /* for each fragment row in the slice (both of them)... */
1428
        for (; y < slice_height; y += 8) {
1429

    
1430
            /* for each fragment in a row... */
1431
            for (x = 0; x < plane_width; x += 8, i++) {
1432

    
1433
                if ((i < 0) || (i >= s->fragment_count)) {
1434
                    av_log(s->avctx, AV_LOG_ERROR, "  vp3:render_slice(): bad fragment number (%d)\n", i);
1435
                    return;
1436
                }
1437

    
1438
                /* transform if this block was coded */
1439
                if ((s->all_fragments[i].coding_method != MODE_COPY) &&
1440
                    !((s->avctx->flags & CODEC_FLAG_GRAY) && plane)) {
1441

    
1442
                    if ((s->all_fragments[i].coding_method == MODE_USING_GOLDEN) ||
1443
                        (s->all_fragments[i].coding_method == MODE_GOLDEN_MV))
1444
                        motion_source= golden_plane;
1445
                    else
1446
                        motion_source= last_plane;
1447

    
1448
                    motion_source += s->all_fragments[i].first_pixel;
1449
                    motion_halfpel_index = 0;
1450

    
1451
                    /* sort out the motion vector if this fragment is coded
1452
                     * using a motion vector method */
1453
                    if ((s->all_fragments[i].coding_method > MODE_INTRA) &&
1454
                        (s->all_fragments[i].coding_method != MODE_USING_GOLDEN)) {
1455
                        int src_x, src_y;
1456
                        motion_x = s->all_fragments[i].motion_x;
1457
                        motion_y = s->all_fragments[i].motion_y;
1458
                        if(plane){
1459
                            motion_x= (motion_x>>1) | (motion_x&1);
1460
                            motion_y= (motion_y>>1) | (motion_y&1);
1461
                        }
1462

    
1463
                        src_x= (motion_x>>1) + x;
1464
                        src_y= (motion_y>>1) + y;
1465
                        if ((motion_x == 127) || (motion_y == 127))
1466
                            av_log(s->avctx, AV_LOG_ERROR, " help! got invalid motion vector! (%X, %X)\n", motion_x, motion_y);
1467

    
1468
                        motion_halfpel_index = motion_x & 0x01;
1469
                        motion_source += (motion_x >> 1);
1470

    
1471
                        motion_halfpel_index |= (motion_y & 0x01) << 1;
1472
                        motion_source += ((motion_y >> 1) * stride);
1473

    
1474
                        if(src_x<0 || src_y<0 || src_x + 9 >= plane_width || src_y + 9 >= plane_height){
1475
                            uint8_t *temp= s->edge_emu_buffer;
1476
                            if(stride<0) temp -= 9*stride;
1477
                            else temp += 9*stride;
1478

    
1479
                            ff_emulated_edge_mc(temp, motion_source, stride, 9, 9, src_x, src_y, plane_width, plane_height);
1480
                            motion_source= temp;
1481
                        }
1482
                    }
1483

    
1484

    
1485
                    /* first, take care of copying a block from either the
1486
                     * previous or the golden frame */
1487
                    if (s->all_fragments[i].coding_method != MODE_INTRA) {
1488
                        /* Note, it is possible to implement all MC cases with
1489
                           put_no_rnd_pixels_l2 which would look more like the
1490
                           VP3 source but this would be slower as
1491
                           put_no_rnd_pixels_tab is better optimzed */
1492
                        if(motion_halfpel_index != 3){
1493
                            s->dsp.put_no_rnd_pixels_tab[1][motion_halfpel_index](
1494
                                output_plane + s->all_fragments[i].first_pixel,
1495
                                motion_source, stride, 8);
1496
                        }else{
1497
                            int d= (motion_x ^ motion_y)>>31; // d is 0 if motion_x and _y have the same sign, else -1
1498
                            s->dsp.put_no_rnd_pixels_l2[1](
1499
                                output_plane + s->all_fragments[i].first_pixel,
1500
                                motion_source - d,
1501
                                motion_source + stride + 1 + d,
1502
                                stride, 8);
1503
                        }
1504
                        dequantizer = s->qmat[s->all_fragments[i].qpi][1][plane];
1505
                    }else{
1506
                        dequantizer = s->qmat[s->all_fragments[i].qpi][0][plane];
1507
                    }
1508

    
1509
                    /* dequantize the DCT coefficients */
1510
                    if(s->avctx->idct_algo==FF_IDCT_VP3){
1511
                        Coeff *coeff= s->coeffs + i;
1512
                        s->dsp.clear_block(block);
1513
                        while(coeff->next){
1514
                            block[coeff->index]= coeff->coeff * dequantizer[coeff->index];
1515
                            coeff= coeff->next;
1516
                        }
1517
                    }else{
1518
                        Coeff *coeff= s->coeffs + i;
1519
                        s->dsp.clear_block(block);
1520
                        while(coeff->next){
1521
                            block[coeff->index]= (coeff->coeff * dequantizer[coeff->index] + 2)>>2;
1522
                            coeff= coeff->next;
1523
                        }
1524
                    }
1525

    
1526
                    /* invert DCT and place (or add) in final output */
1527

    
1528
                    if (s->all_fragments[i].coding_method == MODE_INTRA) {
1529
                        if(s->avctx->idct_algo!=FF_IDCT_VP3)
1530
                            block[0] += 128<<3;
1531
                        s->dsp.idct_put(
1532
                            output_plane + s->all_fragments[i].first_pixel,
1533
                            stride,
1534
                            block);
1535
                    } else {
1536
                        s->dsp.idct_add(
1537
                            output_plane + s->all_fragments[i].first_pixel,
1538
                            stride,
1539
                            block);
1540
                    }
1541
                } else {
1542

    
1543
                    /* copy directly from the previous frame */
1544
                    s->dsp.put_pixels_tab[1][0](
1545
                        output_plane + s->all_fragments[i].first_pixel,
1546
                        last_plane + s->all_fragments[i].first_pixel,
1547
                        stride, 8);
1548

    
1549
                }
1550
            }
1551
        }
1552
    }
1553

    
1554
     /* this looks like a good place for slice dispatch... */
1555
     /* algorithm:
1556
      *   if (slice == s->macroblock_height - 1)
1557
      *     dispatch (both last slice & 2nd-to-last slice);
1558
      *   else if (slice > 0)
1559
      *     dispatch (slice - 1);
1560
      */
1561

    
1562
    emms_c();
1563
}
1564

    
1565
static void apply_loop_filter(Vp3DecodeContext *s)
1566
{
1567
    int plane;
1568
    int x, y;
1569
    int *bounding_values= s->bounding_values_array+127;
1570

    
1571
    for (plane = 0; plane < 3; plane++) {
1572
        int width           = s->fragment_width  >> !!plane;
1573
        int height          = s->fragment_height >> !!plane;
1574
        int fragment        = s->fragment_start        [plane];
1575
        int stride          = s->current_frame.linesize[plane];
1576
        uint8_t *plane_data = s->current_frame.data    [plane];
1577
        if (!s->flipped_image) stride = -stride;
1578

    
1579
        for (y = 0; y < height; y++) {
1580

    
1581
            for (x = 0; x < width; x++) {
1582
                /* This code basically just deblocks on the edges of coded blocks.
1583
                 * However, it has to be much more complicated because of the
1584
                 * braindamaged deblock ordering used in VP3/Theora. Order matters
1585
                 * because some pixels get filtered twice. */
1586
                if( s->all_fragments[fragment].coding_method != MODE_COPY )
1587
                {
1588
                    /* do not perform left edge filter for left columns frags */
1589
                    if (x > 0) {
1590
                        s->dsp.vp3_h_loop_filter(
1591
                            plane_data + s->all_fragments[fragment].first_pixel,
1592
                            stride, bounding_values);
1593
                    }
1594

    
1595
                    /* do not perform top edge filter for top row fragments */
1596
                    if (y > 0) {
1597
                        s->dsp.vp3_v_loop_filter(
1598
                            plane_data + s->all_fragments[fragment].first_pixel,
1599
                            stride, bounding_values);
1600
                    }
1601

    
1602
                    /* do not perform right edge filter for right column
1603
                     * fragments or if right fragment neighbor is also coded
1604
                     * in this frame (it will be filtered in next iteration) */
1605
                    if ((x < width - 1) &&
1606
                        (s->all_fragments[fragment + 1].coding_method == MODE_COPY)) {
1607
                        s->dsp.vp3_h_loop_filter(
1608
                            plane_data + s->all_fragments[fragment + 1].first_pixel,
1609
                            stride, bounding_values);
1610
                    }
1611

    
1612
                    /* do not perform bottom edge filter for bottom row
1613
                     * fragments or if bottom fragment neighbor is also coded
1614
                     * in this frame (it will be filtered in the next row) */
1615
                    if ((y < height - 1) &&
1616
                        (s->all_fragments[fragment + width].coding_method == MODE_COPY)) {
1617
                        s->dsp.vp3_v_loop_filter(
1618
                            plane_data + s->all_fragments[fragment + width].first_pixel,
1619
                            stride, bounding_values);
1620
                    }
1621
                }
1622

    
1623
                fragment++;
1624
            }
1625
        }
1626
    }
1627
}
1628

    
1629
/*
1630
 * This function computes the first pixel addresses for each fragment.
1631
 * This function needs to be invoked after the first frame is allocated
1632
 * so that it has access to the plane strides.
1633
 */
1634
static void vp3_calculate_pixel_addresses(Vp3DecodeContext *s)
1635
{
1636
#define Y_INITIAL(chroma_shift)  s->flipped_image ? 1  : s->fragment_height >> chroma_shift
1637
#define Y_FINISHED(chroma_shift) s->flipped_image ? y <= s->fragment_height >> chroma_shift : y > 0
1638

    
1639
    int i, x, y;
1640
    const int y_inc = s->flipped_image ? 1 : -1;
1641

    
1642
    /* figure out the first pixel addresses for each of the fragments */
1643
    /* Y plane */
1644
    i = 0;
1645
    for (y = Y_INITIAL(0); Y_FINISHED(0); y += y_inc) {
1646
        for (x = 0; x < s->fragment_width; x++) {
1647
            s->all_fragments[i++].first_pixel =
1648
                s->golden_frame.linesize[0] * y * FRAGMENT_PIXELS -
1649
                    s->golden_frame.linesize[0] +
1650
                    x * FRAGMENT_PIXELS;
1651
        }
1652
    }
1653

    
1654
    /* U plane */
1655
    i = s->fragment_start[1];
1656
    for (y = Y_INITIAL(1); Y_FINISHED(1); y += y_inc) {
1657
        for (x = 0; x < s->fragment_width / 2; x++) {
1658
            s->all_fragments[i++].first_pixel =
1659
                s->golden_frame.linesize[1] * y * FRAGMENT_PIXELS -
1660
                    s->golden_frame.linesize[1] +
1661
                    x * FRAGMENT_PIXELS;
1662
        }
1663
    }
1664

    
1665
    /* V plane */
1666
    i = s->fragment_start[2];
1667
    for (y = Y_INITIAL(1); Y_FINISHED(1); y += y_inc) {
1668
        for (x = 0; x < s->fragment_width / 2; x++) {
1669
            s->all_fragments[i++].first_pixel =
1670
                s->golden_frame.linesize[2] * y * FRAGMENT_PIXELS -
1671
                    s->golden_frame.linesize[2] +
1672
                    x * FRAGMENT_PIXELS;
1673
        }
1674
    }
1675
}
1676

    
1677
/*
1678
 * This is the ffmpeg/libavcodec API init function.
1679
 */
1680
static av_cold int vp3_decode_init(AVCodecContext *avctx)
1681
{
1682
    Vp3DecodeContext *s = avctx->priv_data;
1683
    int i, inter, plane;
1684
    int c_width;
1685
    int c_height;
1686
    int y_superblock_count;
1687
    int c_superblock_count;
1688

    
1689
    if (avctx->codec_tag == MKTAG('V','P','3','0'))
1690
        s->version = 0;
1691
    else
1692
        s->version = 1;
1693

    
1694
    s->avctx = avctx;
1695
    s->width = FFALIGN(avctx->width, 16);
1696
    s->height = FFALIGN(avctx->height, 16);
1697
    avctx->pix_fmt = PIX_FMT_YUV420P;
1698
    avctx->chroma_sample_location = AVCHROMA_LOC_CENTER;
1699
    if(avctx->idct_algo==FF_IDCT_AUTO)
1700
        avctx->idct_algo=FF_IDCT_VP3;
1701
    dsputil_init(&s->dsp, avctx);
1702

    
1703
    ff_init_scantable(s->dsp.idct_permutation, &s->scantable, ff_zigzag_direct);
1704

    
1705
    /* initialize to an impossible value which will force a recalculation
1706
     * in the first frame decode */
1707
    for (i = 0; i < 3; i++)
1708
        s->qps[i] = -1;
1709

    
1710
    s->y_superblock_width = (s->width + 31) / 32;
1711
    s->y_superblock_height = (s->height + 31) / 32;
1712
    y_superblock_count = s->y_superblock_width * s->y_superblock_height;
1713

    
1714
    /* work out the dimensions for the C planes */
1715
    c_width = s->width / 2;
1716
    c_height = s->height / 2;
1717
    s->c_superblock_width = (c_width + 31) / 32;
1718
    s->c_superblock_height = (c_height + 31) / 32;
1719
    c_superblock_count = s->c_superblock_width * s->c_superblock_height;
1720

    
1721
    s->superblock_count = y_superblock_count + (c_superblock_count * 2);
1722
    s->u_superblock_start = y_superblock_count;
1723
    s->v_superblock_start = s->u_superblock_start + c_superblock_count;
1724
    s->superblock_coding = av_malloc(s->superblock_count);
1725

    
1726
    s->macroblock_width = (s->width + 15) / 16;
1727
    s->macroblock_height = (s->height + 15) / 16;
1728
    s->macroblock_count = s->macroblock_width * s->macroblock_height;
1729

    
1730
    s->fragment_width = s->width / FRAGMENT_PIXELS;
1731
    s->fragment_height = s->height / FRAGMENT_PIXELS;
1732

    
1733
    /* fragment count covers all 8x8 blocks for all 3 planes */
1734
    s->fragment_count = s->fragment_width * s->fragment_height * 3 / 2;
1735
    s->fragment_start[1] = s->fragment_width * s->fragment_height;
1736
    s->fragment_start[2] = s->fragment_width * s->fragment_height * 5 / 4;
1737

    
1738
    s->all_fragments = av_malloc(s->fragment_count * sizeof(Vp3Fragment));
1739
    s->coeff_counts = av_malloc(s->fragment_count * sizeof(*s->coeff_counts));
1740
    s->coeffs = av_malloc(s->fragment_count * sizeof(Coeff) * 65);
1741
    s->coded_fragment_list = av_malloc(s->fragment_count * sizeof(int));
1742
    s->fast_fragment_list = av_malloc(s->fragment_count * sizeof(int));
1743
    s->pixel_addresses_initialized = 0;
1744
    if (!s->superblock_coding || !s->all_fragments || !s->coeff_counts ||
1745
        !s->coeffs || !s->coded_fragment_list || !s->fast_fragment_list) {
1746
        vp3_decode_end(avctx);
1747
        return -1;
1748
    }
1749

    
1750
    if (!s->theora_tables)
1751
    {
1752
        for (i = 0; i < 64; i++) {
1753
            s->coded_dc_scale_factor[i] = vp31_dc_scale_factor[i];
1754
            s->coded_ac_scale_factor[i] = vp31_ac_scale_factor[i];
1755
            s->base_matrix[0][i] = vp31_intra_y_dequant[i];
1756
            s->base_matrix[1][i] = vp31_intra_c_dequant[i];
1757
            s->base_matrix[2][i] = vp31_inter_dequant[i];
1758
            s->filter_limit_values[i] = vp31_filter_limit_values[i];
1759
        }
1760

    
1761
        for(inter=0; inter<2; inter++){
1762
            for(plane=0; plane<3; plane++){
1763
                s->qr_count[inter][plane]= 1;
1764
                s->qr_size [inter][plane][0]= 63;
1765
                s->qr_base [inter][plane][0]=
1766
                s->qr_base [inter][plane][1]= 2*inter + (!!plane)*!inter;
1767
            }
1768
        }
1769

    
1770
        /* init VLC tables */
1771
        for (i = 0; i < 16; i++) {
1772

    
1773
            /* DC histograms */
1774
            init_vlc(&s->dc_vlc[i], 5, 32,
1775
                &dc_bias[i][0][1], 4, 2,
1776
                &dc_bias[i][0][0], 4, 2, 0);
1777

    
1778
            /* group 1 AC histograms */
1779
            init_vlc(&s->ac_vlc_1[i], 5, 32,
1780
                &ac_bias_0[i][0][1], 4, 2,
1781
                &ac_bias_0[i][0][0], 4, 2, 0);
1782

    
1783
            /* group 2 AC histograms */
1784
            init_vlc(&s->ac_vlc_2[i], 5, 32,
1785
                &ac_bias_1[i][0][1], 4, 2,
1786
                &ac_bias_1[i][0][0], 4, 2, 0);
1787

    
1788
            /* group 3 AC histograms */
1789
            init_vlc(&s->ac_vlc_3[i], 5, 32,
1790
                &ac_bias_2[i][0][1], 4, 2,
1791
                &ac_bias_2[i][0][0], 4, 2, 0);
1792

    
1793
            /* group 4 AC histograms */
1794
            init_vlc(&s->ac_vlc_4[i], 5, 32,
1795
                &ac_bias_3[i][0][1], 4, 2,
1796
                &ac_bias_3[i][0][0], 4, 2, 0);
1797
        }
1798
    } else {
1799
        for (i = 0; i < 16; i++) {
1800

    
1801
            /* DC histograms */
1802
            if (init_vlc(&s->dc_vlc[i], 5, 32,
1803
                &s->huffman_table[i][0][1], 4, 2,
1804
                &s->huffman_table[i][0][0], 4, 2, 0) < 0)
1805
                goto vlc_fail;
1806

    
1807
            /* group 1 AC histograms */
1808
            if (init_vlc(&s->ac_vlc_1[i], 5, 32,
1809
                &s->huffman_table[i+16][0][1], 4, 2,
1810
                &s->huffman_table[i+16][0][0], 4, 2, 0) < 0)
1811
                goto vlc_fail;
1812

    
1813
            /* group 2 AC histograms */
1814
            if (init_vlc(&s->ac_vlc_2[i], 5, 32,
1815
                &s->huffman_table[i+16*2][0][1], 4, 2,
1816
                &s->huffman_table[i+16*2][0][0], 4, 2, 0) < 0)
1817
                goto vlc_fail;
1818

    
1819
            /* group 3 AC histograms */
1820
            if (init_vlc(&s->ac_vlc_3[i], 5, 32,
1821
                &s->huffman_table[i+16*3][0][1], 4, 2,
1822
                &s->huffman_table[i+16*3][0][0], 4, 2, 0) < 0)
1823
                goto vlc_fail;
1824

    
1825
            /* group 4 AC histograms */
1826
            if (init_vlc(&s->ac_vlc_4[i], 5, 32,
1827
                &s->huffman_table[i+16*4][0][1], 4, 2,
1828
                &s->huffman_table[i+16*4][0][0], 4, 2, 0) < 0)
1829
                goto vlc_fail;
1830
        }
1831
    }
1832

    
1833
    init_vlc(&s->superblock_run_length_vlc, 6, 34,
1834
        &superblock_run_length_vlc_table[0][1], 4, 2,
1835
        &superblock_run_length_vlc_table[0][0], 4, 2, 0);
1836

    
1837
    init_vlc(&s->fragment_run_length_vlc, 5, 30,
1838
        &fragment_run_length_vlc_table[0][1], 4, 2,
1839
        &fragment_run_length_vlc_table[0][0], 4, 2, 0);
1840

    
1841
    init_vlc(&s->mode_code_vlc, 3, 8,
1842
        &mode_code_vlc_table[0][1], 2, 1,
1843
        &mode_code_vlc_table[0][0], 2, 1, 0);
1844

    
1845
    init_vlc(&s->motion_vector_vlc, 6, 63,
1846
        &motion_vector_vlc_table[0][1], 2, 1,
1847
        &motion_vector_vlc_table[0][0], 2, 1, 0);
1848

    
1849
    /* work out the block mapping tables */
1850
    s->superblock_fragments = av_malloc(s->superblock_count * 16 * sizeof(int));
1851
    s->superblock_macroblocks = av_malloc(s->superblock_count * 4 * sizeof(int));
1852
    s->macroblock_fragments = av_malloc(s->macroblock_count * 6 * sizeof(int));
1853
    s->macroblock_coding = av_malloc(s->macroblock_count + 1);
1854
    if (!s->superblock_fragments || !s->superblock_macroblocks ||
1855
        !s->macroblock_fragments || !s->macroblock_coding) {
1856
        vp3_decode_end(avctx);
1857
        return -1;
1858
    }
1859
    init_block_mapping(s);
1860

    
1861
    for (i = 0; i < 3; i++) {
1862
        s->current_frame.data[i] = NULL;
1863
        s->last_frame.data[i] = NULL;
1864
        s->golden_frame.data[i] = NULL;
1865
    }
1866

    
1867
    return 0;
1868

    
1869
vlc_fail:
1870
    av_log(avctx, AV_LOG_FATAL, "Invalid huffman table\n");
1871
    return -1;
1872
}
1873

    
1874
/*
1875
 * This is the ffmpeg/libavcodec API frame decode function.
1876
 */
1877
static int vp3_decode_frame(AVCodecContext *avctx,
1878
                            void *data, int *data_size,
1879
                            AVPacket *avpkt)
1880
{
1881
    const uint8_t *buf = avpkt->data;
1882
    int buf_size = avpkt->size;
1883
    Vp3DecodeContext *s = avctx->priv_data;
1884
    GetBitContext gb;
1885
    static int counter = 0;
1886
    int i;
1887

    
1888
    init_get_bits(&gb, buf, buf_size * 8);
1889

    
1890
    if (s->theora && get_bits1(&gb))
1891
    {
1892
        av_log(avctx, AV_LOG_ERROR, "Header packet passed to frame decoder, skipping\n");
1893
        return -1;
1894
    }
1895

    
1896
    s->keyframe = !get_bits1(&gb);
1897
    if (!s->theora)
1898
        skip_bits(&gb, 1);
1899
    for (i = 0; i < 3; i++)
1900
        s->last_qps[i] = s->qps[i];
1901

    
1902
    s->nqps=0;
1903
    do{
1904
        s->qps[s->nqps++]= get_bits(&gb, 6);
1905
    } while(s->theora >= 0x030200 && s->nqps<3 && get_bits1(&gb));
1906
    for (i = s->nqps; i < 3; i++)
1907
        s->qps[i] = -1;
1908

    
1909
    if (s->avctx->debug & FF_DEBUG_PICT_INFO)
1910
        av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%d: Q index = %d\n",
1911
            s->keyframe?"key":"", counter, s->qps[0]);
1912
    counter++;
1913

    
1914
    if (s->qps[0] != s->last_qps[0])
1915
        init_loop_filter(s);
1916

    
1917
    for (i = 0; i < s->nqps; i++)
1918
        // reinit all dequantizers if the first one changed, because
1919
        // the DC of the first quantizer must be used for all matrices
1920
        if (s->qps[i] != s->last_qps[i] || s->qps[0] != s->last_qps[0])
1921
            init_dequantizer(s, i);
1922

    
1923
    if (avctx->skip_frame >= AVDISCARD_NONKEY && !s->keyframe)
1924
        return buf_size;
1925

    
1926
    if (s->keyframe) {
1927
        if (!s->theora)
1928
        {
1929
            skip_bits(&gb, 4); /* width code */
1930
            skip_bits(&gb, 4); /* height code */
1931
            if (s->version)
1932
            {
1933
                s->version = get_bits(&gb, 5);
1934
                if (counter == 1)
1935
                    av_log(s->avctx, AV_LOG_DEBUG, "VP version: %d\n", s->version);
1936
            }
1937
        }
1938
        if (s->version || s->theora)
1939
        {
1940
                if (get_bits1(&gb))
1941
                    av_log(s->avctx, AV_LOG_ERROR, "Warning, unsupported keyframe coding type?!\n");
1942
            skip_bits(&gb, 2); /* reserved? */
1943
        }
1944

    
1945
        if (s->last_frame.data[0] == s->golden_frame.data[0]) {
1946
            if (s->golden_frame.data[0])
1947
                avctx->release_buffer(avctx, &s->golden_frame);
1948
            s->last_frame= s->golden_frame; /* ensure that we catch any access to this released frame */
1949
        } else {
1950
            if (s->golden_frame.data[0])
1951
                avctx->release_buffer(avctx, &s->golden_frame);
1952
            if (s->last_frame.data[0])
1953
                avctx->release_buffer(avctx, &s->last_frame);
1954
        }
1955

    
1956
        s->golden_frame.reference = 3;
1957
        if(avctx->get_buffer(avctx, &s->golden_frame) < 0) {
1958
            av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n");
1959
            return -1;
1960
        }
1961

    
1962
        /* golden frame is also the current frame */
1963
        s->current_frame= s->golden_frame;
1964

    
1965
        /* time to figure out pixel addresses? */
1966
        if (!s->pixel_addresses_initialized)
1967
        {
1968
            vp3_calculate_pixel_addresses(s);
1969
            s->pixel_addresses_initialized = 1;
1970
        }
1971
    } else {
1972
        /* allocate a new current frame */
1973
        s->current_frame.reference = 3;
1974
        if (!s->pixel_addresses_initialized) {
1975
            av_log(s->avctx, AV_LOG_ERROR, "vp3: first frame not a keyframe\n");
1976
            return -1;
1977
        }
1978
        if(avctx->get_buffer(avctx, &s->current_frame) < 0) {
1979
            av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n");
1980
            return -1;
1981
        }
1982
    }
1983

    
1984
    s->current_frame.qscale_table= s->qscale_table; //FIXME allocate individual tables per AVFrame
1985
    s->current_frame.qstride= 0;
1986

    
1987
    init_frame(s, &gb);
1988

    
1989
    if (unpack_superblocks(s, &gb)){
1990
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n");
1991
        return -1;
1992
    }
1993
    if (unpack_modes(s, &gb)){
1994
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n");
1995
        return -1;
1996
    }
1997
    if (unpack_vectors(s, &gb)){
1998
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n");
1999
        return -1;
2000
    }
2001
    if (unpack_block_qpis(s, &gb)){
2002
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_block_qpis\n");
2003
        return -1;
2004
    }
2005
    if (unpack_dct_coeffs(s, &gb)){
2006
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n");
2007
        return -1;
2008
    }
2009

    
2010
    for (i = 0; i < s->macroblock_height; i++)
2011
        render_slice(s, i);
2012

    
2013
    apply_loop_filter(s);
2014

    
2015
    *data_size=sizeof(AVFrame);
2016
    *(AVFrame*)data= s->current_frame;
2017

    
2018
    /* release the last frame, if it is allocated and if it is not the
2019
     * golden frame */
2020
    if ((s->last_frame.data[0]) &&
2021
        (s->last_frame.data[0] != s->golden_frame.data[0]))
2022
        avctx->release_buffer(avctx, &s->last_frame);
2023

    
2024
    /* shuffle frames (last = current) */
2025
    s->last_frame= s->current_frame;
2026
    s->current_frame.data[0]= NULL; /* ensure that we catch any access to this released frame */
2027

    
2028
    return buf_size;
2029
}
2030

    
2031
/*
2032
 * This is the ffmpeg/libavcodec API module cleanup function.
2033
 */
2034
static av_cold int vp3_decode_end(AVCodecContext *avctx)
2035
{
2036
    Vp3DecodeContext *s = avctx->priv_data;
2037
    int i;
2038

    
2039
    av_free(s->superblock_coding);
2040
    av_free(s->all_fragments);
2041
    av_free(s->coeff_counts);
2042
    av_free(s->coeffs);
2043
    av_free(s->coded_fragment_list);
2044
    av_free(s->fast_fragment_list);
2045
    av_free(s->superblock_fragments);
2046
    av_free(s->superblock_macroblocks);
2047
    av_free(s->macroblock_fragments);
2048
    av_free(s->macroblock_coding);
2049

    
2050
    for (i = 0; i < 16; i++) {
2051
        free_vlc(&s->dc_vlc[i]);
2052
        free_vlc(&s->ac_vlc_1[i]);
2053
        free_vlc(&s->ac_vlc_2[i]);
2054
        free_vlc(&s->ac_vlc_3[i]);
2055
        free_vlc(&s->ac_vlc_4[i]);
2056
    }
2057

    
2058
    free_vlc(&s->superblock_run_length_vlc);
2059
    free_vlc(&s->fragment_run_length_vlc);
2060
    free_vlc(&s->mode_code_vlc);
2061
    free_vlc(&s->motion_vector_vlc);
2062

    
2063
    /* release all frames */
2064
    if (s->golden_frame.data[0] && s->golden_frame.data[0] != s->last_frame.data[0])
2065
        avctx->release_buffer(avctx, &s->golden_frame);
2066
    if (s->last_frame.data[0])
2067
        avctx->release_buffer(avctx, &s->last_frame);
2068
    /* no need to release the current_frame since it will always be pointing
2069
     * to the same frame as either the golden or last frame */
2070

    
2071
    return 0;
2072
}
2073

    
2074
static int read_huffman_tree(AVCodecContext *avctx, GetBitContext *gb)
2075
{
2076
    Vp3DecodeContext *s = avctx->priv_data;
2077

    
2078
    if (get_bits1(gb)) {
2079
        int token;
2080
        if (s->entries >= 32) { /* overflow */
2081
            av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
2082
            return -1;
2083
        }
2084
        token = get_bits(gb, 5);
2085
        //av_log(avctx, AV_LOG_DEBUG, "hti %d hbits %x token %d entry : %d size %d\n", s->hti, s->hbits, token, s->entries, s->huff_code_size);
2086
        s->huffman_table[s->hti][token][0] = s->hbits;
2087
        s->huffman_table[s->hti][token][1] = s->huff_code_size;
2088
        s->entries++;
2089
    }
2090
    else {
2091
        if (s->huff_code_size >= 32) {/* overflow */
2092
            av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
2093
            return -1;
2094
        }
2095
        s->huff_code_size++;
2096
        s->hbits <<= 1;
2097
        if (read_huffman_tree(avctx, gb))
2098
            return -1;
2099
        s->hbits |= 1;
2100
        if (read_huffman_tree(avctx, gb))
2101
            return -1;
2102
        s->hbits >>= 1;
2103
        s->huff_code_size--;
2104
    }
2105
    return 0;
2106
}
2107

    
2108
#if CONFIG_THEORA_DECODER
2109
static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb)
2110
{
2111
    Vp3DecodeContext *s = avctx->priv_data;
2112
    int visible_width, visible_height;
2113

    
2114
    s->theora = get_bits_long(gb, 24);
2115
    av_log(avctx, AV_LOG_DEBUG, "Theora bitstream version %X\n", s->theora);
2116

    
2117
    /* 3.2.0 aka alpha3 has the same frame orientation as original vp3 */
2118
    /* but previous versions have the image flipped relative to vp3 */
2119
    if (s->theora < 0x030200)
2120
    {
2121
        s->flipped_image = 1;
2122
        av_log(avctx, AV_LOG_DEBUG, "Old (<alpha3) Theora bitstream, flipped image\n");
2123
    }
2124

    
2125
    visible_width  = s->width  = get_bits(gb, 16) << 4;
2126
    visible_height = s->height = get_bits(gb, 16) << 4;
2127

    
2128
    if(avcodec_check_dimensions(avctx, s->width, s->height)){
2129
        av_log(avctx, AV_LOG_ERROR, "Invalid dimensions (%dx%d)\n", s->width, s->height);
2130
        s->width= s->height= 0;
2131
        return -1;
2132
    }
2133

    
2134
    if (s->theora >= 0x030400)
2135
    {
2136
        skip_bits(gb, 32); /* total number of superblocks in a frame */
2137
        // fixme, the next field is 36bits long
2138
        skip_bits(gb, 32); /* total number of blocks in a frame */
2139
        skip_bits(gb, 4); /* total number of blocks in a frame */
2140
        skip_bits(gb, 32); /* total number of macroblocks in a frame */
2141
    }
2142

    
2143
    if (s->theora >= 0x030200) {
2144
        visible_width  = get_bits_long(gb, 24);
2145
        visible_height = get_bits_long(gb, 24);
2146

    
2147
        skip_bits(gb, 8); /* offset x */
2148
        skip_bits(gb, 8); /* offset y */
2149
    }
2150

    
2151
    skip_bits(gb, 32); /* fps numerator */
2152
    skip_bits(gb, 32); /* fps denumerator */
2153
    skip_bits(gb, 24); /* aspect numerator */
2154
    skip_bits(gb, 24); /* aspect denumerator */
2155

    
2156
    if (s->theora < 0x030200)
2157
        skip_bits(gb, 5); /* keyframe frequency force */
2158
    skip_bits(gb, 8); /* colorspace */
2159
    if (s->theora >= 0x030400)
2160
        skip_bits(gb, 2); /* pixel format: 420,res,422,444 */
2161
    skip_bits(gb, 24); /* bitrate */
2162

    
2163
    skip_bits(gb, 6); /* quality hint */
2164

    
2165
    if (s->theora >= 0x030200)
2166
    {
2167
        skip_bits(gb, 5); /* keyframe frequency force */
2168

    
2169
        if (s->theora < 0x030400)
2170
            skip_bits(gb, 5); /* spare bits */
2171
    }
2172

    
2173
//    align_get_bits(gb);
2174

    
2175
    if (   visible_width  <= s->width  && visible_width  > s->width-16
2176
        && visible_height <= s->height && visible_height > s->height-16)
2177
        avcodec_set_dimensions(avctx, visible_width, visible_height);
2178
    else
2179
        avcodec_set_dimensions(avctx, s->width, s->height);
2180

    
2181
    return 0;
2182
}
2183

    
2184
static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb)
2185
{
2186
    Vp3DecodeContext *s = avctx->priv_data;
2187
    int i, n, matrices, inter, plane;
2188

    
2189
    if (s->theora >= 0x030200) {
2190
        n = get_bits(gb, 3);
2191
        /* loop filter limit values table */
2192
        for (i = 0; i < 64; i++) {
2193
            s->filter_limit_values[i] = get_bits(gb, n);
2194
            if (s->filter_limit_values[i] > 127) {
2195
                av_log(avctx, AV_LOG_ERROR, "filter limit value too large (%i > 127), clamping\n", s->filter_limit_values[i]);
2196
                s->filter_limit_values[i] = 127;
2197
            }
2198
        }
2199
    }
2200

    
2201
    if (s->theora >= 0x030200)
2202
        n = get_bits(gb, 4) + 1;
2203
    else
2204
        n = 16;
2205
    /* quality threshold table */
2206
    for (i = 0; i < 64; i++)
2207
        s->coded_ac_scale_factor[i] = get_bits(gb, n);
2208

    
2209
    if (s->theora >= 0x030200)
2210
        n = get_bits(gb, 4) + 1;
2211
    else
2212
        n = 16;
2213
    /* dc scale factor table */
2214
    for (i = 0; i < 64; i++)
2215
        s->coded_dc_scale_factor[i] = get_bits(gb, n);
2216

    
2217
    if (s->theora >= 0x030200)
2218
        matrices = get_bits(gb, 9) + 1;
2219
    else
2220
        matrices = 3;
2221

    
2222
    if(matrices > 384){
2223
        av_log(avctx, AV_LOG_ERROR, "invalid number of base matrixes\n");
2224
        return -1;
2225
    }
2226

    
2227
    for(n=0; n<matrices; n++){
2228
        for (i = 0; i < 64; i++)
2229
            s->base_matrix[n][i]= get_bits(gb, 8);
2230
    }
2231

    
2232
    for (inter = 0; inter <= 1; inter++) {
2233
        for (plane = 0; plane <= 2; plane++) {
2234
            int newqr= 1;
2235
            if (inter || plane > 0)
2236
                newqr = get_bits1(gb);
2237
            if (!newqr) {
2238
                int qtj, plj;
2239
                if(inter && get_bits1(gb)){
2240
                    qtj = 0;
2241
                    plj = plane;
2242
                }else{
2243
                    qtj= (3*inter + plane - 1) / 3;
2244
                    plj= (plane + 2) % 3;
2245
                }
2246
                s->qr_count[inter][plane]= s->qr_count[qtj][plj];
2247
                memcpy(s->qr_size[inter][plane], s->qr_size[qtj][plj], sizeof(s->qr_size[0][0]));
2248
                memcpy(s->qr_base[inter][plane], s->qr_base[qtj][plj], sizeof(s->qr_base[0][0]));
2249
            } else {
2250
                int qri= 0;
2251
                int qi = 0;
2252

    
2253
                for(;;){
2254
                    i= get_bits(gb, av_log2(matrices-1)+1);
2255
                    if(i>= matrices){
2256
                        av_log(avctx, AV_LOG_ERROR, "invalid base matrix index\n");
2257
                        return -1;
2258
                    }
2259
                    s->qr_base[inter][plane][qri]= i;
2260
                    if(qi >= 63)
2261
                        break;
2262
                    i = get_bits(gb, av_log2(63-qi)+1) + 1;
2263
                    s->qr_size[inter][plane][qri++]= i;
2264
                    qi += i;
2265
                }
2266

    
2267
                if (qi > 63) {
2268
                    av_log(avctx, AV_LOG_ERROR, "invalid qi %d > 63\n", qi);
2269
                    return -1;
2270
                }
2271
                s->qr_count[inter][plane]= qri;
2272
            }
2273
        }
2274
    }
2275

    
2276
    /* Huffman tables */
2277
    for (s->hti = 0; s->hti < 80; s->hti++) {
2278
        s->entries = 0;
2279
        s->huff_code_size = 1;
2280
        if (!get_bits1(gb)) {
2281
            s->hbits = 0;
2282
            if(read_huffman_tree(avctx, gb))
2283
                return -1;
2284
            s->hbits = 1;
2285
            if(read_huffman_tree(avctx, gb))
2286
                return -1;
2287
        }
2288
    }
2289

    
2290
    s->theora_tables = 1;
2291

    
2292
    return 0;
2293
}
2294

    
2295
static av_cold int theora_decode_init(AVCodecContext *avctx)
2296
{
2297
    Vp3DecodeContext *s = avctx->priv_data;
2298
    GetBitContext gb;
2299
    int ptype;
2300
    uint8_t *header_start[3];
2301
    int header_len[3];
2302
    int i;
2303

    
2304
    s->theora = 1;
2305

    
2306
    if (!avctx->extradata_size)
2307
    {
2308
        av_log(avctx, AV_LOG_ERROR, "Missing extradata!\n");
2309
        return -1;
2310
    }
2311

    
2312
    if (ff_split_xiph_headers(avctx->extradata, avctx->extradata_size,
2313
                              42, header_start, header_len) < 0) {
2314
        av_log(avctx, AV_LOG_ERROR, "Corrupt extradata\n");
2315
        return -1;
2316
    }
2317

    
2318
  for(i=0;i<3;i++) {
2319
    init_get_bits(&gb, header_start[i], header_len[i] * 8);
2320

    
2321
    ptype = get_bits(&gb, 8);
2322

    
2323
     if (!(ptype & 0x80))
2324
     {
2325
        av_log(avctx, AV_LOG_ERROR, "Invalid extradata!\n");
2326
//        return -1;
2327
     }
2328

    
2329
    // FIXME: Check for this as well.
2330
    skip_bits_long(&gb, 6*8); /* "theora" */
2331

    
2332
    switch(ptype)
2333
    {
2334
        case 0x80:
2335
            theora_decode_header(avctx, &gb);
2336
                break;
2337
        case 0x81:
2338
// FIXME: is this needed? it breaks sometimes
2339
//            theora_decode_comments(avctx, gb);
2340
            break;
2341
        case 0x82:
2342
            if (theora_decode_tables(avctx, &gb))
2343
                return -1;
2344
            break;
2345
        default:
2346
            av_log(avctx, AV_LOG_ERROR, "Unknown Theora config packet: %d\n", ptype&~0x80);
2347
            break;
2348
    }
2349
    if(ptype != 0x81 && 8*header_len[i] != get_bits_count(&gb))
2350
        av_log(avctx, AV_LOG_WARNING, "%d bits left in packet %X\n", 8*header_len[i] - get_bits_count(&gb), ptype);
2351
    if (s->theora < 0x030200)
2352
        break;
2353
  }
2354

    
2355
    return vp3_decode_init(avctx);
2356
}
2357

    
2358
AVCodec theora_decoder = {
2359
    "theora",
2360
    CODEC_TYPE_VIDEO,
2361
    CODEC_ID_THEORA,
2362
    sizeof(Vp3DecodeContext),
2363
    theora_decode_init,
2364
    NULL,
2365
    vp3_decode_end,
2366
    vp3_decode_frame,
2367
    CODEC_CAP_DR1,
2368
    NULL,
2369
    .long_name = NULL_IF_CONFIG_SMALL("Theora"),
2370
};
2371
#endif
2372

    
2373
AVCodec vp3_decoder = {
2374
    "vp3",
2375
    CODEC_TYPE_VIDEO,
2376
    CODEC_ID_VP3,
2377
    sizeof(Vp3DecodeContext),
2378
    vp3_decode_init,
2379
    NULL,
2380
    vp3_decode_end,
2381
    vp3_decode_frame,
2382
    CODEC_CAP_DR1,
2383
    NULL,
2384
    .long_name = NULL_IF_CONFIG_SMALL("On2 VP3"),
2385
};