ffmpeg / libavcodec / apedec.c @ 4689ac41
History | View | Annotate | Download (27 KB)
1 |
/*
|
---|---|
2 |
* Monkey's Audio lossless audio decoder
|
3 |
* Copyright (c) 2007 Benjamin Zores <ben@geexbox.org>
|
4 |
* based upon libdemac from Dave Chapman.
|
5 |
*
|
6 |
* This file is part of FFmpeg.
|
7 |
*
|
8 |
* FFmpeg is free software; you can redistribute it and/or
|
9 |
* modify it under the terms of the GNU Lesser General Public
|
10 |
* License as published by the Free Software Foundation; either
|
11 |
* version 2.1 of the License, or (at your option) any later version.
|
12 |
*
|
13 |
* FFmpeg is distributed in the hope that it will be useful,
|
14 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
15 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
16 |
* Lesser General Public License for more details.
|
17 |
*
|
18 |
* You should have received a copy of the GNU Lesser General Public
|
19 |
* License along with FFmpeg; if not, write to the Free Software
|
20 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
21 |
*/
|
22 |
|
23 |
#define ALT_BITSTREAM_READER_LE
|
24 |
#include "avcodec.h" |
25 |
#include "dsputil.h" |
26 |
#include "get_bits.h" |
27 |
#include "bytestream.h" |
28 |
|
29 |
/**
|
30 |
* @file libavcodec/apedec.c
|
31 |
* Monkey's Audio lossless audio decoder
|
32 |
*/
|
33 |
|
34 |
#define BLOCKS_PER_LOOP 4608 |
35 |
#define MAX_CHANNELS 2 |
36 |
#define MAX_BYTESPERSAMPLE 3 |
37 |
|
38 |
#define APE_FRAMECODE_MONO_SILENCE 1 |
39 |
#define APE_FRAMECODE_STEREO_SILENCE 3 |
40 |
#define APE_FRAMECODE_PSEUDO_STEREO 4 |
41 |
|
42 |
#define HISTORY_SIZE 512 |
43 |
#define PREDICTOR_ORDER 8 |
44 |
/** Total size of all predictor histories */
|
45 |
#define PREDICTOR_SIZE 50 |
46 |
|
47 |
#define YDELAYA (18 + PREDICTOR_ORDER*4) |
48 |
#define YDELAYB (18 + PREDICTOR_ORDER*3) |
49 |
#define XDELAYA (18 + PREDICTOR_ORDER*2) |
50 |
#define XDELAYB (18 + PREDICTOR_ORDER) |
51 |
|
52 |
#define YADAPTCOEFFSA 18 |
53 |
#define XADAPTCOEFFSA 14 |
54 |
#define YADAPTCOEFFSB 10 |
55 |
#define XADAPTCOEFFSB 5 |
56 |
|
57 |
/**
|
58 |
* Possible compression levels
|
59 |
* @{
|
60 |
*/
|
61 |
enum APECompressionLevel {
|
62 |
COMPRESSION_LEVEL_FAST = 1000,
|
63 |
COMPRESSION_LEVEL_NORMAL = 2000,
|
64 |
COMPRESSION_LEVEL_HIGH = 3000,
|
65 |
COMPRESSION_LEVEL_EXTRA_HIGH = 4000,
|
66 |
COMPRESSION_LEVEL_INSANE = 5000
|
67 |
}; |
68 |
/** @} */
|
69 |
|
70 |
#define APE_FILTER_LEVELS 3 |
71 |
|
72 |
/** Filter orders depending on compression level */
|
73 |
static const uint16_t ape_filter_orders[5][APE_FILTER_LEVELS] = { |
74 |
{ 0, 0, 0 }, |
75 |
{ 16, 0, 0 }, |
76 |
{ 64, 0, 0 }, |
77 |
{ 32, 256, 0 }, |
78 |
{ 16, 256, 1280 } |
79 |
}; |
80 |
|
81 |
/** Filter fraction bits depending on compression level */
|
82 |
static const uint8_t ape_filter_fracbits[5][APE_FILTER_LEVELS] = { |
83 |
{ 0, 0, 0 }, |
84 |
{ 11, 0, 0 }, |
85 |
{ 11, 0, 0 }, |
86 |
{ 10, 13, 0 }, |
87 |
{ 11, 13, 15 } |
88 |
}; |
89 |
|
90 |
|
91 |
/** Filters applied to the decoded data */
|
92 |
typedef struct APEFilter { |
93 |
int16_t *coeffs; ///< actual coefficients used in filtering
|
94 |
int16_t *adaptcoeffs; ///< adaptive filter coefficients used for correcting of actual filter coefficients
|
95 |
int16_t *historybuffer; ///< filter memory
|
96 |
int16_t *delay; ///< filtered values
|
97 |
|
98 |
int avg;
|
99 |
} APEFilter; |
100 |
|
101 |
typedef struct APERice { |
102 |
uint32_t k; |
103 |
uint32_t ksum; |
104 |
} APERice; |
105 |
|
106 |
typedef struct APERangecoder { |
107 |
uint32_t low; ///< low end of interval
|
108 |
uint32_t range; ///< length of interval
|
109 |
uint32_t help; ///< bytes_to_follow resp. intermediate value
|
110 |
unsigned int buffer; ///< buffer for input/output |
111 |
} APERangecoder; |
112 |
|
113 |
/** Filter histories */
|
114 |
typedef struct APEPredictor { |
115 |
int32_t *buf; |
116 |
|
117 |
int32_t lastA[2];
|
118 |
|
119 |
int32_t filterA[2];
|
120 |
int32_t filterB[2];
|
121 |
|
122 |
int32_t coeffsA[2][4]; ///< adaption coefficients |
123 |
int32_t coeffsB[2][5]; ///< adaption coefficients |
124 |
int32_t historybuffer[HISTORY_SIZE + PREDICTOR_SIZE]; |
125 |
} APEPredictor; |
126 |
|
127 |
/** Decoder context */
|
128 |
typedef struct APEContext { |
129 |
AVCodecContext *avctx; |
130 |
DSPContext dsp; |
131 |
int channels;
|
132 |
int samples; ///< samples left to decode in current frame |
133 |
|
134 |
int fileversion; ///< codec version, very important in decoding process |
135 |
int compression_level; ///< compression levels |
136 |
int fset; ///< which filter set to use (calculated from compression level) |
137 |
int flags; ///< global decoder flags |
138 |
|
139 |
uint32_t CRC; ///< frame CRC
|
140 |
int frameflags; ///< frame flags |
141 |
int currentframeblocks; ///< samples (per channel) in current frame |
142 |
int blocksdecoded; ///< count of decoded samples in current frame |
143 |
APEPredictor predictor; ///< predictor used for final reconstruction
|
144 |
|
145 |
int32_t decoded0[BLOCKS_PER_LOOP]; ///< decoded data for the first channel
|
146 |
int32_t decoded1[BLOCKS_PER_LOOP]; ///< decoded data for the second channel
|
147 |
|
148 |
int16_t* filterbuf[APE_FILTER_LEVELS]; ///< filter memory
|
149 |
|
150 |
APERangecoder rc; ///< rangecoder used to decode actual values
|
151 |
APERice riceX; ///< rice code parameters for the second channel
|
152 |
APERice riceY; ///< rice code parameters for the first channel
|
153 |
APEFilter filters[APE_FILTER_LEVELS][2]; ///< filters used for reconstruction |
154 |
|
155 |
uint8_t *data; ///< current frame data
|
156 |
uint8_t *data_end; ///< frame data end
|
157 |
const uint8_t *ptr; ///< current position in frame data |
158 |
const uint8_t *last_ptr; ///< position where last 4608-sample block ended |
159 |
|
160 |
int error;
|
161 |
} APEContext; |
162 |
|
163 |
// TODO: dsputilize
|
164 |
|
165 |
static av_cold int ape_decode_init(AVCodecContext * avctx) |
166 |
{ |
167 |
APEContext *s = avctx->priv_data; |
168 |
int i;
|
169 |
|
170 |
if (avctx->extradata_size != 6) { |
171 |
av_log(avctx, AV_LOG_ERROR, "Incorrect extradata\n");
|
172 |
return -1; |
173 |
} |
174 |
if (avctx->bits_per_coded_sample != 16) { |
175 |
av_log(avctx, AV_LOG_ERROR, "Only 16-bit samples are supported\n");
|
176 |
return -1; |
177 |
} |
178 |
if (avctx->channels > 2) { |
179 |
av_log(avctx, AV_LOG_ERROR, "Only mono and stereo is supported\n");
|
180 |
return -1; |
181 |
} |
182 |
s->avctx = avctx; |
183 |
s->channels = avctx->channels; |
184 |
s->fileversion = AV_RL16(avctx->extradata); |
185 |
s->compression_level = AV_RL16(avctx->extradata + 2);
|
186 |
s->flags = AV_RL16(avctx->extradata + 4);
|
187 |
|
188 |
av_log(avctx, AV_LOG_DEBUG, "Compression Level: %d - Flags: %d\n", s->compression_level, s->flags);
|
189 |
if (s->compression_level % 1000 || s->compression_level > COMPRESSION_LEVEL_INSANE) { |
190 |
av_log(avctx, AV_LOG_ERROR, "Incorrect compression level %d\n", s->compression_level);
|
191 |
return -1; |
192 |
} |
193 |
s->fset = s->compression_level / 1000 - 1; |
194 |
for (i = 0; i < APE_FILTER_LEVELS; i++) { |
195 |
if (!ape_filter_orders[s->fset][i])
|
196 |
break;
|
197 |
s->filterbuf[i] = av_malloc((ape_filter_orders[s->fset][i] * 3 + HISTORY_SIZE) * 4); |
198 |
} |
199 |
|
200 |
dsputil_init(&s->dsp, avctx); |
201 |
avctx->sample_fmt = SAMPLE_FMT_S16; |
202 |
avctx->channel_layout = (avctx->channels==2) ? CH_LAYOUT_STEREO : CH_LAYOUT_MONO;
|
203 |
return 0; |
204 |
} |
205 |
|
206 |
static av_cold int ape_decode_close(AVCodecContext * avctx) |
207 |
{ |
208 |
APEContext *s = avctx->priv_data; |
209 |
int i;
|
210 |
|
211 |
for (i = 0; i < APE_FILTER_LEVELS; i++) |
212 |
av_freep(&s->filterbuf[i]); |
213 |
|
214 |
av_freep(&s->data); |
215 |
return 0; |
216 |
} |
217 |
|
218 |
/**
|
219 |
* @defgroup rangecoder APE range decoder
|
220 |
* @{
|
221 |
*/
|
222 |
|
223 |
#define CODE_BITS 32 |
224 |
#define TOP_VALUE ((unsigned int)1 << (CODE_BITS-1)) |
225 |
#define SHIFT_BITS (CODE_BITS - 9) |
226 |
#define EXTRA_BITS ((CODE_BITS-2) % 8 + 1) |
227 |
#define BOTTOM_VALUE (TOP_VALUE >> 8) |
228 |
|
229 |
/** Start the decoder */
|
230 |
static inline void range_start_decoding(APEContext * ctx) |
231 |
{ |
232 |
ctx->rc.buffer = bytestream_get_byte(&ctx->ptr); |
233 |
ctx->rc.low = ctx->rc.buffer >> (8 - EXTRA_BITS);
|
234 |
ctx->rc.range = (uint32_t) 1 << EXTRA_BITS;
|
235 |
} |
236 |
|
237 |
/** Perform normalization */
|
238 |
static inline void range_dec_normalize(APEContext * ctx) |
239 |
{ |
240 |
while (ctx->rc.range <= BOTTOM_VALUE) {
|
241 |
ctx->rc.buffer <<= 8;
|
242 |
if(ctx->ptr < ctx->data_end)
|
243 |
ctx->rc.buffer += *ctx->ptr; |
244 |
ctx->ptr++; |
245 |
ctx->rc.low = (ctx->rc.low << 8) | ((ctx->rc.buffer >> 1) & 0xFF); |
246 |
ctx->rc.range <<= 8;
|
247 |
} |
248 |
} |
249 |
|
250 |
/**
|
251 |
* Calculate culmulative frequency for next symbol. Does NO update!
|
252 |
* @param ctx decoder context
|
253 |
* @param tot_f is the total frequency or (code_value)1<<shift
|
254 |
* @return the culmulative frequency
|
255 |
*/
|
256 |
static inline int range_decode_culfreq(APEContext * ctx, int tot_f) |
257 |
{ |
258 |
range_dec_normalize(ctx); |
259 |
ctx->rc.help = ctx->rc.range / tot_f; |
260 |
return ctx->rc.low / ctx->rc.help;
|
261 |
} |
262 |
|
263 |
/**
|
264 |
* Decode value with given size in bits
|
265 |
* @param ctx decoder context
|
266 |
* @param shift number of bits to decode
|
267 |
*/
|
268 |
static inline int range_decode_culshift(APEContext * ctx, int shift) |
269 |
{ |
270 |
range_dec_normalize(ctx); |
271 |
ctx->rc.help = ctx->rc.range >> shift; |
272 |
return ctx->rc.low / ctx->rc.help;
|
273 |
} |
274 |
|
275 |
|
276 |
/**
|
277 |
* Update decoding state
|
278 |
* @param ctx decoder context
|
279 |
* @param sy_f the interval length (frequency of the symbol)
|
280 |
* @param lt_f the lower end (frequency sum of < symbols)
|
281 |
*/
|
282 |
static inline void range_decode_update(APEContext * ctx, int sy_f, int lt_f) |
283 |
{ |
284 |
ctx->rc.low -= ctx->rc.help * lt_f; |
285 |
ctx->rc.range = ctx->rc.help * sy_f; |
286 |
} |
287 |
|
288 |
/** Decode n bits (n <= 16) without modelling */
|
289 |
static inline int range_decode_bits(APEContext * ctx, int n) |
290 |
{ |
291 |
int sym = range_decode_culshift(ctx, n);
|
292 |
range_decode_update(ctx, 1, sym);
|
293 |
return sym;
|
294 |
} |
295 |
|
296 |
|
297 |
#define MODEL_ELEMENTS 64 |
298 |
|
299 |
/**
|
300 |
* Fixed probabilities for symbols in Monkey Audio version 3.97
|
301 |
*/
|
302 |
static const uint16_t counts_3970[22] = { |
303 |
0, 14824, 28224, 39348, 47855, 53994, 58171, 60926, |
304 |
62682, 63786, 64463, 64878, 65126, 65276, 65365, 65419, |
305 |
65450, 65469, 65480, 65487, 65491, 65493, |
306 |
}; |
307 |
|
308 |
/**
|
309 |
* Probability ranges for symbols in Monkey Audio version 3.97
|
310 |
*/
|
311 |
static const uint16_t counts_diff_3970[21] = { |
312 |
14824, 13400, 11124, 8507, 6139, 4177, 2755, 1756, |
313 |
1104, 677, 415, 248, 150, 89, 54, 31, |
314 |
19, 11, 7, 4, 2, |
315 |
}; |
316 |
|
317 |
/**
|
318 |
* Fixed probabilities for symbols in Monkey Audio version 3.98
|
319 |
*/
|
320 |
static const uint16_t counts_3980[22] = { |
321 |
0, 19578, 36160, 48417, 56323, 60899, 63265, 64435, |
322 |
64971, 65232, 65351, 65416, 65447, 65466, 65476, 65482, |
323 |
65485, 65488, 65490, 65491, 65492, 65493, |
324 |
}; |
325 |
|
326 |
/**
|
327 |
* Probability ranges for symbols in Monkey Audio version 3.98
|
328 |
*/
|
329 |
static const uint16_t counts_diff_3980[21] = { |
330 |
19578, 16582, 12257, 7906, 4576, 2366, 1170, 536, |
331 |
261, 119, 65, 31, 19, 10, 6, 3, |
332 |
3, 2, 1, 1, 1, |
333 |
}; |
334 |
|
335 |
/**
|
336 |
* Decode symbol
|
337 |
* @param ctx decoder context
|
338 |
* @param counts probability range start position
|
339 |
* @param counts_diff probability range widths
|
340 |
*/
|
341 |
static inline int range_get_symbol(APEContext * ctx, |
342 |
const uint16_t counts[],
|
343 |
const uint16_t counts_diff[])
|
344 |
{ |
345 |
int symbol, cf;
|
346 |
|
347 |
cf = range_decode_culshift(ctx, 16);
|
348 |
|
349 |
if(cf > 65492){ |
350 |
symbol= cf - 65535 + 63; |
351 |
range_decode_update(ctx, 1, cf);
|
352 |
if(cf > 65535) |
353 |
ctx->error=1;
|
354 |
return symbol;
|
355 |
} |
356 |
/* figure out the symbol inefficiently; a binary search would be much better */
|
357 |
for (symbol = 0; counts[symbol + 1] <= cf; symbol++); |
358 |
|
359 |
range_decode_update(ctx, counts_diff[symbol], counts[symbol]); |
360 |
|
361 |
return symbol;
|
362 |
} |
363 |
/** @} */ // group rangecoder |
364 |
|
365 |
static inline void update_rice(APERice *rice, int x) |
366 |
{ |
367 |
int lim = rice->k ? (1 << (rice->k + 4)) : 0; |
368 |
rice->ksum += ((x + 1) / 2) - ((rice->ksum + 16) >> 5); |
369 |
|
370 |
if (rice->ksum < lim)
|
371 |
rice->k--; |
372 |
else if (rice->ksum >= (1 << (rice->k + 5))) |
373 |
rice->k++; |
374 |
} |
375 |
|
376 |
static inline int ape_decode_value(APEContext * ctx, APERice *rice) |
377 |
{ |
378 |
int x, overflow;
|
379 |
|
380 |
if (ctx->fileversion < 3990) { |
381 |
int tmpk;
|
382 |
|
383 |
overflow = range_get_symbol(ctx, counts_3970, counts_diff_3970); |
384 |
|
385 |
if (overflow == (MODEL_ELEMENTS - 1)) { |
386 |
tmpk = range_decode_bits(ctx, 5);
|
387 |
overflow = 0;
|
388 |
} else
|
389 |
tmpk = (rice->k < 1) ? 0 : rice->k - 1; |
390 |
|
391 |
if (tmpk <= 16) |
392 |
x = range_decode_bits(ctx, tmpk); |
393 |
else {
|
394 |
x = range_decode_bits(ctx, 16);
|
395 |
x |= (range_decode_bits(ctx, tmpk - 16) << 16); |
396 |
} |
397 |
x += overflow << tmpk; |
398 |
} else {
|
399 |
int base, pivot;
|
400 |
|
401 |
pivot = rice->ksum >> 5;
|
402 |
if (pivot == 0) |
403 |
pivot = 1;
|
404 |
|
405 |
overflow = range_get_symbol(ctx, counts_3980, counts_diff_3980); |
406 |
|
407 |
if (overflow == (MODEL_ELEMENTS - 1)) { |
408 |
overflow = range_decode_bits(ctx, 16) << 16; |
409 |
overflow |= range_decode_bits(ctx, 16);
|
410 |
} |
411 |
|
412 |
if (pivot < 0x10000) { |
413 |
base = range_decode_culfreq(ctx, pivot); |
414 |
range_decode_update(ctx, 1, base);
|
415 |
} else {
|
416 |
int base_hi = pivot, base_lo;
|
417 |
int bbits = 0; |
418 |
|
419 |
while (base_hi & ~0xFFFF) { |
420 |
base_hi >>= 1;
|
421 |
bbits++; |
422 |
} |
423 |
base_hi = range_decode_culfreq(ctx, base_hi + 1);
|
424 |
range_decode_update(ctx, 1, base_hi);
|
425 |
base_lo = range_decode_culfreq(ctx, 1 << bbits);
|
426 |
range_decode_update(ctx, 1, base_lo);
|
427 |
|
428 |
base = (base_hi << bbits) + base_lo; |
429 |
} |
430 |
|
431 |
x = base + overflow * pivot; |
432 |
} |
433 |
|
434 |
update_rice(rice, x); |
435 |
|
436 |
/* Convert to signed */
|
437 |
if (x & 1) |
438 |
return (x >> 1) + 1; |
439 |
else
|
440 |
return -(x >> 1); |
441 |
} |
442 |
|
443 |
static void entropy_decode(APEContext * ctx, int blockstodecode, int stereo) |
444 |
{ |
445 |
int32_t *decoded0 = ctx->decoded0; |
446 |
int32_t *decoded1 = ctx->decoded1; |
447 |
|
448 |
ctx->blocksdecoded = blockstodecode; |
449 |
|
450 |
if (ctx->frameflags & APE_FRAMECODE_STEREO_SILENCE) {
|
451 |
/* We are pure silence, just memset the output buffer. */
|
452 |
memset(decoded0, 0, blockstodecode * sizeof(int32_t)); |
453 |
memset(decoded1, 0, blockstodecode * sizeof(int32_t)); |
454 |
} else {
|
455 |
while (blockstodecode--) {
|
456 |
*decoded0++ = ape_decode_value(ctx, &ctx->riceY); |
457 |
if (stereo)
|
458 |
*decoded1++ = ape_decode_value(ctx, &ctx->riceX); |
459 |
} |
460 |
} |
461 |
|
462 |
if (ctx->blocksdecoded == ctx->currentframeblocks)
|
463 |
range_dec_normalize(ctx); /* normalize to use up all bytes */
|
464 |
} |
465 |
|
466 |
static void init_entropy_decoder(APEContext * ctx) |
467 |
{ |
468 |
/* Read the CRC */
|
469 |
ctx->CRC = bytestream_get_be32(&ctx->ptr); |
470 |
|
471 |
/* Read the frame flags if they exist */
|
472 |
ctx->frameflags = 0;
|
473 |
if ((ctx->fileversion > 3820) && (ctx->CRC & 0x80000000)) { |
474 |
ctx->CRC &= ~0x80000000;
|
475 |
|
476 |
ctx->frameflags = bytestream_get_be32(&ctx->ptr); |
477 |
} |
478 |
|
479 |
/* Keep a count of the blocks decoded in this frame */
|
480 |
ctx->blocksdecoded = 0;
|
481 |
|
482 |
/* Initialize the rice structs */
|
483 |
ctx->riceX.k = 10;
|
484 |
ctx->riceX.ksum = (1 << ctx->riceX.k) * 16; |
485 |
ctx->riceY.k = 10;
|
486 |
ctx->riceY.ksum = (1 << ctx->riceY.k) * 16; |
487 |
|
488 |
/* The first 8 bits of input are ignored. */
|
489 |
ctx->ptr++; |
490 |
|
491 |
range_start_decoding(ctx); |
492 |
} |
493 |
|
494 |
static const int32_t initial_coeffs[4] = { |
495 |
360, 317, -109, 98 |
496 |
}; |
497 |
|
498 |
static void init_predictor_decoder(APEContext * ctx) |
499 |
{ |
500 |
APEPredictor *p = &ctx->predictor; |
501 |
|
502 |
/* Zero the history buffers */
|
503 |
memset(p->historybuffer, 0, PREDICTOR_SIZE * sizeof(int32_t)); |
504 |
p->buf = p->historybuffer; |
505 |
|
506 |
/* Initialize and zero the coefficients */
|
507 |
memcpy(p->coeffsA[0], initial_coeffs, sizeof(initial_coeffs)); |
508 |
memcpy(p->coeffsA[1], initial_coeffs, sizeof(initial_coeffs)); |
509 |
memset(p->coeffsB, 0, sizeof(p->coeffsB)); |
510 |
|
511 |
p->filterA[0] = p->filterA[1] = 0; |
512 |
p->filterB[0] = p->filterB[1] = 0; |
513 |
p->lastA[0] = p->lastA[1] = 0; |
514 |
} |
515 |
|
516 |
/** Get inverse sign of integer (-1 for positive, 1 for negative and 0 for zero) */
|
517 |
static inline int APESIGN(int32_t x) { |
518 |
return (x < 0) - (x > 0); |
519 |
} |
520 |
|
521 |
static av_always_inline int predictor_update_filter(APEPredictor *p, const int decoded, const int filter, const int delayA, const int delayB, const int adaptA, const int adaptB) |
522 |
{ |
523 |
int32_t predictionA, predictionB, sign; |
524 |
|
525 |
p->buf[delayA] = p->lastA[filter]; |
526 |
p->buf[adaptA] = APESIGN(p->buf[delayA]); |
527 |
p->buf[delayA - 1] = p->buf[delayA] - p->buf[delayA - 1]; |
528 |
p->buf[adaptA - 1] = APESIGN(p->buf[delayA - 1]); |
529 |
|
530 |
predictionA = p->buf[delayA ] * p->coeffsA[filter][0] +
|
531 |
p->buf[delayA - 1] * p->coeffsA[filter][1] + |
532 |
p->buf[delayA - 2] * p->coeffsA[filter][2] + |
533 |
p->buf[delayA - 3] * p->coeffsA[filter][3]; |
534 |
|
535 |
/* Apply a scaled first-order filter compression */
|
536 |
p->buf[delayB] = p->filterA[filter ^ 1] - ((p->filterB[filter] * 31) >> 5); |
537 |
p->buf[adaptB] = APESIGN(p->buf[delayB]); |
538 |
p->buf[delayB - 1] = p->buf[delayB] - p->buf[delayB - 1]; |
539 |
p->buf[adaptB - 1] = APESIGN(p->buf[delayB - 1]); |
540 |
p->filterB[filter] = p->filterA[filter ^ 1];
|
541 |
|
542 |
predictionB = p->buf[delayB ] * p->coeffsB[filter][0] +
|
543 |
p->buf[delayB - 1] * p->coeffsB[filter][1] + |
544 |
p->buf[delayB - 2] * p->coeffsB[filter][2] + |
545 |
p->buf[delayB - 3] * p->coeffsB[filter][3] + |
546 |
p->buf[delayB - 4] * p->coeffsB[filter][4]; |
547 |
|
548 |
p->lastA[filter] = decoded + ((predictionA + (predictionB >> 1)) >> 10); |
549 |
p->filterA[filter] = p->lastA[filter] + ((p->filterA[filter] * 31) >> 5); |
550 |
|
551 |
sign = APESIGN(decoded); |
552 |
p->coeffsA[filter][0] += p->buf[adaptA ] * sign;
|
553 |
p->coeffsA[filter][1] += p->buf[adaptA - 1] * sign; |
554 |
p->coeffsA[filter][2] += p->buf[adaptA - 2] * sign; |
555 |
p->coeffsA[filter][3] += p->buf[adaptA - 3] * sign; |
556 |
p->coeffsB[filter][0] += p->buf[adaptB ] * sign;
|
557 |
p->coeffsB[filter][1] += p->buf[adaptB - 1] * sign; |
558 |
p->coeffsB[filter][2] += p->buf[adaptB - 2] * sign; |
559 |
p->coeffsB[filter][3] += p->buf[adaptB - 3] * sign; |
560 |
p->coeffsB[filter][4] += p->buf[adaptB - 4] * sign; |
561 |
|
562 |
return p->filterA[filter];
|
563 |
} |
564 |
|
565 |
static void predictor_decode_stereo(APEContext * ctx, int count) |
566 |
{ |
567 |
APEPredictor *p = &ctx->predictor; |
568 |
int32_t *decoded0 = ctx->decoded0; |
569 |
int32_t *decoded1 = ctx->decoded1; |
570 |
|
571 |
while (count--) {
|
572 |
/* Predictor Y */
|
573 |
*decoded0 = predictor_update_filter(p, *decoded0, 0, YDELAYA, YDELAYB, YADAPTCOEFFSA, YADAPTCOEFFSB);
|
574 |
decoded0++; |
575 |
*decoded1 = predictor_update_filter(p, *decoded1, 1, XDELAYA, XDELAYB, XADAPTCOEFFSA, XADAPTCOEFFSB);
|
576 |
decoded1++; |
577 |
|
578 |
/* Combined */
|
579 |
p->buf++; |
580 |
|
581 |
/* Have we filled the history buffer? */
|
582 |
if (p->buf == p->historybuffer + HISTORY_SIZE) {
|
583 |
memmove(p->historybuffer, p->buf, PREDICTOR_SIZE * sizeof(int32_t));
|
584 |
p->buf = p->historybuffer; |
585 |
} |
586 |
} |
587 |
} |
588 |
|
589 |
static void predictor_decode_mono(APEContext * ctx, int count) |
590 |
{ |
591 |
APEPredictor *p = &ctx->predictor; |
592 |
int32_t *decoded0 = ctx->decoded0; |
593 |
int32_t predictionA, currentA, A, sign; |
594 |
|
595 |
currentA = p->lastA[0];
|
596 |
|
597 |
while (count--) {
|
598 |
A = *decoded0; |
599 |
|
600 |
p->buf[YDELAYA] = currentA; |
601 |
p->buf[YDELAYA - 1] = p->buf[YDELAYA] - p->buf[YDELAYA - 1]; |
602 |
|
603 |
predictionA = p->buf[YDELAYA ] * p->coeffsA[0][0] + |
604 |
p->buf[YDELAYA - 1] * p->coeffsA[0][1] + |
605 |
p->buf[YDELAYA - 2] * p->coeffsA[0][2] + |
606 |
p->buf[YDELAYA - 3] * p->coeffsA[0][3]; |
607 |
|
608 |
currentA = A + (predictionA >> 10);
|
609 |
|
610 |
p->buf[YADAPTCOEFFSA] = APESIGN(p->buf[YDELAYA ]); |
611 |
p->buf[YADAPTCOEFFSA - 1] = APESIGN(p->buf[YDELAYA - 1]); |
612 |
|
613 |
sign = APESIGN(A); |
614 |
p->coeffsA[0][0] += p->buf[YADAPTCOEFFSA ] * sign; |
615 |
p->coeffsA[0][1] += p->buf[YADAPTCOEFFSA - 1] * sign; |
616 |
p->coeffsA[0][2] += p->buf[YADAPTCOEFFSA - 2] * sign; |
617 |
p->coeffsA[0][3] += p->buf[YADAPTCOEFFSA - 3] * sign; |
618 |
|
619 |
p->buf++; |
620 |
|
621 |
/* Have we filled the history buffer? */
|
622 |
if (p->buf == p->historybuffer + HISTORY_SIZE) {
|
623 |
memmove(p->historybuffer, p->buf, PREDICTOR_SIZE * sizeof(int32_t));
|
624 |
p->buf = p->historybuffer; |
625 |
} |
626 |
|
627 |
p->filterA[0] = currentA + ((p->filterA[0] * 31) >> 5); |
628 |
*(decoded0++) = p->filterA[0];
|
629 |
} |
630 |
|
631 |
p->lastA[0] = currentA;
|
632 |
} |
633 |
|
634 |
static void do_init_filter(APEFilter *f, int16_t * buf, int order) |
635 |
{ |
636 |
f->coeffs = buf; |
637 |
f->historybuffer = buf + order; |
638 |
f->delay = f->historybuffer + order * 2;
|
639 |
f->adaptcoeffs = f->historybuffer + order; |
640 |
|
641 |
memset(f->historybuffer, 0, (order * 2) * sizeof(int16_t)); |
642 |
memset(f->coeffs, 0, order * sizeof(int16_t)); |
643 |
f->avg = 0;
|
644 |
} |
645 |
|
646 |
static void init_filter(APEContext * ctx, APEFilter *f, int16_t * buf, int order) |
647 |
{ |
648 |
do_init_filter(&f[0], buf, order);
|
649 |
do_init_filter(&f[1], buf + order * 3 + HISTORY_SIZE, order); |
650 |
} |
651 |
|
652 |
static void do_apply_filter(APEContext * ctx, int version, APEFilter *f, int32_t *data, int count, int order, int fracbits) |
653 |
{ |
654 |
int res;
|
655 |
int absres;
|
656 |
|
657 |
while (count--) {
|
658 |
/* round fixedpoint scalar product */
|
659 |
res = ctx->dsp.scalarproduct_and_madd_int16(f->coeffs, f->delay - order, f->adaptcoeffs - order, order, APESIGN(*data)); |
660 |
res = (res + (1 << (fracbits - 1))) >> fracbits; |
661 |
res += *data; |
662 |
*data++ = res; |
663 |
|
664 |
/* Update the output history */
|
665 |
*f->delay++ = av_clip_int16(res); |
666 |
|
667 |
if (version < 3980) { |
668 |
/* Version ??? to < 3.98 files (untested) */
|
669 |
f->adaptcoeffs[0] = (res == 0) ? 0 : ((res >> 28) & 8) - 4; |
670 |
f->adaptcoeffs[-4] >>= 1; |
671 |
f->adaptcoeffs[-8] >>= 1; |
672 |
} else {
|
673 |
/* Version 3.98 and later files */
|
674 |
|
675 |
/* Update the adaption coefficients */
|
676 |
absres = FFABS(res); |
677 |
if (absres)
|
678 |
*f->adaptcoeffs = ((res & (1<<31)) - (1<<30)) >> (25 + (absres <= f->avg*3) + (absres <= f->avg*4/3)); |
679 |
else
|
680 |
*f->adaptcoeffs = 0;
|
681 |
|
682 |
f->avg += (absres - f->avg) / 16;
|
683 |
|
684 |
f->adaptcoeffs[-1] >>= 1; |
685 |
f->adaptcoeffs[-2] >>= 1; |
686 |
f->adaptcoeffs[-8] >>= 1; |
687 |
} |
688 |
|
689 |
f->adaptcoeffs++; |
690 |
|
691 |
/* Have we filled the history buffer? */
|
692 |
if (f->delay == f->historybuffer + HISTORY_SIZE + (order * 2)) { |
693 |
memmove(f->historybuffer, f->delay - (order * 2),
|
694 |
(order * 2) * sizeof(int16_t)); |
695 |
f->delay = f->historybuffer + order * 2;
|
696 |
f->adaptcoeffs = f->historybuffer + order; |
697 |
} |
698 |
} |
699 |
} |
700 |
|
701 |
static void apply_filter(APEContext * ctx, APEFilter *f, |
702 |
int32_t * data0, int32_t * data1, |
703 |
int count, int order, int fracbits) |
704 |
{ |
705 |
do_apply_filter(ctx, ctx->fileversion, &f[0], data0, count, order, fracbits);
|
706 |
if (data1)
|
707 |
do_apply_filter(ctx, ctx->fileversion, &f[1], data1, count, order, fracbits);
|
708 |
} |
709 |
|
710 |
static void ape_apply_filters(APEContext * ctx, int32_t * decoded0, |
711 |
int32_t * decoded1, int count)
|
712 |
{ |
713 |
int i;
|
714 |
|
715 |
for (i = 0; i < APE_FILTER_LEVELS; i++) { |
716 |
if (!ape_filter_orders[ctx->fset][i])
|
717 |
break;
|
718 |
apply_filter(ctx, ctx->filters[i], decoded0, decoded1, count, ape_filter_orders[ctx->fset][i], ape_filter_fracbits[ctx->fset][i]); |
719 |
} |
720 |
} |
721 |
|
722 |
static void init_frame_decoder(APEContext * ctx) |
723 |
{ |
724 |
int i;
|
725 |
init_entropy_decoder(ctx); |
726 |
init_predictor_decoder(ctx); |
727 |
|
728 |
for (i = 0; i < APE_FILTER_LEVELS; i++) { |
729 |
if (!ape_filter_orders[ctx->fset][i])
|
730 |
break;
|
731 |
init_filter(ctx, ctx->filters[i], ctx->filterbuf[i], ape_filter_orders[ctx->fset][i]); |
732 |
} |
733 |
} |
734 |
|
735 |
static void ape_unpack_mono(APEContext * ctx, int count) |
736 |
{ |
737 |
int32_t left; |
738 |
int32_t *decoded0 = ctx->decoded0; |
739 |
int32_t *decoded1 = ctx->decoded1; |
740 |
|
741 |
if (ctx->frameflags & APE_FRAMECODE_STEREO_SILENCE) {
|
742 |
entropy_decode(ctx, count, 0);
|
743 |
/* We are pure silence, so we're done. */
|
744 |
av_log(ctx->avctx, AV_LOG_DEBUG, "pure silence mono\n");
|
745 |
return;
|
746 |
} |
747 |
|
748 |
entropy_decode(ctx, count, 0);
|
749 |
ape_apply_filters(ctx, decoded0, NULL, count);
|
750 |
|
751 |
/* Now apply the predictor decoding */
|
752 |
predictor_decode_mono(ctx, count); |
753 |
|
754 |
/* Pseudo-stereo - just copy left channel to right channel */
|
755 |
if (ctx->channels == 2) { |
756 |
while (count--) {
|
757 |
left = *decoded0; |
758 |
*(decoded1++) = *(decoded0++) = left; |
759 |
} |
760 |
} |
761 |
} |
762 |
|
763 |
static void ape_unpack_stereo(APEContext * ctx, int count) |
764 |
{ |
765 |
int32_t left, right; |
766 |
int32_t *decoded0 = ctx->decoded0; |
767 |
int32_t *decoded1 = ctx->decoded1; |
768 |
|
769 |
if (ctx->frameflags & APE_FRAMECODE_STEREO_SILENCE) {
|
770 |
/* We are pure silence, so we're done. */
|
771 |
av_log(ctx->avctx, AV_LOG_DEBUG, "pure silence stereo\n");
|
772 |
return;
|
773 |
} |
774 |
|
775 |
entropy_decode(ctx, count, 1);
|
776 |
ape_apply_filters(ctx, decoded0, decoded1, count); |
777 |
|
778 |
/* Now apply the predictor decoding */
|
779 |
predictor_decode_stereo(ctx, count); |
780 |
|
781 |
/* Decorrelate and scale to output depth */
|
782 |
while (count--) {
|
783 |
left = *decoded1 - (*decoded0 / 2);
|
784 |
right = left + *decoded0; |
785 |
|
786 |
*(decoded0++) = left; |
787 |
*(decoded1++) = right; |
788 |
} |
789 |
} |
790 |
|
791 |
static int ape_decode_frame(AVCodecContext * avctx, |
792 |
void *data, int *data_size, |
793 |
AVPacket *avpkt) |
794 |
{ |
795 |
const uint8_t *buf = avpkt->data;
|
796 |
int buf_size = avpkt->size;
|
797 |
APEContext *s = avctx->priv_data; |
798 |
int16_t *samples = data; |
799 |
int nblocks;
|
800 |
int i, n;
|
801 |
int blockstodecode;
|
802 |
int bytes_used;
|
803 |
|
804 |
if (buf_size == 0 && !s->samples) { |
805 |
*data_size = 0;
|
806 |
return 0; |
807 |
} |
808 |
|
809 |
/* should not happen but who knows */
|
810 |
if (BLOCKS_PER_LOOP * 2 * avctx->channels > *data_size) { |
811 |
av_log (avctx, AV_LOG_ERROR, "Packet size is too big to be handled in lavc! (max is %d where you have %d)\n", *data_size, s->samples * 2 * avctx->channels); |
812 |
return -1; |
813 |
} |
814 |
|
815 |
if(!s->samples){
|
816 |
s->data = av_realloc(s->data, (buf_size + 3) & ~3); |
817 |
s->dsp.bswap_buf((uint32_t*)s->data, (const uint32_t*)buf, buf_size >> 2); |
818 |
s->ptr = s->last_ptr = s->data; |
819 |
s->data_end = s->data + buf_size; |
820 |
|
821 |
nblocks = s->samples = bytestream_get_be32(&s->ptr); |
822 |
n = bytestream_get_be32(&s->ptr); |
823 |
if(n < 0 || n > 3){ |
824 |
av_log(avctx, AV_LOG_ERROR, "Incorrect offset passed\n");
|
825 |
s->data = NULL;
|
826 |
return -1; |
827 |
} |
828 |
s->ptr += n; |
829 |
|
830 |
s->currentframeblocks = nblocks; |
831 |
buf += 4;
|
832 |
if (s->samples <= 0) { |
833 |
*data_size = 0;
|
834 |
return buf_size;
|
835 |
} |
836 |
|
837 |
memset(s->decoded0, 0, sizeof(s->decoded0)); |
838 |
memset(s->decoded1, 0, sizeof(s->decoded1)); |
839 |
|
840 |
/* Initialize the frame decoder */
|
841 |
init_frame_decoder(s); |
842 |
} |
843 |
|
844 |
if (!s->data) {
|
845 |
*data_size = 0;
|
846 |
return buf_size;
|
847 |
} |
848 |
|
849 |
nblocks = s->samples; |
850 |
blockstodecode = FFMIN(BLOCKS_PER_LOOP, nblocks); |
851 |
|
852 |
s->error=0;
|
853 |
|
854 |
if ((s->channels == 1) || (s->frameflags & APE_FRAMECODE_PSEUDO_STEREO)) |
855 |
ape_unpack_mono(s, blockstodecode); |
856 |
else
|
857 |
ape_unpack_stereo(s, blockstodecode); |
858 |
emms_c(); |
859 |
|
860 |
if(s->error || s->ptr > s->data_end){
|
861 |
s->samples=0;
|
862 |
av_log(avctx, AV_LOG_ERROR, "Error decoding frame\n");
|
863 |
return -1; |
864 |
} |
865 |
|
866 |
for (i = 0; i < blockstodecode; i++) { |
867 |
*samples++ = s->decoded0[i]; |
868 |
if(s->channels == 2) |
869 |
*samples++ = s->decoded1[i]; |
870 |
} |
871 |
|
872 |
s->samples -= blockstodecode; |
873 |
|
874 |
*data_size = blockstodecode * 2 * s->channels;
|
875 |
bytes_used = s->samples ? s->ptr - s->last_ptr : buf_size; |
876 |
s->last_ptr = s->ptr; |
877 |
return bytes_used;
|
878 |
} |
879 |
|
880 |
AVCodec ape_decoder = { |
881 |
"ape",
|
882 |
CODEC_TYPE_AUDIO, |
883 |
CODEC_ID_APE, |
884 |
sizeof(APEContext),
|
885 |
ape_decode_init, |
886 |
NULL,
|
887 |
ape_decode_close, |
888 |
ape_decode_frame, |
889 |
.capabilities = CODEC_CAP_SUBFRAMES, |
890 |
.long_name = NULL_IF_CONFIG_SMALL("Monkey's Audio"),
|
891 |
}; |