ffmpeg / libavcodec / dsputil.h @ 4b9905d1
History | View | Annotate | Download (39.9 KB)
1 |
/*
|
---|---|
2 |
* DSP utils
|
3 |
* Copyright (c) 2000, 2001, 2002 Fabrice Bellard
|
4 |
* Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at>
|
5 |
*
|
6 |
* This file is part of FFmpeg.
|
7 |
*
|
8 |
* FFmpeg is free software; you can redistribute it and/or
|
9 |
* modify it under the terms of the GNU Lesser General Public
|
10 |
* License as published by the Free Software Foundation; either
|
11 |
* version 2.1 of the License, or (at your option) any later version.
|
12 |
*
|
13 |
* FFmpeg is distributed in the hope that it will be useful,
|
14 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
15 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
16 |
* Lesser General Public License for more details.
|
17 |
*
|
18 |
* You should have received a copy of the GNU Lesser General Public
|
19 |
* License along with FFmpeg; if not, write to the Free Software
|
20 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
21 |
*/
|
22 |
|
23 |
/**
|
24 |
* @file libavcodec/dsputil.h
|
25 |
* DSP utils.
|
26 |
* note, many functions in here may use MMX which trashes the FPU state, it is
|
27 |
* absolutely necessary to call emms_c() between dsp & float/double code
|
28 |
*/
|
29 |
|
30 |
#ifndef AVCODEC_DSPUTIL_H
|
31 |
#define AVCODEC_DSPUTIL_H
|
32 |
|
33 |
#include "libavutil/intreadwrite.h" |
34 |
#include "avcodec.h" |
35 |
|
36 |
|
37 |
//#define DEBUG
|
38 |
/* dct code */
|
39 |
typedef short DCTELEM; |
40 |
typedef int DWTELEM; |
41 |
typedef short IDWTELEM; |
42 |
|
43 |
void fdct_ifast (DCTELEM *data);
|
44 |
void fdct_ifast248 (DCTELEM *data);
|
45 |
void ff_jpeg_fdct_islow (DCTELEM *data);
|
46 |
void ff_fdct248_islow (DCTELEM *data);
|
47 |
|
48 |
void j_rev_dct (DCTELEM *data);
|
49 |
void j_rev_dct4 (DCTELEM *data);
|
50 |
void j_rev_dct2 (DCTELEM *data);
|
51 |
void j_rev_dct1 (DCTELEM *data);
|
52 |
void ff_wmv2_idct_c(DCTELEM *data);
|
53 |
|
54 |
void ff_fdct_mmx(DCTELEM *block);
|
55 |
void ff_fdct_mmx2(DCTELEM *block);
|
56 |
void ff_fdct_sse2(DCTELEM *block);
|
57 |
|
58 |
void ff_h264_idct8_add_c(uint8_t *dst, DCTELEM *block, int stride); |
59 |
void ff_h264_idct_add_c(uint8_t *dst, DCTELEM *block, int stride); |
60 |
void ff_h264_idct8_dc_add_c(uint8_t *dst, DCTELEM *block, int stride); |
61 |
void ff_h264_idct_dc_add_c(uint8_t *dst, DCTELEM *block, int stride); |
62 |
void ff_h264_lowres_idct_add_c(uint8_t *dst, int stride, DCTELEM *block); |
63 |
void ff_h264_lowres_idct_put_c(uint8_t *dst, int stride, DCTELEM *block); |
64 |
void ff_h264_idct_add16_c(uint8_t *dst, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]); |
65 |
void ff_h264_idct_add16intra_c(uint8_t *dst, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]); |
66 |
void ff_h264_idct8_add4_c(uint8_t *dst, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]); |
67 |
void ff_h264_idct_add8_c(uint8_t **dest, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]); |
68 |
|
69 |
void ff_vector_fmul_window_c(float *dst, const float *src0, const float *src1, |
70 |
const float *win, float add_bias, int len); |
71 |
void ff_float_to_int16_c(int16_t *dst, const float *src, long len); |
72 |
void ff_float_to_int16_interleave_c(int16_t *dst, const float **src, long len, int channels); |
73 |
|
74 |
/* encoding scans */
|
75 |
extern const uint8_t ff_alternate_horizontal_scan[64]; |
76 |
extern const uint8_t ff_alternate_vertical_scan[64]; |
77 |
extern const uint8_t ff_zigzag_direct[64]; |
78 |
extern const uint8_t ff_zigzag248_direct[64]; |
79 |
|
80 |
/* pixel operations */
|
81 |
#define MAX_NEG_CROP 1024 |
82 |
|
83 |
/* temporary */
|
84 |
extern uint32_t ff_squareTbl[512]; |
85 |
extern uint8_t ff_cropTbl[256 + 2 * MAX_NEG_CROP]; |
86 |
|
87 |
/* VP3 DSP functions */
|
88 |
void ff_vp3_idct_c(DCTELEM *block/* align 16*/); |
89 |
void ff_vp3_idct_put_c(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/); |
90 |
void ff_vp3_idct_add_c(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/); |
91 |
|
92 |
void ff_vp3_v_loop_filter_c(uint8_t *src, int stride, int *bounding_values); |
93 |
void ff_vp3_h_loop_filter_c(uint8_t *src, int stride, int *bounding_values); |
94 |
|
95 |
/* VP6 DSP functions */
|
96 |
void ff_vp6_filter_diag4_c(uint8_t *dst, uint8_t *src, int stride, |
97 |
const int16_t *h_weights, const int16_t *v_weights); |
98 |
|
99 |
/* 1/2^n downscaling functions from imgconvert.c */
|
100 |
void ff_img_copy_plane(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height); |
101 |
void ff_shrink22(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height); |
102 |
void ff_shrink44(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height); |
103 |
void ff_shrink88(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height); |
104 |
|
105 |
void ff_gmc_c(uint8_t *dst, uint8_t *src, int stride, int h, int ox, int oy, |
106 |
int dxx, int dxy, int dyx, int dyy, int shift, int r, int width, int height); |
107 |
|
108 |
/* minimum alignment rules ;)
|
109 |
If you notice errors in the align stuff, need more alignment for some ASM code
|
110 |
for some CPU or need to use a function with less aligned data then send a mail
|
111 |
to the ffmpeg-devel mailing list, ...
|
112 |
|
113 |
!warning These alignments might not match reality, (missing attribute((align))
|
114 |
stuff somewhere possible).
|
115 |
I (Michael) did not check them, these are just the alignments which I think
|
116 |
could be reached easily ...
|
117 |
|
118 |
!future video codecs might need functions with less strict alignment
|
119 |
*/
|
120 |
|
121 |
/*
|
122 |
void get_pixels_c(DCTELEM *block, const uint8_t *pixels, int line_size);
|
123 |
void diff_pixels_c(DCTELEM *block, const uint8_t *s1, const uint8_t *s2, int stride);
|
124 |
void put_pixels_clamped_c(const DCTELEM *block, uint8_t *pixels, int line_size);
|
125 |
void add_pixels_clamped_c(const DCTELEM *block, uint8_t *pixels, int line_size);
|
126 |
void clear_blocks_c(DCTELEM *blocks);
|
127 |
*/
|
128 |
|
129 |
/* add and put pixel (decoding) */
|
130 |
// blocksizes for op_pixels_func are 8x4,8x8 16x8 16x16
|
131 |
//h for op_pixels_func is limited to {width/2, width} but never larger than 16 and never smaller then 4
|
132 |
typedef void (*op_pixels_func)(uint8_t *block/*align width (8 or 16)*/, const uint8_t *pixels/*align 1*/, int line_size, int h); |
133 |
typedef void (*tpel_mc_func)(uint8_t *block/*align width (8 or 16)*/, const uint8_t *pixels/*align 1*/, int line_size, int w, int h); |
134 |
typedef void (*qpel_mc_func)(uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride); |
135 |
typedef void (*h264_chroma_mc_func)(uint8_t *dst/*align 8*/, uint8_t *src/*align 1*/, int srcStride, int h, int x, int y); |
136 |
typedef void (*h264_weight_func)(uint8_t *block, int stride, int log2_denom, int weight, int offset); |
137 |
typedef void (*h264_biweight_func)(uint8_t *dst, uint8_t *src, int stride, int log2_denom, int weightd, int weights, int offset); |
138 |
|
139 |
typedef void (*op_fill_func)(uint8_t *block/*align width (8 or 16)*/, uint8_t value, int line_size, int h); |
140 |
|
141 |
#define DEF_OLD_QPEL(name)\
|
142 |
void ff_put_ ## name (uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);\ |
143 |
void ff_put_no_rnd_ ## name (uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);\ |
144 |
void ff_avg_ ## name (uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride); |
145 |
|
146 |
DEF_OLD_QPEL(qpel16_mc11_old_c) |
147 |
DEF_OLD_QPEL(qpel16_mc31_old_c) |
148 |
DEF_OLD_QPEL(qpel16_mc12_old_c) |
149 |
DEF_OLD_QPEL(qpel16_mc32_old_c) |
150 |
DEF_OLD_QPEL(qpel16_mc13_old_c) |
151 |
DEF_OLD_QPEL(qpel16_mc33_old_c) |
152 |
DEF_OLD_QPEL(qpel8_mc11_old_c) |
153 |
DEF_OLD_QPEL(qpel8_mc31_old_c) |
154 |
DEF_OLD_QPEL(qpel8_mc12_old_c) |
155 |
DEF_OLD_QPEL(qpel8_mc32_old_c) |
156 |
DEF_OLD_QPEL(qpel8_mc13_old_c) |
157 |
DEF_OLD_QPEL(qpel8_mc33_old_c) |
158 |
|
159 |
#define CALL_2X_PIXELS(a, b, n)\
|
160 |
static void a(uint8_t *block, const uint8_t *pixels, int line_size, int h){\ |
161 |
b(block , pixels , line_size, h);\ |
162 |
b(block+n, pixels+n, line_size, h);\ |
163 |
} |
164 |
|
165 |
/* motion estimation */
|
166 |
// h is limited to {width/2, width, 2*width} but never larger than 16 and never smaller then 2
|
167 |
// although currently h<4 is not used as functions with width <8 are neither used nor implemented
|
168 |
typedef int (*me_cmp_func)(void /*MpegEncContext*/ *s, uint8_t *blk1/*align width (8 or 16)*/, uint8_t *blk2/*align 1*/, int line_size, int h)/* __attribute__ ((const))*/; |
169 |
|
170 |
|
171 |
// for snow slices
|
172 |
typedef struct slice_buffer_s slice_buffer; |
173 |
|
174 |
/**
|
175 |
* Scantable.
|
176 |
*/
|
177 |
typedef struct ScanTable{ |
178 |
const uint8_t *scantable;
|
179 |
uint8_t permutated[64];
|
180 |
uint8_t raster_end[64];
|
181 |
#if ARCH_PPC
|
182 |
/** Used by dct_quantize_altivec to find last-non-zero */
|
183 |
DECLARE_ALIGNED(16, uint8_t, inverse)[64]; |
184 |
#endif
|
185 |
} ScanTable; |
186 |
|
187 |
void ff_init_scantable(uint8_t *, ScanTable *st, const uint8_t *src_scantable); |
188 |
|
189 |
void ff_emulated_edge_mc(uint8_t *buf, uint8_t *src, int linesize, |
190 |
int block_w, int block_h, |
191 |
int src_x, int src_y, int w, int h); |
192 |
|
193 |
/**
|
194 |
* DSPContext.
|
195 |
*/
|
196 |
typedef struct DSPContext { |
197 |
/* pixel ops : interface with DCT */
|
198 |
void (*get_pixels)(DCTELEM *block/*align 16*/, const uint8_t *pixels/*align 8*/, int line_size); |
199 |
void (*diff_pixels)(DCTELEM *block/*align 16*/, const uint8_t *s1/*align 8*/, const uint8_t *s2/*align 8*/, int stride); |
200 |
void (*put_pixels_clamped)(const DCTELEM *block/*align 16*/, uint8_t *pixels/*align 8*/, int line_size); |
201 |
void (*put_signed_pixels_clamped)(const DCTELEM *block/*align 16*/, uint8_t *pixels/*align 8*/, int line_size); |
202 |
void (*put_pixels_nonclamped)(const DCTELEM *block/*align 16*/, uint8_t *pixels/*align 8*/, int line_size); |
203 |
void (*add_pixels_clamped)(const DCTELEM *block/*align 16*/, uint8_t *pixels/*align 8*/, int line_size); |
204 |
void (*add_pixels8)(uint8_t *pixels, DCTELEM *block, int line_size); |
205 |
void (*add_pixels4)(uint8_t *pixels, DCTELEM *block, int line_size); |
206 |
int (*sum_abs_dctelem)(DCTELEM *block/*align 16*/); |
207 |
/**
|
208 |
* translational global motion compensation.
|
209 |
*/
|
210 |
void (*gmc1)(uint8_t *dst/*align 8*/, uint8_t *src/*align 1*/, int srcStride, int h, int x16, int y16, int rounder); |
211 |
/**
|
212 |
* global motion compensation.
|
213 |
*/
|
214 |
void (*gmc )(uint8_t *dst/*align 8*/, uint8_t *src/*align 1*/, int stride, int h, int ox, int oy, |
215 |
int dxx, int dxy, int dyx, int dyy, int shift, int r, int width, int height); |
216 |
void (*clear_block)(DCTELEM *block/*align 16*/); |
217 |
void (*clear_blocks)(DCTELEM *blocks/*align 16*/); |
218 |
int (*pix_sum)(uint8_t * pix, int line_size); |
219 |
int (*pix_norm1)(uint8_t * pix, int line_size); |
220 |
// 16x16 8x8 4x4 2x2 16x8 8x4 4x2 8x16 4x8 2x4
|
221 |
|
222 |
me_cmp_func sad[6]; /* identical to pix_absAxA except additional void * */ |
223 |
me_cmp_func sse[6];
|
224 |
me_cmp_func hadamard8_diff[6];
|
225 |
me_cmp_func dct_sad[6];
|
226 |
me_cmp_func quant_psnr[6];
|
227 |
me_cmp_func bit[6];
|
228 |
me_cmp_func rd[6];
|
229 |
me_cmp_func vsad[6];
|
230 |
me_cmp_func vsse[6];
|
231 |
me_cmp_func nsse[6];
|
232 |
me_cmp_func w53[6];
|
233 |
me_cmp_func w97[6];
|
234 |
me_cmp_func dct_max[6];
|
235 |
me_cmp_func dct264_sad[6];
|
236 |
|
237 |
me_cmp_func me_pre_cmp[6];
|
238 |
me_cmp_func me_cmp[6];
|
239 |
me_cmp_func me_sub_cmp[6];
|
240 |
me_cmp_func mb_cmp[6];
|
241 |
me_cmp_func ildct_cmp[6]; //only width 16 used |
242 |
me_cmp_func frame_skip_cmp[6]; //only width 8 used |
243 |
|
244 |
int (*ssd_int8_vs_int16)(const int8_t *pix1, const int16_t *pix2, |
245 |
int size);
|
246 |
|
247 |
/**
|
248 |
* Halfpel motion compensation with rounding (a+b+1)>>1.
|
249 |
* this is an array[4][4] of motion compensation functions for 4
|
250 |
* horizontal blocksizes (8,16) and the 4 halfpel positions<br>
|
251 |
* *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
|
252 |
* @param block destination where the result is stored
|
253 |
* @param pixels source
|
254 |
* @param line_size number of bytes in a horizontal line of block
|
255 |
* @param h height
|
256 |
*/
|
257 |
op_pixels_func put_pixels_tab[4][4]; |
258 |
|
259 |
/**
|
260 |
* Halfpel motion compensation with rounding (a+b+1)>>1.
|
261 |
* This is an array[4][4] of motion compensation functions for 4
|
262 |
* horizontal blocksizes (8,16) and the 4 halfpel positions<br>
|
263 |
* *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
|
264 |
* @param block destination into which the result is averaged (a+b+1)>>1
|
265 |
* @param pixels source
|
266 |
* @param line_size number of bytes in a horizontal line of block
|
267 |
* @param h height
|
268 |
*/
|
269 |
op_pixels_func avg_pixels_tab[4][4]; |
270 |
|
271 |
/**
|
272 |
* Halfpel motion compensation with no rounding (a+b)>>1.
|
273 |
* this is an array[2][4] of motion compensation functions for 2
|
274 |
* horizontal blocksizes (8,16) and the 4 halfpel positions<br>
|
275 |
* *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
|
276 |
* @param block destination where the result is stored
|
277 |
* @param pixels source
|
278 |
* @param line_size number of bytes in a horizontal line of block
|
279 |
* @param h height
|
280 |
*/
|
281 |
op_pixels_func put_no_rnd_pixels_tab[4][4]; |
282 |
|
283 |
/**
|
284 |
* Halfpel motion compensation with no rounding (a+b)>>1.
|
285 |
* this is an array[2][4] of motion compensation functions for 2
|
286 |
* horizontal blocksizes (8,16) and the 4 halfpel positions<br>
|
287 |
* *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
|
288 |
* @param block destination into which the result is averaged (a+b)>>1
|
289 |
* @param pixels source
|
290 |
* @param line_size number of bytes in a horizontal line of block
|
291 |
* @param h height
|
292 |
*/
|
293 |
op_pixels_func avg_no_rnd_pixels_tab[4][4]; |
294 |
|
295 |
void (*put_no_rnd_pixels_l2[2])(uint8_t *block/*align width (8 or 16)*/, const uint8_t *a/*align 1*/, const uint8_t *b/*align 1*/, int line_size, int h); |
296 |
|
297 |
/**
|
298 |
* Thirdpel motion compensation with rounding (a+b+1)>>1.
|
299 |
* this is an array[12] of motion compensation functions for the 9 thirdpe
|
300 |
* positions<br>
|
301 |
* *pixels_tab[ xthirdpel + 4*ythirdpel ]
|
302 |
* @param block destination where the result is stored
|
303 |
* @param pixels source
|
304 |
* @param line_size number of bytes in a horizontal line of block
|
305 |
* @param h height
|
306 |
*/
|
307 |
tpel_mc_func put_tpel_pixels_tab[11]; //FIXME individual func ptr per width? |
308 |
tpel_mc_func avg_tpel_pixels_tab[11]; //FIXME individual func ptr per width? |
309 |
|
310 |
qpel_mc_func put_qpel_pixels_tab[2][16]; |
311 |
qpel_mc_func avg_qpel_pixels_tab[2][16]; |
312 |
qpel_mc_func put_no_rnd_qpel_pixels_tab[2][16]; |
313 |
qpel_mc_func avg_no_rnd_qpel_pixels_tab[2][16]; |
314 |
qpel_mc_func put_mspel_pixels_tab[8];
|
315 |
|
316 |
/**
|
317 |
* h264 Chroma MC
|
318 |
*/
|
319 |
h264_chroma_mc_func put_h264_chroma_pixels_tab[3];
|
320 |
h264_chroma_mc_func avg_h264_chroma_pixels_tab[3];
|
321 |
/* This is really one func used in VC-1 decoding */
|
322 |
h264_chroma_mc_func put_no_rnd_vc1_chroma_pixels_tab[3];
|
323 |
h264_chroma_mc_func avg_no_rnd_vc1_chroma_pixels_tab[3];
|
324 |
|
325 |
qpel_mc_func put_h264_qpel_pixels_tab[4][16]; |
326 |
qpel_mc_func avg_h264_qpel_pixels_tab[4][16]; |
327 |
|
328 |
qpel_mc_func put_2tap_qpel_pixels_tab[4][16]; |
329 |
qpel_mc_func avg_2tap_qpel_pixels_tab[4][16]; |
330 |
|
331 |
h264_weight_func weight_h264_pixels_tab[10];
|
332 |
h264_biweight_func biweight_h264_pixels_tab[10];
|
333 |
|
334 |
/* AVS specific */
|
335 |
qpel_mc_func put_cavs_qpel_pixels_tab[2][16]; |
336 |
qpel_mc_func avg_cavs_qpel_pixels_tab[2][16]; |
337 |
void (*cavs_filter_lv)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2); |
338 |
void (*cavs_filter_lh)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2); |
339 |
void (*cavs_filter_cv)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2); |
340 |
void (*cavs_filter_ch)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2); |
341 |
void (*cavs_idct8_add)(uint8_t *dst, DCTELEM *block, int stride); |
342 |
|
343 |
me_cmp_func pix_abs[2][4]; |
344 |
|
345 |
/* huffyuv specific */
|
346 |
void (*add_bytes)(uint8_t *dst/*align 16*/, uint8_t *src/*align 16*/, int w); |
347 |
void (*add_bytes_l2)(uint8_t *dst/*align 16*/, uint8_t *src1/*align 16*/, uint8_t *src2/*align 16*/, int w); |
348 |
void (*diff_bytes)(uint8_t *dst/*align 16*/, uint8_t *src1/*align 16*/, uint8_t *src2/*align 1*/,int w); |
349 |
/**
|
350 |
* subtract huffyuv's variant of median prediction
|
351 |
* note, this might read from src1[-1], src2[-1]
|
352 |
*/
|
353 |
void (*sub_hfyu_median_prediction)(uint8_t *dst, const uint8_t *src1, const uint8_t *src2, int w, int *left, int *left_top); |
354 |
void (*add_hfyu_median_prediction)(uint8_t *dst, const uint8_t *top, const uint8_t *diff, int w, int *left, int *left_top); |
355 |
int (*add_hfyu_left_prediction)(uint8_t *dst, const uint8_t *src, int w, int left); |
356 |
void (*add_hfyu_left_prediction_bgr32)(uint8_t *dst, const uint8_t *src, int w, int *red, int *green, int *blue, int *alpha); |
357 |
/* this might write to dst[w] */
|
358 |
void (*add_png_paeth_prediction)(uint8_t *dst, uint8_t *src, uint8_t *top, int w, int bpp); |
359 |
void (*bswap_buf)(uint32_t *dst, const uint32_t *src, int w); |
360 |
|
361 |
void (*h264_v_loop_filter_luma)(uint8_t *pix/*align 16*/, int stride, int alpha, int beta, int8_t *tc0); |
362 |
void (*h264_h_loop_filter_luma)(uint8_t *pix/*align 4 */, int stride, int alpha, int beta, int8_t *tc0); |
363 |
/* v/h_loop_filter_luma_intra: align 16 */
|
364 |
void (*h264_v_loop_filter_luma_intra)(uint8_t *pix, int stride, int alpha, int beta); |
365 |
void (*h264_h_loop_filter_luma_intra)(uint8_t *pix, int stride, int alpha, int beta); |
366 |
void (*h264_v_loop_filter_chroma)(uint8_t *pix/*align 8*/, int stride, int alpha, int beta, int8_t *tc0); |
367 |
void (*h264_h_loop_filter_chroma)(uint8_t *pix/*align 4*/, int stride, int alpha, int beta, int8_t *tc0); |
368 |
void (*h264_v_loop_filter_chroma_intra)(uint8_t *pix/*align 8*/, int stride, int alpha, int beta); |
369 |
void (*h264_h_loop_filter_chroma_intra)(uint8_t *pix/*align 8*/, int stride, int alpha, int beta); |
370 |
// h264_loop_filter_strength: simd only. the C version is inlined in h264.c
|
371 |
void (*h264_loop_filter_strength)(int16_t bS[2][4][4], uint8_t nnz[40], int8_t ref[2][40], int16_t mv[2][40][2], |
372 |
int bidir, int edges, int step, int mask_mv0, int mask_mv1, int field); |
373 |
|
374 |
void (*h263_v_loop_filter)(uint8_t *src, int stride, int qscale); |
375 |
void (*h263_h_loop_filter)(uint8_t *src, int stride, int qscale); |
376 |
|
377 |
void (*h261_loop_filter)(uint8_t *src, int stride); |
378 |
|
379 |
void (*x8_v_loop_filter)(uint8_t *src, int stride, int qscale); |
380 |
void (*x8_h_loop_filter)(uint8_t *src, int stride, int qscale); |
381 |
|
382 |
void (*vp3_v_loop_filter)(uint8_t *src, int stride, int *bounding_values); |
383 |
void (*vp3_h_loop_filter)(uint8_t *src, int stride, int *bounding_values); |
384 |
|
385 |
void (*vp6_filter_diag4)(uint8_t *dst, uint8_t *src, int stride, |
386 |
const int16_t *h_weights,const int16_t *v_weights); |
387 |
|
388 |
/* assume len is a multiple of 4, and arrays are 16-byte aligned */
|
389 |
void (*vorbis_inverse_coupling)(float *mag, float *ang, int blocksize); |
390 |
void (*ac3_downmix)(float (*samples)[256], float (*matrix)[2], int out_ch, int in_ch, int len); |
391 |
/* no alignment needed */
|
392 |
void (*lpc_compute_autocorr)(const int32_t *data, int len, int lag, double *autoc); |
393 |
/* assume len is a multiple of 8, and arrays are 16-byte aligned */
|
394 |
void (*vector_fmul)(float *dst, const float *src, int len); |
395 |
void (*vector_fmul_reverse)(float *dst, const float *src0, const float *src1, int len); |
396 |
/* assume len is a multiple of 8, and src arrays are 16-byte aligned */
|
397 |
void (*vector_fmul_add)(float *dst, const float *src0, const float *src1, const float *src2, int len); |
398 |
/* assume len is a multiple of 4, and arrays are 16-byte aligned */
|
399 |
void (*vector_fmul_window)(float *dst, const float *src0, const float *src1, const float *win, float add_bias, int len); |
400 |
/* assume len is a multiple of 8, and arrays are 16-byte aligned */
|
401 |
void (*int32_to_float_fmul_scalar)(float *dst, const int *src, float mul, int len); |
402 |
void (*vector_clipf)(float *dst /* align 16 */, const float *src /* align 16 */, float min, float max, int len /* align 16 */); |
403 |
/**
|
404 |
* Multiply a vector of floats by a scalar float. Source and
|
405 |
* destination vectors must overlap exactly or not at all.
|
406 |
* @param dst result vector, 16-byte aligned
|
407 |
* @param src input vector, 16-byte aligned
|
408 |
* @param mul scalar value
|
409 |
* @param len length of vector, multiple of 4
|
410 |
*/
|
411 |
void (*vector_fmul_scalar)(float *dst, const float *src, float mul, |
412 |
int len);
|
413 |
/**
|
414 |
* Multiply a vector of floats by concatenated short vectors of
|
415 |
* floats and by a scalar float. Source and destination vectors
|
416 |
* must overlap exactly or not at all.
|
417 |
* [0]: short vectors of length 2, 8-byte aligned
|
418 |
* [1]: short vectors of length 4, 16-byte aligned
|
419 |
* @param dst output vector, 16-byte aligned
|
420 |
* @param src input vector, 16-byte aligned
|
421 |
* @param sv array of pointers to short vectors
|
422 |
* @param mul scalar value
|
423 |
* @param len number of elements in src and dst, multiple of 4
|
424 |
*/
|
425 |
void (*vector_fmul_sv_scalar[2])(float *dst, const float *src, |
426 |
const float **sv, float mul, int len); |
427 |
/**
|
428 |
* Multiply short vectors of floats by a scalar float, store
|
429 |
* concatenated result.
|
430 |
* [0]: short vectors of length 2, 8-byte aligned
|
431 |
* [1]: short vectors of length 4, 16-byte aligned
|
432 |
* @param dst output vector, 16-byte aligned
|
433 |
* @param sv array of pointers to short vectors
|
434 |
* @param mul scalar value
|
435 |
* @param len number of output elements, multiple of 4
|
436 |
*/
|
437 |
void (*sv_fmul_scalar[2])(float *dst, const float **sv, |
438 |
float mul, int len); |
439 |
/**
|
440 |
* Calculate the scalar product of two vectors of floats.
|
441 |
* @param v1 first vector, 16-byte aligned
|
442 |
* @param v2 second vector, 16-byte aligned
|
443 |
* @param len length of vectors, multiple of 4
|
444 |
*/
|
445 |
float (*scalarproduct_float)(const float *v1, const float *v2, int len); |
446 |
/**
|
447 |
* Calculate the sum and difference of two vectors of floats.
|
448 |
* @param v1 first input vector, sum output, 16-byte aligned
|
449 |
* @param v2 second input vector, difference output, 16-byte aligned
|
450 |
* @param len length of vectors, multiple of 4
|
451 |
*/
|
452 |
void (*butterflies_float)(float *restrict v1, float *restrict v2, int len); |
453 |
|
454 |
/* C version: convert floats from the range [384.0,386.0] to ints in [-32768,32767]
|
455 |
* simd versions: convert floats from [-32768.0,32767.0] without rescaling and arrays are 16byte aligned */
|
456 |
void (*float_to_int16)(int16_t *dst, const float *src, long len); |
457 |
void (*float_to_int16_interleave)(int16_t *dst, const float **src, long len, int channels); |
458 |
|
459 |
/* (I)DCT */
|
460 |
void (*fdct)(DCTELEM *block/* align 16*/); |
461 |
void (*fdct248)(DCTELEM *block/* align 16*/); |
462 |
|
463 |
/* IDCT really*/
|
464 |
void (*idct)(DCTELEM *block/* align 16*/); |
465 |
|
466 |
/**
|
467 |
* block -> idct -> clip to unsigned 8 bit -> dest.
|
468 |
* (-1392, 0, 0, ...) -> idct -> (-174, -174, ...) -> put -> (0, 0, ...)
|
469 |
* @param line_size size in bytes of a horizontal line of dest
|
470 |
*/
|
471 |
void (*idct_put)(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/); |
472 |
|
473 |
/**
|
474 |
* block -> idct -> add dest -> clip to unsigned 8 bit -> dest.
|
475 |
* @param line_size size in bytes of a horizontal line of dest
|
476 |
*/
|
477 |
void (*idct_add)(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/); |
478 |
|
479 |
/**
|
480 |
* idct input permutation.
|
481 |
* several optimized IDCTs need a permutated input (relative to the normal order of the reference
|
482 |
* IDCT)
|
483 |
* this permutation must be performed before the idct_put/add, note, normally this can be merged
|
484 |
* with the zigzag/alternate scan<br>
|
485 |
* an example to avoid confusion:
|
486 |
* - (->decode coeffs -> zigzag reorder -> dequant -> reference idct ->...)
|
487 |
* - (x -> referece dct -> reference idct -> x)
|
488 |
* - (x -> referece dct -> simple_mmx_perm = idct_permutation -> simple_idct_mmx -> x)
|
489 |
* - (->decode coeffs -> zigzag reorder -> simple_mmx_perm -> dequant -> simple_idct_mmx ->...)
|
490 |
*/
|
491 |
uint8_t idct_permutation[64];
|
492 |
int idct_permutation_type;
|
493 |
#define FF_NO_IDCT_PERM 1 |
494 |
#define FF_LIBMPEG2_IDCT_PERM 2 |
495 |
#define FF_SIMPLE_IDCT_PERM 3 |
496 |
#define FF_TRANSPOSE_IDCT_PERM 4 |
497 |
#define FF_PARTTRANS_IDCT_PERM 5 |
498 |
#define FF_SSE2_IDCT_PERM 6 |
499 |
|
500 |
int (*try_8x8basis)(int16_t rem[64], int16_t weight[64], int16_t basis[64], int scale); |
501 |
void (*add_8x8basis)(int16_t rem[64], int16_t basis[64], int scale); |
502 |
#define BASIS_SHIFT 16 |
503 |
#define RECON_SHIFT 6 |
504 |
|
505 |
void (*draw_edges)(uint8_t *buf, int wrap, int width, int height, int w); |
506 |
#define EDGE_WIDTH 16 |
507 |
|
508 |
/* h264 functions */
|
509 |
/* NOTE!!! if you implement any of h264_idct8_add, h264_idct8_add4 then you must implement all of them
|
510 |
NOTE!!! if you implement any of h264_idct_add, h264_idct_add16, h264_idct_add16intra, h264_idct_add8 then you must implement all of them
|
511 |
The reason for above, is that no 2 out of one list may use a different permutation.
|
512 |
*/
|
513 |
void (*h264_idct_add)(uint8_t *dst/*align 4*/, DCTELEM *block/*align 16*/, int stride); |
514 |
void (*h264_idct8_add)(uint8_t *dst/*align 8*/, DCTELEM *block/*align 16*/, int stride); |
515 |
void (*h264_idct_dc_add)(uint8_t *dst/*align 4*/, DCTELEM *block/*align 16*/, int stride); |
516 |
void (*h264_idct8_dc_add)(uint8_t *dst/*align 8*/, DCTELEM *block/*align 16*/, int stride); |
517 |
void (*h264_dct)(DCTELEM block[4][4]); |
518 |
void (*h264_idct_add16)(uint8_t *dst/*align 16*/, const int *blockoffset, DCTELEM *block/*align 16*/, int stride, const uint8_t nnzc[6*8]); |
519 |
void (*h264_idct8_add4)(uint8_t *dst/*align 16*/, const int *blockoffset, DCTELEM *block/*align 16*/, int stride, const uint8_t nnzc[6*8]); |
520 |
void (*h264_idct_add8)(uint8_t **dst/*align 16*/, const int *blockoffset, DCTELEM *block/*align 16*/, int stride, const uint8_t nnzc[6*8]); |
521 |
void (*h264_idct_add16intra)(uint8_t *dst/*align 16*/, const int *blockoffset, DCTELEM *block/*align 16*/, int stride, const uint8_t nnzc[6*8]); |
522 |
|
523 |
/* snow wavelet */
|
524 |
void (*vertical_compose97i)(IDWTELEM *b0, IDWTELEM *b1, IDWTELEM *b2, IDWTELEM *b3, IDWTELEM *b4, IDWTELEM *b5, int width); |
525 |
void (*horizontal_compose97i)(IDWTELEM *b, int width); |
526 |
void (*inner_add_yblock)(const uint8_t *obmc, const int obmc_stride, uint8_t * * block, int b_w, int b_h, int src_x, int src_y, int src_stride, slice_buffer * sb, int add, uint8_t * dst8); |
527 |
|
528 |
void (*prefetch)(void *mem, int stride, int h); |
529 |
|
530 |
void (*shrink[4])(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height); |
531 |
|
532 |
/* mlp/truehd functions */
|
533 |
void (*mlp_filter_channel)(int32_t *state, const int32_t *coeff, |
534 |
int firorder, int iirorder, |
535 |
unsigned int filter_shift, int32_t mask, int blocksize, |
536 |
int32_t *sample_buffer); |
537 |
|
538 |
/* vc1 functions */
|
539 |
void (*vc1_inv_trans_8x8)(DCTELEM *b);
|
540 |
void (*vc1_inv_trans_8x4)(uint8_t *dest, int line_size, DCTELEM *block); |
541 |
void (*vc1_inv_trans_4x8)(uint8_t *dest, int line_size, DCTELEM *block); |
542 |
void (*vc1_inv_trans_4x4)(uint8_t *dest, int line_size, DCTELEM *block); |
543 |
void (*vc1_inv_trans_8x8_dc)(uint8_t *dest, int line_size, DCTELEM *block); |
544 |
void (*vc1_inv_trans_8x4_dc)(uint8_t *dest, int line_size, DCTELEM *block); |
545 |
void (*vc1_inv_trans_4x8_dc)(uint8_t *dest, int line_size, DCTELEM *block); |
546 |
void (*vc1_inv_trans_4x4_dc)(uint8_t *dest, int line_size, DCTELEM *block); |
547 |
void (*vc1_v_overlap)(uint8_t* src, int stride); |
548 |
void (*vc1_h_overlap)(uint8_t* src, int stride); |
549 |
void (*vc1_v_loop_filter4)(uint8_t *src, int stride, int pq); |
550 |
void (*vc1_h_loop_filter4)(uint8_t *src, int stride, int pq); |
551 |
void (*vc1_v_loop_filter8)(uint8_t *src, int stride, int pq); |
552 |
void (*vc1_h_loop_filter8)(uint8_t *src, int stride, int pq); |
553 |
void (*vc1_v_loop_filter16)(uint8_t *src, int stride, int pq); |
554 |
void (*vc1_h_loop_filter16)(uint8_t *src, int stride, int pq); |
555 |
/* put 8x8 block with bicubic interpolation and quarterpel precision
|
556 |
* last argument is actually round value instead of height
|
557 |
*/
|
558 |
op_pixels_func put_vc1_mspel_pixels_tab[16];
|
559 |
op_pixels_func avg_vc1_mspel_pixels_tab[16];
|
560 |
|
561 |
/* intrax8 functions */
|
562 |
void (*x8_spatial_compensation[12])(uint8_t *src , uint8_t *dst, int linesize); |
563 |
void (*x8_setup_spatial_compensation)(uint8_t *src, uint8_t *dst, int linesize, |
564 |
int * range, int * sum, int edges); |
565 |
|
566 |
/**
|
567 |
* Calculate scalar product of two vectors.
|
568 |
* @param len length of vectors, should be multiple of 16
|
569 |
* @param shift number of bits to discard from product
|
570 |
*/
|
571 |
int32_t (*scalarproduct_int16)(int16_t *v1, int16_t *v2/*align 16*/, int len, int shift); |
572 |
/* ape functions */
|
573 |
/**
|
574 |
* Calculate scalar product of v1 and v2,
|
575 |
* and v1[i] += v3[i] * mul
|
576 |
* @param len length of vectors, should be multiple of 16
|
577 |
*/
|
578 |
int32_t (*scalarproduct_and_madd_int16)(int16_t *v1/*align 16*/, int16_t *v2, int16_t *v3, int len, int mul); |
579 |
|
580 |
/* rv30 functions */
|
581 |
qpel_mc_func put_rv30_tpel_pixels_tab[4][16]; |
582 |
qpel_mc_func avg_rv30_tpel_pixels_tab[4][16]; |
583 |
|
584 |
/* rv40 functions */
|
585 |
qpel_mc_func put_rv40_qpel_pixels_tab[4][16]; |
586 |
qpel_mc_func avg_rv40_qpel_pixels_tab[4][16]; |
587 |
h264_chroma_mc_func put_rv40_chroma_pixels_tab[3];
|
588 |
h264_chroma_mc_func avg_rv40_chroma_pixels_tab[3];
|
589 |
|
590 |
/* bink functions */
|
591 |
op_fill_func fill_block_tab[2];
|
592 |
void (*scale_block)(const uint8_t src[64]/*align 8*/, uint8_t *dst/*align 8*/, int linesize); |
593 |
} DSPContext; |
594 |
|
595 |
void dsputil_static_init(void); |
596 |
void dsputil_init(DSPContext* p, AVCodecContext *avctx);
|
597 |
|
598 |
int ff_check_alignment(void); |
599 |
|
600 |
/**
|
601 |
* permute block according to permuatation.
|
602 |
* @param last last non zero element in scantable order
|
603 |
*/
|
604 |
void ff_block_permute(DCTELEM *block, uint8_t *permutation, const uint8_t *scantable, int last); |
605 |
|
606 |
void ff_set_cmp(DSPContext* c, me_cmp_func *cmp, int type); |
607 |
|
608 |
#define BYTE_VEC32(c) ((c)*0x01010101UL) |
609 |
|
610 |
static inline uint32_t rnd_avg32(uint32_t a, uint32_t b) |
611 |
{ |
612 |
return (a | b) - (((a ^ b) & ~BYTE_VEC32(0x01)) >> 1); |
613 |
} |
614 |
|
615 |
static inline uint32_t no_rnd_avg32(uint32_t a, uint32_t b) |
616 |
{ |
617 |
return (a & b) + (((a ^ b) & ~BYTE_VEC32(0x01)) >> 1); |
618 |
} |
619 |
|
620 |
static inline int get_penalty_factor(int lambda, int lambda2, int type){ |
621 |
switch(type&0xFF){ |
622 |
default:
|
623 |
case FF_CMP_SAD:
|
624 |
return lambda>>FF_LAMBDA_SHIFT;
|
625 |
case FF_CMP_DCT:
|
626 |
return (3*lambda)>>(FF_LAMBDA_SHIFT+1); |
627 |
case FF_CMP_W53:
|
628 |
return (4*lambda)>>(FF_LAMBDA_SHIFT); |
629 |
case FF_CMP_W97:
|
630 |
return (2*lambda)>>(FF_LAMBDA_SHIFT); |
631 |
case FF_CMP_SATD:
|
632 |
case FF_CMP_DCT264:
|
633 |
return (2*lambda)>>FF_LAMBDA_SHIFT; |
634 |
case FF_CMP_RD:
|
635 |
case FF_CMP_PSNR:
|
636 |
case FF_CMP_SSE:
|
637 |
case FF_CMP_NSSE:
|
638 |
return lambda2>>FF_LAMBDA_SHIFT;
|
639 |
case FF_CMP_BIT:
|
640 |
return 1; |
641 |
} |
642 |
} |
643 |
|
644 |
/**
|
645 |
* Empty mmx state.
|
646 |
* this must be called between any dsp function and float/double code.
|
647 |
* for example sin(); dsp->idct_put(); emms_c(); cos()
|
648 |
*/
|
649 |
#define emms_c()
|
650 |
|
651 |
/* should be defined by architectures supporting
|
652 |
one or more MultiMedia extension */
|
653 |
int mm_support(void); |
654 |
extern int mm_flags; |
655 |
|
656 |
void dsputil_init_alpha(DSPContext* c, AVCodecContext *avctx);
|
657 |
void dsputil_init_arm(DSPContext* c, AVCodecContext *avctx);
|
658 |
void dsputil_init_bfin(DSPContext* c, AVCodecContext *avctx);
|
659 |
void dsputil_init_mlib(DSPContext* c, AVCodecContext *avctx);
|
660 |
void dsputil_init_mmi(DSPContext* c, AVCodecContext *avctx);
|
661 |
void dsputil_init_mmx(DSPContext* c, AVCodecContext *avctx);
|
662 |
void dsputil_init_ppc(DSPContext* c, AVCodecContext *avctx);
|
663 |
void dsputil_init_sh4(DSPContext* c, AVCodecContext *avctx);
|
664 |
void dsputil_init_vis(DSPContext* c, AVCodecContext *avctx);
|
665 |
|
666 |
#if HAVE_MMX
|
667 |
|
668 |
#undef emms_c
|
669 |
|
670 |
static inline void emms(void) |
671 |
{ |
672 |
__asm__ volatile ("emms;":::"memory"); |
673 |
} |
674 |
|
675 |
|
676 |
#define emms_c() \
|
677 |
{\ |
678 |
if (mm_flags & FF_MM_MMX)\
|
679 |
emms();\ |
680 |
} |
681 |
|
682 |
#elif ARCH_ARM
|
683 |
|
684 |
#if HAVE_NEON
|
685 |
# define STRIDE_ALIGN 16 |
686 |
#endif
|
687 |
|
688 |
#elif ARCH_PPC
|
689 |
|
690 |
#define STRIDE_ALIGN 16 |
691 |
|
692 |
#elif HAVE_MMI
|
693 |
|
694 |
#define STRIDE_ALIGN 16 |
695 |
|
696 |
#else
|
697 |
|
698 |
#define mm_flags 0 |
699 |
#define mm_support() 0 |
700 |
|
701 |
#endif
|
702 |
|
703 |
#ifndef STRIDE_ALIGN
|
704 |
# define STRIDE_ALIGN 8 |
705 |
#endif
|
706 |
|
707 |
#define LOCAL_ALIGNED(a, t, v, s, ...) \
|
708 |
uint8_t la_##v[sizeof(t s __VA_ARGS__) + (a)]; \ |
709 |
t (*v) __VA_ARGS__ = (void *)FFALIGN((uintptr_t)la_##v, a) |
710 |
|
711 |
#if HAVE_LOCAL_ALIGNED_8
|
712 |
# define LOCAL_ALIGNED_8(t, v, s, ...) DECLARE_ALIGNED_8(t, v) s __VA_ARGS__
|
713 |
#else
|
714 |
# define LOCAL_ALIGNED_8(t, v, s, ...) LOCAL_ALIGNED(8, t, v, s, __VA_ARGS__) |
715 |
#endif
|
716 |
|
717 |
#if HAVE_LOCAL_ALIGNED_16
|
718 |
# define LOCAL_ALIGNED_16(t, v, s, ...) DECLARE_ALIGNED_16(t, v) s __VA_ARGS__
|
719 |
#else
|
720 |
# define LOCAL_ALIGNED_16(t, v, s, ...) LOCAL_ALIGNED(16, t, v, s, __VA_ARGS__) |
721 |
#endif
|
722 |
|
723 |
/* PSNR */
|
724 |
void get_psnr(uint8_t *orig_image[3], uint8_t *coded_image[3], |
725 |
int orig_linesize[3], int coded_linesize, |
726 |
AVCodecContext *avctx); |
727 |
|
728 |
/* FFT computation */
|
729 |
|
730 |
/* NOTE: soon integer code will be added, so you must use the
|
731 |
FFTSample type */
|
732 |
typedef float FFTSample; |
733 |
|
734 |
typedef struct FFTComplex { |
735 |
FFTSample re, im; |
736 |
} FFTComplex; |
737 |
|
738 |
typedef struct FFTContext { |
739 |
int nbits;
|
740 |
int inverse;
|
741 |
uint16_t *revtab; |
742 |
FFTComplex *exptab; |
743 |
FFTComplex *exptab1; /* only used by SSE code */
|
744 |
FFTComplex *tmp_buf; |
745 |
int mdct_size; /* size of MDCT (i.e. number of input data * 2) */ |
746 |
int mdct_bits; /* n = 2^nbits */ |
747 |
/* pre/post rotation tables */
|
748 |
FFTSample *tcos; |
749 |
FFTSample *tsin; |
750 |
void (*fft_permute)(struct FFTContext *s, FFTComplex *z); |
751 |
void (*fft_calc)(struct FFTContext *s, FFTComplex *z); |
752 |
void (*imdct_calc)(struct FFTContext *s, FFTSample *output, const FFTSample *input); |
753 |
void (*imdct_half)(struct FFTContext *s, FFTSample *output, const FFTSample *input); |
754 |
void (*mdct_calc)(struct FFTContext *s, FFTSample *output, const FFTSample *input); |
755 |
int split_radix;
|
756 |
int permutation;
|
757 |
#define FF_MDCT_PERM_NONE 0 |
758 |
#define FF_MDCT_PERM_INTERLEAVE 1 |
759 |
} FFTContext; |
760 |
|
761 |
#if CONFIG_HARDCODED_TABLES
|
762 |
#define COSTABLE_CONST const |
763 |
#define SINTABLE_CONST const |
764 |
#define SINETABLE_CONST const |
765 |
#else
|
766 |
#define COSTABLE_CONST
|
767 |
#define SINTABLE_CONST
|
768 |
#define SINETABLE_CONST
|
769 |
#endif
|
770 |
|
771 |
#define COSTABLE(size) \
|
772 |
COSTABLE_CONST DECLARE_ALIGNED_16(FFTSample, ff_cos_##size)[size/2] |
773 |
#define SINTABLE(size) \
|
774 |
SINTABLE_CONST DECLARE_ALIGNED_16(FFTSample, ff_sin_##size)[size/2] |
775 |
#define SINETABLE(size) \
|
776 |
SINETABLE_CONST DECLARE_ALIGNED_16(float, ff_sine_##size)[size] |
777 |
extern COSTABLE(16); |
778 |
extern COSTABLE(32); |
779 |
extern COSTABLE(64); |
780 |
extern COSTABLE(128); |
781 |
extern COSTABLE(256); |
782 |
extern COSTABLE(512); |
783 |
extern COSTABLE(1024); |
784 |
extern COSTABLE(2048); |
785 |
extern COSTABLE(4096); |
786 |
extern COSTABLE(8192); |
787 |
extern COSTABLE(16384); |
788 |
extern COSTABLE(32768); |
789 |
extern COSTABLE(65536); |
790 |
extern COSTABLE_CONST FFTSample* const ff_cos_tabs[17]; |
791 |
|
792 |
/**
|
793 |
* Initializes the cosine table in ff_cos_tabs[index]
|
794 |
* \param index index in ff_cos_tabs array of the table to initialize
|
795 |
*/
|
796 |
void ff_init_ff_cos_tabs(int index); |
797 |
|
798 |
extern SINTABLE(16); |
799 |
extern SINTABLE(32); |
800 |
extern SINTABLE(64); |
801 |
extern SINTABLE(128); |
802 |
extern SINTABLE(256); |
803 |
extern SINTABLE(512); |
804 |
extern SINTABLE(1024); |
805 |
extern SINTABLE(2048); |
806 |
extern SINTABLE(4096); |
807 |
extern SINTABLE(8192); |
808 |
extern SINTABLE(16384); |
809 |
extern SINTABLE(32768); |
810 |
extern SINTABLE(65536); |
811 |
|
812 |
/**
|
813 |
* Sets up a complex FFT.
|
814 |
* @param nbits log2 of the length of the input array
|
815 |
* @param inverse if 0 perform the forward transform, if 1 perform the inverse
|
816 |
*/
|
817 |
int ff_fft_init(FFTContext *s, int nbits, int inverse); |
818 |
void ff_fft_permute_c(FFTContext *s, FFTComplex *z);
|
819 |
void ff_fft_calc_c(FFTContext *s, FFTComplex *z);
|
820 |
|
821 |
void ff_fft_init_altivec(FFTContext *s);
|
822 |
void ff_fft_init_mmx(FFTContext *s);
|
823 |
void ff_fft_init_arm(FFTContext *s);
|
824 |
|
825 |
/**
|
826 |
* Do the permutation needed BEFORE calling ff_fft_calc().
|
827 |
*/
|
828 |
static inline void ff_fft_permute(FFTContext *s, FFTComplex *z) |
829 |
{ |
830 |
s->fft_permute(s, z); |
831 |
} |
832 |
/**
|
833 |
* Do a complex FFT with the parameters defined in ff_fft_init(). The
|
834 |
* input data must be permuted before. No 1.0/sqrt(n) normalization is done.
|
835 |
*/
|
836 |
static inline void ff_fft_calc(FFTContext *s, FFTComplex *z) |
837 |
{ |
838 |
s->fft_calc(s, z); |
839 |
} |
840 |
void ff_fft_end(FFTContext *s);
|
841 |
|
842 |
/* MDCT computation */
|
843 |
|
844 |
static inline void ff_imdct_calc(FFTContext *s, FFTSample *output, const FFTSample *input) |
845 |
{ |
846 |
s->imdct_calc(s, output, input); |
847 |
} |
848 |
static inline void ff_imdct_half(FFTContext *s, FFTSample *output, const FFTSample *input) |
849 |
{ |
850 |
s->imdct_half(s, output, input); |
851 |
} |
852 |
|
853 |
static inline void ff_mdct_calc(FFTContext *s, FFTSample *output, |
854 |
const FFTSample *input)
|
855 |
{ |
856 |
s->mdct_calc(s, output, input); |
857 |
} |
858 |
|
859 |
/**
|
860 |
* Generate a Kaiser-Bessel Derived Window.
|
861 |
* @param window pointer to half window
|
862 |
* @param alpha determines window shape
|
863 |
* @param n size of half window
|
864 |
*/
|
865 |
void ff_kbd_window_init(float *window, float alpha, int n); |
866 |
|
867 |
/**
|
868 |
* Generate a sine window.
|
869 |
* @param window pointer to half window
|
870 |
* @param n size of half window
|
871 |
*/
|
872 |
void ff_sine_window_init(float *window, int n); |
873 |
/**
|
874 |
* initialize the specified entry of ff_sine_windows
|
875 |
*/
|
876 |
void ff_init_ff_sine_windows(int index); |
877 |
extern SINETABLE( 32); |
878 |
extern SINETABLE( 64); |
879 |
extern SINETABLE( 128); |
880 |
extern SINETABLE( 256); |
881 |
extern SINETABLE( 512); |
882 |
extern SINETABLE(1024); |
883 |
extern SINETABLE(2048); |
884 |
extern SINETABLE(4096); |
885 |
extern SINETABLE_CONST float * const ff_sine_windows[13]; |
886 |
|
887 |
int ff_mdct_init(FFTContext *s, int nbits, int inverse, double scale); |
888 |
void ff_imdct_calc_c(FFTContext *s, FFTSample *output, const FFTSample *input); |
889 |
void ff_imdct_half_c(FFTContext *s, FFTSample *output, const FFTSample *input); |
890 |
void ff_mdct_calc_c(FFTContext *s, FFTSample *output, const FFTSample *input); |
891 |
void ff_mdct_end(FFTContext *s);
|
892 |
|
893 |
/* Real Discrete Fourier Transform */
|
894 |
|
895 |
enum RDFTransformType {
|
896 |
RDFT, |
897 |
IRDFT, |
898 |
RIDFT, |
899 |
IRIDFT, |
900 |
}; |
901 |
|
902 |
typedef struct { |
903 |
int nbits;
|
904 |
int inverse;
|
905 |
int sign_convention;
|
906 |
|
907 |
/* pre/post rotation tables */
|
908 |
const FFTSample *tcos;
|
909 |
SINTABLE_CONST FFTSample *tsin; |
910 |
FFTContext fft; |
911 |
} RDFTContext; |
912 |
|
913 |
/**
|
914 |
* Sets up a real FFT.
|
915 |
* @param nbits log2 of the length of the input array
|
916 |
* @param trans the type of transform
|
917 |
*/
|
918 |
int ff_rdft_init(RDFTContext *s, int nbits, enum RDFTransformType trans); |
919 |
void ff_rdft_calc(RDFTContext *s, FFTSample *data);
|
920 |
void ff_rdft_end(RDFTContext *s);
|
921 |
|
922 |
/* Discrete Cosine Transform */
|
923 |
|
924 |
typedef struct { |
925 |
int nbits;
|
926 |
int inverse;
|
927 |
FFTSample *data; |
928 |
RDFTContext rdft; |
929 |
const float *costab; |
930 |
FFTSample *csc2; |
931 |
} DCTContext; |
932 |
|
933 |
/**
|
934 |
* Sets up (Inverse)DCT.
|
935 |
* @param nbits log2 of the length of the input array
|
936 |
* @param inverse >0 forward transform, <0 inverse transform
|
937 |
*/
|
938 |
int ff_dct_init(DCTContext *s, int nbits, int inverse); |
939 |
void ff_dct_calc(DCTContext *s, FFTSample *data);
|
940 |
void ff_dct_end (DCTContext *s);
|
941 |
|
942 |
#define WRAPPER8_16(name8, name16)\
|
943 |
static int name16(void /*MpegEncContext*/ *s, uint8_t *dst, uint8_t *src, int stride, int h){\ |
944 |
return name8(s, dst , src , stride, h)\
|
945 |
+name8(s, dst+8 , src+8 , stride, h);\ |
946 |
} |
947 |
|
948 |
#define WRAPPER8_16_SQ(name8, name16)\
|
949 |
static int name16(void /*MpegEncContext*/ *s, uint8_t *dst, uint8_t *src, int stride, int h){\ |
950 |
int score=0;\ |
951 |
score +=name8(s, dst , src , stride, 8);\
|
952 |
score +=name8(s, dst+8 , src+8 , stride, 8);\ |
953 |
if(h==16){\ |
954 |
dst += 8*stride;\
|
955 |
src += 8*stride;\
|
956 |
score +=name8(s, dst , src , stride, 8);\
|
957 |
score +=name8(s, dst+8 , src+8 , stride, 8);\ |
958 |
}\ |
959 |
return score;\
|
960 |
} |
961 |
|
962 |
|
963 |
static inline void copy_block2(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h) |
964 |
{ |
965 |
int i;
|
966 |
for(i=0; i<h; i++) |
967 |
{ |
968 |
AV_WN16(dst , AV_RN16(src )); |
969 |
dst+=dstStride; |
970 |
src+=srcStride; |
971 |
} |
972 |
} |
973 |
|
974 |
static inline void copy_block4(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h) |
975 |
{ |
976 |
int i;
|
977 |
for(i=0; i<h; i++) |
978 |
{ |
979 |
AV_WN32(dst , AV_RN32(src )); |
980 |
dst+=dstStride; |
981 |
src+=srcStride; |
982 |
} |
983 |
} |
984 |
|
985 |
static inline void copy_block8(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h) |
986 |
{ |
987 |
int i;
|
988 |
for(i=0; i<h; i++) |
989 |
{ |
990 |
AV_WN32(dst , AV_RN32(src )); |
991 |
AV_WN32(dst+4 , AV_RN32(src+4 )); |
992 |
dst+=dstStride; |
993 |
src+=srcStride; |
994 |
} |
995 |
} |
996 |
|
997 |
static inline void copy_block9(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h) |
998 |
{ |
999 |
int i;
|
1000 |
for(i=0; i<h; i++) |
1001 |
{ |
1002 |
AV_WN32(dst , AV_RN32(src )); |
1003 |
AV_WN32(dst+4 , AV_RN32(src+4 )); |
1004 |
dst[8]= src[8]; |
1005 |
dst+=dstStride; |
1006 |
src+=srcStride; |
1007 |
} |
1008 |
} |
1009 |
|
1010 |
static inline void copy_block16(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h) |
1011 |
{ |
1012 |
int i;
|
1013 |
for(i=0; i<h; i++) |
1014 |
{ |
1015 |
AV_WN32(dst , AV_RN32(src )); |
1016 |
AV_WN32(dst+4 , AV_RN32(src+4 )); |
1017 |
AV_WN32(dst+8 , AV_RN32(src+8 )); |
1018 |
AV_WN32(dst+12, AV_RN32(src+12)); |
1019 |
dst+=dstStride; |
1020 |
src+=srcStride; |
1021 |
} |
1022 |
} |
1023 |
|
1024 |
static inline void copy_block17(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h) |
1025 |
{ |
1026 |
int i;
|
1027 |
for(i=0; i<h; i++) |
1028 |
{ |
1029 |
AV_WN32(dst , AV_RN32(src )); |
1030 |
AV_WN32(dst+4 , AV_RN32(src+4 )); |
1031 |
AV_WN32(dst+8 , AV_RN32(src+8 )); |
1032 |
AV_WN32(dst+12, AV_RN32(src+12)); |
1033 |
dst[16]= src[16]; |
1034 |
dst+=dstStride; |
1035 |
src+=srcStride; |
1036 |
} |
1037 |
} |
1038 |
|
1039 |
#endif /* AVCODEC_DSPUTIL_H */ |