Statistics
| Branch: | Revision:

ffmpeg / libavcodec / cavs.c @ 4c5ea91c

History | View | Annotate | Download (52.7 KB)

1
/*
2
 * Chinese AVS video (AVS1-P2, JiZhun profile) decoder.
3
 * Copyright (c) 2006  Stefan Gehrer <stefan.gehrer@gmx.de>
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
20
 */
21

    
22
/**
23
 * @file cavs.c
24
 * Chinese AVS video (AVS1-P2, JiZhun profile) decoder
25
 * @author Stefan Gehrer <stefan.gehrer@gmx.de>
26
 */
27

    
28
#include "avcodec.h"
29
#include "bitstream.h"
30
#include "golomb.h"
31
#include "mpegvideo.h"
32
#include "cavsdata.h"
33

    
34
#ifdef CONFIG_CAVS_DECODER
35
typedef struct {
36
    MpegEncContext s;
37
    Picture picture; ///< currently decoded frame
38
    Picture DPB[2];  ///< reference frames
39
    int dist[2];     ///< temporal distances from current frame to ref frames
40
    int profile, level;
41
    int aspect_ratio;
42
    int mb_width, mb_height;
43
    int pic_type;
44
    int progressive;
45
    int pic_structure;
46
    int skip_mode_flag; ///< select between skip_count or one skip_flag per MB
47
    int loop_filter_disable;
48
    int alpha_offset, beta_offset;
49
    int ref_flag;
50
    int mbx, mby;      ///< macroblock coordinates
51
    int flags;         ///< availability flags of neighbouring macroblocks
52
    int stc;           ///< last start code
53
    uint8_t *cy, *cu, *cv; ///< current MB sample pointers
54
    int left_qp;
55
    uint8_t *top_qp;
56

    
57
    /** mv motion vector cache
58
       0:    D3  B2  B3  C2
59
       4:    A1  X0  X1   -
60
       8:    A3  X2  X3   -
61

62
       X are the vectors in the current macroblock (5,6,9,10)
63
       A is the macroblock to the left (4,8)
64
       B is the macroblock to the top (1,2)
65
       C is the macroblock to the top-right (3)
66
       D is the macroblock to the top-left (0)
67

68
       the same is repeated for backward motion vectors */
69
    vector_t mv[2*4*3];
70
    vector_t *top_mv[2];
71
    vector_t *col_mv;
72

    
73
    /** luma pred mode cache
74
       0:    --  B2  B3
75
       3:    A1  X0  X1
76
       6:    A3  X2  X3   */
77
    int pred_mode_Y[3*3];
78
    int *top_pred_Y;
79
    int l_stride, c_stride;
80
    int luma_scan[4];
81
    int qp;
82
    int qp_fixed;
83
    int cbp;
84
    ScanTable scantable;
85

    
86
    /** intra prediction is done with un-deblocked samples
87
     they are saved here before deblocking the MB  */
88
    uint8_t *top_border_y, *top_border_u, *top_border_v;
89
    uint8_t left_border_y[26], left_border_u[10], left_border_v[10];
90
    uint8_t intern_border_y[26];
91
    uint8_t topleft_border_y, topleft_border_u, topleft_border_v;
92

    
93
    void (*intra_pred_l[8])(uint8_t *d,uint8_t *top,uint8_t *left,int stride);
94
    void (*intra_pred_c[7])(uint8_t *d,uint8_t *top,uint8_t *left,int stride);
95
    uint8_t *col_type_base;
96
    uint8_t *col_type;
97

    
98
    /* scaling factors for MV prediction */
99
    int sym_factor;    ///< for scaling in symmetrical B block
100
    int direct_den[2]; ///< for scaling in direct B block
101
    int scale_den[2];  ///< for scaling neighbouring MVs
102

    
103
    int got_keyframe;
104
    DCTELEM *block;
105
} AVSContext;
106

    
107
/*****************************************************************************
108
 *
109
 * in-loop deblocking filter
110
 *
111
 ****************************************************************************/
112

    
113
static inline int get_bs(vector_t *mvP, vector_t *mvQ, int b) {
114
    if((mvP->ref == REF_INTRA) || (mvQ->ref == REF_INTRA))
115
        return 2;
116
    if( (abs(mvP->x - mvQ->x) >= 4) ||  (abs(mvP->y - mvQ->y) >= 4) )
117
        return 1;
118
    if(b){
119
        mvP += MV_BWD_OFFS;
120
        mvQ += MV_BWD_OFFS;
121
        if( (abs(mvP->x - mvQ->x) >= 4) ||  (abs(mvP->y - mvQ->y) >= 4) )
122
            return 1;
123
    }else{
124
        if(mvP->ref != mvQ->ref)
125
            return 1;
126
    }
127
    return 0;
128
}
129

    
130
#define SET_PARAMS                                            \
131
    alpha = alpha_tab[av_clip(qp_avg + h->alpha_offset,0,63)];   \
132
    beta  =  beta_tab[av_clip(qp_avg + h->beta_offset, 0,63)];   \
133
    tc    =    tc_tab[av_clip(qp_avg + h->alpha_offset,0,63)];
134

    
135
/**
136
 * in-loop deblocking filter for a single macroblock
137
 *
138
 * boundary strength (bs) mapping:
139
 *
140
 * --4---5--
141
 * 0   2   |
142
 * | 6 | 7 |
143
 * 1   3   |
144
 * ---------
145
 *
146
 */
147
static void filter_mb(AVSContext *h, enum mb_t mb_type) {
148
    DECLARE_ALIGNED_8(uint8_t, bs[8]);
149
    int qp_avg, alpha, beta, tc;
150
    int i;
151

    
152
    /* save un-deblocked lines */
153
    h->topleft_border_y = h->top_border_y[h->mbx*16+15];
154
    h->topleft_border_u = h->top_border_u[h->mbx*10+8];
155
    h->topleft_border_v = h->top_border_v[h->mbx*10+8];
156
    memcpy(&h->top_border_y[h->mbx*16], h->cy + 15* h->l_stride,16);
157
    memcpy(&h->top_border_u[h->mbx*10+1], h->cu +  7* h->c_stride,8);
158
    memcpy(&h->top_border_v[h->mbx*10+1], h->cv +  7* h->c_stride,8);
159
    for(i=0;i<8;i++) {
160
        h->left_border_y[i*2+1] = *(h->cy + 15 + (i*2+0)*h->l_stride);
161
        h->left_border_y[i*2+2] = *(h->cy + 15 + (i*2+1)*h->l_stride);
162
        h->left_border_u[i+1] = *(h->cu + 7 + i*h->c_stride);
163
        h->left_border_v[i+1] = *(h->cv + 7 + i*h->c_stride);
164
    }
165
    if(!h->loop_filter_disable) {
166
        /* determine bs */
167
        if(mb_type == I_8X8)
168
            *((uint64_t *)bs) = 0x0202020202020202ULL;
169
        else{
170
            *((uint64_t *)bs) = 0;
171
            if(partition_flags[mb_type] & SPLITV){
172
                bs[2] = get_bs(&h->mv[MV_FWD_X0], &h->mv[MV_FWD_X1], mb_type > P_8X8);
173
                bs[3] = get_bs(&h->mv[MV_FWD_X2], &h->mv[MV_FWD_X3], mb_type > P_8X8);
174
            }
175
            if(partition_flags[mb_type] & SPLITH){
176
                bs[6] = get_bs(&h->mv[MV_FWD_X0], &h->mv[MV_FWD_X2], mb_type > P_8X8);
177
                bs[7] = get_bs(&h->mv[MV_FWD_X1], &h->mv[MV_FWD_X3], mb_type > P_8X8);
178
            }
179
            bs[0] = get_bs(&h->mv[MV_FWD_A1], &h->mv[MV_FWD_X0], mb_type > P_8X8);
180
            bs[1] = get_bs(&h->mv[MV_FWD_A3], &h->mv[MV_FWD_X2], mb_type > P_8X8);
181
            bs[4] = get_bs(&h->mv[MV_FWD_B2], &h->mv[MV_FWD_X0], mb_type > P_8X8);
182
            bs[5] = get_bs(&h->mv[MV_FWD_B3], &h->mv[MV_FWD_X1], mb_type > P_8X8);
183
        }
184
        if( *((uint64_t *)bs) ) {
185
            if(h->flags & A_AVAIL) {
186
                qp_avg = (h->qp + h->left_qp + 1) >> 1;
187
                SET_PARAMS;
188
                h->s.dsp.cavs_filter_lv(h->cy,h->l_stride,alpha,beta,tc,bs[0],bs[1]);
189
                h->s.dsp.cavs_filter_cv(h->cu,h->c_stride,alpha,beta,tc,bs[0],bs[1]);
190
                h->s.dsp.cavs_filter_cv(h->cv,h->c_stride,alpha,beta,tc,bs[0],bs[1]);
191
            }
192
            qp_avg = h->qp;
193
            SET_PARAMS;
194
            h->s.dsp.cavs_filter_lv(h->cy + 8,h->l_stride,alpha,beta,tc,bs[2],bs[3]);
195
            h->s.dsp.cavs_filter_lh(h->cy + 8*h->l_stride,h->l_stride,alpha,beta,tc,
196
                           bs[6],bs[7]);
197

    
198
            if(h->flags & B_AVAIL) {
199
                qp_avg = (h->qp + h->top_qp[h->mbx] + 1) >> 1;
200
                SET_PARAMS;
201
                h->s.dsp.cavs_filter_lh(h->cy,h->l_stride,alpha,beta,tc,bs[4],bs[5]);
202
                h->s.dsp.cavs_filter_ch(h->cu,h->c_stride,alpha,beta,tc,bs[4],bs[5]);
203
                h->s.dsp.cavs_filter_ch(h->cv,h->c_stride,alpha,beta,tc,bs[4],bs[5]);
204
            }
205
        }
206
    }
207
    h->left_qp = h->qp;
208
    h->top_qp[h->mbx] = h->qp;
209
}
210

    
211
#undef SET_PARAMS
212

    
213
/*****************************************************************************
214
 *
215
 * spatial intra prediction
216
 *
217
 ****************************************************************************/
218

    
219
static inline void load_intra_pred_luma(AVSContext *h, uint8_t *top,
220
                                        uint8_t **left, int block) {
221
    int i;
222

    
223
    switch(block) {
224
    case 0:
225
        *left = h->left_border_y;
226
        h->left_border_y[0] = h->left_border_y[1];
227
        memset(&h->left_border_y[17],h->left_border_y[16],9);
228
        memcpy(&top[1],&h->top_border_y[h->mbx*16],16);
229
        top[17] = top[16];
230
        top[0] = top[1];
231
        if((h->flags & A_AVAIL) && (h->flags & B_AVAIL))
232
            h->left_border_y[0] = top[0] = h->topleft_border_y;
233
        break;
234
    case 1:
235
        *left = h->intern_border_y;
236
        for(i=0;i<8;i++)
237
            h->intern_border_y[i+1] = *(h->cy + 7 + i*h->l_stride);
238
        memset(&h->intern_border_y[9],h->intern_border_y[8],9);
239
        h->intern_border_y[0] = h->intern_border_y[1];
240
        memcpy(&top[1],&h->top_border_y[h->mbx*16+8],8);
241
        if(h->flags & C_AVAIL)
242
            memcpy(&top[9],&h->top_border_y[(h->mbx + 1)*16],8);
243
        else
244
            memset(&top[9],top[8],9);
245
        top[17] = top[16];
246
        top[0] = top[1];
247
        if(h->flags & B_AVAIL)
248
            h->intern_border_y[0] = top[0] = h->top_border_y[h->mbx*16+7];
249
        break;
250
    case 2:
251
        *left = &h->left_border_y[8];
252
        memcpy(&top[1],h->cy + 7*h->l_stride,16);
253
        top[17] = top[16];
254
        top[0] = top[1];
255
        if(h->flags & A_AVAIL)
256
            top[0] = h->left_border_y[8];
257
        break;
258
    case 3:
259
        *left = &h->intern_border_y[8];
260
        for(i=0;i<8;i++)
261
            h->intern_border_y[i+9] = *(h->cy + 7 + (i+8)*h->l_stride);
262
        memset(&h->intern_border_y[17],h->intern_border_y[16],9);
263
        memcpy(&top[0],h->cy + 7 + 7*h->l_stride,9);
264
        memset(&top[9],top[8],9);
265
        break;
266
    }
267
}
268

    
269
static void intra_pred_vert(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
270
    int y;
271
    uint64_t a = unaligned64(&top[1]);
272
    for(y=0;y<8;y++) {
273
        *((uint64_t *)(d+y*stride)) = a;
274
    }
275
}
276

    
277
static void intra_pred_horiz(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
278
    int y;
279
    uint64_t a;
280
    for(y=0;y<8;y++) {
281
        a = left[y+1] * 0x0101010101010101ULL;
282
        *((uint64_t *)(d+y*stride)) = a;
283
    }
284
}
285

    
286
static void intra_pred_dc_128(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
287
    int y;
288
    uint64_t a = 0x8080808080808080ULL;
289
    for(y=0;y<8;y++)
290
        *((uint64_t *)(d+y*stride)) = a;
291
}
292

    
293
static void intra_pred_plane(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
294
    int x,y,ia;
295
    int ih = 0;
296
    int iv = 0;
297
    uint8_t *cm = ff_cropTbl + MAX_NEG_CROP;
298

    
299
    for(x=0; x<4; x++) {
300
        ih += (x+1)*(top[5+x]-top[3-x]);
301
        iv += (x+1)*(left[5+x]-left[3-x]);
302
    }
303
    ia = (top[8]+left[8])<<4;
304
    ih = (17*ih+16)>>5;
305
    iv = (17*iv+16)>>5;
306
    for(y=0; y<8; y++)
307
        for(x=0; x<8; x++)
308
            d[y*stride+x] = cm[(ia+(x-3)*ih+(y-3)*iv+16)>>5];
309
}
310

    
311
#define LOWPASS(ARRAY,INDEX)                                            \
312
    (( ARRAY[(INDEX)-1] + 2*ARRAY[(INDEX)] + ARRAY[(INDEX)+1] + 2) >> 2)
313

    
314
static void intra_pred_lp(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
315
    int x,y;
316
    for(y=0; y<8; y++)
317
        for(x=0; x<8; x++)
318
            d[y*stride+x] = (LOWPASS(top,x+1) + LOWPASS(left,y+1)) >> 1;
319
}
320

    
321
static void intra_pred_down_left(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
322
    int x,y;
323
    for(y=0; y<8; y++)
324
        for(x=0; x<8; x++)
325
            d[y*stride+x] = (LOWPASS(top,x+y+2) + LOWPASS(left,x+y+2)) >> 1;
326
}
327

    
328
static void intra_pred_down_right(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
329
    int x,y;
330
    for(y=0; y<8; y++)
331
        for(x=0; x<8; x++)
332
            if(x==y)
333
                d[y*stride+x] = (left[1]+2*top[0]+top[1]+2)>>2;
334
            else if(x>y)
335
                d[y*stride+x] = LOWPASS(top,x-y);
336
            else
337
                d[y*stride+x] = LOWPASS(left,y-x);
338
}
339

    
340
static void intra_pred_lp_left(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
341
    int x,y;
342
    for(y=0; y<8; y++)
343
        for(x=0; x<8; x++)
344
            d[y*stride+x] = LOWPASS(left,y+1);
345
}
346

    
347
static void intra_pred_lp_top(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
348
    int x,y;
349
    for(y=0; y<8; y++)
350
        for(x=0; x<8; x++)
351
            d[y*stride+x] = LOWPASS(top,x+1);
352
}
353

    
354
#undef LOWPASS
355

    
356
static inline void modify_pred(const int_fast8_t *mod_table, int *mode) {
357
    *mode = mod_table[*mode];
358
    if(*mode < 0) {
359
        av_log(NULL, AV_LOG_ERROR, "Illegal intra prediction mode\n");
360
        *mode = 0;
361
    }
362
}
363

    
364
/*****************************************************************************
365
 *
366
 * motion compensation
367
 *
368
 ****************************************************************************/
369

    
370
static inline void mc_dir_part(AVSContext *h,Picture *pic,int square,
371
                        int chroma_height,int delta,int list,uint8_t *dest_y,
372
                        uint8_t *dest_cb,uint8_t *dest_cr,int src_x_offset,
373
                        int src_y_offset,qpel_mc_func *qpix_op,
374
                        h264_chroma_mc_func chroma_op,vector_t *mv){
375
    MpegEncContext * const s = &h->s;
376
    const int mx= mv->x + src_x_offset*8;
377
    const int my= mv->y + src_y_offset*8;
378
    const int luma_xy= (mx&3) + ((my&3)<<2);
379
    uint8_t * src_y = pic->data[0] + (mx>>2) + (my>>2)*h->l_stride;
380
    uint8_t * src_cb= pic->data[1] + (mx>>3) + (my>>3)*h->c_stride;
381
    uint8_t * src_cr= pic->data[2] + (mx>>3) + (my>>3)*h->c_stride;
382
    int extra_width= 0; //(s->flags&CODEC_FLAG_EMU_EDGE) ? 0 : 16;
383
    int extra_height= extra_width;
384
    int emu=0;
385
    const int full_mx= mx>>2;
386
    const int full_my= my>>2;
387
    const int pic_width  = 16*h->mb_width;
388
    const int pic_height = 16*h->mb_height;
389

    
390
    if(!pic->data[0])
391
        return;
392
    if(mx&7) extra_width -= 3;
393
    if(my&7) extra_height -= 3;
394

    
395
    if(   full_mx < 0-extra_width
396
          || full_my < 0-extra_height
397
          || full_mx + 16/*FIXME*/ > pic_width + extra_width
398
          || full_my + 16/*FIXME*/ > pic_height + extra_height){
399
        ff_emulated_edge_mc(s->edge_emu_buffer, src_y - 2 - 2*h->l_stride, h->l_stride,
400
                            16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, pic_width, pic_height);
401
        src_y= s->edge_emu_buffer + 2 + 2*h->l_stride;
402
        emu=1;
403
    }
404

    
405
    qpix_op[luma_xy](dest_y, src_y, h->l_stride); //FIXME try variable height perhaps?
406
    if(!square){
407
        qpix_op[luma_xy](dest_y + delta, src_y + delta, h->l_stride);
408
    }
409

    
410
    if(emu){
411
        ff_emulated_edge_mc(s->edge_emu_buffer, src_cb, h->c_stride,
412
                            9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
413
        src_cb= s->edge_emu_buffer;
414
    }
415
    chroma_op(dest_cb, src_cb, h->c_stride, chroma_height, mx&7, my&7);
416

    
417
    if(emu){
418
        ff_emulated_edge_mc(s->edge_emu_buffer, src_cr, h->c_stride,
419
                            9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
420
        src_cr= s->edge_emu_buffer;
421
    }
422
    chroma_op(dest_cr, src_cr, h->c_stride, chroma_height, mx&7, my&7);
423
}
424

    
425
static inline void mc_part_std(AVSContext *h,int square,int chroma_height,int delta,
426
                        uint8_t *dest_y,uint8_t *dest_cb,uint8_t *dest_cr,
427
                        int x_offset, int y_offset,qpel_mc_func *qpix_put,
428
                        h264_chroma_mc_func chroma_put,qpel_mc_func *qpix_avg,
429
                        h264_chroma_mc_func chroma_avg, vector_t *mv){
430
    qpel_mc_func *qpix_op=  qpix_put;
431
    h264_chroma_mc_func chroma_op= chroma_put;
432

    
433
    dest_y  += 2*x_offset + 2*y_offset*h->l_stride;
434
    dest_cb +=   x_offset +   y_offset*h->c_stride;
435
    dest_cr +=   x_offset +   y_offset*h->c_stride;
436
    x_offset += 8*h->mbx;
437
    y_offset += 8*h->mby;
438

    
439
    if(mv->ref >= 0){
440
        Picture *ref= &h->DPB[mv->ref];
441
        mc_dir_part(h, ref, square, chroma_height, delta, 0,
442
                    dest_y, dest_cb, dest_cr, x_offset, y_offset,
443
                    qpix_op, chroma_op, mv);
444

    
445
        qpix_op=  qpix_avg;
446
        chroma_op= chroma_avg;
447
    }
448

    
449
    if((mv+MV_BWD_OFFS)->ref >= 0){
450
        Picture *ref= &h->DPB[0];
451
        mc_dir_part(h, ref, square, chroma_height, delta, 1,
452
                    dest_y, dest_cb, dest_cr, x_offset, y_offset,
453
                    qpix_op, chroma_op, mv+MV_BWD_OFFS);
454
    }
455
}
456

    
457
static void inter_pred(AVSContext *h, enum mb_t mb_type) {
458
    if(partition_flags[mb_type] == 0){ // 16x16
459
        mc_part_std(h, 1, 8, 0, h->cy, h->cu, h->cv, 0, 0,
460
                h->s.dsp.put_cavs_qpel_pixels_tab[0],
461
                h->s.dsp.put_h264_chroma_pixels_tab[0],
462
                h->s.dsp.avg_cavs_qpel_pixels_tab[0],
463
                h->s.dsp.avg_h264_chroma_pixels_tab[0],&h->mv[MV_FWD_X0]);
464
    }else{
465
        mc_part_std(h, 1, 4, 0, h->cy, h->cu, h->cv, 0, 0,
466
                h->s.dsp.put_cavs_qpel_pixels_tab[1],
467
                h->s.dsp.put_h264_chroma_pixels_tab[1],
468
                h->s.dsp.avg_cavs_qpel_pixels_tab[1],
469
                h->s.dsp.avg_h264_chroma_pixels_tab[1],&h->mv[MV_FWD_X0]);
470
        mc_part_std(h, 1, 4, 0, h->cy, h->cu, h->cv, 4, 0,
471
                h->s.dsp.put_cavs_qpel_pixels_tab[1],
472
                h->s.dsp.put_h264_chroma_pixels_tab[1],
473
                h->s.dsp.avg_cavs_qpel_pixels_tab[1],
474
                h->s.dsp.avg_h264_chroma_pixels_tab[1],&h->mv[MV_FWD_X1]);
475
        mc_part_std(h, 1, 4, 0, h->cy, h->cu, h->cv, 0, 4,
476
                h->s.dsp.put_cavs_qpel_pixels_tab[1],
477
                h->s.dsp.put_h264_chroma_pixels_tab[1],
478
                h->s.dsp.avg_cavs_qpel_pixels_tab[1],
479
                h->s.dsp.avg_h264_chroma_pixels_tab[1],&h->mv[MV_FWD_X2]);
480
        mc_part_std(h, 1, 4, 0, h->cy, h->cu, h->cv, 4, 4,
481
                h->s.dsp.put_cavs_qpel_pixels_tab[1],
482
                h->s.dsp.put_h264_chroma_pixels_tab[1],
483
                h->s.dsp.avg_cavs_qpel_pixels_tab[1],
484
                h->s.dsp.avg_h264_chroma_pixels_tab[1],&h->mv[MV_FWD_X3]);
485
    }
486
    /* set intra prediction modes to default values */
487
    h->pred_mode_Y[3] =  h->pred_mode_Y[6] = INTRA_L_LP;
488
    h->top_pred_Y[h->mbx*2+0] = h->top_pred_Y[h->mbx*2+1] = INTRA_L_LP;
489
}
490

    
491
/*****************************************************************************
492
 *
493
 * motion vector prediction
494
 *
495
 ****************************************************************************/
496

    
497
static inline void set_mvs(vector_t *mv, enum block_t size) {
498
    switch(size) {
499
    case BLK_16X16:
500
        mv[MV_STRIDE  ] = mv[0];
501
        mv[MV_STRIDE+1] = mv[0];
502
    case BLK_16X8:
503
        mv[1] = mv[0];
504
        break;
505
    case BLK_8X16:
506
        mv[MV_STRIDE] = mv[0];
507
        break;
508
    }
509
}
510

    
511
static inline void store_mvs(AVSContext *h) {
512
    h->col_mv[(h->mby*h->mb_width + h->mbx)*4 + 0] = h->mv[MV_FWD_X0];
513
    h->col_mv[(h->mby*h->mb_width + h->mbx)*4 + 1] = h->mv[MV_FWD_X1];
514
    h->col_mv[(h->mby*h->mb_width + h->mbx)*4 + 2] = h->mv[MV_FWD_X2];
515
    h->col_mv[(h->mby*h->mb_width + h->mbx)*4 + 3] = h->mv[MV_FWD_X3];
516
}
517

    
518
static inline void scale_mv(AVSContext *h, int *d_x, int *d_y, vector_t *src, int distp) {
519
    int den = h->scale_den[src->ref];
520

    
521
    *d_x = (src->x*distp*den + 256 + (src->x>>31)) >> 9;
522
    *d_y = (src->y*distp*den + 256 + (src->y>>31)) >> 9;
523
}
524

    
525
static inline void mv_pred_median(AVSContext *h, vector_t *mvP, vector_t *mvA, vector_t *mvB, vector_t *mvC) {
526
    int ax, ay, bx, by, cx, cy;
527
    int len_ab, len_bc, len_ca, len_mid;
528

    
529
    /* scale candidates according to their temporal span */
530
    scale_mv(h, &ax, &ay, mvA, mvP->dist);
531
    scale_mv(h, &bx, &by, mvB, mvP->dist);
532
    scale_mv(h, &cx, &cy, mvC, mvP->dist);
533
    /* find the geometrical median of the three candidates */
534
    len_ab = abs(ax - bx) + abs(ay - by);
535
    len_bc = abs(bx - cx) + abs(by - cy);
536
    len_ca = abs(cx - ax) + abs(cy - ay);
537
    len_mid = mid_pred(len_ab, len_bc, len_ca);
538
    if(len_mid == len_ab) {
539
        mvP->x = cx;
540
        mvP->y = cy;
541
    } else if(len_mid == len_bc) {
542
        mvP->x = ax;
543
        mvP->y = ay;
544
    } else {
545
        mvP->x = bx;
546
        mvP->y = by;
547
    }
548
}
549

    
550
static inline void mv_pred_direct(AVSContext *h, vector_t *pmv_fw,
551
                                  vector_t *col_mv) {
552
    vector_t *pmv_bw = pmv_fw + MV_BWD_OFFS;
553
    int den = h->direct_den[col_mv->ref];
554
    int m = col_mv->x >> 31;
555

    
556
    pmv_fw->dist = h->dist[1];
557
    pmv_bw->dist = h->dist[0];
558
    pmv_fw->ref = 1;
559
    pmv_bw->ref = 0;
560
    /* scale the co-located motion vector according to its temporal span */
561
    pmv_fw->x = (((den+(den*col_mv->x*pmv_fw->dist^m)-m-1)>>14)^m)-m;
562
    pmv_bw->x = m-(((den+(den*col_mv->x*pmv_bw->dist^m)-m-1)>>14)^m);
563
    m = col_mv->y >> 31;
564
    pmv_fw->y = (((den+(den*col_mv->y*pmv_fw->dist^m)-m-1)>>14)^m)-m;
565
    pmv_bw->y = m-(((den+(den*col_mv->y*pmv_bw->dist^m)-m-1)>>14)^m);
566
}
567

    
568
static inline void mv_pred_sym(AVSContext *h, vector_t *src, enum block_t size) {
569
    vector_t *dst = src + MV_BWD_OFFS;
570

    
571
    /* backward mv is the scaled and negated forward mv */
572
    dst->x = -((src->x * h->sym_factor + 256) >> 9);
573
    dst->y = -((src->y * h->sym_factor + 256) >> 9);
574
    dst->ref = 0;
575
    dst->dist = h->dist[0];
576
    set_mvs(dst, size);
577
}
578

    
579
static void mv_pred(AVSContext *h, enum mv_loc_t nP, enum mv_loc_t nC,
580
                    enum mv_pred_t mode, enum block_t size, int ref) {
581
    vector_t *mvP = &h->mv[nP];
582
    vector_t *mvA = &h->mv[nP-1];
583
    vector_t *mvB = &h->mv[nP-4];
584
    vector_t *mvC = &h->mv[nC];
585
    const vector_t *mvP2 = NULL;
586

    
587
    mvP->ref = ref;
588
    mvP->dist = h->dist[mvP->ref];
589
    if(mvC->ref == NOT_AVAIL)
590
        mvC = &h->mv[nP-5]; // set to top-left (mvD)
591
    if((mode == MV_PRED_PSKIP) &&
592
       ((mvA->ref == NOT_AVAIL) || (mvB->ref == NOT_AVAIL) ||
593
           ((mvA->x | mvA->y | mvA->ref) == 0)  ||
594
           ((mvB->x | mvB->y | mvB->ref) == 0) )) {
595
        mvP2 = &un_mv;
596
    /* if there is only one suitable candidate, take it */
597
    } else if((mvA->ref >= 0) && (mvB->ref < 0) && (mvC->ref < 0)) {
598
        mvP2= mvA;
599
    } else if((mvA->ref < 0) && (mvB->ref >= 0) && (mvC->ref < 0)) {
600
        mvP2= mvB;
601
    } else if((mvA->ref < 0) && (mvB->ref < 0) && (mvC->ref >= 0)) {
602
        mvP2= mvC;
603
    } else if(mode == MV_PRED_LEFT     && mvA->ref == ref){
604
        mvP2= mvA;
605
    } else if(mode == MV_PRED_TOP      && mvB->ref == ref){
606
        mvP2= mvB;
607
    } else if(mode == MV_PRED_TOPRIGHT && mvC->ref == ref){
608
        mvP2= mvC;
609
    }
610
    if(mvP2){
611
        mvP->x = mvP2->x;
612
        mvP->y = mvP2->y;
613
    }else
614
        mv_pred_median(h, mvP, mvA, mvB, mvC);
615

    
616
    if(mode < MV_PRED_PSKIP) {
617
        mvP->x += get_se_golomb(&h->s.gb);
618
        mvP->y += get_se_golomb(&h->s.gb);
619
    }
620
    set_mvs(mvP,size);
621
}
622

    
623
/*****************************************************************************
624
 *
625
 * residual data decoding
626
 *
627
 ****************************************************************************/
628

    
629
/** kth-order exponential golomb code */
630
static inline int get_ue_code(GetBitContext *gb, int order) {
631
    if(order) {
632
        int ret = get_ue_golomb(gb) << order;
633
        return ret + get_bits(gb,order);
634
    }
635
    return get_ue_golomb(gb);
636
}
637

    
638
/**
639
 * decode coefficients from one 8x8 block, dequantize, inverse transform
640
 *  and add them to sample block
641
 * @param r pointer to 2D VLC table
642
 * @param esc_golomb_order escape codes are k-golomb with this order k
643
 * @param qp quantizer
644
 * @param dst location of sample block
645
 * @param stride line stride in frame buffer
646
 */
647
static int decode_residual_block(AVSContext *h, GetBitContext *gb,
648
                                 const residual_vlc_t *r, int esc_golomb_order,
649
                                 int qp, uint8_t *dst, int stride) {
650
    int i,pos = -1;
651
    int level_code, esc_code, level, run, mask;
652
    int level_buf[64];
653
    int run_buf[64];
654
    int dqm = dequant_mul[qp];
655
    int dqs = dequant_shift[qp];
656
    int dqa = 1 << (dqs - 1);
657
    const uint8_t *scantab = h->scantable.permutated;
658
    DCTELEM *block = h->block;
659

    
660
    for(i=0;i<65;i++) {
661
        level_code = get_ue_code(gb,r->golomb_order);
662
        if(level_code >= ESCAPE_CODE) {
663
            run = ((level_code - ESCAPE_CODE) >> 1) + 1;
664
            esc_code = get_ue_code(gb,esc_golomb_order);
665
            level = esc_code + (run > r->max_run ? 1 : r->level_add[run]);
666
            while(level > r->inc_limit)
667
                r++;
668
            mask = -(level_code & 1);
669
            level = (level^mask) - mask;
670
        } else {
671
            level = r->rltab[level_code][0];
672
            if(!level) //end of block signal
673
                break;
674
            run   = r->rltab[level_code][1];
675
            r += r->rltab[level_code][2];
676
        }
677
        level_buf[i] = level;
678
        run_buf[i] = run;
679
    }
680
    /* inverse scan and dequantization */
681
    while(--i >= 0){
682
        pos += run_buf[i];
683
        if(pos > 63) {
684
            av_log(h->s.avctx, AV_LOG_ERROR,
685
                   "position out of block bounds at pic %d MB(%d,%d)\n",
686
                   h->picture.poc, h->mbx, h->mby);
687
            return -1;
688
        }
689
        block[scantab[pos]] = (level_buf[i]*dqm + dqa) >> dqs;
690
    }
691
    h->s.dsp.cavs_idct8_add(dst,block,stride);
692
    return 0;
693
}
694

    
695

    
696
static inline void decode_residual_chroma(AVSContext *h) {
697
    if(h->cbp & (1<<4))
698
        decode_residual_block(h,&h->s.gb,chroma_2dvlc,0, chroma_qp[h->qp],
699
                              h->cu,h->c_stride);
700
    if(h->cbp & (1<<5))
701
        decode_residual_block(h,&h->s.gb,chroma_2dvlc,0, chroma_qp[h->qp],
702
                              h->cv,h->c_stride);
703
}
704

    
705
static inline int decode_residual_inter(AVSContext *h) {
706
    int block;
707

    
708
    /* get coded block pattern */
709
    int cbp= get_ue_golomb(&h->s.gb);
710
    if(cbp > 63){
711
        av_log(h->s.avctx, AV_LOG_ERROR, "illegal inter cbp\n");
712
        return -1;
713
    }
714
    h->cbp = cbp_tab[cbp][1];
715

    
716
    /* get quantizer */
717
    if(h->cbp && !h->qp_fixed)
718
        h->qp = (h->qp + get_se_golomb(&h->s.gb)) & 63;
719
    for(block=0;block<4;block++)
720
        if(h->cbp & (1<<block))
721
            decode_residual_block(h,&h->s.gb,inter_2dvlc,0,h->qp,
722
                                  h->cy + h->luma_scan[block], h->l_stride);
723
    decode_residual_chroma(h);
724

    
725
    return 0;
726
}
727

    
728
/*****************************************************************************
729
 *
730
 * macroblock level
731
 *
732
 ****************************************************************************/
733

    
734
/**
735
 * initialise predictors for motion vectors and intra prediction
736
 */
737
static inline void init_mb(AVSContext *h) {
738
    int i;
739

    
740
    /* copy predictors from top line (MB B and C) into cache */
741
    for(i=0;i<3;i++) {
742
        h->mv[MV_FWD_B2+i] = h->top_mv[0][h->mbx*2+i];
743
        h->mv[MV_BWD_B2+i] = h->top_mv[1][h->mbx*2+i];
744
    }
745
    h->pred_mode_Y[1] = h->top_pred_Y[h->mbx*2+0];
746
    h->pred_mode_Y[2] = h->top_pred_Y[h->mbx*2+1];
747
    /* clear top predictors if MB B is not available */
748
    if(!(h->flags & B_AVAIL)) {
749
        h->mv[MV_FWD_B2] = un_mv;
750
        h->mv[MV_FWD_B3] = un_mv;
751
        h->mv[MV_BWD_B2] = un_mv;
752
        h->mv[MV_BWD_B3] = un_mv;
753
        h->pred_mode_Y[1] = h->pred_mode_Y[2] = NOT_AVAIL;
754
        h->flags &= ~(C_AVAIL|D_AVAIL);
755
    } else if(h->mbx) {
756
        h->flags |= D_AVAIL;
757
    }
758
    if(h->mbx == h->mb_width-1) //MB C not available
759
        h->flags &= ~C_AVAIL;
760
    /* clear top-right predictors if MB C is not available */
761
    if(!(h->flags & C_AVAIL)) {
762
        h->mv[MV_FWD_C2] = un_mv;
763
        h->mv[MV_BWD_C2] = un_mv;
764
    }
765
    /* clear top-left predictors if MB D is not available */
766
    if(!(h->flags & D_AVAIL)) {
767
        h->mv[MV_FWD_D3] = un_mv;
768
        h->mv[MV_BWD_D3] = un_mv;
769
    }
770
    /* set pointer for co-located macroblock type */
771
    h->col_type = &h->col_type_base[h->mby*h->mb_width + h->mbx];
772
}
773

    
774
static inline void check_for_slice(AVSContext *h);
775

    
776
/**
777
 * save predictors for later macroblocks and increase
778
 * macroblock address
779
 * @returns 0 if end of frame is reached, 1 otherwise
780
 */
781
static inline int next_mb(AVSContext *h) {
782
    int i;
783

    
784
    h->flags |= A_AVAIL;
785
    h->cy += 16;
786
    h->cu += 8;
787
    h->cv += 8;
788
    /* copy mvs as predictors to the left */
789
    for(i=0;i<=20;i+=4)
790
        h->mv[i] = h->mv[i+2];
791
    /* copy bottom mvs from cache to top line */
792
    h->top_mv[0][h->mbx*2+0] = h->mv[MV_FWD_X2];
793
    h->top_mv[0][h->mbx*2+1] = h->mv[MV_FWD_X3];
794
    h->top_mv[1][h->mbx*2+0] = h->mv[MV_BWD_X2];
795
    h->top_mv[1][h->mbx*2+1] = h->mv[MV_BWD_X3];
796
    /* next MB address */
797
    h->mbx++;
798
    if(h->mbx == h->mb_width) { //new mb line
799
        h->flags = B_AVAIL|C_AVAIL;
800
        /* clear left pred_modes */
801
        h->pred_mode_Y[3] = h->pred_mode_Y[6] = NOT_AVAIL;
802
        /* clear left mv predictors */
803
        for(i=0;i<=20;i+=4)
804
            h->mv[i] = un_mv;
805
        h->mbx = 0;
806
        h->mby++;
807
        /* re-calculate sample pointers */
808
        h->cy = h->picture.data[0] + h->mby*16*h->l_stride;
809
        h->cu = h->picture.data[1] + h->mby*8*h->c_stride;
810
        h->cv = h->picture.data[2] + h->mby*8*h->c_stride;
811
        if(h->mby == h->mb_height) { //frame end
812
            return 0;
813
        } else {
814
            //check_for_slice(h);
815
        }
816
    }
817
    return 1;
818
}
819

    
820
static int decode_mb_i(AVSContext *h, int cbp_code) {
821
    GetBitContext *gb = &h->s.gb;
822
    int block, pred_mode_uv;
823
    uint8_t top[18];
824
    uint8_t *left = NULL;
825
    uint8_t *d;
826

    
827
    init_mb(h);
828

    
829
    /* get intra prediction modes from stream */
830
    for(block=0;block<4;block++) {
831
        int nA,nB,predpred;
832
        int pos = scan3x3[block];
833

    
834
        nA = h->pred_mode_Y[pos-1];
835
        nB = h->pred_mode_Y[pos-3];
836
        predpred = FFMIN(nA,nB);
837
        if(predpred == NOT_AVAIL) // if either is not available
838
            predpred = INTRA_L_LP;
839
        if(!get_bits1(gb)){
840
            int rem_mode= get_bits(gb, 2);
841
            predpred = rem_mode + (rem_mode >= predpred);
842
        }
843
        h->pred_mode_Y[pos] = predpred;
844
    }
845
    pred_mode_uv = get_ue_golomb(gb);
846
    if(pred_mode_uv > 6) {
847
        av_log(h->s.avctx, AV_LOG_ERROR, "illegal intra chroma pred mode\n");
848
        return -1;
849
    }
850

    
851
    /* save pred modes before they get modified */
852
    h->pred_mode_Y[3] =  h->pred_mode_Y[5];
853
    h->pred_mode_Y[6] =  h->pred_mode_Y[8];
854
    h->top_pred_Y[h->mbx*2+0] = h->pred_mode_Y[7];
855
    h->top_pred_Y[h->mbx*2+1] = h->pred_mode_Y[8];
856

    
857
    /* modify pred modes according to availability of neighbour samples */
858
    if(!(h->flags & A_AVAIL)) {
859
        modify_pred(left_modifier_l, &h->pred_mode_Y[4] );
860
        modify_pred(left_modifier_l, &h->pred_mode_Y[7] );
861
        modify_pred(left_modifier_c, &pred_mode_uv );
862
    }
863
    if(!(h->flags & B_AVAIL)) {
864
        modify_pred(top_modifier_l, &h->pred_mode_Y[4] );
865
        modify_pred(top_modifier_l, &h->pred_mode_Y[5] );
866
        modify_pred(top_modifier_c, &pred_mode_uv );
867
    }
868

    
869
    /* get coded block pattern */
870
    if(h->pic_type == FF_I_TYPE)
871
        cbp_code = get_ue_golomb(gb);
872
    if(cbp_code > 63){
873
        av_log(h->s.avctx, AV_LOG_ERROR, "illegal intra cbp\n");
874
        return -1;
875
    }
876
    h->cbp = cbp_tab[cbp_code][0];
877
    if(h->cbp && !h->qp_fixed)
878
        h->qp = (h->qp + get_se_golomb(gb)) & 63; //qp_delta
879

    
880
    /* luma intra prediction interleaved with residual decode/transform/add */
881
    for(block=0;block<4;block++) {
882
        d = h->cy + h->luma_scan[block];
883
        load_intra_pred_luma(h, top, &left, block);
884
        h->intra_pred_l[h->pred_mode_Y[scan3x3[block]]]
885
            (d, top, left, h->l_stride);
886
        if(h->cbp & (1<<block))
887
            decode_residual_block(h,gb,intra_2dvlc,1,h->qp,d,h->l_stride);
888
    }
889

    
890
    /* chroma intra prediction */
891
    /* extend borders by one pixel */
892
    h->left_border_u[9] = h->left_border_u[8];
893
    h->left_border_v[9] = h->left_border_v[8];
894
    h->top_border_u[h->mbx*10+9] = h->top_border_u[h->mbx*10+8];
895
    h->top_border_v[h->mbx*10+9] = h->top_border_v[h->mbx*10+8];
896
    if(h->mbx && h->mby) {
897
        h->top_border_u[h->mbx*10] = h->left_border_u[0] = h->topleft_border_u;
898
        h->top_border_v[h->mbx*10] = h->left_border_v[0] = h->topleft_border_v;
899
    } else {
900
        h->left_border_u[0] = h->left_border_u[1];
901
        h->left_border_v[0] = h->left_border_v[1];
902
        h->top_border_u[h->mbx*10] = h->top_border_u[h->mbx*10+1];
903
        h->top_border_v[h->mbx*10] = h->top_border_v[h->mbx*10+1];
904
    }
905
    h->intra_pred_c[pred_mode_uv](h->cu, &h->top_border_u[h->mbx*10],
906
                                  h->left_border_u, h->c_stride);
907
    h->intra_pred_c[pred_mode_uv](h->cv, &h->top_border_v[h->mbx*10],
908
                                  h->left_border_v, h->c_stride);
909

    
910
    decode_residual_chroma(h);
911
    filter_mb(h,I_8X8);
912

    
913
    /* mark motion vectors as intra */
914
    h->mv[MV_FWD_X0] = intra_mv;
915
    set_mvs(&h->mv[MV_FWD_X0], BLK_16X16);
916
    h->mv[MV_BWD_X0] = intra_mv;
917
    set_mvs(&h->mv[MV_BWD_X0], BLK_16X16);
918
    if(h->pic_type != FF_B_TYPE)
919
        *h->col_type = I_8X8;
920

    
921
    return 0;
922
}
923

    
924
static void decode_mb_p(AVSContext *h, enum mb_t mb_type) {
925
    GetBitContext *gb = &h->s.gb;
926
    int ref[4];
927

    
928
    init_mb(h);
929
    switch(mb_type) {
930
    case P_SKIP:
931
        mv_pred(h, MV_FWD_X0, MV_FWD_C2, MV_PRED_PSKIP, BLK_16X16, 0);
932
        break;
933
    case P_16X16:
934
        ref[0] = h->ref_flag ? 0 : get_bits1(gb);
935
        mv_pred(h, MV_FWD_X0, MV_FWD_C2, MV_PRED_MEDIAN,   BLK_16X16,ref[0]);
936
        break;
937
    case P_16X8:
938
        ref[0] = h->ref_flag ? 0 : get_bits1(gb);
939
        ref[2] = h->ref_flag ? 0 : get_bits1(gb);
940
        mv_pred(h, MV_FWD_X0, MV_FWD_C2, MV_PRED_TOP,      BLK_16X8, ref[0]);
941
        mv_pred(h, MV_FWD_X2, MV_FWD_A1, MV_PRED_LEFT,     BLK_16X8, ref[2]);
942
        break;
943
    case P_8X16:
944
        ref[0] = h->ref_flag ? 0 : get_bits1(gb);
945
        ref[1] = h->ref_flag ? 0 : get_bits1(gb);
946
        mv_pred(h, MV_FWD_X0, MV_FWD_B3, MV_PRED_LEFT,     BLK_8X16, ref[0]);
947
        mv_pred(h, MV_FWD_X1, MV_FWD_C2, MV_PRED_TOPRIGHT, BLK_8X16, ref[1]);
948
        break;
949
    case P_8X8:
950
        ref[0] = h->ref_flag ? 0 : get_bits1(gb);
951
        ref[1] = h->ref_flag ? 0 : get_bits1(gb);
952
        ref[2] = h->ref_flag ? 0 : get_bits1(gb);
953
        ref[3] = h->ref_flag ? 0 : get_bits1(gb);
954
        mv_pred(h, MV_FWD_X0, MV_FWD_B3, MV_PRED_MEDIAN,   BLK_8X8, ref[0]);
955
        mv_pred(h, MV_FWD_X1, MV_FWD_C2, MV_PRED_MEDIAN,   BLK_8X8, ref[1]);
956
        mv_pred(h, MV_FWD_X2, MV_FWD_X1, MV_PRED_MEDIAN,   BLK_8X8, ref[2]);
957
        mv_pred(h, MV_FWD_X3, MV_FWD_X0, MV_PRED_MEDIAN,   BLK_8X8, ref[3]);
958
    }
959
    inter_pred(h, mb_type);
960
    store_mvs(h);
961
    if(mb_type != P_SKIP)
962
        decode_residual_inter(h);
963
    filter_mb(h,mb_type);
964
    *h->col_type = mb_type;
965
}
966

    
967
static void decode_mb_b(AVSContext *h, enum mb_t mb_type) {
968
    int block;
969
    enum sub_mb_t sub_type[4];
970
    int flags;
971

    
972
    init_mb(h);
973

    
974
    /* reset all MVs */
975
    h->mv[MV_FWD_X0] = dir_mv;
976
    set_mvs(&h->mv[MV_FWD_X0], BLK_16X16);
977
    h->mv[MV_BWD_X0] = dir_mv;
978
    set_mvs(&h->mv[MV_BWD_X0], BLK_16X16);
979
    switch(mb_type) {
980
    case B_SKIP:
981
    case B_DIRECT:
982
        if(!(*h->col_type)) {
983
            /* intra MB at co-location, do in-plane prediction */
984
            mv_pred(h, MV_FWD_X0, MV_FWD_C2, MV_PRED_BSKIP, BLK_16X16, 1);
985
            mv_pred(h, MV_BWD_X0, MV_BWD_C2, MV_PRED_BSKIP, BLK_16X16, 0);
986
        } else
987
            /* direct prediction from co-located P MB, block-wise */
988
            for(block=0;block<4;block++)
989
                mv_pred_direct(h,&h->mv[mv_scan[block]],
990
                            &h->col_mv[(h->mby*h->mb_width+h->mbx)*4 + block]);
991
        break;
992
    case B_FWD_16X16:
993
        mv_pred(h, MV_FWD_X0, MV_FWD_C2, MV_PRED_MEDIAN, BLK_16X16, 1);
994
        break;
995
    case B_SYM_16X16:
996
        mv_pred(h, MV_FWD_X0, MV_FWD_C2, MV_PRED_MEDIAN, BLK_16X16, 1);
997
        mv_pred_sym(h, &h->mv[MV_FWD_X0], BLK_16X16);
998
        break;
999
    case B_BWD_16X16:
1000
        mv_pred(h, MV_BWD_X0, MV_BWD_C2, MV_PRED_MEDIAN, BLK_16X16, 0);
1001
        break;
1002
    case B_8X8:
1003
        for(block=0;block<4;block++)
1004
            sub_type[block] = get_bits(&h->s.gb,2);
1005
        for(block=0;block<4;block++) {
1006
            switch(sub_type[block]) {
1007
            case B_SUB_DIRECT:
1008
                if(!(*h->col_type)) {
1009
                    /* intra MB at co-location, do in-plane prediction */
1010
                    mv_pred(h, mv_scan[block], mv_scan[block]-3,
1011
                            MV_PRED_BSKIP, BLK_8X8, 1);
1012
                    mv_pred(h, mv_scan[block]+MV_BWD_OFFS,
1013
                            mv_scan[block]-3+MV_BWD_OFFS,
1014
                            MV_PRED_BSKIP, BLK_8X8, 0);
1015
                } else
1016
                    mv_pred_direct(h,&h->mv[mv_scan[block]],
1017
                                   &h->col_mv[(h->mby*h->mb_width + h->mbx)*4 + block]);
1018
                break;
1019
            case B_SUB_FWD:
1020
                mv_pred(h, mv_scan[block], mv_scan[block]-3,
1021
                        MV_PRED_MEDIAN, BLK_8X8, 1);
1022
                break;
1023
            case B_SUB_SYM:
1024
                mv_pred(h, mv_scan[block], mv_scan[block]-3,
1025
                        MV_PRED_MEDIAN, BLK_8X8, 1);
1026
                mv_pred_sym(h, &h->mv[mv_scan[block]], BLK_8X8);
1027
                break;
1028
            }
1029
        }
1030
        for(block=0;block<4;block++) {
1031
            if(sub_type[block] == B_SUB_BWD)
1032
                mv_pred(h, mv_scan[block]+MV_BWD_OFFS,
1033
                        mv_scan[block]+MV_BWD_OFFS-3,
1034
                        MV_PRED_MEDIAN, BLK_8X8, 0);
1035
        }
1036
        break;
1037
    default:
1038
        assert((mb_type > B_SYM_16X16) && (mb_type < B_8X8));
1039
        flags = partition_flags[mb_type];
1040
        if(mb_type & 1) { /* 16x8 macroblock types */
1041
            if(flags & FWD0)
1042
                mv_pred(h, MV_FWD_X0, MV_FWD_C2, MV_PRED_TOP,  BLK_16X8, 1);
1043
            if(flags & SYM0)
1044
                mv_pred_sym(h, &h->mv[MV_FWD_X0], BLK_16X8);
1045
            if(flags & FWD1)
1046
                mv_pred(h, MV_FWD_X2, MV_FWD_A1, MV_PRED_LEFT, BLK_16X8, 1);
1047
            if(flags & SYM1)
1048
                mv_pred_sym(h, &h->mv[MV_FWD_X2], BLK_16X8);
1049
            if(flags & BWD0)
1050
                mv_pred(h, MV_BWD_X0, MV_BWD_C2, MV_PRED_TOP,  BLK_16X8, 0);
1051
            if(flags & BWD1)
1052
                mv_pred(h, MV_BWD_X2, MV_BWD_A1, MV_PRED_LEFT, BLK_16X8, 0);
1053
        } else {          /* 8x16 macroblock types */
1054
            if(flags & FWD0)
1055
                mv_pred(h, MV_FWD_X0, MV_FWD_B3, MV_PRED_LEFT, BLK_8X16, 1);
1056
            if(flags & SYM0)
1057
                mv_pred_sym(h, &h->mv[MV_FWD_X0], BLK_8X16);
1058
            if(flags & FWD1)
1059
                mv_pred(h, MV_FWD_X1, MV_FWD_C2, MV_PRED_TOPRIGHT,BLK_8X16, 1);
1060
            if(flags & SYM1)
1061
                mv_pred_sym(h, &h->mv[MV_FWD_X1], BLK_8X16);
1062
            if(flags & BWD0)
1063
                mv_pred(h, MV_BWD_X0, MV_BWD_B3, MV_PRED_LEFT, BLK_8X16, 0);
1064
            if(flags & BWD1)
1065
                mv_pred(h, MV_BWD_X1, MV_BWD_C2, MV_PRED_TOPRIGHT,BLK_8X16, 0);
1066
        }
1067
    }
1068
    inter_pred(h, mb_type);
1069
    if(mb_type != B_SKIP)
1070
        decode_residual_inter(h);
1071
    filter_mb(h,mb_type);
1072
}
1073

    
1074
/*****************************************************************************
1075
 *
1076
 * slice level
1077
 *
1078
 ****************************************************************************/
1079

    
1080
static inline int decode_slice_header(AVSContext *h, GetBitContext *gb) {
1081
    if(h->stc > 0xAF)
1082
        av_log(h->s.avctx, AV_LOG_ERROR, "unexpected start code 0x%02x\n", h->stc);
1083
    h->mby = h->stc;
1084
    if((h->mby == 0) && (!h->qp_fixed)){
1085
        h->qp_fixed = get_bits1(gb);
1086
        h->qp = get_bits(gb,6);
1087
    }
1088
    /* inter frame or second slice can have weighting params */
1089
    if((h->pic_type != FF_I_TYPE) || (!h->pic_structure && h->mby >= h->mb_width/2))
1090
        if(get_bits1(gb)) { //slice_weighting_flag
1091
            av_log(h->s.avctx, AV_LOG_ERROR,
1092
                   "weighted prediction not yet supported\n");
1093
        }
1094
    return 0;
1095
}
1096

    
1097
static inline void check_for_slice(AVSContext *h) {
1098
    GetBitContext *gb = &h->s.gb;
1099
    int align;
1100
    align = (-get_bits_count(gb)) & 7;
1101
    if((show_bits_long(gb,24+align) & 0xFFFFFF) == 0x000001) {
1102
        get_bits_long(gb,24+align);
1103
        h->stc = get_bits(gb,8);
1104
        decode_slice_header(h,gb);
1105
    }
1106
}
1107

    
1108
/*****************************************************************************
1109
 *
1110
 * frame level
1111
 *
1112
 ****************************************************************************/
1113

    
1114
static void init_pic(AVSContext *h) {
1115
    int i;
1116

    
1117
    /* clear some predictors */
1118
    for(i=0;i<=20;i+=4)
1119
        h->mv[i] = un_mv;
1120
    h->mv[MV_BWD_X0] = dir_mv;
1121
    set_mvs(&h->mv[MV_BWD_X0], BLK_16X16);
1122
    h->mv[MV_FWD_X0] = dir_mv;
1123
    set_mvs(&h->mv[MV_FWD_X0], BLK_16X16);
1124
    h->pred_mode_Y[3] = h->pred_mode_Y[6] = NOT_AVAIL;
1125
    h->cy = h->picture.data[0];
1126
    h->cu = h->picture.data[1];
1127
    h->cv = h->picture.data[2];
1128
    h->l_stride = h->picture.linesize[0];
1129
    h->c_stride = h->picture.linesize[1];
1130
    h->luma_scan[2] = 8*h->l_stride;
1131
    h->luma_scan[3] = 8*h->l_stride+8;
1132
    h->mbx = h->mby = 0;
1133
    h->flags = 0;
1134
}
1135

    
1136
static int decode_pic(AVSContext *h) {
1137
    MpegEncContext *s = &h->s;
1138
    int skip_count;
1139
    enum mb_t mb_type;
1140

    
1141
    if (!s->context_initialized) {
1142
        s->avctx->idct_algo = FF_IDCT_CAVS;
1143
        if (MPV_common_init(s) < 0)
1144
            return -1;
1145
        ff_init_scantable(s->dsp.idct_permutation,&h->scantable,ff_zigzag_direct);
1146
    }
1147
    get_bits(&s->gb,16);//bbv_dwlay
1148
    if(h->stc == PIC_PB_START_CODE) {
1149
        h->pic_type = get_bits(&s->gb,2) + FF_I_TYPE;
1150
        if(h->pic_type > FF_B_TYPE) {
1151
            av_log(s->avctx, AV_LOG_ERROR, "illegal picture type\n");
1152
            return -1;
1153
        }
1154
        /* make sure we have the reference frames we need */
1155
        if(!h->DPB[0].data[0] ||
1156
          (!h->DPB[1].data[0] && h->pic_type == FF_B_TYPE))
1157
            return -1;
1158
    } else {
1159
        h->pic_type = FF_I_TYPE;
1160
        if(get_bits1(&s->gb))
1161
            get_bits(&s->gb,16);//time_code
1162
    }
1163
    /* release last B frame */
1164
    if(h->picture.data[0])
1165
        s->avctx->release_buffer(s->avctx, (AVFrame *)&h->picture);
1166

    
1167
    s->avctx->get_buffer(s->avctx, (AVFrame *)&h->picture);
1168
    init_pic(h);
1169
    h->picture.poc = get_bits(&s->gb,8)*2;
1170

    
1171
    /* get temporal distances and MV scaling factors */
1172
    if(h->pic_type != FF_B_TYPE) {
1173
        h->dist[0] = (h->picture.poc - h->DPB[0].poc  + 512) % 512;
1174
    } else {
1175
        h->dist[0] = (h->DPB[0].poc  - h->picture.poc + 512) % 512;
1176
    }
1177
    h->dist[1] = (h->picture.poc - h->DPB[1].poc  + 512) % 512;
1178
    h->scale_den[0] = h->dist[0] ? 512/h->dist[0] : 0;
1179
    h->scale_den[1] = h->dist[1] ? 512/h->dist[1] : 0;
1180
    if(h->pic_type == FF_B_TYPE) {
1181
        h->sym_factor = h->dist[0]*h->scale_den[1];
1182
    } else {
1183
        h->direct_den[0] = h->dist[0] ? 16384/h->dist[0] : 0;
1184
        h->direct_den[1] = h->dist[1] ? 16384/h->dist[1] : 0;
1185
    }
1186

    
1187
    if(s->low_delay)
1188
        get_ue_golomb(&s->gb); //bbv_check_times
1189
    h->progressive             = get_bits1(&s->gb);
1190
    if(h->progressive)
1191
        h->pic_structure = 1;
1192
    else if(!(h->pic_structure = get_bits1(&s->gb) && (h->stc == PIC_PB_START_CODE)) )
1193
        get_bits1(&s->gb);     //advanced_pred_mode_disable
1194
    skip_bits1(&s->gb);        //top_field_first
1195
    skip_bits1(&s->gb);        //repeat_first_field
1196
    h->qp_fixed                = get_bits1(&s->gb);
1197
    h->qp                      = get_bits(&s->gb,6);
1198
    if(h->pic_type == FF_I_TYPE) {
1199
        if(!h->progressive && !h->pic_structure)
1200
            skip_bits1(&s->gb);//what is this?
1201
        skip_bits(&s->gb,4);   //reserved bits
1202
    } else {
1203
        if(!(h->pic_type == FF_B_TYPE && h->pic_structure == 1))
1204
            h->ref_flag        = get_bits1(&s->gb);
1205
        skip_bits(&s->gb,4);   //reserved bits
1206
        h->skip_mode_flag      = get_bits1(&s->gb);
1207
    }
1208
    h->loop_filter_disable     = get_bits1(&s->gb);
1209
    if(!h->loop_filter_disable && get_bits1(&s->gb)) {
1210
        h->alpha_offset        = get_se_golomb(&s->gb);
1211
        h->beta_offset         = get_se_golomb(&s->gb);
1212
    } else {
1213
        h->alpha_offset = h->beta_offset  = 0;
1214
    }
1215
    check_for_slice(h);
1216
    if(h->pic_type == FF_I_TYPE) {
1217
        do {
1218
            decode_mb_i(h, 0);
1219
        } while(next_mb(h));
1220
    } else if(h->pic_type == FF_P_TYPE) {
1221
        do {
1222
            if(h->skip_mode_flag) {
1223
                skip_count = get_ue_golomb(&s->gb);
1224
                while(skip_count--) {
1225
                    decode_mb_p(h,P_SKIP);
1226
                    if(!next_mb(h))
1227
                        goto done;
1228
                }
1229
                mb_type = get_ue_golomb(&s->gb) + P_16X16;
1230
            } else
1231
                mb_type = get_ue_golomb(&s->gb) + P_SKIP;
1232
            if(mb_type > P_8X8) {
1233
                decode_mb_i(h, mb_type - P_8X8 - 1);
1234
            } else
1235
                decode_mb_p(h,mb_type);
1236
        } while(next_mb(h));
1237
    } else { /* FF_B_TYPE */
1238
        do {
1239
            if(h->skip_mode_flag) {
1240
                skip_count = get_ue_golomb(&s->gb);
1241
                while(skip_count--) {
1242
                    decode_mb_b(h,B_SKIP);
1243
                    if(!next_mb(h))
1244
                        goto done;
1245
                }
1246
                mb_type = get_ue_golomb(&s->gb) + B_DIRECT;
1247
            } else
1248
                mb_type = get_ue_golomb(&s->gb) + B_SKIP;
1249
            if(mb_type > B_8X8) {
1250
                decode_mb_i(h, mb_type - B_8X8 - 1);
1251
            } else
1252
                decode_mb_b(h,mb_type);
1253
        } while(next_mb(h));
1254
    }
1255
 done:
1256
    if(h->pic_type != FF_B_TYPE) {
1257
        if(h->DPB[1].data[0])
1258
            s->avctx->release_buffer(s->avctx, (AVFrame *)&h->DPB[1]);
1259
        memcpy(&h->DPB[1], &h->DPB[0], sizeof(Picture));
1260
        memcpy(&h->DPB[0], &h->picture, sizeof(Picture));
1261
        memset(&h->picture,0,sizeof(Picture));
1262
    }
1263
    return 0;
1264
}
1265

    
1266
/*****************************************************************************
1267
 *
1268
 * headers and interface
1269
 *
1270
 ****************************************************************************/
1271

    
1272
/**
1273
 * some predictions require data from the top-neighbouring macroblock.
1274
 * this data has to be stored for one complete row of macroblocks
1275
 * and this storage space is allocated here
1276
 */
1277
static void init_top_lines(AVSContext *h) {
1278
    /* alloc top line of predictors */
1279
    h->top_qp       = av_malloc( h->mb_width);
1280
    h->top_mv[0]    = av_malloc((h->mb_width*2+1)*sizeof(vector_t));
1281
    h->top_mv[1]    = av_malloc((h->mb_width*2+1)*sizeof(vector_t));
1282
    h->top_pred_Y   = av_malloc( h->mb_width*2*sizeof(*h->top_pred_Y));
1283
    h->top_border_y = av_malloc((h->mb_width+1)*16);
1284
    h->top_border_u = av_malloc((h->mb_width)*10);
1285
    h->top_border_v = av_malloc((h->mb_width)*10);
1286

    
1287
    /* alloc space for co-located MVs and types */
1288
    h->col_mv       = av_malloc( h->mb_width*h->mb_height*4*sizeof(vector_t));
1289
    h->col_type_base = av_malloc(h->mb_width*h->mb_height);
1290
    h->block        = av_mallocz(64*sizeof(DCTELEM));
1291
}
1292

    
1293
static int decode_seq_header(AVSContext *h) {
1294
    MpegEncContext *s = &h->s;
1295
    int frame_rate_code;
1296

    
1297
    h->profile =         get_bits(&s->gb,8);
1298
    h->level =           get_bits(&s->gb,8);
1299
    skip_bits1(&s->gb); //progressive sequence
1300
    s->width =           get_bits(&s->gb,14);
1301
    s->height =          get_bits(&s->gb,14);
1302
    skip_bits(&s->gb,2); //chroma format
1303
    skip_bits(&s->gb,3); //sample_precision
1304
    h->aspect_ratio =    get_bits(&s->gb,4);
1305
    frame_rate_code =    get_bits(&s->gb,4);
1306
    skip_bits(&s->gb,18);//bit_rate_lower
1307
    skip_bits1(&s->gb);  //marker_bit
1308
    skip_bits(&s->gb,12);//bit_rate_upper
1309
    s->low_delay =       get_bits1(&s->gb);
1310
    h->mb_width  = (s->width  + 15) >> 4;
1311
    h->mb_height = (s->height + 15) >> 4;
1312
    h->s.avctx->time_base.den = ff_frame_rate_tab[frame_rate_code].num;
1313
    h->s.avctx->time_base.num = ff_frame_rate_tab[frame_rate_code].den;
1314
    h->s.avctx->width  = s->width;
1315
    h->s.avctx->height = s->height;
1316
    if(!h->top_qp)
1317
        init_top_lines(h);
1318
    return 0;
1319
}
1320

    
1321
static void cavs_flush(AVCodecContext * avctx) {
1322
    AVSContext *h = avctx->priv_data;
1323
    h->got_keyframe = 0;
1324
}
1325

    
1326
static int cavs_decode_frame(AVCodecContext * avctx,void *data, int *data_size,
1327
                             uint8_t * buf, int buf_size) {
1328
    AVSContext *h = avctx->priv_data;
1329
    MpegEncContext *s = &h->s;
1330
    int input_size;
1331
    const uint8_t *buf_end;
1332
    const uint8_t *buf_ptr;
1333
    AVFrame *picture = data;
1334
    uint32_t stc;
1335

    
1336
    s->avctx = avctx;
1337

    
1338
    if (buf_size == 0) {
1339
        if(!s->low_delay && h->DPB[0].data[0]) {
1340
            *data_size = sizeof(AVPicture);
1341
            *picture = *(AVFrame *) &h->DPB[0];
1342
        }
1343
        return 0;
1344
    }
1345

    
1346
    buf_ptr = buf;
1347
    buf_end = buf + buf_size;
1348
    for(;;) {
1349
        buf_ptr = ff_find_start_code(buf_ptr,buf_end, &stc);
1350
        if(stc & 0xFFFFFE00)
1351
            return FFMAX(0, buf_ptr - buf - s->parse_context.last_index);
1352
        input_size = (buf_end - buf_ptr)*8;
1353
        switch(stc) {
1354
        case CAVS_START_CODE:
1355
            init_get_bits(&s->gb, buf_ptr, input_size);
1356
            decode_seq_header(h);
1357
            break;
1358
        case PIC_I_START_CODE:
1359
            if(!h->got_keyframe) {
1360
                if(h->DPB[0].data[0])
1361
                    avctx->release_buffer(avctx, (AVFrame *)&h->DPB[0]);
1362
                if(h->DPB[1].data[0])
1363
                    avctx->release_buffer(avctx, (AVFrame *)&h->DPB[1]);
1364
                h->got_keyframe = 1;
1365
            }
1366
        case PIC_PB_START_CODE:
1367
            *data_size = 0;
1368
            if(!h->got_keyframe)
1369
                break;
1370
            init_get_bits(&s->gb, buf_ptr, input_size);
1371
            h->stc = stc;
1372
            if(decode_pic(h))
1373
                break;
1374
            *data_size = sizeof(AVPicture);
1375
            if(h->pic_type != FF_B_TYPE) {
1376
                if(h->DPB[1].data[0]) {
1377
                    *picture = *(AVFrame *) &h->DPB[1];
1378
                } else {
1379
                    *data_size = 0;
1380
                }
1381
            } else
1382
                *picture = *(AVFrame *) &h->picture;
1383
            break;
1384
        case EXT_START_CODE:
1385
            //mpeg_decode_extension(avctx,buf_ptr, input_size);
1386
            break;
1387
        case USER_START_CODE:
1388
            //mpeg_decode_user_data(avctx,buf_ptr, input_size);
1389
            break;
1390
        default:
1391
            if (stc >= SLICE_MIN_START_CODE &&
1392
                stc <= SLICE_MAX_START_CODE) {
1393
                init_get_bits(&s->gb, buf_ptr, input_size);
1394
                decode_slice_header(h, &s->gb);
1395
            }
1396
            break;
1397
        }
1398
    }
1399
}
1400

    
1401
static int cavs_decode_init(AVCodecContext * avctx) {
1402
    AVSContext *h = avctx->priv_data;
1403
    MpegEncContext * const s = &h->s;
1404

    
1405
    MPV_decode_defaults(s);
1406
    s->avctx = avctx;
1407

    
1408
    avctx->pix_fmt= PIX_FMT_YUV420P;
1409

    
1410
    h->luma_scan[0] = 0;
1411
    h->luma_scan[1] = 8;
1412
    h->intra_pred_l[      INTRA_L_VERT] = intra_pred_vert;
1413
    h->intra_pred_l[     INTRA_L_HORIZ] = intra_pred_horiz;
1414
    h->intra_pred_l[        INTRA_L_LP] = intra_pred_lp;
1415
    h->intra_pred_l[ INTRA_L_DOWN_LEFT] = intra_pred_down_left;
1416
    h->intra_pred_l[INTRA_L_DOWN_RIGHT] = intra_pred_down_right;
1417
    h->intra_pred_l[   INTRA_L_LP_LEFT] = intra_pred_lp_left;
1418
    h->intra_pred_l[    INTRA_L_LP_TOP] = intra_pred_lp_top;
1419
    h->intra_pred_l[    INTRA_L_DC_128] = intra_pred_dc_128;
1420
    h->intra_pred_c[        INTRA_C_LP] = intra_pred_lp;
1421
    h->intra_pred_c[     INTRA_C_HORIZ] = intra_pred_horiz;
1422
    h->intra_pred_c[      INTRA_C_VERT] = intra_pred_vert;
1423
    h->intra_pred_c[     INTRA_C_PLANE] = intra_pred_plane;
1424
    h->intra_pred_c[   INTRA_C_LP_LEFT] = intra_pred_lp_left;
1425
    h->intra_pred_c[    INTRA_C_LP_TOP] = intra_pred_lp_top;
1426
    h->intra_pred_c[    INTRA_C_DC_128] = intra_pred_dc_128;
1427
    h->mv[ 7] = un_mv;
1428
    h->mv[19] = un_mv;
1429
    return 0;
1430
}
1431

    
1432
static int cavs_decode_end(AVCodecContext * avctx) {
1433
    AVSContext *h = avctx->priv_data;
1434

    
1435
    av_free(h->top_qp);
1436
    av_free(h->top_mv[0]);
1437
    av_free(h->top_mv[1]);
1438
    av_free(h->top_pred_Y);
1439
    av_free(h->top_border_y);
1440
    av_free(h->top_border_u);
1441
    av_free(h->top_border_v);
1442
    av_free(h->col_mv);
1443
    av_free(h->col_type_base);
1444
    av_free(h->block);
1445
    return 0;
1446
}
1447

    
1448
AVCodec cavs_decoder = {
1449
    "cavs",
1450
    CODEC_TYPE_VIDEO,
1451
    CODEC_ID_CAVS,
1452
    sizeof(AVSContext),
1453
    cavs_decode_init,
1454
    NULL,
1455
    cavs_decode_end,
1456
    cavs_decode_frame,
1457
    CODEC_CAP_DR1 | CODEC_CAP_DELAY,
1458
    .flush= cavs_flush,
1459
};
1460
#endif /* CONFIG_CAVS_DECODER */
1461

    
1462
#ifdef CONFIG_CAVSVIDEO_PARSER
1463
/**
1464
 * finds the end of the current frame in the bitstream.
1465
 * @return the position of the first byte of the next frame, or -1
1466
 */
1467
static int cavs_find_frame_end(ParseContext *pc, const uint8_t *buf,
1468
                               int buf_size) {
1469
    int pic_found, i;
1470
    uint32_t state;
1471

    
1472
    pic_found= pc->frame_start_found;
1473
    state= pc->state;
1474

    
1475
    i=0;
1476
    if(!pic_found){
1477
        for(i=0; i<buf_size; i++){
1478
            state= (state<<8) | buf[i];
1479
            if(state == PIC_I_START_CODE || state == PIC_PB_START_CODE){
1480
                i++;
1481
                pic_found=1;
1482
                break;
1483
            }
1484
        }
1485
    }
1486

    
1487
    if(pic_found){
1488
        /* EOF considered as end of frame */
1489
        if (buf_size == 0)
1490
            return 0;
1491
        for(; i<buf_size; i++){
1492
            state= (state<<8) | buf[i];
1493
            if((state&0xFFFFFF00) == 0x100){
1494
                if(state < SLICE_MIN_START_CODE || state > SLICE_MAX_START_CODE){
1495
                    pc->frame_start_found=0;
1496
                    pc->state=-1;
1497
                    return i-3;
1498
                }
1499
            }
1500
        }
1501
    }
1502
    pc->frame_start_found= pic_found;
1503
    pc->state= state;
1504
    return END_NOT_FOUND;
1505
}
1506

    
1507
static int cavsvideo_parse(AVCodecParserContext *s,
1508
                           AVCodecContext *avctx,
1509
                           uint8_t **poutbuf, int *poutbuf_size,
1510
                           const uint8_t *buf, int buf_size)
1511
{
1512
    ParseContext *pc = s->priv_data;
1513
    int next;
1514

    
1515
    if(s->flags & PARSER_FLAG_COMPLETE_FRAMES){
1516
        next= buf_size;
1517
    }else{
1518
        next= cavs_find_frame_end(pc, buf, buf_size);
1519

    
1520
        if (ff_combine_frame(pc, next, (uint8_t **)&buf, &buf_size) < 0) {
1521
            *poutbuf = NULL;
1522
            *poutbuf_size = 0;
1523
            return buf_size;
1524
        }
1525
    }
1526
    *poutbuf = (uint8_t *)buf;
1527
    *poutbuf_size = buf_size;
1528
    return next;
1529
}
1530

    
1531
AVCodecParser cavsvideo_parser = {
1532
    { CODEC_ID_CAVS },
1533
    sizeof(ParseContext1),
1534
    NULL,
1535
    cavsvideo_parse,
1536
    ff_parse1_close,
1537
    ff_mpeg4video_split,
1538
};
1539
#endif /* CONFIG_CAVSVIDEO_PARSER */