Statistics
| Branch: | Revision:

ffmpeg / libswscale / swscale.c @ 4cedbe5c

History | View | Annotate | Download (80.7 KB)

1
/*
2
 * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
3
 *
4
 * This file is part of FFmpeg.
5
 *
6
 * FFmpeg is free software; you can redistribute it and/or modify
7
 * it under the terms of the GNU General Public License as published by
8
 * the Free Software Foundation; either version 2 of the License, or
9
 * (at your option) any later version.
10
 *
11
 * FFmpeg is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
 * GNU General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU General Public License
17
 * along with FFmpeg; if not, write to the Free Software
18
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19
 *
20
 * the C code (not assembly, mmx, ...) of the swscaler which has been written
21
 * by Michael Niedermayer can be used under the LGPL license too
22
 */
23

    
24
/*
25
  supported Input formats: YV12, I420/IYUV, YUY2, UYVY, BGR32, BGR24, BGR16, BGR15, RGB32, RGB24, Y8/Y800, YVU9/IF09
26
  supported output formats: YV12, I420/IYUV, YUY2, UYVY, {BGR,RGB}{1,4,8,15,16,24,32}, Y8/Y800, YVU9/IF09
27
  {BGR,RGB}{1,4,8,15,16} support dithering
28
  
29
  unscaled special converters (YV12=I420=IYUV, Y800=Y8)
30
  YV12 -> {BGR,RGB}{1,4,8,15,16,24,32}
31
  x -> x
32
  YUV9 -> YV12
33
  YUV9/YV12 -> Y800
34
  Y800 -> YUV9/YV12
35
  BGR24 -> BGR32 & RGB24 -> RGB32
36
  BGR32 -> BGR24 & RGB32 -> RGB24
37
  BGR15 -> BGR16
38
*/
39

    
40
/* 
41
tested special converters (most are tested actually but i didnt write it down ...)
42
 YV12 -> BGR16
43
 YV12 -> YV12
44
 BGR15 -> BGR16
45
 BGR16 -> BGR16
46
 YVU9 -> YV12
47

48
untested special converters
49
  YV12/I420 -> BGR15/BGR24/BGR32 (its the yuv2rgb stuff, so it should be ok)
50
  YV12/I420 -> YV12/I420
51
  YUY2/BGR15/BGR24/BGR32/RGB24/RGB32 -> same format
52
  BGR24 -> BGR32 & RGB24 -> RGB32
53
  BGR32 -> BGR24 & RGB32 -> RGB24
54
  BGR24 -> YV12
55
*/
56

    
57
#include <inttypes.h>
58
#include <string.h>
59
#include <math.h>
60
#include <stdio.h>
61
#include <unistd.h>
62
#include "config.h"
63
#include <assert.h>
64
#ifdef HAVE_MALLOC_H
65
#include <malloc.h>
66
#else
67
#include <stdlib.h>
68
#endif
69
#ifdef HAVE_SYS_MMAN_H
70
#include <sys/mman.h>
71
#if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
72
#define MAP_ANONYMOUS MAP_ANON
73
#endif
74
#endif
75
#include "swscale.h"
76
#include "swscale_internal.h"
77
#include "x86_cpu.h"
78
#include "bswap.h"
79
#include "rgb2rgb.h"
80
#ifdef USE_FASTMEMCPY
81
#include "libvo/fastmemcpy.h"
82
#endif
83

    
84
#undef MOVNTQ
85
#undef PAVGB
86

    
87
//#undef HAVE_MMX2
88
//#define HAVE_3DNOW
89
//#undef HAVE_MMX
90
//#undef ARCH_X86
91
//#define WORDS_BIGENDIAN
92
#define DITHER1XBPP
93

    
94
#define FAST_BGR2YV12 // use 7 bit coeffs instead of 15bit
95

    
96
#define RET 0xC3 //near return opcode for X86
97

    
98
#ifdef MP_DEBUG
99
#define ASSERT(x) assert(x);
100
#else
101
#define ASSERT(x) ;
102
#endif
103

    
104
#ifdef M_PI
105
#define PI M_PI
106
#else
107
#define PI 3.14159265358979323846
108
#endif
109

    
110
#define isSupportedIn(x)  ((x)==PIX_FMT_YUV420P || (x)==PIX_FMT_YUYV422 || (x)==PIX_FMT_UYVY422\
111
                        || (x)==PIX_FMT_RGB32|| (x)==PIX_FMT_BGR24|| (x)==PIX_FMT_BGR565|| (x)==PIX_FMT_BGR555\
112
                        || (x)==PIX_FMT_BGR32|| (x)==PIX_FMT_RGB24|| (x)==PIX_FMT_RGB565|| (x)==PIX_FMT_RGB555\
113
                        || (x)==PIX_FMT_GRAY8 || (x)==PIX_FMT_YUV410P\
114
                        || (x)==PIX_FMT_GRAY16BE || (x)==PIX_FMT_GRAY16LE\
115
                        || (x)==PIX_FMT_YUV444P || (x)==PIX_FMT_YUV422P || (x)==PIX_FMT_YUV411P)
116
#define isSupportedOut(x) ((x)==PIX_FMT_YUV420P || (x)==PIX_FMT_YUYV422 || (x)==PIX_FMT_UYVY422\
117
                        || (x)==PIX_FMT_YUV444P || (x)==PIX_FMT_YUV422P || (x)==PIX_FMT_YUV411P\
118
                        || isRGB(x) || isBGR(x)\
119
                        || (x)==PIX_FMT_NV12 || (x)==PIX_FMT_NV21\
120
                        || (x)==PIX_FMT_GRAY16BE || (x)==PIX_FMT_GRAY16LE\
121
                        || (x)==PIX_FMT_GRAY8 || (x)==PIX_FMT_YUV410P)
122
#define isPacked(x)    ((x)==PIX_FMT_YUYV422 || (x)==PIX_FMT_UYVY422 ||isRGB(x) || isBGR(x))
123

    
124
#define RGB2YUV_SHIFT 16
125
#define BY ((int)( 0.098*(1<<RGB2YUV_SHIFT)+0.5))
126
#define BV ((int)(-0.071*(1<<RGB2YUV_SHIFT)+0.5))
127
#define BU ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5))
128
#define GY ((int)( 0.504*(1<<RGB2YUV_SHIFT)+0.5))
129
#define GV ((int)(-0.368*(1<<RGB2YUV_SHIFT)+0.5))
130
#define GU ((int)(-0.291*(1<<RGB2YUV_SHIFT)+0.5))
131
#define RY ((int)( 0.257*(1<<RGB2YUV_SHIFT)+0.5))
132
#define RV ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5))
133
#define RU ((int)(-0.148*(1<<RGB2YUV_SHIFT)+0.5))
134

    
135
extern const int32_t Inverse_Table_6_9[8][4];
136

    
137
/*
138
NOTES
139
Special versions: fast Y 1:1 scaling (no interpolation in y direction)
140

141
TODO
142
more intelligent missalignment avoidance for the horizontal scaler
143
write special vertical cubic upscale version
144
Optimize C code (yv12 / minmax)
145
add support for packed pixel yuv input & output
146
add support for Y8 output
147
optimize bgr24 & bgr32
148
add BGR4 output support
149
write special BGR->BGR scaler
150
*/
151

    
152
#if defined(ARCH_X86)
153
static uint64_t attribute_used __attribute__((aligned(8))) bF8=       0xF8F8F8F8F8F8F8F8LL;
154
static uint64_t attribute_used __attribute__((aligned(8))) bFC=       0xFCFCFCFCFCFCFCFCLL;
155
static uint64_t __attribute__((aligned(8))) w10=       0x0010001000100010LL;
156
static uint64_t attribute_used __attribute__((aligned(8))) w02=       0x0002000200020002LL;
157
static uint64_t attribute_used __attribute__((aligned(8))) bm00001111=0x00000000FFFFFFFFLL;
158
static uint64_t attribute_used __attribute__((aligned(8))) bm00000111=0x0000000000FFFFFFLL;
159
static uint64_t attribute_used __attribute__((aligned(8))) bm11111000=0xFFFFFFFFFF000000LL;
160
static uint64_t attribute_used __attribute__((aligned(8))) bm01010101=0x00FF00FF00FF00FFLL;
161

    
162
static volatile uint64_t attribute_used __attribute__((aligned(8))) b5Dither;
163
static volatile uint64_t attribute_used __attribute__((aligned(8))) g5Dither;
164
static volatile uint64_t attribute_used __attribute__((aligned(8))) g6Dither;
165
static volatile uint64_t attribute_used __attribute__((aligned(8))) r5Dither;
166

    
167
static uint64_t __attribute__((aligned(8))) dither4[2]={
168
        0x0103010301030103LL,
169
        0x0200020002000200LL,};
170

    
171
static uint64_t __attribute__((aligned(8))) dither8[2]={
172
        0x0602060206020602LL,
173
        0x0004000400040004LL,};
174

    
175
static uint64_t __attribute__((aligned(8))) b16Mask=   0x001F001F001F001FLL;
176
static uint64_t attribute_used __attribute__((aligned(8))) g16Mask=   0x07E007E007E007E0LL;
177
static uint64_t attribute_used __attribute__((aligned(8))) r16Mask=   0xF800F800F800F800LL;
178
static uint64_t __attribute__((aligned(8))) b15Mask=   0x001F001F001F001FLL;
179
static uint64_t attribute_used __attribute__((aligned(8))) g15Mask=   0x03E003E003E003E0LL;
180
static uint64_t attribute_used __attribute__((aligned(8))) r15Mask=   0x7C007C007C007C00LL;
181

    
182
static uint64_t attribute_used __attribute__((aligned(8))) M24A=   0x00FF0000FF0000FFLL;
183
static uint64_t attribute_used __attribute__((aligned(8))) M24B=   0xFF0000FF0000FF00LL;
184
static uint64_t attribute_used __attribute__((aligned(8))) M24C=   0x0000FF0000FF0000LL;
185

    
186
#ifdef FAST_BGR2YV12
187
static const uint64_t bgr2YCoeff  attribute_used __attribute__((aligned(8))) = 0x000000210041000DULL;
188
static const uint64_t bgr2UCoeff  attribute_used __attribute__((aligned(8))) = 0x0000FFEEFFDC0038ULL;
189
static const uint64_t bgr2VCoeff  attribute_used __attribute__((aligned(8))) = 0x00000038FFD2FFF8ULL;
190
#else
191
static const uint64_t bgr2YCoeff  attribute_used __attribute__((aligned(8))) = 0x000020E540830C8BULL;
192
static const uint64_t bgr2UCoeff  attribute_used __attribute__((aligned(8))) = 0x0000ED0FDAC23831ULL;
193
static const uint64_t bgr2VCoeff  attribute_used __attribute__((aligned(8))) = 0x00003831D0E6F6EAULL;
194
#endif /* FAST_BGR2YV12 */
195
static const uint64_t bgr2YOffset attribute_used __attribute__((aligned(8))) = 0x1010101010101010ULL;
196
static const uint64_t bgr2UVOffset attribute_used __attribute__((aligned(8)))= 0x8080808080808080ULL;
197
static const uint64_t w1111       attribute_used __attribute__((aligned(8))) = 0x0001000100010001ULL;
198
#endif /* defined(ARCH_X86) */
199

    
200
// clipping helper table for C implementations:
201
static unsigned char clip_table[768];
202

    
203
static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b);
204
                  
205
extern const uint8_t dither_2x2_4[2][8];
206
extern const uint8_t dither_2x2_8[2][8];
207
extern const uint8_t dither_8x8_32[8][8];
208
extern const uint8_t dither_8x8_73[8][8];
209
extern const uint8_t dither_8x8_220[8][8];
210

    
211
char *sws_format_name(enum PixelFormat format)
212
{
213
    switch (format) {
214
        case PIX_FMT_YUV420P:
215
            return "yuv420p";
216
        case PIX_FMT_YUYV422:
217
            return "yuyv422";
218
        case PIX_FMT_RGB24:
219
            return "rgb24";
220
        case PIX_FMT_BGR24:
221
            return "bgr24";
222
        case PIX_FMT_YUV422P:
223
            return "yuv422p";
224
        case PIX_FMT_YUV444P:
225
            return "yuv444p";
226
        case PIX_FMT_RGB32:
227
            return "rgb32";
228
        case PIX_FMT_YUV410P:
229
            return "yuv410p";
230
        case PIX_FMT_YUV411P:
231
            return "yuv411p";
232
        case PIX_FMT_RGB565:
233
            return "rgb565";
234
        case PIX_FMT_RGB555:
235
            return "rgb555";
236
        case PIX_FMT_GRAY16BE:
237
            return "gray16be";
238
        case PIX_FMT_GRAY16LE:
239
            return "gray16le";
240
        case PIX_FMT_GRAY8:
241
            return "gray8";
242
        case PIX_FMT_MONOWHITE:
243
            return "mono white";
244
        case PIX_FMT_MONOBLACK:
245
            return "mono black";
246
        case PIX_FMT_PAL8:
247
            return "Palette";
248
        case PIX_FMT_YUVJ420P:
249
            return "yuvj420p";
250
        case PIX_FMT_YUVJ422P:
251
            return "yuvj422p";
252
        case PIX_FMT_YUVJ444P:
253
            return "yuvj444p";
254
        case PIX_FMT_XVMC_MPEG2_MC:
255
            return "xvmc_mpeg2_mc";
256
        case PIX_FMT_XVMC_MPEG2_IDCT:
257
            return "xvmc_mpeg2_idct";
258
        case PIX_FMT_UYVY422:
259
            return "uyvy422";
260
        case PIX_FMT_UYYVYY411:
261
            return "uyyvyy411";
262
        case PIX_FMT_RGB32_1:
263
            return "rgb32x";
264
        case PIX_FMT_BGR32_1:
265
            return "bgr32x";
266
        case PIX_FMT_BGR32:
267
            return "bgr32";
268
        case PIX_FMT_BGR565:
269
            return "bgr565";
270
        case PIX_FMT_BGR555:
271
            return "bgr555";
272
        case PIX_FMT_BGR8:
273
            return "bgr8";
274
        case PIX_FMT_BGR4:
275
            return "bgr4";
276
        case PIX_FMT_BGR4_BYTE:
277
            return "bgr4 byte";
278
        case PIX_FMT_RGB8:
279
            return "rgb8";
280
        case PIX_FMT_RGB4:
281
            return "rgb4";
282
        case PIX_FMT_RGB4_BYTE:
283
            return "rgb4 byte";
284
        case PIX_FMT_NV12:
285
            return "nv12";
286
        case PIX_FMT_NV21:
287
            return "nv21";
288
        default:
289
            return "Unknown format";
290
    }
291
}
292

    
293
#if defined(ARCH_X86)
294
void in_asm_used_var_warning_killer()
295
{
296
 volatile int i= bF8+bFC+w10+
297
 bm00001111+bm00000111+bm11111000+b16Mask+g16Mask+r16Mask+b15Mask+g15Mask+r15Mask+
298
 M24A+M24B+M24C+w02 + b5Dither+g5Dither+r5Dither+g6Dither+dither4[0]+dither8[0]+bm01010101;
299
 if(i) i=0;
300
}
301
#endif
302

    
303
static inline void yuv2yuvXinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
304
                                    int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
305
                                    uint8_t *dest, uint8_t *uDest, uint8_t *vDest, int dstW, int chrDstW)
306
{
307
        //FIXME Optimize (just quickly writen not opti..)
308
        int i;
309
        for(i=0; i<dstW; i++)
310
        {
311
                int val=1<<18;
312
                int j;
313
                for(j=0; j<lumFilterSize; j++)
314
                        val += lumSrc[j][i] * lumFilter[j];
315

    
316
                dest[i]= FFMIN(FFMAX(val>>19, 0), 255);
317
        }
318

    
319
        if(uDest != NULL)
320
                for(i=0; i<chrDstW; i++)
321
                {
322
                        int u=1<<18;
323
                        int v=1<<18;
324
                        int j;
325
                        for(j=0; j<chrFilterSize; j++)
326
                        {
327
                                u += chrSrc[j][i] * chrFilter[j];
328
                                v += chrSrc[j][i + 2048] * chrFilter[j];
329
                        }
330

    
331
                        uDest[i]= FFMIN(FFMAX(u>>19, 0), 255);
332
                        vDest[i]= FFMIN(FFMAX(v>>19, 0), 255);
333
                }
334
}
335

    
336
static inline void yuv2nv12XinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
337
                                int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
338
                                uint8_t *dest, uint8_t *uDest, int dstW, int chrDstW, int dstFormat)
339
{
340
        //FIXME Optimize (just quickly writen not opti..)
341
        int i;
342
        for(i=0; i<dstW; i++)
343
        {
344
                int val=1<<18;
345
                int j;
346
                for(j=0; j<lumFilterSize; j++)
347
                        val += lumSrc[j][i] * lumFilter[j];
348

    
349
                dest[i]= FFMIN(FFMAX(val>>19, 0), 255);
350
        }
351

    
352
        if(uDest == NULL)
353
                return;
354

    
355
        if(dstFormat == PIX_FMT_NV12)
356
                for(i=0; i<chrDstW; i++)
357
                {
358
                        int u=1<<18;
359
                        int v=1<<18;
360
                        int j;
361
                        for(j=0; j<chrFilterSize; j++)
362
                        {
363
                                u += chrSrc[j][i] * chrFilter[j];
364
                                v += chrSrc[j][i + 2048] * chrFilter[j];
365
                        }
366

    
367
                        uDest[2*i]= FFMIN(FFMAX(u>>19, 0), 255);
368
                        uDest[2*i+1]= FFMIN(FFMAX(v>>19, 0), 255);
369
                }
370
        else
371
                for(i=0; i<chrDstW; i++)
372
                {
373
                        int u=1<<18;
374
                        int v=1<<18;
375
                        int j;
376
                        for(j=0; j<chrFilterSize; j++)
377
                        {
378
                                u += chrSrc[j][i] * chrFilter[j];
379
                                v += chrSrc[j][i + 2048] * chrFilter[j];
380
                        }
381

    
382
                        uDest[2*i]= FFMIN(FFMAX(v>>19, 0), 255);
383
                        uDest[2*i+1]= FFMIN(FFMAX(u>>19, 0), 255);
384
                }
385
}
386

    
387
#define YSCALE_YUV_2_PACKEDX_C(type) \
388
                for(i=0; i<(dstW>>1); i++){\
389
                        int j;\
390
                        int Y1=1<<18;\
391
                        int Y2=1<<18;\
392
                        int U=1<<18;\
393
                        int V=1<<18;\
394
                        type *r, *b, *g;\
395
                        const int i2= 2*i;\
396
                        \
397
                        for(j=0; j<lumFilterSize; j++)\
398
                        {\
399
                                Y1 += lumSrc[j][i2] * lumFilter[j];\
400
                                Y2 += lumSrc[j][i2+1] * lumFilter[j];\
401
                        }\
402
                        for(j=0; j<chrFilterSize; j++)\
403
                        {\
404
                                U += chrSrc[j][i] * chrFilter[j];\
405
                                V += chrSrc[j][i+2048] * chrFilter[j];\
406
                        }\
407
                        Y1>>=19;\
408
                        Y2>>=19;\
409
                        U >>=19;\
410
                        V >>=19;\
411
                        if((Y1|Y2|U|V)&256)\
412
                        {\
413
                                if(Y1>255)   Y1=255;\
414
                                else if(Y1<0)Y1=0;\
415
                                if(Y2>255)   Y2=255;\
416
                                else if(Y2<0)Y2=0;\
417
                                if(U>255)    U=255;\
418
                                else if(U<0) U=0;\
419
                                if(V>255)    V=255;\
420
                                else if(V<0) V=0;\
421
                        }
422
                        
423
#define YSCALE_YUV_2_RGBX_C(type) \
424
                        YSCALE_YUV_2_PACKEDX_C(type)\
425
                        r = c->table_rV[V];\
426
                        g = c->table_gU[U] + c->table_gV[V];\
427
                        b = c->table_bU[U];\
428

    
429
#define YSCALE_YUV_2_PACKED2_C \
430
                for(i=0; i<(dstW>>1); i++){\
431
                        const int i2= 2*i;\
432
                        int Y1= (buf0[i2  ]*yalpha1+buf1[i2  ]*yalpha)>>19;\
433
                        int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>19;\
434
                        int U= (uvbuf0[i     ]*uvalpha1+uvbuf1[i     ]*uvalpha)>>19;\
435
                        int V= (uvbuf0[i+2048]*uvalpha1+uvbuf1[i+2048]*uvalpha)>>19;\
436

    
437
#define YSCALE_YUV_2_RGB2_C(type) \
438
                        YSCALE_YUV_2_PACKED2_C\
439
                        type *r, *b, *g;\
440
                        r = c->table_rV[V];\
441
                        g = c->table_gU[U] + c->table_gV[V];\
442
                        b = c->table_bU[U];\
443

    
444
#define YSCALE_YUV_2_PACKED1_C \
445
                for(i=0; i<(dstW>>1); i++){\
446
                        const int i2= 2*i;\
447
                        int Y1= buf0[i2  ]>>7;\
448
                        int Y2= buf0[i2+1]>>7;\
449
                        int U= (uvbuf1[i     ])>>7;\
450
                        int V= (uvbuf1[i+2048])>>7;\
451

    
452
#define YSCALE_YUV_2_RGB1_C(type) \
453
                        YSCALE_YUV_2_PACKED1_C\
454
                        type *r, *b, *g;\
455
                        r = c->table_rV[V];\
456
                        g = c->table_gU[U] + c->table_gV[V];\
457
                        b = c->table_bU[U];\
458

    
459
#define YSCALE_YUV_2_PACKED1B_C \
460
                for(i=0; i<(dstW>>1); i++){\
461
                        const int i2= 2*i;\
462
                        int Y1= buf0[i2  ]>>7;\
463
                        int Y2= buf0[i2+1]>>7;\
464
                        int U= (uvbuf0[i     ] + uvbuf1[i     ])>>8;\
465
                        int V= (uvbuf0[i+2048] + uvbuf1[i+2048])>>8;\
466

    
467
#define YSCALE_YUV_2_RGB1B_C(type) \
468
                        YSCALE_YUV_2_PACKED1B_C\
469
                        type *r, *b, *g;\
470
                        r = c->table_rV[V];\
471
                        g = c->table_gU[U] + c->table_gV[V];\
472
                        b = c->table_bU[U];\
473

    
474
#define YSCALE_YUV_2_ANYRGB_C(func, func2)\
475
        switch(c->dstFormat)\
476
        {\
477
        case PIX_FMT_RGB32:\
478
        case PIX_FMT_BGR32:\
479
                func(uint32_t)\
480
                        ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];\
481
                        ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];\
482
                }                \
483
                break;\
484
        case PIX_FMT_RGB24:\
485
                func(uint8_t)\
486
                        ((uint8_t*)dest)[0]= r[Y1];\
487
                        ((uint8_t*)dest)[1]= g[Y1];\
488
                        ((uint8_t*)dest)[2]= b[Y1];\
489
                        ((uint8_t*)dest)[3]= r[Y2];\
490
                        ((uint8_t*)dest)[4]= g[Y2];\
491
                        ((uint8_t*)dest)[5]= b[Y2];\
492
                        dest+=6;\
493
                }\
494
                break;\
495
        case PIX_FMT_BGR24:\
496
                func(uint8_t)\
497
                        ((uint8_t*)dest)[0]= b[Y1];\
498
                        ((uint8_t*)dest)[1]= g[Y1];\
499
                        ((uint8_t*)dest)[2]= r[Y1];\
500
                        ((uint8_t*)dest)[3]= b[Y2];\
501
                        ((uint8_t*)dest)[4]= g[Y2];\
502
                        ((uint8_t*)dest)[5]= r[Y2];\
503
                        dest+=6;\
504
                }\
505
                break;\
506
        case PIX_FMT_RGB565:\
507
        case PIX_FMT_BGR565:\
508
                {\
509
                        const int dr1= dither_2x2_8[y&1    ][0];\
510
                        const int dg1= dither_2x2_4[y&1    ][0];\
511
                        const int db1= dither_2x2_8[(y&1)^1][0];\
512
                        const int dr2= dither_2x2_8[y&1    ][1];\
513
                        const int dg2= dither_2x2_4[y&1    ][1];\
514
                        const int db2= dither_2x2_8[(y&1)^1][1];\
515
                        func(uint16_t)\
516
                                ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
517
                                ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
518
                        }\
519
                }\
520
                break;\
521
        case PIX_FMT_RGB555:\
522
        case PIX_FMT_BGR555:\
523
                {\
524
                        const int dr1= dither_2x2_8[y&1    ][0];\
525
                        const int dg1= dither_2x2_8[y&1    ][1];\
526
                        const int db1= dither_2x2_8[(y&1)^1][0];\
527
                        const int dr2= dither_2x2_8[y&1    ][1];\
528
                        const int dg2= dither_2x2_8[y&1    ][0];\
529
                        const int db2= dither_2x2_8[(y&1)^1][1];\
530
                        func(uint16_t)\
531
                                ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
532
                                ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
533
                        }\
534
                }\
535
                break;\
536
        case PIX_FMT_RGB8:\
537
        case PIX_FMT_BGR8:\
538
                {\
539
                        const uint8_t * const d64= dither_8x8_73[y&7];\
540
                        const uint8_t * const d32= dither_8x8_32[y&7];\
541
                        func(uint8_t)\
542
                                ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];\
543
                                ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];\
544
                        }\
545
                }\
546
                break;\
547
        case PIX_FMT_RGB4:\
548
        case PIX_FMT_BGR4:\
549
                {\
550
                        const uint8_t * const d64= dither_8x8_73 [y&7];\
551
                        const uint8_t * const d128=dither_8x8_220[y&7];\
552
                        func(uint8_t)\
553
                                ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]\
554
                                                 + ((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);\
555
                        }\
556
                }\
557
                break;\
558
        case PIX_FMT_RGB4_BYTE:\
559
        case PIX_FMT_BGR4_BYTE:\
560
                {\
561
                        const uint8_t * const d64= dither_8x8_73 [y&7];\
562
                        const uint8_t * const d128=dither_8x8_220[y&7];\
563
                        func(uint8_t)\
564
                                ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];\
565
                                ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];\
566
                        }\
567
                }\
568
                break;\
569
        case PIX_FMT_MONOBLACK:\
570
                {\
571
                        const uint8_t * const d128=dither_8x8_220[y&7];\
572
                        uint8_t *g= c->table_gU[128] + c->table_gV[128];\
573
                        for(i=0; i<dstW-7; i+=8){\
574
                                int acc;\
575
                                acc =       g[((buf0[i  ]*yalpha1+buf1[i  ]*yalpha)>>19) + d128[0]];\
576
                                acc+= acc + g[((buf0[i+1]*yalpha1+buf1[i+1]*yalpha)>>19) + d128[1]];\
577
                                acc+= acc + g[((buf0[i+2]*yalpha1+buf1[i+2]*yalpha)>>19) + d128[2]];\
578
                                acc+= acc + g[((buf0[i+3]*yalpha1+buf1[i+3]*yalpha)>>19) + d128[3]];\
579
                                acc+= acc + g[((buf0[i+4]*yalpha1+buf1[i+4]*yalpha)>>19) + d128[4]];\
580
                                acc+= acc + g[((buf0[i+5]*yalpha1+buf1[i+5]*yalpha)>>19) + d128[5]];\
581
                                acc+= acc + g[((buf0[i+6]*yalpha1+buf1[i+6]*yalpha)>>19) + d128[6]];\
582
                                acc+= acc + g[((buf0[i+7]*yalpha1+buf1[i+7]*yalpha)>>19) + d128[7]];\
583
                                ((uint8_t*)dest)[0]= acc;\
584
                                dest++;\
585
                        }\
586
\
587
/*\
588
((uint8_t*)dest)-= dstW>>4;\
589
{\
590
                        int acc=0;\
591
                        int left=0;\
592
                        static int top[1024];\
593
                        static int last_new[1024][1024];\
594
                        static int last_in3[1024][1024];\
595
                        static int drift[1024][1024];\
596
                        int topLeft=0;\
597
                        int shift=0;\
598
                        int count=0;\
599
                        const uint8_t * const d128=dither_8x8_220[y&7];\
600
                        int error_new=0;\
601
                        int error_in3=0;\
602
                        int f=0;\
603
                        \
604
                        for(i=dstW>>1; i<dstW; i++){\
605
                                int in= ((buf0[i  ]*yalpha1+buf1[i  ]*yalpha)>>19);\
606
                                int in2 = (76309 * (in - 16) + 32768) >> 16;\
607
                                int in3 = (in2 < 0) ? 0 : ((in2 > 255) ? 255 : in2);\
608
                                int old= (left*7 + topLeft + top[i]*5 + top[i+1]*3)/20 + in3\
609
                                        + (last_new[y][i] - in3)*f/256;\
610
                                int new= old> 128 ? 255 : 0;\
611
\
612
                                error_new+= FFABS(last_new[y][i] - new);\
613
                                error_in3+= FFABS(last_in3[y][i] - in3);\
614
                                f= error_new - error_in3*4;\
615
                                if(f<0) f=0;\
616
                                if(f>256) f=256;\
617
\
618
                                topLeft= top[i];\
619
                                left= top[i]= old - new;\
620
                                last_new[y][i]= new;\
621
                                last_in3[y][i]= in3;\
622
\
623
                                acc+= acc + (new&1);\
624
                                if((i&7)==6){\
625
                                        ((uint8_t*)dest)[0]= acc;\
626
                                        ((uint8_t*)dest)++;\
627
                                }\
628
                        }\
629
}\
630
*/\
631
                }\
632
                break;\
633
        case PIX_FMT_YUYV422:\
634
                func2\
635
                        ((uint8_t*)dest)[2*i2+0]= Y1;\
636
                        ((uint8_t*)dest)[2*i2+1]= U;\
637
                        ((uint8_t*)dest)[2*i2+2]= Y2;\
638
                        ((uint8_t*)dest)[2*i2+3]= V;\
639
                }                \
640
                break;\
641
        case PIX_FMT_UYVY422:\
642
                func2\
643
                        ((uint8_t*)dest)[2*i2+0]= U;\
644
                        ((uint8_t*)dest)[2*i2+1]= Y1;\
645
                        ((uint8_t*)dest)[2*i2+2]= V;\
646
                        ((uint8_t*)dest)[2*i2+3]= Y2;\
647
                }                \
648
                break;\
649
        }\
650

    
651

    
652
static inline void yuv2packedXinC(SwsContext *c, int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
653
                                    int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
654
                                    uint8_t *dest, int dstW, int y)
655
{
656
        int i;
657
        switch(c->dstFormat)
658
        {
659
        case PIX_FMT_BGR32:
660
        case PIX_FMT_RGB32:
661
                YSCALE_YUV_2_RGBX_C(uint32_t)
662
                        ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];
663
                        ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];
664
                }
665
                break;
666
        case PIX_FMT_RGB24:
667
                YSCALE_YUV_2_RGBX_C(uint8_t)
668
                        ((uint8_t*)dest)[0]= r[Y1];
669
                        ((uint8_t*)dest)[1]= g[Y1];
670
                        ((uint8_t*)dest)[2]= b[Y1];
671
                        ((uint8_t*)dest)[3]= r[Y2];
672
                        ((uint8_t*)dest)[4]= g[Y2];
673
                        ((uint8_t*)dest)[5]= b[Y2];
674
                        dest+=6;
675
                }
676
                break;
677
        case PIX_FMT_BGR24:
678
                YSCALE_YUV_2_RGBX_C(uint8_t)
679
                        ((uint8_t*)dest)[0]= b[Y1];
680
                        ((uint8_t*)dest)[1]= g[Y1];
681
                        ((uint8_t*)dest)[2]= r[Y1];
682
                        ((uint8_t*)dest)[3]= b[Y2];
683
                        ((uint8_t*)dest)[4]= g[Y2];
684
                        ((uint8_t*)dest)[5]= r[Y2];
685
                        dest+=6;
686
                }
687
                break;
688
        case PIX_FMT_RGB565:
689
        case PIX_FMT_BGR565:
690
                {
691
                        const int dr1= dither_2x2_8[y&1    ][0];
692
                        const int dg1= dither_2x2_4[y&1    ][0];
693
                        const int db1= dither_2x2_8[(y&1)^1][0];
694
                        const int dr2= dither_2x2_8[y&1    ][1];
695
                        const int dg2= dither_2x2_4[y&1    ][1];
696
                        const int db2= dither_2x2_8[(y&1)^1][1];
697
                        YSCALE_YUV_2_RGBX_C(uint16_t)
698
                                ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];
699
                                ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];
700
                        }
701
                }
702
                break;
703
        case PIX_FMT_RGB555:
704
        case PIX_FMT_BGR555:
705
                {
706
                        const int dr1= dither_2x2_8[y&1    ][0];
707
                        const int dg1= dither_2x2_8[y&1    ][1];
708
                        const int db1= dither_2x2_8[(y&1)^1][0];
709
                        const int dr2= dither_2x2_8[y&1    ][1];
710
                        const int dg2= dither_2x2_8[y&1    ][0];
711
                        const int db2= dither_2x2_8[(y&1)^1][1];
712
                        YSCALE_YUV_2_RGBX_C(uint16_t)
713
                                ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];
714
                                ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];
715
                        }
716
                }
717
                break;
718
        case PIX_FMT_RGB8:
719
        case PIX_FMT_BGR8:
720
                {
721
                        const uint8_t * const d64= dither_8x8_73[y&7];
722
                        const uint8_t * const d32= dither_8x8_32[y&7];
723
                        YSCALE_YUV_2_RGBX_C(uint8_t)
724
                                ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];
725
                                ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];
726
                        }
727
                }
728
                break;
729
        case PIX_FMT_RGB4:
730
        case PIX_FMT_BGR4:
731
                {
732
                        const uint8_t * const d64= dither_8x8_73 [y&7];
733
                        const uint8_t * const d128=dither_8x8_220[y&7];
734
                        YSCALE_YUV_2_RGBX_C(uint8_t)
735
                                ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]
736
                                                  +((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);
737
                        }
738
                }
739
                break;
740
        case PIX_FMT_RGB4_BYTE:
741
        case PIX_FMT_BGR4_BYTE:
742
                {
743
                        const uint8_t * const d64= dither_8x8_73 [y&7];
744
                        const uint8_t * const d128=dither_8x8_220[y&7];
745
                        YSCALE_YUV_2_RGBX_C(uint8_t)
746
                                ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];
747
                                ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];
748
                        }
749
                }
750
                break;
751
        case PIX_FMT_MONOBLACK:
752
                {
753
                        const uint8_t * const d128=dither_8x8_220[y&7];
754
                        uint8_t *g= c->table_gU[128] + c->table_gV[128];
755
                        int acc=0;
756
                        for(i=0; i<dstW-1; i+=2){
757
                                int j;
758
                                int Y1=1<<18;
759
                                int Y2=1<<18;
760

    
761
                                for(j=0; j<lumFilterSize; j++)
762
                                {
763
                                        Y1 += lumSrc[j][i] * lumFilter[j];
764
                                        Y2 += lumSrc[j][i+1] * lumFilter[j];
765
                                }
766
                                Y1>>=19;
767
                                Y2>>=19;
768
                                if((Y1|Y2)&256)
769
                                {
770
                                        if(Y1>255)   Y1=255;
771
                                        else if(Y1<0)Y1=0;
772
                                        if(Y2>255)   Y2=255;
773
                                        else if(Y2<0)Y2=0;
774
                                }
775
                                acc+= acc + g[Y1+d128[(i+0)&7]];
776
                                acc+= acc + g[Y2+d128[(i+1)&7]];
777
                                if((i&7)==6){
778
                                        ((uint8_t*)dest)[0]= acc;
779
                                        dest++;
780
                                }
781
                        }
782
                }
783
                break;
784
        case PIX_FMT_YUYV422:
785
                YSCALE_YUV_2_PACKEDX_C(void)
786
                        ((uint8_t*)dest)[2*i2+0]= Y1;
787
                        ((uint8_t*)dest)[2*i2+1]= U;
788
                        ((uint8_t*)dest)[2*i2+2]= Y2;
789
                        ((uint8_t*)dest)[2*i2+3]= V;
790
                }
791
                break;
792
        case PIX_FMT_UYVY422:
793
                YSCALE_YUV_2_PACKEDX_C(void)
794
                        ((uint8_t*)dest)[2*i2+0]= U;
795
                        ((uint8_t*)dest)[2*i2+1]= Y1;
796
                        ((uint8_t*)dest)[2*i2+2]= V;
797
                        ((uint8_t*)dest)[2*i2+3]= Y2;
798
                }
799
                break;
800
        }
801
}
802

    
803

    
804
//Note: we have C, X86, MMX, MMX2, 3DNOW version therse no 3DNOW+MMX2 one
805
//Plain C versions
806
#if !defined (HAVE_MMX) || defined (RUNTIME_CPUDETECT)
807
#define COMPILE_C
808
#endif
809

    
810
#ifdef ARCH_POWERPC
811
#if defined (HAVE_ALTIVEC) || defined (RUNTIME_CPUDETECT)
812
#define COMPILE_ALTIVEC
813
#endif //HAVE_ALTIVEC
814
#endif //ARCH_POWERPC
815

    
816
#if defined(ARCH_X86)
817

    
818
#if (defined (HAVE_MMX) && !defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)
819
#define COMPILE_MMX
820
#endif
821

    
822
#if defined (HAVE_MMX2) || defined (RUNTIME_CPUDETECT)
823
#define COMPILE_MMX2
824
#endif
825

    
826
#if (defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)
827
#define COMPILE_3DNOW
828
#endif
829
#endif //ARCH_X86 || ARCH_X86_64
830

    
831
#undef HAVE_MMX
832
#undef HAVE_MMX2
833
#undef HAVE_3DNOW
834

    
835
#ifdef COMPILE_C
836
#undef HAVE_MMX
837
#undef HAVE_MMX2
838
#undef HAVE_3DNOW
839
#undef HAVE_ALTIVEC
840
#define RENAME(a) a ## _C
841
#include "swscale_template.c"
842
#endif
843

    
844
#ifdef ARCH_POWERPC
845
#ifdef COMPILE_ALTIVEC
846
#undef RENAME
847
#define HAVE_ALTIVEC
848
#define RENAME(a) a ## _altivec
849
#include "swscale_template.c"
850
#endif
851
#endif //ARCH_POWERPC
852

    
853
#if defined(ARCH_X86)
854

    
855
//X86 versions
856
/*
857
#undef RENAME
858
#undef HAVE_MMX
859
#undef HAVE_MMX2
860
#undef HAVE_3DNOW
861
#define ARCH_X86
862
#define RENAME(a) a ## _X86
863
#include "swscale_template.c"
864
*/
865
//MMX versions
866
#ifdef COMPILE_MMX
867
#undef RENAME
868
#define HAVE_MMX
869
#undef HAVE_MMX2
870
#undef HAVE_3DNOW
871
#define RENAME(a) a ## _MMX
872
#include "swscale_template.c"
873
#endif
874

    
875
//MMX2 versions
876
#ifdef COMPILE_MMX2
877
#undef RENAME
878
#define HAVE_MMX
879
#define HAVE_MMX2
880
#undef HAVE_3DNOW
881
#define RENAME(a) a ## _MMX2
882
#include "swscale_template.c"
883
#endif
884

    
885
//3DNOW versions
886
#ifdef COMPILE_3DNOW
887
#undef RENAME
888
#define HAVE_MMX
889
#undef HAVE_MMX2
890
#define HAVE_3DNOW
891
#define RENAME(a) a ## _3DNow
892
#include "swscale_template.c"
893
#endif
894

    
895
#endif //ARCH_X86 || ARCH_X86_64
896

    
897
// minor note: the HAVE_xyz is messed up after that line so don't use it
898

    
899
static double getSplineCoeff(double a, double b, double c, double d, double dist)
900
{
901
//        printf("%f %f %f %f %f\n", a,b,c,d,dist);
902
        if(dist<=1.0)         return ((d*dist + c)*dist + b)*dist +a;
903
        else                return getSplineCoeff(        0.0, 
904
                                                 b+ 2.0*c + 3.0*d,
905
                                                        c + 3.0*d,
906
                                                -b- 3.0*c - 6.0*d,
907
                                                dist-1.0);
908
}
909

    
910
static inline int initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc,
911
                              int srcW, int dstW, int filterAlign, int one, int flags,
912
                              SwsVector *srcFilter, SwsVector *dstFilter, double param[2])
913
{
914
        int i;
915
        int filterSize;
916
        int filter2Size;
917
        int minFilterSize;
918
        double *filter=NULL;
919
        double *filter2=NULL;
920
#if defined(ARCH_X86)
921
        if(flags & SWS_CPU_CAPS_MMX)
922
                asm volatile("emms\n\t"::: "memory"); //FIXME this shouldnt be required but it IS (even for non mmx versions)
923
#endif
924

    
925
        // Note the +1 is for the MMXscaler which reads over the end
926
        *filterPos = av_malloc((dstW+1)*sizeof(int16_t));
927

    
928
        if(FFABS(xInc - 0x10000) <10) // unscaled
929
        {
930
                int i;
931
                filterSize= 1;
932
                filter= av_malloc(dstW*sizeof(double)*filterSize);
933
                for(i=0; i<dstW*filterSize; i++) filter[i]=0;
934

    
935
                for(i=0; i<dstW; i++)
936
                {
937
                        filter[i*filterSize]=1;
938
                        (*filterPos)[i]=i;
939
                }
940

    
941
        }
942
        else if(flags&SWS_POINT) // lame looking point sampling mode
943
        {
944
                int i;
945
                int xDstInSrc;
946
                filterSize= 1;
947
                filter= av_malloc(dstW*sizeof(double)*filterSize);
948
                
949
                xDstInSrc= xInc/2 - 0x8000;
950
                for(i=0; i<dstW; i++)
951
                {
952
                        int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
953

    
954
                        (*filterPos)[i]= xx;
955
                        filter[i]= 1.0;
956
                        xDstInSrc+= xInc;
957
                }
958
        }
959
        else if((xInc <= (1<<16) && (flags&SWS_AREA)) || (flags&SWS_FAST_BILINEAR)) // bilinear upscale
960
        {
961
                int i;
962
                int xDstInSrc;
963
                if     (flags&SWS_BICUBIC) filterSize= 4;
964
                else if(flags&SWS_X      ) filterSize= 4;
965
                else                           filterSize= 2; // SWS_BILINEAR / SWS_AREA 
966
                filter= av_malloc(dstW*sizeof(double)*filterSize);
967

    
968
                xDstInSrc= xInc/2 - 0x8000;
969
                for(i=0; i<dstW; i++)
970
                {
971
                        int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
972
                        int j;
973

    
974
                        (*filterPos)[i]= xx;
975
                                //Bilinear upscale / linear interpolate / Area averaging
976
                                for(j=0; j<filterSize; j++)
977
                                {
978
                                        double d= FFABS((xx<<16) - xDstInSrc)/(double)(1<<16);
979
                                        double coeff= 1.0 - d;
980
                                        if(coeff<0) coeff=0;
981
                                        filter[i*filterSize + j]= coeff;
982
                                        xx++;
983
                                }
984
                        xDstInSrc+= xInc;
985
                }
986
        }
987
        else
988
        {
989
                double xDstInSrc;
990
                double sizeFactor, filterSizeInSrc;
991
                const double xInc1= (double)xInc / (double)(1<<16);
992

    
993
                if     (flags&SWS_BICUBIC)        sizeFactor= 4.0;
994
                else if(flags&SWS_X)                sizeFactor= 8.0;
995
                else if(flags&SWS_AREA)                sizeFactor= 1.0; //downscale only, for upscale it is bilinear
996
                else if(flags&SWS_GAUSS)        sizeFactor= 8.0;   // infinite ;)
997
                else if(flags&SWS_LANCZOS)        sizeFactor= param[0] != SWS_PARAM_DEFAULT ? 2.0*param[0] : 6.0;
998
                else if(flags&SWS_SINC)                sizeFactor= 20.0; // infinite ;)
999
                else if(flags&SWS_SPLINE)        sizeFactor= 20.0;  // infinite ;)
1000
                else if(flags&SWS_BILINEAR)        sizeFactor= 2.0;
1001
                else {
1002
                        sizeFactor= 0.0; //GCC warning killer
1003
                        ASSERT(0)
1004
                }
1005
                
1006
                if(xInc1 <= 1.0)        filterSizeInSrc= sizeFactor; // upscale
1007
                else                        filterSizeInSrc= sizeFactor*srcW / (double)dstW;
1008

    
1009
                filterSize= (int)ceil(1 + filterSizeInSrc); // will be reduced later if possible
1010
                if(filterSize > srcW-2) filterSize=srcW-2;
1011

    
1012
                filter= av_malloc(dstW*sizeof(double)*filterSize);
1013

    
1014
                xDstInSrc= xInc1 / 2.0 - 0.5;
1015
                for(i=0; i<dstW; i++)
1016
                {
1017
                        int xx= (int)(xDstInSrc - (filterSize-1)*0.5 + 0.5);
1018
                        int j;
1019
                        (*filterPos)[i]= xx;
1020
                        for(j=0; j<filterSize; j++)
1021
                        {
1022
                                double d= FFABS(xx - xDstInSrc)/filterSizeInSrc*sizeFactor;
1023
                                double coeff;
1024
                                if(flags & SWS_BICUBIC)
1025
                                {
1026
                                        double B= param[0] != SWS_PARAM_DEFAULT ? param[0] : 0.0;
1027
                                        double C= param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6;
1028

    
1029
                                        if(d<1.0) 
1030
                                                coeff = (12-9*B-6*C)*d*d*d + (-18+12*B+6*C)*d*d + 6-2*B;
1031
                                        else if(d<2.0)
1032
                                                coeff = (-B-6*C)*d*d*d + (6*B+30*C)*d*d + (-12*B-48*C)*d +8*B+24*C;
1033
                                        else
1034
                                                coeff=0.0;
1035
                                }
1036
/*                                else if(flags & SWS_X)
1037
                                {
1038
                                        double p= param ? param*0.01 : 0.3;
1039
                                        coeff = d ? sin(d*PI)/(d*PI) : 1.0;
1040
                                        coeff*= pow(2.0, - p*d*d);
1041
                                }*/
1042
                                else if(flags & SWS_X)
1043
                                {
1044
                                        double A= param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
1045
                                        
1046
                                        if(d<1.0)
1047
                                                coeff = cos(d*PI);
1048
                                        else
1049
                                                coeff=-1.0;
1050
                                        if(coeff<0.0)         coeff= -pow(-coeff, A);
1051
                                        else                coeff=  pow( coeff, A);
1052
                                        coeff= coeff*0.5 + 0.5;
1053
                                }
1054
                                else if(flags & SWS_AREA)
1055
                                {
1056
                                        double srcPixelSize= 1.0/xInc1;
1057
                                        if(d + srcPixelSize/2 < 0.5) coeff= 1.0;
1058
                                        else if(d - srcPixelSize/2 < 0.5) coeff= (0.5-d)/srcPixelSize + 0.5;
1059
                                        else coeff=0.0;
1060
                                }
1061
                                else if(flags & SWS_GAUSS)
1062
                                {
1063
                                        double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
1064
                                        coeff = pow(2.0, - p*d*d);
1065
                                }
1066
                                else if(flags & SWS_SINC)
1067
                                {
1068
                                        coeff = d ? sin(d*PI)/(d*PI) : 1.0;
1069
                                }
1070
                                else if(flags & SWS_LANCZOS)
1071
                                {
1072
                                        double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0; 
1073
                                        coeff = d ? sin(d*PI)*sin(d*PI/p)/(d*d*PI*PI/p) : 1.0;
1074
                                        if(d>p) coeff=0;
1075
                                }
1076
                                else if(flags & SWS_BILINEAR)
1077
                                {
1078
                                        coeff= 1.0 - d;
1079
                                        if(coeff<0) coeff=0;
1080
                                }
1081
                                else if(flags & SWS_SPLINE)
1082
                                {
1083
                                        double p=-2.196152422706632;
1084
                                        coeff = getSplineCoeff(1.0, 0.0, p, -p-1.0, d);
1085
                                }
1086
                                else {
1087
                                        coeff= 0.0; //GCC warning killer
1088
                                        ASSERT(0)
1089
                                }
1090

    
1091
                                filter[i*filterSize + j]= coeff;
1092
                                xx++;
1093
                        }
1094
                        xDstInSrc+= xInc1;
1095
                }
1096
        }
1097

    
1098
        /* apply src & dst Filter to filter -> filter2
1099
           av_free(filter);
1100
        */
1101
        ASSERT(filterSize>0)
1102
        filter2Size= filterSize;
1103
        if(srcFilter) filter2Size+= srcFilter->length - 1;
1104
        if(dstFilter) filter2Size+= dstFilter->length - 1;
1105
        ASSERT(filter2Size>0)
1106
        filter2= av_malloc(filter2Size*dstW*sizeof(double));
1107

    
1108
        for(i=0; i<dstW; i++)
1109
        {
1110
                int j;
1111
                SwsVector scaleFilter;
1112
                SwsVector *outVec;
1113

    
1114
                scaleFilter.coeff= filter + i*filterSize;
1115
                scaleFilter.length= filterSize;
1116

    
1117
                if(srcFilter) outVec= sws_getConvVec(srcFilter, &scaleFilter);
1118
                else              outVec= &scaleFilter;
1119

    
1120
                ASSERT(outVec->length == filter2Size)
1121
                //FIXME dstFilter
1122

    
1123
                for(j=0; j<outVec->length; j++)
1124
                {
1125
                        filter2[i*filter2Size + j]= outVec->coeff[j];
1126
                }
1127

    
1128
                (*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2;
1129

    
1130
                if(outVec != &scaleFilter) sws_freeVec(outVec);
1131
        }
1132
        av_free(filter); filter=NULL;
1133

    
1134
        /* try to reduce the filter-size (step1 find size and shift left) */
1135
        // Assume its near normalized (*0.5 or *2.0 is ok but * 0.001 is not)
1136
        minFilterSize= 0;
1137
        for(i=dstW-1; i>=0; i--)
1138
        {
1139
                int min= filter2Size;
1140
                int j;
1141
                double cutOff=0.0;
1142

    
1143
                /* get rid off near zero elements on the left by shifting left */
1144
                for(j=0; j<filter2Size; j++)
1145
                {
1146
                        int k;
1147
                        cutOff += FFABS(filter2[i*filter2Size]);
1148

    
1149
                        if(cutOff > SWS_MAX_REDUCE_CUTOFF) break;
1150

    
1151
                        /* preserve Monotonicity because the core can't handle the filter otherwise */
1152
                        if(i<dstW-1 && (*filterPos)[i] >= (*filterPos)[i+1]) break;
1153

    
1154
                        // Move filter coeffs left
1155
                        for(k=1; k<filter2Size; k++)
1156
                                filter2[i*filter2Size + k - 1]= filter2[i*filter2Size + k];
1157
                        filter2[i*filter2Size + k - 1]= 0.0;
1158
                        (*filterPos)[i]++;
1159
                }
1160

    
1161
                cutOff=0.0;
1162
                /* count near zeros on the right */
1163
                for(j=filter2Size-1; j>0; j--)
1164
                {
1165
                        cutOff += FFABS(filter2[i*filter2Size + j]);
1166

    
1167
                        if(cutOff > SWS_MAX_REDUCE_CUTOFF) break;
1168
                        min--;
1169
                }
1170

    
1171
                if(min>minFilterSize) minFilterSize= min;
1172
        }
1173

    
1174
        if (flags & SWS_CPU_CAPS_ALTIVEC) {
1175
          // we can handle the special case 4,
1176
          // so we don't want to go to the full 8
1177
          if (minFilterSize < 5)
1178
            filterAlign = 4;
1179

    
1180
          // we really don't want to waste our time
1181
          // doing useless computation, so fall-back on
1182
          // the scalar C code for very small filter.
1183
          // vectorizing is worth it only if you have
1184
          // decent-sized vector.
1185
          if (minFilterSize < 3)
1186
            filterAlign = 1;
1187
        }
1188

    
1189
        if (flags & SWS_CPU_CAPS_MMX) {
1190
                // special case for unscaled vertical filtering
1191
                if(minFilterSize == 1 && filterAlign == 2)
1192
                        filterAlign= 1;
1193
        }
1194

    
1195
        ASSERT(minFilterSize > 0)
1196
        filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1));
1197
        ASSERT(filterSize > 0)
1198
        filter= av_malloc(filterSize*dstW*sizeof(double));
1199
        if(filterSize >= MAX_FILTER_SIZE)
1200
                return -1;
1201
        *outFilterSize= filterSize;
1202

    
1203
        if(flags&SWS_PRINT_INFO)
1204
                MSG_V("SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize);
1205
        /* try to reduce the filter-size (step2 reduce it) */
1206
        for(i=0; i<dstW; i++)
1207
        {
1208
                int j;
1209

    
1210
                for(j=0; j<filterSize; j++)
1211
                {
1212
                        if(j>=filter2Size) filter[i*filterSize + j]= 0.0;
1213
                        else                   filter[i*filterSize + j]= filter2[i*filter2Size + j];
1214
                }
1215
        }
1216
        av_free(filter2); filter2=NULL;
1217
        
1218

    
1219
        //FIXME try to align filterpos if possible
1220

    
1221
        //fix borders
1222
        for(i=0; i<dstW; i++)
1223
        {
1224
                int j;
1225
                if((*filterPos)[i] < 0)
1226
                {
1227
                        // Move filter coeffs left to compensate for filterPos
1228
                        for(j=1; j<filterSize; j++)
1229
                        {
1230
                                int left= FFMAX(j + (*filterPos)[i], 0);
1231
                                filter[i*filterSize + left] += filter[i*filterSize + j];
1232
                                filter[i*filterSize + j]=0;
1233
                        }
1234
                        (*filterPos)[i]= 0;
1235
                }
1236

    
1237
                if((*filterPos)[i] + filterSize > srcW)
1238
                {
1239
                        int shift= (*filterPos)[i] + filterSize - srcW;
1240
                        // Move filter coeffs right to compensate for filterPos
1241
                        for(j=filterSize-2; j>=0; j--)
1242
                        {
1243
                                int right= FFMIN(j + shift, filterSize-1);
1244
                                filter[i*filterSize +right] += filter[i*filterSize +j];
1245
                                filter[i*filterSize +j]=0;
1246
                        }
1247
                        (*filterPos)[i]= srcW - filterSize;
1248
                }
1249
        }
1250

    
1251
        // Note the +1 is for the MMXscaler which reads over the end
1252
        /* align at 16 for AltiVec (needed by hScale_altivec_real) */
1253
        *outFilter= av_malloc(*outFilterSize*(dstW+1)*sizeof(int16_t));
1254
        memset(*outFilter, 0, *outFilterSize*(dstW+1)*sizeof(int16_t));
1255

    
1256
        /* Normalize & Store in outFilter */
1257
        for(i=0; i<dstW; i++)
1258
        {
1259
                int j;
1260
                double error=0;
1261
                double sum=0;
1262
                double scale= one;
1263

    
1264
                for(j=0; j<filterSize; j++)
1265
                {
1266
                        sum+= filter[i*filterSize + j];
1267
                }
1268
                scale/= sum;
1269
                for(j=0; j<*outFilterSize; j++)
1270
                {
1271
                        double v= filter[i*filterSize + j]*scale + error;
1272
                        int intV= floor(v + 0.5);
1273
                        (*outFilter)[i*(*outFilterSize) + j]= intV;
1274
                        error = v - intV;
1275
                }
1276
        }
1277
        
1278
        (*filterPos)[dstW]= (*filterPos)[dstW-1]; // the MMX scaler will read over the end
1279
        for(i=0; i<*outFilterSize; i++)
1280
        {
1281
                int j= dstW*(*outFilterSize);
1282
                (*outFilter)[j + i]= (*outFilter)[j + i - (*outFilterSize)];
1283
        }
1284

    
1285
        av_free(filter);
1286
        return 0;
1287
}
1288

    
1289
#ifdef COMPILE_MMX2
1290
static void initMMX2HScaler(int dstW, int xInc, uint8_t *funnyCode, int16_t *filter, int32_t *filterPos, int numSplits)
1291
{
1292
        uint8_t *fragmentA;
1293
        long imm8OfPShufW1A;
1294
        long imm8OfPShufW2A;
1295
        long fragmentLengthA;
1296
        uint8_t *fragmentB;
1297
        long imm8OfPShufW1B;
1298
        long imm8OfPShufW2B;
1299
        long fragmentLengthB;
1300
        int fragmentPos;
1301

    
1302
        int xpos, i;
1303

    
1304
        // create an optimized horizontal scaling routine
1305

    
1306
        //code fragment
1307

    
1308
        asm volatile(
1309
                "jmp 9f                                \n\t"
1310
        // Begin
1311
                "0:                                \n\t"
1312
                "movq (%%"REG_d", %%"REG_a"), %%mm3\n\t" 
1313
                "movd (%%"REG_c", %%"REG_S"), %%mm0\n\t" 
1314
                "movd 1(%%"REG_c", %%"REG_S"), %%mm1\n\t"
1315
                "punpcklbw %%mm7, %%mm1                \n\t"
1316
                "punpcklbw %%mm7, %%mm0                \n\t"
1317
                "pshufw $0xFF, %%mm1, %%mm1        \n\t"
1318
                "1:                                \n\t"
1319
                "pshufw $0xFF, %%mm0, %%mm0        \n\t"
1320
                "2:                                \n\t"
1321
                "psubw %%mm1, %%mm0                \n\t"
1322
                "movl 8(%%"REG_b", %%"REG_a"), %%esi\n\t"
1323
                "pmullw %%mm3, %%mm0                \n\t"
1324
                "psllw $7, %%mm1                \n\t"
1325
                "paddw %%mm1, %%mm0                \n\t"
1326

    
1327
                "movq %%mm0, (%%"REG_D", %%"REG_a")\n\t"
1328

    
1329
                "add $8, %%"REG_a"                \n\t"
1330
        // End
1331
                "9:                                \n\t"
1332
//                "int $3\n\t"
1333
                "lea 0b, %0                        \n\t"
1334
                "lea 1b, %1                        \n\t"
1335
                "lea 2b, %2                        \n\t"
1336
                "dec %1                                \n\t"
1337
                "dec %2                                \n\t"
1338
                "sub %0, %1                        \n\t"
1339
                "sub %0, %2                        \n\t"
1340
                "lea 9b, %3                        \n\t"
1341
                "sub %0, %3                        \n\t"
1342

    
1343

    
1344
                :"=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
1345
                "=r" (fragmentLengthA)
1346
        );
1347

    
1348
        asm volatile(
1349
                "jmp 9f                                \n\t"
1350
        // Begin
1351
                "0:                                \n\t"
1352
                "movq (%%"REG_d", %%"REG_a"), %%mm3\n\t" 
1353
                "movd (%%"REG_c", %%"REG_S"), %%mm0\n\t" 
1354
                "punpcklbw %%mm7, %%mm0                \n\t"
1355
                "pshufw $0xFF, %%mm0, %%mm1        \n\t"
1356
                "1:                                \n\t"
1357
                "pshufw $0xFF, %%mm0, %%mm0        \n\t"
1358
                "2:                                \n\t"
1359
                "psubw %%mm1, %%mm0                \n\t"
1360
                "movl 8(%%"REG_b", %%"REG_a"), %%esi\n\t"
1361
                "pmullw %%mm3, %%mm0                \n\t"
1362
                "psllw $7, %%mm1                \n\t"
1363
                "paddw %%mm1, %%mm0                \n\t"
1364

    
1365
                "movq %%mm0, (%%"REG_D", %%"REG_a")\n\t"
1366

    
1367
                "add $8, %%"REG_a"                \n\t"
1368
        // End
1369
                "9:                                \n\t"
1370
//                "int $3\n\t"
1371
                "lea 0b, %0                        \n\t"
1372
                "lea 1b, %1                        \n\t"
1373
                "lea 2b, %2                        \n\t"
1374
                "dec %1                                \n\t"
1375
                "dec %2                                \n\t"
1376
                "sub %0, %1                        \n\t"
1377
                "sub %0, %2                        \n\t"
1378
                "lea 9b, %3                        \n\t"
1379
                "sub %0, %3                        \n\t"
1380

    
1381

    
1382
                :"=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
1383
                "=r" (fragmentLengthB)
1384
        );
1385

    
1386
        xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
1387
        fragmentPos=0;
1388
        
1389
        for(i=0; i<dstW/numSplits; i++)
1390
        {
1391
                int xx=xpos>>16;
1392

    
1393
                if((i&3) == 0)
1394
                {
1395
                        int a=0;
1396
                        int b=((xpos+xInc)>>16) - xx;
1397
                        int c=((xpos+xInc*2)>>16) - xx;
1398
                        int d=((xpos+xInc*3)>>16) - xx;
1399

    
1400
                        filter[i  ] = (( xpos         & 0xFFFF) ^ 0xFFFF)>>9;
1401
                        filter[i+1] = (((xpos+xInc  ) & 0xFFFF) ^ 0xFFFF)>>9;
1402
                        filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9;
1403
                        filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9;
1404
                        filterPos[i/2]= xx;
1405

    
1406
                        if(d+1<4)
1407
                        {
1408
                                int maxShift= 3-(d+1);
1409
                                int shift=0;
1410

    
1411
                                memcpy(funnyCode + fragmentPos, fragmentB, fragmentLengthB);
1412

    
1413
                                funnyCode[fragmentPos + imm8OfPShufW1B]=
1414
                                        (a+1) | ((b+1)<<2) | ((c+1)<<4) | ((d+1)<<6);
1415
                                funnyCode[fragmentPos + imm8OfPShufW2B]=
1416
                                        a | (b<<2) | (c<<4) | (d<<6);
1417

    
1418
                                if(i+3>=dstW) shift=maxShift; //avoid overread
1419
                                else if((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align
1420

    
1421
                                if(shift && i>=shift)
1422
                                {
1423
                                        funnyCode[fragmentPos + imm8OfPShufW1B]+= 0x55*shift;
1424
                                        funnyCode[fragmentPos + imm8OfPShufW2B]+= 0x55*shift;
1425
                                        filterPos[i/2]-=shift;
1426
                                }
1427

    
1428
                                fragmentPos+= fragmentLengthB;
1429
                        }
1430
                        else
1431
                        {
1432
                                int maxShift= 3-d;
1433
                                int shift=0;
1434

    
1435
                                memcpy(funnyCode + fragmentPos, fragmentA, fragmentLengthA);
1436

    
1437
                                funnyCode[fragmentPos + imm8OfPShufW1A]=
1438
                                funnyCode[fragmentPos + imm8OfPShufW2A]=
1439
                                        a | (b<<2) | (c<<4) | (d<<6);
1440

    
1441
                                if(i+4>=dstW) shift=maxShift; //avoid overread
1442
                                else if((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //partial align
1443

    
1444
                                if(shift && i>=shift)
1445
                                {
1446
                                        funnyCode[fragmentPos + imm8OfPShufW1A]+= 0x55*shift;
1447
                                        funnyCode[fragmentPos + imm8OfPShufW2A]+= 0x55*shift;
1448
                                        filterPos[i/2]-=shift;
1449
                                }
1450

    
1451
                                fragmentPos+= fragmentLengthA;
1452
                        }
1453

    
1454
                        funnyCode[fragmentPos]= RET;
1455
                }
1456
                xpos+=xInc;
1457
        }
1458
        filterPos[i/2]= xpos>>16; // needed to jump to the next part
1459
}
1460
#endif /* COMPILE_MMX2 */
1461

    
1462
static void globalInit(void){
1463
    // generating tables:
1464
    int i;
1465
    for(i=0; i<768; i++){
1466
        int c= FFMIN(FFMAX(i-256, 0), 255);
1467
        clip_table[i]=c;
1468
    }
1469
}
1470

    
1471
static SwsFunc getSwsFunc(int flags){
1472
    
1473
#ifdef RUNTIME_CPUDETECT
1474
#if defined(ARCH_X86)
1475
        // ordered per speed fasterst first
1476
        if(flags & SWS_CPU_CAPS_MMX2)
1477
                return swScale_MMX2;
1478
        else if(flags & SWS_CPU_CAPS_3DNOW)
1479
                return swScale_3DNow;
1480
        else if(flags & SWS_CPU_CAPS_MMX)
1481
                return swScale_MMX;
1482
        else
1483
                return swScale_C;
1484

    
1485
#else
1486
#ifdef ARCH_POWERPC
1487
        if(flags & SWS_CPU_CAPS_ALTIVEC)
1488
          return swScale_altivec;
1489
        else
1490
          return swScale_C;
1491
#endif
1492
        return swScale_C;
1493
#endif /* defined(ARCH_X86) */
1494
#else //RUNTIME_CPUDETECT
1495
#ifdef HAVE_MMX2
1496
        return swScale_MMX2;
1497
#elif defined (HAVE_3DNOW)
1498
        return swScale_3DNow;
1499
#elif defined (HAVE_MMX)
1500
        return swScale_MMX;
1501
#elif defined (HAVE_ALTIVEC)
1502
        return swScale_altivec;
1503
#else
1504
        return swScale_C;
1505
#endif
1506
#endif //!RUNTIME_CPUDETECT
1507
}
1508

    
1509
static int PlanarToNV12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1510
             int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1511
        uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1512
        /* Copy Y plane */
1513
        if(dstStride[0]==srcStride[0] && srcStride[0] > 0)
1514
                memcpy(dst, src[0], srcSliceH*dstStride[0]);
1515
        else
1516
        {
1517
                int i;
1518
                uint8_t *srcPtr= src[0];
1519
                uint8_t *dstPtr= dst;
1520
                for(i=0; i<srcSliceH; i++)
1521
                {
1522
                        memcpy(dstPtr, srcPtr, c->srcW);
1523
                        srcPtr+= srcStride[0];
1524
                        dstPtr+= dstStride[0];
1525
                }
1526
        }
1527
        dst = dstParam[1] + dstStride[1]*srcSliceY/2;
1528
        if (c->dstFormat == PIX_FMT_NV12)
1529
                interleaveBytes( src[1],src[2],dst,c->srcW/2,srcSliceH/2,srcStride[1],srcStride[2],dstStride[0] );
1530
        else
1531
                interleaveBytes( src[2],src[1],dst,c->srcW/2,srcSliceH/2,srcStride[2],srcStride[1],dstStride[0] );
1532

    
1533
        return srcSliceH;
1534
}
1535

    
1536
static int PlanarToYuy2Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1537
             int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1538
        uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1539

    
1540
        yv12toyuy2( src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0] );
1541

    
1542
        return srcSliceH;
1543
}
1544

    
1545
static int PlanarToUyvyWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1546
             int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1547
        uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1548

    
1549
        yv12touyvy( src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0] );
1550

    
1551
        return srcSliceH;
1552
}
1553

    
1554
/* {RGB,BGR}{15,16,24,32} -> {RGB,BGR}{15,16,24,32} */
1555
static int rgb2rgbWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1556
                           int srcSliceH, uint8_t* dst[], int dstStride[]){
1557
        const int srcFormat= c->srcFormat;
1558
        const int dstFormat= c->dstFormat;
1559
        const int srcBpp= (fmt_depth(srcFormat) + 7) >> 3;
1560
        const int dstBpp= (fmt_depth(dstFormat) + 7) >> 3;
1561
        const int srcId= fmt_depth(srcFormat) >> 2; /* 1:0, 4:1, 8:2, 15:3, 16:4, 24:6, 32:8 */
1562
        const int dstId= fmt_depth(dstFormat) >> 2;
1563
        void (*conv)(const uint8_t *src, uint8_t *dst, long src_size)=NULL;
1564

    
1565
        /* BGR -> BGR */
1566
        if(   (isBGR(srcFormat) && isBGR(dstFormat))
1567
           || (isRGB(srcFormat) && isRGB(dstFormat))){
1568
                switch(srcId | (dstId<<4)){
1569
                case 0x34: conv= rgb16to15; break;
1570
                case 0x36: conv= rgb24to15; break;
1571
                case 0x38: conv= rgb32to15; break;
1572
                case 0x43: conv= rgb15to16; break;
1573
                case 0x46: conv= rgb24to16; break;
1574
                case 0x48: conv= rgb32to16; break;
1575
                case 0x63: conv= rgb15to24; break;
1576
                case 0x64: conv= rgb16to24; break;
1577
                case 0x68: conv= rgb32to24; break;
1578
                case 0x83: conv= rgb15to32; break;
1579
                case 0x84: conv= rgb16to32; break;
1580
                case 0x86: conv= rgb24to32; break;
1581
                default: MSG_ERR("swScaler: internal error %s -> %s converter\n", 
1582
                                 sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
1583
                }
1584
        }else if(   (isBGR(srcFormat) && isRGB(dstFormat))
1585
                 || (isRGB(srcFormat) && isBGR(dstFormat))){
1586
                switch(srcId | (dstId<<4)){
1587
                case 0x33: conv= rgb15tobgr15; break;
1588
                case 0x34: conv= rgb16tobgr15; break;
1589
                case 0x36: conv= rgb24tobgr15; break;
1590
                case 0x38: conv= rgb32tobgr15; break;
1591
                case 0x43: conv= rgb15tobgr16; break;
1592
                case 0x44: conv= rgb16tobgr16; break;
1593
                case 0x46: conv= rgb24tobgr16; break;
1594
                case 0x48: conv= rgb32tobgr16; break;
1595
                case 0x63: conv= rgb15tobgr24; break;
1596
                case 0x64: conv= rgb16tobgr24; break;
1597
                case 0x66: conv= rgb24tobgr24; break;
1598
                case 0x68: conv= rgb32tobgr24; break;
1599
                case 0x83: conv= rgb15tobgr32; break;
1600
                case 0x84: conv= rgb16tobgr32; break;
1601
                case 0x86: conv= rgb24tobgr32; break;
1602
                case 0x88: conv= rgb32tobgr32; break;
1603
                default: MSG_ERR("swScaler: internal error %s -> %s converter\n", 
1604
                                 sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
1605
                }
1606
        }else{
1607
                MSG_ERR("swScaler: internal error %s -> %s converter\n", 
1608
                         sws_format_name(srcFormat), sws_format_name(dstFormat));
1609
        }
1610

    
1611
        if(dstStride[0]*srcBpp == srcStride[0]*dstBpp)
1612
                conv(src[0], dst[0] + dstStride[0]*srcSliceY, srcSliceH*srcStride[0]);
1613
        else
1614
        {
1615
                int i;
1616
                uint8_t *srcPtr= src[0];
1617
                uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1618

    
1619
                for(i=0; i<srcSliceH; i++)
1620
                {
1621
                        conv(srcPtr, dstPtr, c->srcW*srcBpp);
1622
                        srcPtr+= srcStride[0];
1623
                        dstPtr+= dstStride[0];
1624
                }
1625
        }     
1626
        return srcSliceH;
1627
}
1628

    
1629
static int bgr24toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1630
             int srcSliceH, uint8_t* dst[], int dstStride[]){
1631

    
1632
        rgb24toyv12(
1633
                src[0], 
1634
                dst[0]+ srcSliceY    *dstStride[0], 
1635
                dst[1]+(srcSliceY>>1)*dstStride[1], 
1636
                dst[2]+(srcSliceY>>1)*dstStride[2],
1637
                c->srcW, srcSliceH, 
1638
                dstStride[0], dstStride[1], srcStride[0]);
1639
        return srcSliceH;
1640
}
1641

    
1642
static int yvu9toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1643
             int srcSliceH, uint8_t* dst[], int dstStride[]){
1644
        int i;
1645

    
1646
        /* copy Y */
1647
        if(srcStride[0]==dstStride[0] && srcStride[0] > 0) 
1648
                memcpy(dst[0]+ srcSliceY*dstStride[0], src[0], srcStride[0]*srcSliceH);
1649
        else{
1650
                uint8_t *srcPtr= src[0];
1651
                uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1652

    
1653
                for(i=0; i<srcSliceH; i++)
1654
                {
1655
                        memcpy(dstPtr, srcPtr, c->srcW);
1656
                        srcPtr+= srcStride[0];
1657
                        dstPtr+= dstStride[0];
1658
                }
1659
        }
1660

    
1661
        if(c->dstFormat==PIX_FMT_YUV420P){
1662
                planar2x(src[1], dst[1], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[1]);
1663
                planar2x(src[2], dst[2], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[2]);
1664
        }else{
1665
                planar2x(src[1], dst[2], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[2]);
1666
                planar2x(src[2], dst[1], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[1]);
1667
        }
1668
        return srcSliceH;
1669
}
1670

    
1671
/* unscaled copy like stuff (assumes nearly identical formats) */
1672
static int simpleCopy(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1673
             int srcSliceH, uint8_t* dst[], int dstStride[]){
1674

    
1675
        if(isPacked(c->srcFormat))
1676
        {
1677
                if(dstStride[0]==srcStride[0] && srcStride[0] > 0)
1678
                        memcpy(dst[0] + dstStride[0]*srcSliceY, src[0], srcSliceH*dstStride[0]);
1679
                else
1680
                {
1681
                        int i;
1682
                        uint8_t *srcPtr= src[0];
1683
                        uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1684
                        int length=0;
1685

    
1686
                        /* universal length finder */
1687
                        while(length+c->srcW <= FFABS(dstStride[0]) 
1688
                           && length+c->srcW <= FFABS(srcStride[0])) length+= c->srcW;
1689
                        ASSERT(length!=0);
1690

    
1691
                        for(i=0; i<srcSliceH; i++)
1692
                        {
1693
                                memcpy(dstPtr, srcPtr, length);
1694
                                srcPtr+= srcStride[0];
1695
                                dstPtr+= dstStride[0];
1696
                        }
1697
                }
1698
        }
1699
        else 
1700
        { /* Planar YUV or gray */
1701
                int plane;
1702
                for(plane=0; plane<3; plane++)
1703
                {
1704
                        int length= plane==0 ? c->srcW  : -((-c->srcW  )>>c->chrDstHSubSample);
1705
                        int y=      plane==0 ? srcSliceY: -((-srcSliceY)>>c->chrDstVSubSample);
1706
                        int height= plane==0 ? srcSliceH: -((-srcSliceH)>>c->chrDstVSubSample);
1707

    
1708
                        if((isGray(c->srcFormat) || isGray(c->dstFormat)) && plane>0)
1709
                        {
1710
                                if(!isGray(c->dstFormat))
1711
                                        memset(dst[plane], 128, dstStride[plane]*height);
1712
                        }
1713
                        else
1714
                        {
1715
                                if(dstStride[plane]==srcStride[plane] && srcStride[plane] > 0)
1716
                                        memcpy(dst[plane] + dstStride[plane]*y, src[plane], height*dstStride[plane]);
1717
                                else
1718
                                {
1719
                                        int i;
1720
                                        uint8_t *srcPtr= src[plane];
1721
                                        uint8_t *dstPtr= dst[plane] + dstStride[plane]*y;
1722
                                        for(i=0; i<height; i++)
1723
                                        {
1724
                                                memcpy(dstPtr, srcPtr, length);
1725
                                                srcPtr+= srcStride[plane];
1726
                                                dstPtr+= dstStride[plane];
1727
                                        }
1728
                                }
1729
                        }
1730
                }
1731
        }
1732
        return srcSliceH;
1733
}
1734

    
1735
static int gray16togray(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1736
             int srcSliceH, uint8_t* dst[], int dstStride[]){
1737

    
1738
        int length= c->srcW;
1739
        int y=      srcSliceY;
1740
        int height= srcSliceH;
1741
        int i, j;
1742
        uint8_t *srcPtr= src[0];
1743
        uint8_t *dstPtr= dst[0] + dstStride[0]*y;
1744

    
1745
        if(!isGray(c->dstFormat)){
1746
                int height= -((-srcSliceH)>>c->chrDstVSubSample);
1747
                memset(dst[1], 128, dstStride[1]*height);
1748
                memset(dst[2], 128, dstStride[2]*height);
1749
        }
1750
        if(c->srcFormat == PIX_FMT_GRAY16LE) srcPtr++;
1751
        for(i=0; i<height; i++)
1752
        {
1753
                for(j=0; j<length; j++) dstPtr[j] = srcPtr[j<<1];
1754
                srcPtr+= srcStride[0];
1755
                dstPtr+= dstStride[0];
1756
        }
1757
        return srcSliceH;
1758
}
1759

    
1760
static int graytogray16(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1761
             int srcSliceH, uint8_t* dst[], int dstStride[]){
1762

    
1763
        int length= c->srcW;
1764
        int y=      srcSliceY;
1765
        int height= srcSliceH;
1766
        int i, j;
1767
        uint8_t *srcPtr= src[0];
1768
        uint8_t *dstPtr= dst[0] + dstStride[0]*y;
1769
        for(i=0; i<height; i++)
1770
        {
1771
                for(j=0; j<length; j++)
1772
                {
1773
                        dstPtr[j<<1] = srcPtr[j];
1774
                        dstPtr[(j<<1)+1] = srcPtr[j];
1775
                }
1776
                srcPtr+= srcStride[0];
1777
                dstPtr+= dstStride[0];
1778
        }
1779
        return srcSliceH;
1780
}
1781

    
1782
static int gray16swap(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1783
             int srcSliceH, uint8_t* dst[], int dstStride[]){
1784

    
1785
        int length= c->srcW;
1786
        int y=      srcSliceY;
1787
        int height= srcSliceH;
1788
        int i, j;
1789
        uint16_t *srcPtr= src[0];
1790
        uint16_t *dstPtr= dst[0] + dstStride[0]*y/2;
1791
        for(i=0; i<height; i++)
1792
        {
1793
                for(j=0; j<length; j++) dstPtr[j] = bswap_16(srcPtr[j]);
1794
                srcPtr+= srcStride[0]/2;
1795
                dstPtr+= dstStride[0]/2;
1796
        }
1797
        return srcSliceH;
1798
}
1799

    
1800

    
1801
static void getSubSampleFactors(int *h, int *v, int format){
1802
        switch(format){
1803
        case PIX_FMT_UYVY422:
1804
        case PIX_FMT_YUYV422:
1805
                *h=1;
1806
                *v=0;
1807
                break;
1808
        case PIX_FMT_YUV420P:
1809
        case PIX_FMT_GRAY16BE:
1810
        case PIX_FMT_GRAY16LE:
1811
        case PIX_FMT_GRAY8: //FIXME remove after different subsamplings are fully implemented
1812
        case PIX_FMT_NV12:
1813
        case PIX_FMT_NV21:
1814
                *h=1;
1815
                *v=1;
1816
                break;
1817
        case PIX_FMT_YUV410P:
1818
                *h=2;
1819
                *v=2;
1820
                break;
1821
        case PIX_FMT_YUV444P:
1822
                *h=0;
1823
                *v=0;
1824
                break;
1825
        case PIX_FMT_YUV422P:
1826
                *h=1;
1827
                *v=0;
1828
                break;
1829
        case PIX_FMT_YUV411P:
1830
                *h=2;
1831
                *v=0;
1832
                break;
1833
        default:
1834
                *h=0;
1835
                *v=0;
1836
                break;
1837
        }
1838
}
1839

    
1840
static uint16_t roundToInt16(int64_t f){
1841
        int r= (f + (1<<15))>>16;
1842
             if(r<-0x7FFF) return 0x8000;
1843
        else if(r> 0x7FFF) return 0x7FFF;
1844
        else               return r;
1845
}
1846

    
1847
/**
1848
 * @param inv_table the yuv2rgb coeffs, normally Inverse_Table_6_9[x]
1849
 * @param fullRange if 1 then the luma range is 0..255 if 0 its 16..235
1850
 * @return -1 if not supported
1851
 */
1852
int sws_setColorspaceDetails(SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation){
1853
        int64_t crv =  inv_table[0];
1854
        int64_t cbu =  inv_table[1];
1855
        int64_t cgu = -inv_table[2];
1856
        int64_t cgv = -inv_table[3];
1857
        int64_t cy  = 1<<16;
1858
        int64_t oy  = 0;
1859

    
1860
        if(isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
1861
        memcpy(c->srcColorspaceTable, inv_table, sizeof(int)*4);
1862
        memcpy(c->dstColorspaceTable,     table, sizeof(int)*4);
1863

    
1864
        c->brightness= brightness;
1865
        c->contrast  = contrast;
1866
        c->saturation= saturation;
1867
        c->srcRange  = srcRange;
1868
        c->dstRange  = dstRange;
1869

    
1870
        c->uOffset=   0x0400040004000400LL;
1871
        c->vOffset=   0x0400040004000400LL;
1872

    
1873
        if(!srcRange){
1874
                cy= (cy*255) / 219;
1875
                oy= 16<<16;
1876
        }
1877

    
1878
        cy = (cy *contrast             )>>16;
1879
        crv= (crv*contrast * saturation)>>32;
1880
        cbu= (cbu*contrast * saturation)>>32;
1881
        cgu= (cgu*contrast * saturation)>>32;
1882
        cgv= (cgv*contrast * saturation)>>32;
1883

    
1884
        oy -= 256*brightness;
1885

    
1886
        c->yCoeff=    roundToInt16(cy *8192) * 0x0001000100010001ULL;
1887
        c->vrCoeff=   roundToInt16(crv*8192) * 0x0001000100010001ULL;
1888
        c->ubCoeff=   roundToInt16(cbu*8192) * 0x0001000100010001ULL;
1889
        c->vgCoeff=   roundToInt16(cgv*8192) * 0x0001000100010001ULL;
1890
        c->ugCoeff=   roundToInt16(cgu*8192) * 0x0001000100010001ULL;
1891
        c->yOffset=   roundToInt16(oy *   8) * 0x0001000100010001ULL;
1892

    
1893
        yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness, contrast, saturation);
1894
        //FIXME factorize
1895

    
1896
#ifdef COMPILE_ALTIVEC
1897
        if (c->flags & SWS_CPU_CAPS_ALTIVEC)
1898
            yuv2rgb_altivec_init_tables (c, inv_table, brightness, contrast, saturation);
1899
#endif        
1900
        return 0;
1901
}
1902

    
1903
/**
1904
 * @return -1 if not supported
1905
 */
1906
int sws_getColorspaceDetails(SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation){
1907
        if(isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
1908

    
1909
        *inv_table = c->srcColorspaceTable;
1910
        *table     = c->dstColorspaceTable;
1911
        *srcRange  = c->srcRange;
1912
        *dstRange  = c->dstRange;
1913
        *brightness= c->brightness;
1914
        *contrast  = c->contrast;
1915
        *saturation= c->saturation;
1916
        
1917
        return 0;        
1918
}
1919

    
1920
static int handle_jpeg(int *format)
1921
{
1922
        switch (*format) {
1923
                case PIX_FMT_YUVJ420P:
1924
                        *format = PIX_FMT_YUV420P;
1925
                        return 1;
1926
                case PIX_FMT_YUVJ422P:
1927
                        *format = PIX_FMT_YUV422P;
1928
                        return 1;
1929
                case PIX_FMT_YUVJ444P:
1930
                        *format = PIX_FMT_YUV444P;
1931
                        return 1;
1932
                default:
1933
                        return 0;
1934
        }
1935
}
1936

    
1937
SwsContext *sws_getContext(int srcW, int srcH, int srcFormat, int dstW, int dstH, int dstFormat, int flags,
1938
                         SwsFilter *srcFilter, SwsFilter *dstFilter, double *param){
1939

    
1940
        SwsContext *c;
1941
        int i;
1942
        int usesVFilter, usesHFilter;
1943
        int unscaled, needsDither;
1944
        int srcRange, dstRange;
1945
        SwsFilter dummyFilter= {NULL, NULL, NULL, NULL};
1946
#if defined(ARCH_X86)
1947
        if(flags & SWS_CPU_CAPS_MMX)
1948
                asm volatile("emms\n\t"::: "memory");
1949
#endif
1950

    
1951
#ifndef RUNTIME_CPUDETECT //ensure that the flags match the compiled variant if cpudetect is off
1952
        flags &= ~(SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2|SWS_CPU_CAPS_3DNOW|SWS_CPU_CAPS_ALTIVEC);
1953
#ifdef HAVE_MMX2
1954
        flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2;
1955
#elif defined (HAVE_3DNOW)
1956
        flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_3DNOW;
1957
#elif defined (HAVE_MMX)
1958
        flags |= SWS_CPU_CAPS_MMX;
1959
#elif defined (HAVE_ALTIVEC)
1960
        flags |= SWS_CPU_CAPS_ALTIVEC;
1961
#endif
1962
#endif /* RUNTIME_CPUDETECT */
1963
        if(clip_table[512] != 255) globalInit();
1964
        if(rgb15to16 == NULL) sws_rgb2rgb_init(flags);
1965

    
1966
        unscaled = (srcW == dstW && srcH == dstH);
1967
        needsDither= (isBGR(dstFormat) || isRGB(dstFormat)) 
1968
                     && (fmt_depth(dstFormat))<24
1969
                     && ((fmt_depth(dstFormat))<(fmt_depth(srcFormat)) || (!(isRGB(srcFormat) || isBGR(srcFormat))));
1970

    
1971
        srcRange = handle_jpeg(&srcFormat);
1972
        dstRange = handle_jpeg(&dstFormat);
1973

    
1974
        if(!isSupportedIn(srcFormat)) 
1975
        {
1976
                MSG_ERR("swScaler: %s is not supported as input format\n", sws_format_name(srcFormat));
1977
                return NULL;
1978
        }
1979
        if(!isSupportedOut(dstFormat))
1980
        {
1981
                MSG_ERR("swScaler: %s is not supported as output format\n", sws_format_name(dstFormat));
1982
                return NULL;
1983
        }
1984

    
1985
        /* sanity check */
1986
        if(srcW<4 || srcH<1 || dstW<8 || dstH<1) //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
1987
        {
1988
                 MSG_ERR("swScaler: %dx%d -> %dx%d is invalid scaling dimension\n", 
1989
                        srcW, srcH, dstW, dstH);
1990
                return NULL;
1991
        }
1992

    
1993
        if(!dstFilter) dstFilter= &dummyFilter;
1994
        if(!srcFilter) srcFilter= &dummyFilter;
1995

    
1996
        c= av_malloc(sizeof(SwsContext));
1997
        memset(c, 0, sizeof(SwsContext));
1998

    
1999
        c->srcW= srcW;
2000
        c->srcH= srcH;
2001
        c->dstW= dstW;
2002
        c->dstH= dstH;
2003
        c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW;
2004
        c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH;
2005
        c->flags= flags;
2006
        c->dstFormat= dstFormat;
2007
        c->srcFormat= srcFormat;
2008
        c->vRounder= 4* 0x0001000100010001ULL;
2009

    
2010
        usesHFilter= usesVFilter= 0;
2011
        if(dstFilter->lumV!=NULL && dstFilter->lumV->length>1) usesVFilter=1;
2012
        if(dstFilter->lumH!=NULL && dstFilter->lumH->length>1) usesHFilter=1;
2013
        if(dstFilter->chrV!=NULL && dstFilter->chrV->length>1) usesVFilter=1;
2014
        if(dstFilter->chrH!=NULL && dstFilter->chrH->length>1) usesHFilter=1;
2015
        if(srcFilter->lumV!=NULL && srcFilter->lumV->length>1) usesVFilter=1;
2016
        if(srcFilter->lumH!=NULL && srcFilter->lumH->length>1) usesHFilter=1;
2017
        if(srcFilter->chrV!=NULL && srcFilter->chrV->length>1) usesVFilter=1;
2018
        if(srcFilter->chrH!=NULL && srcFilter->chrH->length>1) usesHFilter=1;
2019

    
2020
        getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
2021
        getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
2022

    
2023
        // reuse chroma for 2 pixles rgb/bgr unless user wants full chroma interpolation
2024
        if((isBGR(dstFormat) || isRGB(dstFormat)) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1;
2025

    
2026
        // drop some chroma lines if the user wants it
2027
        c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT;
2028
        c->chrSrcVSubSample+= c->vChrDrop;
2029

    
2030
        // drop every 2. pixel for chroma calculation unless user wants full chroma
2031
        if((isBGR(srcFormat) || isRGB(srcFormat)) && !(flags&SWS_FULL_CHR_H_INP)) 
2032
                c->chrSrcHSubSample=1;
2033

    
2034
        if(param){
2035
                c->param[0] = param[0];
2036
                c->param[1] = param[1];
2037
        }else{
2038
                c->param[0] =
2039
                c->param[1] = SWS_PARAM_DEFAULT;
2040
        }
2041

    
2042
        c->chrIntHSubSample= c->chrDstHSubSample;
2043
        c->chrIntVSubSample= c->chrSrcVSubSample;
2044

    
2045
        // note the -((-x)>>y) is so that we allways round toward +inf
2046
        c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample);
2047
        c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample);
2048
        c->chrDstW= -((-dstW) >> c->chrDstHSubSample);
2049
        c->chrDstH= -((-dstH) >> c->chrDstVSubSample);
2050

    
2051
        sws_setColorspaceDetails(c, Inverse_Table_6_9[SWS_CS_DEFAULT], srcRange, Inverse_Table_6_9[SWS_CS_DEFAULT] /* FIXME*/, dstRange, 0, 1<<16, 1<<16); 
2052

    
2053
        /* unscaled special Cases */
2054
        if(unscaled && !usesHFilter && !usesVFilter)
2055
        {
2056
                /* yv12_to_nv12 */
2057
                if(srcFormat == PIX_FMT_YUV420P && (dstFormat == PIX_FMT_NV12 || dstFormat == PIX_FMT_NV21))
2058
                {
2059
                        c->swScale= PlanarToNV12Wrapper;
2060
                }
2061
                /* yuv2bgr */
2062
                if((srcFormat==PIX_FMT_YUV420P || srcFormat==PIX_FMT_YUV422P) && (isBGR(dstFormat) || isRGB(dstFormat)))
2063
                {
2064
                        c->swScale= yuv2rgb_get_func_ptr(c);
2065
                }
2066
                
2067
                if( srcFormat==PIX_FMT_YUV410P && dstFormat==PIX_FMT_YUV420P )
2068
                {
2069
                        c->swScale= yvu9toyv12Wrapper;
2070
                }
2071

    
2072
                /* bgr24toYV12 */
2073
                if(srcFormat==PIX_FMT_BGR24 && dstFormat==PIX_FMT_YUV420P)
2074
                        c->swScale= bgr24toyv12Wrapper;
2075
                
2076
                /* rgb/bgr -> rgb/bgr (no dither needed forms) */
2077
                if(   (isBGR(srcFormat) || isRGB(srcFormat))
2078
                   && (isBGR(dstFormat) || isRGB(dstFormat)) 
2079
                   && !needsDither)
2080
                        c->swScale= rgb2rgbWrapper;
2081

    
2082
                /* LQ converters if -sws 0 or -sws 4*/
2083
                if(c->flags&(SWS_FAST_BILINEAR|SWS_POINT)){
2084
                        /* rgb/bgr -> rgb/bgr (dither needed forms) */
2085
                        if(  (isBGR(srcFormat) || isRGB(srcFormat))
2086
                          && (isBGR(dstFormat) || isRGB(dstFormat)) 
2087
                          && needsDither)
2088
                                c->swScale= rgb2rgbWrapper;
2089

    
2090
                        /* yv12_to_yuy2 */
2091
                        if(srcFormat == PIX_FMT_YUV420P && 
2092
                            (dstFormat == PIX_FMT_YUYV422 || dstFormat == PIX_FMT_UYVY422))
2093
                        {
2094
                                if (dstFormat == PIX_FMT_YUYV422)
2095
                                    c->swScale= PlanarToYuy2Wrapper;
2096
                                else
2097
                                    c->swScale= PlanarToUyvyWrapper;
2098
                        }
2099
                }
2100

    
2101
#ifdef COMPILE_ALTIVEC
2102
                if ((c->flags & SWS_CPU_CAPS_ALTIVEC) &&
2103
                    ((srcFormat == PIX_FMT_YUV420P && 
2104
                      (dstFormat == PIX_FMT_YUYV422 || dstFormat == PIX_FMT_UYVY422)))) {
2105
                  // unscaled YV12 -> packed YUV, we want speed
2106
                  if (dstFormat == PIX_FMT_YUYV422)
2107
                    c->swScale= yv12toyuy2_unscaled_altivec;
2108
                  else
2109
                    c->swScale= yv12touyvy_unscaled_altivec;
2110
                }
2111
#endif
2112

    
2113
                /* simple copy */
2114
                if(   srcFormat == dstFormat
2115
                   || (isPlanarYUV(srcFormat) && isGray(dstFormat))
2116
                   || (isPlanarYUV(dstFormat) && isGray(srcFormat))
2117
                  )
2118
                {
2119
                        c->swScale= simpleCopy;
2120
                }
2121

    
2122
                /* gray16{le,be} conversions */
2123
                if(isGray16(srcFormat) && (isPlanarYUV(dstFormat) || (dstFormat == PIX_FMT_GRAY8)))
2124
                {
2125
                        c->swScale= gray16togray;
2126
                }
2127
                if((isPlanarYUV(srcFormat) || (srcFormat == PIX_FMT_GRAY8)) && isGray16(dstFormat))
2128
                {
2129
                        c->swScale= graytogray16;
2130
                }
2131
                if(srcFormat != dstFormat && isGray16(srcFormat) && isGray16(dstFormat))
2132
                {
2133
                        c->swScale= gray16swap;
2134
                }                
2135

    
2136
                if(c->swScale){
2137
                        if(flags&SWS_PRINT_INFO)
2138
                                MSG_INFO("SwScaler: using unscaled %s -> %s special converter\n", 
2139
                                        sws_format_name(srcFormat), sws_format_name(dstFormat));
2140
                        return c;
2141
                }
2142
        }
2143

    
2144
        if(flags & SWS_CPU_CAPS_MMX2)
2145
        {
2146
                c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0;
2147
                if(!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR))
2148
                {
2149
                        if(flags&SWS_PRINT_INFO)
2150
                                MSG_INFO("SwScaler: output Width is not a multiple of 32 -> no MMX2 scaler\n");
2151
                }
2152
                if(usesHFilter) c->canMMX2BeUsed=0;
2153
        }
2154
        else
2155
                c->canMMX2BeUsed=0;
2156

    
2157
        c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW;
2158
        c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH;
2159

    
2160
        // match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
2161
        // but only for the FAST_BILINEAR mode otherwise do correct scaling
2162
        // n-2 is the last chrominance sample available
2163
        // this is not perfect, but noone shuld notice the difference, the more correct variant
2164
        // would be like the vertical one, but that would require some special code for the
2165
        // first and last pixel
2166
        if(flags&SWS_FAST_BILINEAR)
2167
        {
2168
                if(c->canMMX2BeUsed)
2169
                {
2170
                        c->lumXInc+= 20;
2171
                        c->chrXInc+= 20;
2172
                }
2173
                //we don't use the x86asm scaler if mmx is available
2174
                else if(flags & SWS_CPU_CAPS_MMX)
2175
                {
2176
                        c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20;
2177
                        c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20;
2178
                }
2179
        }
2180

    
2181
        /* precalculate horizontal scaler filter coefficients */
2182
        {
2183
                const int filterAlign=
2184
                  (flags & SWS_CPU_CAPS_MMX) ? 4 :
2185
                  (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
2186
                  1;
2187

    
2188
                initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc,
2189
                                 srcW      ,       dstW, filterAlign, 1<<14,
2190
                                 (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC)  : flags,
2191
                                 srcFilter->lumH, dstFilter->lumH, c->param);
2192
                initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc,
2193
                                 c->chrSrcW, c->chrDstW, filterAlign, 1<<14,
2194
                                 (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
2195
                                 srcFilter->chrH, dstFilter->chrH, c->param);
2196

    
2197
#define MAX_FUNNY_CODE_SIZE 10000
2198
#if defined(COMPILE_MMX2)
2199
// can't downscale !!!
2200
                if(c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR))
2201
                {
2202
#ifdef MAP_ANONYMOUS
2203
                        c->funnyYCode = (uint8_t*)mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
2204
                        c->funnyUVCode = (uint8_t*)mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
2205
#else
2206
                        c->funnyYCode = av_malloc(MAX_FUNNY_CODE_SIZE);
2207
                        c->funnyUVCode = av_malloc(MAX_FUNNY_CODE_SIZE);
2208
#endif
2209

    
2210
                        c->lumMmx2Filter   = av_malloc((dstW        /8+8)*sizeof(int16_t));
2211
                        c->chrMmx2Filter   = av_malloc((c->chrDstW  /4+8)*sizeof(int16_t));
2212
                        c->lumMmx2FilterPos= av_malloc((dstW      /2/8+8)*sizeof(int32_t));
2213
                        c->chrMmx2FilterPos= av_malloc((c->chrDstW/2/4+8)*sizeof(int32_t));
2214

    
2215
                        initMMX2HScaler(      dstW, c->lumXInc, c->funnyYCode , c->lumMmx2Filter, c->lumMmx2FilterPos, 8);
2216
                        initMMX2HScaler(c->chrDstW, c->chrXInc, c->funnyUVCode, c->chrMmx2Filter, c->chrMmx2FilterPos, 4);
2217
                }
2218
#endif /* defined(COMPILE_MMX2) */
2219
        } // Init Horizontal stuff
2220

    
2221

    
2222

    
2223
        /* precalculate vertical scaler filter coefficients */
2224
        {
2225
                const int filterAlign=
2226
                  (flags & SWS_CPU_CAPS_MMX) && (flags & SWS_ACCURATE_RND) ? 2 :
2227
                  (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
2228
                  1;
2229

    
2230
                initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc,
2231
                                srcH      ,        dstH, filterAlign, (1<<12)-4,
2232
                                (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC)  : flags,
2233
                                srcFilter->lumV, dstFilter->lumV, c->param);
2234
                initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc,
2235
                                c->chrSrcH, c->chrDstH, filterAlign, (1<<12)-4,
2236
                                (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
2237
                                srcFilter->chrV, dstFilter->chrV, c->param);
2238

    
2239
#ifdef HAVE_ALTIVEC
2240
                c->vYCoeffsBank = av_malloc(sizeof (vector signed short)*c->vLumFilterSize*c->dstH);
2241
                c->vCCoeffsBank = av_malloc(sizeof (vector signed short)*c->vChrFilterSize*c->chrDstH);
2242

    
2243
                for (i=0;i<c->vLumFilterSize*c->dstH;i++) {
2244
                  int j;
2245
                  short *p = (short *)&c->vYCoeffsBank[i];
2246
                  for (j=0;j<8;j++)
2247
                    p[j] = c->vLumFilter[i];
2248
                }
2249

    
2250
                for (i=0;i<c->vChrFilterSize*c->chrDstH;i++) {
2251
                  int j;
2252
                  short *p = (short *)&c->vCCoeffsBank[i];
2253
                  for (j=0;j<8;j++)
2254
                    p[j] = c->vChrFilter[i];
2255
                }
2256
#endif
2257
        }
2258

    
2259
        // Calculate Buffer Sizes so that they won't run out while handling these damn slices
2260
        c->vLumBufSize= c->vLumFilterSize;
2261
        c->vChrBufSize= c->vChrFilterSize;
2262
        for(i=0; i<dstH; i++)
2263
        {
2264
                int chrI= i*c->chrDstH / dstH;
2265
                int nextSlice= FFMAX(c->vLumFilterPos[i   ] + c->vLumFilterSize - 1,
2266
                                 ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<<c->chrSrcVSubSample));
2267

    
2268
                nextSlice>>= c->chrSrcVSubSample;
2269
                nextSlice<<= c->chrSrcVSubSample;
2270
                if(c->vLumFilterPos[i   ] + c->vLumBufSize < nextSlice)
2271
                        c->vLumBufSize= nextSlice - c->vLumFilterPos[i   ];
2272
                if(c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>c->chrSrcVSubSample))
2273
                        c->vChrBufSize= (nextSlice>>c->chrSrcVSubSample) - c->vChrFilterPos[chrI];
2274
        }
2275

    
2276
        // allocate pixbufs (we use dynamic allocation because otherwise we would need to
2277
        c->lumPixBuf= av_malloc(c->vLumBufSize*2*sizeof(int16_t*));
2278
        c->chrPixBuf= av_malloc(c->vChrBufSize*2*sizeof(int16_t*));
2279
        //Note we need at least one pixel more at the end because of the mmx code (just in case someone wanna replace the 4000/8000)
2280
        /* align at 16 bytes for AltiVec */
2281
        for(i=0; i<c->vLumBufSize; i++)
2282
                c->lumPixBuf[i]= c->lumPixBuf[i+c->vLumBufSize]= av_malloc(4000);
2283
        for(i=0; i<c->vChrBufSize; i++)
2284
                c->chrPixBuf[i]= c->chrPixBuf[i+c->vChrBufSize]= av_malloc(8000);
2285

    
2286
        //try to avoid drawing green stuff between the right end and the stride end
2287
        for(i=0; i<c->vLumBufSize; i++) memset(c->lumPixBuf[i], 0, 4000);
2288
        for(i=0; i<c->vChrBufSize; i++) memset(c->chrPixBuf[i], 64, 8000);
2289

    
2290
        ASSERT(c->chrDstH <= dstH)
2291

    
2292
        if(flags&SWS_PRINT_INFO)
2293
        {
2294
#ifdef DITHER1XBPP
2295
                char *dither= " dithered";
2296
#else
2297
                char *dither= "";
2298
#endif
2299
                if(flags&SWS_FAST_BILINEAR)
2300
                        MSG_INFO("SwScaler: FAST_BILINEAR scaler, ");
2301
                else if(flags&SWS_BILINEAR)
2302
                        MSG_INFO("SwScaler: BILINEAR scaler, ");
2303
                else if(flags&SWS_BICUBIC)
2304
                        MSG_INFO("SwScaler: BICUBIC scaler, ");
2305
                else if(flags&SWS_X)
2306
                        MSG_INFO("SwScaler: Experimental scaler, ");
2307
                else if(flags&SWS_POINT)
2308
                        MSG_INFO("SwScaler: Nearest Neighbor / POINT scaler, ");
2309
                else if(flags&SWS_AREA)
2310
                        MSG_INFO("SwScaler: Area Averageing scaler, ");
2311
                else if(flags&SWS_BICUBLIN)
2312
                        MSG_INFO("SwScaler: luma BICUBIC / chroma BILINEAR scaler, ");
2313
                else if(flags&SWS_GAUSS)
2314
                        MSG_INFO("SwScaler: Gaussian scaler, ");
2315
                else if(flags&SWS_SINC)
2316
                        MSG_INFO("SwScaler: Sinc scaler, ");
2317
                else if(flags&SWS_LANCZOS)
2318
                        MSG_INFO("SwScaler: Lanczos scaler, ");
2319
                else if(flags&SWS_SPLINE)
2320
                        MSG_INFO("SwScaler: Bicubic spline scaler, ");
2321
                else
2322
                        MSG_INFO("SwScaler: ehh flags invalid?! ");
2323

    
2324
                if(dstFormat==PIX_FMT_BGR555 || dstFormat==PIX_FMT_BGR565)
2325
                        MSG_INFO("from %s to%s %s ", 
2326
                                sws_format_name(srcFormat), dither, sws_format_name(dstFormat));
2327
                else
2328
                        MSG_INFO("from %s to %s ", 
2329
                                sws_format_name(srcFormat), sws_format_name(dstFormat));
2330

    
2331
                if(flags & SWS_CPU_CAPS_MMX2)
2332
                        MSG_INFO("using MMX2\n");
2333
                else if(flags & SWS_CPU_CAPS_3DNOW)
2334
                        MSG_INFO("using 3DNOW\n");
2335
                else if(flags & SWS_CPU_CAPS_MMX)
2336
                        MSG_INFO("using MMX\n");
2337
                else if(flags & SWS_CPU_CAPS_ALTIVEC)
2338
                        MSG_INFO("using AltiVec\n");
2339
                else 
2340
                        MSG_INFO("using C\n");
2341
        }
2342

    
2343
        if(flags & SWS_PRINT_INFO)
2344
        {
2345
                if(flags & SWS_CPU_CAPS_MMX)
2346
                {
2347
                        if(c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR))
2348
                                MSG_V("SwScaler: using FAST_BILINEAR MMX2 scaler for horizontal scaling\n");
2349
                        else
2350
                        {
2351
                                if(c->hLumFilterSize==4)
2352
                                        MSG_V("SwScaler: using 4-tap MMX scaler for horizontal luminance scaling\n");
2353
                                else if(c->hLumFilterSize==8)
2354
                                        MSG_V("SwScaler: using 8-tap MMX scaler for horizontal luminance scaling\n");
2355
                                else
2356
                                        MSG_V("SwScaler: using n-tap MMX scaler for horizontal luminance scaling\n");
2357

    
2358
                                if(c->hChrFilterSize==4)
2359
                                        MSG_V("SwScaler: using 4-tap MMX scaler for horizontal chrominance scaling\n");
2360
                                else if(c->hChrFilterSize==8)
2361
                                        MSG_V("SwScaler: using 8-tap MMX scaler for horizontal chrominance scaling\n");
2362
                                else
2363
                                        MSG_V("SwScaler: using n-tap MMX scaler for horizontal chrominance scaling\n");
2364
                        }
2365
                }
2366
                else
2367
                {
2368
#if defined(ARCH_X86)
2369
                        MSG_V("SwScaler: using X86-Asm scaler for horizontal scaling\n");
2370
#else
2371
                        if(flags & SWS_FAST_BILINEAR)
2372
                                MSG_V("SwScaler: using FAST_BILINEAR C scaler for horizontal scaling\n");
2373
                        else
2374
                                MSG_V("SwScaler: using C scaler for horizontal scaling\n");
2375
#endif
2376
                }
2377
                if(isPlanarYUV(dstFormat))
2378
                {
2379
                        if(c->vLumFilterSize==1)
2380
                                MSG_V("SwScaler: using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2381
                        else
2382
                                MSG_V("SwScaler: using n-tap %s scaler for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2383
                }
2384
                else
2385
                {
2386
                        if(c->vLumFilterSize==1 && c->vChrFilterSize==2)
2387
                                MSG_V("SwScaler: using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n"
2388
                                       "SwScaler:       2-tap scaler for vertical chrominance scaling (BGR)\n",(flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2389
                        else if(c->vLumFilterSize==2 && c->vChrFilterSize==2)
2390
                                MSG_V("SwScaler: using 2-tap linear %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2391
                        else
2392
                                MSG_V("SwScaler: using n-tap %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2393
                }
2394

    
2395
                if(dstFormat==PIX_FMT_BGR24)
2396
                        MSG_V("SwScaler: using %s YV12->BGR24 Converter\n",
2397
                                (flags & SWS_CPU_CAPS_MMX2) ? "MMX2" : ((flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"));
2398
                else if(dstFormat==PIX_FMT_RGB32)
2399
                        MSG_V("SwScaler: using %s YV12->BGR32 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2400
                else if(dstFormat==PIX_FMT_BGR565)
2401
                        MSG_V("SwScaler: using %s YV12->BGR16 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2402
                else if(dstFormat==PIX_FMT_BGR555)
2403
                        MSG_V("SwScaler: using %s YV12->BGR15 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2404

    
2405
                MSG_V("SwScaler: %dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
2406
        }
2407
        if(flags & SWS_PRINT_INFO)
2408
        {
2409
                MSG_DBG2("SwScaler:Lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
2410
                        c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
2411
                MSG_DBG2("SwScaler:Chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
2412
                        c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc);
2413
        }
2414

    
2415
        c->swScale= getSwsFunc(flags);
2416
        return c;
2417
}
2418

    
2419
/**
2420
 * swscale warper, so we don't need to export the SwsContext.
2421
 * assumes planar YUV to be in YUV order instead of YVU
2422
 */
2423
int sws_scale_ordered(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
2424
                           int srcSliceH, uint8_t* dst[], int dstStride[]){
2425
        if (c->sliceDir == 0 && srcSliceY != 0 && srcSliceY + srcSliceH != c->srcH) {
2426
            MSG_ERR("swScaler: slices start in the middle!\n");
2427
            return 0;
2428
        }
2429
        if (c->sliceDir == 0) {
2430
            if (srcSliceY == 0) c->sliceDir = 1; else c->sliceDir = -1;
2431
        }
2432

    
2433
        // copy strides, so they can safely be modified
2434
        if (c->sliceDir == 1) {
2435
            // slices go from top to bottom
2436
            int srcStride2[3]= {srcStride[0], srcStride[1], srcStride[2]};
2437
            int dstStride2[3]= {dstStride[0], dstStride[1], dstStride[2]};
2438
            return c->swScale(c, src, srcStride2, srcSliceY, srcSliceH, dst, dstStride2);
2439
        } else {
2440
            // slices go from bottom to top => we flip the image internally
2441
            uint8_t* src2[3]= {src[0] + (srcSliceH-1)*srcStride[0],
2442
                               src[1] + ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[1],
2443
                               src[2] + ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[2]
2444
            };
2445
            uint8_t* dst2[3]= {dst[0] + (c->dstH-1)*dstStride[0],
2446
                               dst[1] + ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[1],
2447
                               dst[2] + ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[2]};
2448
            int srcStride2[3]= {-srcStride[0], -srcStride[1], -srcStride[2]};
2449
            int dstStride2[3]= {-dstStride[0], -dstStride[1], -dstStride[2]};
2450
            
2451
            return c->swScale(c, src2, srcStride2, c->srcH-srcSliceY-srcSliceH, srcSliceH, dst2, dstStride2);
2452
        }
2453
}
2454

    
2455
/**
2456
 * swscale warper, so we don't need to export the SwsContext
2457
 */
2458
int sws_scale(SwsContext *c, uint8_t* srcParam[], int srcStride[], int srcSliceY,
2459
                           int srcSliceH, uint8_t* dstParam[], int dstStride[]){
2460
        uint8_t *src[3];
2461
        uint8_t *dst[3];
2462
        src[0] = srcParam[0]; src[1] = srcParam[1]; src[2] = srcParam[2];
2463
        dst[0] = dstParam[0]; dst[1] = dstParam[1]; dst[2] = dstParam[2];
2464
//printf("sws: slice %d %d\n", srcSliceY, srcSliceH);
2465

    
2466
        return c->swScale(c, src, srcStride, srcSliceY, srcSliceH, dst, dstStride);
2467
}
2468

    
2469
SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur, 
2470
                                float lumaSharpen, float chromaSharpen,
2471
                                float chromaHShift, float chromaVShift,
2472
                                int verbose)
2473
{
2474
        SwsFilter *filter= av_malloc(sizeof(SwsFilter));
2475

    
2476
        if(lumaGBlur!=0.0){
2477
                filter->lumH= sws_getGaussianVec(lumaGBlur, 3.0);
2478
                filter->lumV= sws_getGaussianVec(lumaGBlur, 3.0);
2479
        }else{
2480
                filter->lumH= sws_getIdentityVec();
2481
                filter->lumV= sws_getIdentityVec();
2482
        }
2483

    
2484
        if(chromaGBlur!=0.0){
2485
                filter->chrH= sws_getGaussianVec(chromaGBlur, 3.0);
2486
                filter->chrV= sws_getGaussianVec(chromaGBlur, 3.0);
2487
        }else{
2488
                filter->chrH= sws_getIdentityVec();
2489
                filter->chrV= sws_getIdentityVec();
2490
        }
2491

    
2492
        if(chromaSharpen!=0.0){
2493
                SwsVector *id= sws_getIdentityVec();
2494
                sws_scaleVec(filter->chrH, -chromaSharpen);
2495
                sws_scaleVec(filter->chrV, -chromaSharpen);
2496
                sws_addVec(filter->chrH, id);
2497
                sws_addVec(filter->chrV, id);
2498
                sws_freeVec(id);
2499
        }
2500

    
2501
        if(lumaSharpen!=0.0){
2502
                SwsVector *id= sws_getIdentityVec();
2503
                sws_scaleVec(filter->lumH, -lumaSharpen);
2504
                sws_scaleVec(filter->lumV, -lumaSharpen);
2505
                sws_addVec(filter->lumH, id);
2506
                sws_addVec(filter->lumV, id);
2507
                sws_freeVec(id);
2508
        }
2509

    
2510
        if(chromaHShift != 0.0)
2511
                sws_shiftVec(filter->chrH, (int)(chromaHShift+0.5));
2512

    
2513
        if(chromaVShift != 0.0)
2514
                sws_shiftVec(filter->chrV, (int)(chromaVShift+0.5));
2515

    
2516
        sws_normalizeVec(filter->chrH, 1.0);
2517
        sws_normalizeVec(filter->chrV, 1.0);
2518
        sws_normalizeVec(filter->lumH, 1.0);
2519
        sws_normalizeVec(filter->lumV, 1.0);
2520

    
2521
        if(verbose) sws_printVec(filter->chrH);
2522
        if(verbose) sws_printVec(filter->lumH);
2523

    
2524
        return filter;
2525
}
2526

    
2527
/**
2528
 * returns a normalized gaussian curve used to filter stuff
2529
 * quality=3 is high quality, lowwer is lowwer quality
2530
 */
2531
SwsVector *sws_getGaussianVec(double variance, double quality){
2532
        const int length= (int)(variance*quality + 0.5) | 1;
2533
        int i;
2534
        double *coeff= av_malloc(length*sizeof(double));
2535
        double middle= (length-1)*0.5;
2536
        SwsVector *vec= av_malloc(sizeof(SwsVector));
2537

    
2538
        vec->coeff= coeff;
2539
        vec->length= length;
2540

    
2541
        for(i=0; i<length; i++)
2542
        {
2543
                double dist= i-middle;
2544
                coeff[i]= exp( -dist*dist/(2*variance*variance) ) / sqrt(2*variance*PI);
2545
        }
2546

    
2547
        sws_normalizeVec(vec, 1.0);
2548

    
2549
        return vec;
2550
}
2551

    
2552
SwsVector *sws_getConstVec(double c, int length){
2553
        int i;
2554
        double *coeff= av_malloc(length*sizeof(double));
2555
        SwsVector *vec= av_malloc(sizeof(SwsVector));
2556

    
2557
        vec->coeff= coeff;
2558
        vec->length= length;
2559

    
2560
        for(i=0; i<length; i++)
2561
                coeff[i]= c;
2562

    
2563
        return vec;
2564
}
2565

    
2566

    
2567
SwsVector *sws_getIdentityVec(void){
2568
        return sws_getConstVec(1.0, 1);
2569
}
2570

    
2571
double sws_dcVec(SwsVector *a){
2572
        int i;
2573
        double sum=0;
2574

    
2575
        for(i=0; i<a->length; i++)
2576
                sum+= a->coeff[i];
2577

    
2578
        return sum;
2579
}
2580

    
2581
void sws_scaleVec(SwsVector *a, double scalar){
2582
        int i;
2583

    
2584
        for(i=0; i<a->length; i++)
2585
                a->coeff[i]*= scalar;
2586
}
2587

    
2588
void sws_normalizeVec(SwsVector *a, double height){
2589
        sws_scaleVec(a, height/sws_dcVec(a));
2590
}
2591

    
2592
static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b){
2593
        int length= a->length + b->length - 1;
2594
        double *coeff= av_malloc(length*sizeof(double));
2595
        int i, j;
2596
        SwsVector *vec= av_malloc(sizeof(SwsVector));
2597

    
2598
        vec->coeff= coeff;
2599
        vec->length= length;
2600

    
2601
        for(i=0; i<length; i++) coeff[i]= 0.0;
2602

    
2603
        for(i=0; i<a->length; i++)
2604
        {
2605
                for(j=0; j<b->length; j++)
2606
                {
2607
                        coeff[i+j]+= a->coeff[i]*b->coeff[j];
2608
                }
2609
        }
2610

    
2611
        return vec;
2612
}
2613

    
2614
static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b){
2615
        int length= FFMAX(a->length, b->length);
2616
        double *coeff= av_malloc(length*sizeof(double));
2617
        int i;
2618
        SwsVector *vec= av_malloc(sizeof(SwsVector));
2619

    
2620
        vec->coeff= coeff;
2621
        vec->length= length;
2622

    
2623
        for(i=0; i<length; i++) coeff[i]= 0.0;
2624

    
2625
        for(i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
2626
        for(i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i];
2627

    
2628
        return vec;
2629
}
2630

    
2631
static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b){
2632
        int length= FFMAX(a->length, b->length);
2633
        double *coeff= av_malloc(length*sizeof(double));
2634
        int i;
2635
        SwsVector *vec= av_malloc(sizeof(SwsVector));
2636

    
2637
        vec->coeff= coeff;
2638
        vec->length= length;
2639

    
2640
        for(i=0; i<length; i++) coeff[i]= 0.0;
2641

    
2642
        for(i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
2643
        for(i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]-= b->coeff[i];
2644

    
2645
        return vec;
2646
}
2647

    
2648
/* shift left / or right if "shift" is negative */
2649
static SwsVector *sws_getShiftedVec(SwsVector *a, int shift){
2650
        int length= a->length + FFABS(shift)*2;
2651
        double *coeff= av_malloc(length*sizeof(double));
2652
        int i;
2653
        SwsVector *vec= av_malloc(sizeof(SwsVector));
2654

    
2655
        vec->coeff= coeff;
2656
        vec->length= length;
2657

    
2658
        for(i=0; i<length; i++) coeff[i]= 0.0;
2659

    
2660
        for(i=0; i<a->length; i++)
2661
        {
2662
                coeff[i + (length-1)/2 - (a->length-1)/2 - shift]= a->coeff[i];
2663
        }
2664

    
2665
        return vec;
2666
}
2667

    
2668
void sws_shiftVec(SwsVector *a, int shift){
2669
        SwsVector *shifted= sws_getShiftedVec(a, shift);
2670
        av_free(a->coeff);
2671
        a->coeff= shifted->coeff;
2672
        a->length= shifted->length;
2673
        av_free(shifted);
2674
}
2675

    
2676
void sws_addVec(SwsVector *a, SwsVector *b){
2677
        SwsVector *sum= sws_sumVec(a, b);
2678
        av_free(a->coeff);
2679
        a->coeff= sum->coeff;
2680
        a->length= sum->length;
2681
        av_free(sum);
2682
}
2683

    
2684
void sws_subVec(SwsVector *a, SwsVector *b){
2685
        SwsVector *diff= sws_diffVec(a, b);
2686
        av_free(a->coeff);
2687
        a->coeff= diff->coeff;
2688
        a->length= diff->length;
2689
        av_free(diff);
2690
}
2691

    
2692
void sws_convVec(SwsVector *a, SwsVector *b){
2693
        SwsVector *conv= sws_getConvVec(a, b);
2694
        av_free(a->coeff);  
2695
        a->coeff= conv->coeff;
2696
        a->length= conv->length;
2697
        av_free(conv);
2698
}
2699

    
2700
SwsVector *sws_cloneVec(SwsVector *a){
2701
        double *coeff= av_malloc(a->length*sizeof(double));
2702
        int i;
2703
        SwsVector *vec= av_malloc(sizeof(SwsVector));
2704

    
2705
        vec->coeff= coeff;
2706
        vec->length= a->length;
2707

    
2708
        for(i=0; i<a->length; i++) coeff[i]= a->coeff[i];
2709

    
2710
        return vec;
2711
}
2712

    
2713
void sws_printVec(SwsVector *a){
2714
        int i;
2715
        double max=0;
2716
        double min=0;
2717
        double range;
2718

    
2719
        for(i=0; i<a->length; i++)
2720
                if(a->coeff[i]>max) max= a->coeff[i];
2721

    
2722
        for(i=0; i<a->length; i++)
2723
                if(a->coeff[i]<min) min= a->coeff[i];
2724

    
2725
        range= max - min;
2726

    
2727
        for(i=0; i<a->length; i++)
2728
        {
2729
                int x= (int)((a->coeff[i]-min)*60.0/range +0.5);
2730
                MSG_DBG2("%1.3f ", a->coeff[i]);
2731
                for(;x>0; x--) MSG_DBG2(" ");
2732
                MSG_DBG2("|\n");
2733
        }
2734
}
2735

    
2736
void sws_freeVec(SwsVector *a){
2737
        if(!a) return;
2738
        av_free(a->coeff);
2739
        a->coeff=NULL;
2740
        a->length=0;
2741
        av_free(a);
2742
}
2743

    
2744
void sws_freeFilter(SwsFilter *filter){
2745
        if(!filter) return;
2746

    
2747
        if(filter->lumH) sws_freeVec(filter->lumH);
2748
        if(filter->lumV) sws_freeVec(filter->lumV);
2749
        if(filter->chrH) sws_freeVec(filter->chrH);
2750
        if(filter->chrV) sws_freeVec(filter->chrV);
2751
        av_free(filter);
2752
}
2753

    
2754

    
2755
void sws_freeContext(SwsContext *c){
2756
        int i;
2757
        if(!c) return;
2758

    
2759
        if(c->lumPixBuf)
2760
        {
2761
                for(i=0; i<c->vLumBufSize; i++)
2762
                {
2763
                        av_free(c->lumPixBuf[i]);
2764
                        c->lumPixBuf[i]=NULL;
2765
                }
2766
                av_free(c->lumPixBuf);
2767
                c->lumPixBuf=NULL;
2768
        }
2769

    
2770
        if(c->chrPixBuf)
2771
        {
2772
                for(i=0; i<c->vChrBufSize; i++)
2773
                {
2774
                        av_free(c->chrPixBuf[i]);
2775
                        c->chrPixBuf[i]=NULL;
2776
                }
2777
                av_free(c->chrPixBuf);
2778
                c->chrPixBuf=NULL;
2779
        }
2780

    
2781
        av_free(c->vLumFilter);
2782
        c->vLumFilter = NULL;
2783
        av_free(c->vChrFilter);
2784
        c->vChrFilter = NULL;
2785
        av_free(c->hLumFilter);
2786
        c->hLumFilter = NULL;
2787
        av_free(c->hChrFilter);
2788
        c->hChrFilter = NULL;
2789
#ifdef HAVE_ALTIVEC
2790
        av_free(c->vYCoeffsBank);
2791
        c->vYCoeffsBank = NULL;
2792
        av_free(c->vCCoeffsBank);
2793
        c->vCCoeffsBank = NULL;
2794
#endif
2795

    
2796
        av_free(c->vLumFilterPos);
2797
        c->vLumFilterPos = NULL;
2798
        av_free(c->vChrFilterPos);
2799
        c->vChrFilterPos = NULL;
2800
        av_free(c->hLumFilterPos);
2801
        c->hLumFilterPos = NULL;
2802
        av_free(c->hChrFilterPos);
2803
        c->hChrFilterPos = NULL;
2804

    
2805
#if defined(ARCH_X86)
2806
#ifdef MAP_ANONYMOUS
2807
        if(c->funnyYCode) munmap(c->funnyYCode, MAX_FUNNY_CODE_SIZE);
2808
        if(c->funnyUVCode) munmap(c->funnyUVCode, MAX_FUNNY_CODE_SIZE);
2809
#else
2810
        av_free(c->funnyYCode);
2811
        av_free(c->funnyUVCode);
2812
#endif
2813
        c->funnyYCode=NULL;
2814
        c->funnyUVCode=NULL;
2815
#endif /* defined(ARCH_X86) */
2816

    
2817
        av_free(c->lumMmx2Filter);
2818
        c->lumMmx2Filter=NULL;
2819
        av_free(c->chrMmx2Filter);
2820
        c->chrMmx2Filter=NULL;
2821
        av_free(c->lumMmx2FilterPos);
2822
        c->lumMmx2FilterPos=NULL;
2823
        av_free(c->chrMmx2FilterPos);
2824
        c->chrMmx2FilterPos=NULL;
2825
        av_free(c->yuvTable);
2826
        c->yuvTable=NULL;
2827

    
2828
        av_free(c);
2829
}
2830

    
2831
/**
2832
 * Checks if context is valid or reallocs a new one instead.
2833
 * If context is NULL, just calls sws_getContext() to get a new one.
2834
 * Otherwise, checks if the parameters are the same already saved in context.
2835
 * If that is the case, returns the current context.
2836
 * Otherwise, frees context and gets a new one.
2837
 *
2838
 * Be warned that srcFilter, dstFilter are not checked, they are
2839
 * asumed to remain valid.
2840
 */
2841
struct SwsContext *sws_getCachedContext(struct SwsContext *context,
2842
                        int srcW, int srcH, int srcFormat,
2843
                        int dstW, int dstH, int dstFormat, int flags,
2844
                        SwsFilter *srcFilter, SwsFilter *dstFilter, double *param)
2845
{
2846
    if (context != NULL) {
2847
        if ((context->srcW != srcW) || (context->srcH != srcH) ||
2848
            (context->srcFormat != srcFormat) ||
2849
            (context->dstW != dstW) || (context->dstH != dstH) ||
2850
            (context->dstFormat != dstFormat) || (context->flags != flags) ||
2851
            (context->param != param))
2852
        {
2853
            sws_freeContext(context);
2854
            context = NULL;
2855
        }
2856
    }
2857
    if (context == NULL) {
2858
        return sws_getContext(srcW, srcH, srcFormat,
2859
                        dstW, dstH, dstFormat, flags,
2860
                        srcFilter, dstFilter, param);
2861
    }
2862
    return context;
2863
}
2864