ffmpeg / libavcodec / wma.c @ 503f9c0b
History | View | Annotate | Download (16.5 KB)
1 |
/*
|
---|---|
2 |
* WMA compatible codec
|
3 |
* Copyright (c) 2002-2007 The FFmpeg Project
|
4 |
*
|
5 |
* This file is part of FFmpeg.
|
6 |
*
|
7 |
* FFmpeg is free software; you can redistribute it and/or
|
8 |
* modify it under the terms of the GNU Lesser General Public
|
9 |
* License as published by the Free Software Foundation; either
|
10 |
* version 2.1 of the License, or (at your option) any later version.
|
11 |
*
|
12 |
* FFmpeg is distributed in the hope that it will be useful,
|
13 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
14 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
15 |
* Lesser General Public License for more details.
|
16 |
*
|
17 |
* You should have received a copy of the GNU Lesser General Public
|
18 |
* License along with FFmpeg; if not, write to the Free Software
|
19 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
20 |
*/
|
21 |
|
22 |
#include "avcodec.h" |
23 |
#include "wma.h" |
24 |
#include "wmadata.h" |
25 |
|
26 |
#undef NDEBUG
|
27 |
#include <assert.h> |
28 |
|
29 |
/* XXX: use same run/length optimization as mpeg decoders */
|
30 |
//FIXME maybe split decode / encode or pass flag
|
31 |
static void init_coef_vlc(VLC *vlc, uint16_t **prun_table, |
32 |
float **plevel_table, uint16_t **pint_table,
|
33 |
const CoefVLCTable *vlc_table)
|
34 |
{ |
35 |
int n = vlc_table->n;
|
36 |
const uint8_t *table_bits = vlc_table->huffbits;
|
37 |
const uint32_t *table_codes = vlc_table->huffcodes;
|
38 |
const uint16_t *levels_table = vlc_table->levels;
|
39 |
uint16_t *run_table, *level_table, *int_table; |
40 |
float *flevel_table;
|
41 |
int i, l, j, k, level;
|
42 |
|
43 |
init_vlc(vlc, VLCBITS, n, table_bits, 1, 1, table_codes, 4, 4, 0); |
44 |
|
45 |
run_table = av_malloc(n * sizeof(uint16_t));
|
46 |
level_table = av_malloc(n * sizeof(uint16_t));
|
47 |
flevel_table= av_malloc(n * sizeof(*flevel_table));
|
48 |
int_table = av_malloc(n * sizeof(uint16_t));
|
49 |
i = 2;
|
50 |
level = 1;
|
51 |
k = 0;
|
52 |
while (i < n) {
|
53 |
int_table[k] = i; |
54 |
l = levels_table[k++]; |
55 |
for (j = 0; j < l; j++) { |
56 |
run_table[i] = j; |
57 |
level_table[i] = level; |
58 |
flevel_table[i]= level; |
59 |
i++; |
60 |
} |
61 |
level++; |
62 |
} |
63 |
*prun_table = run_table; |
64 |
*plevel_table = flevel_table; |
65 |
*pint_table = int_table; |
66 |
av_free(level_table); |
67 |
} |
68 |
|
69 |
/**
|
70 |
*@brief Get the samples per frame for this stream.
|
71 |
*@param sample_rate output sample_rate
|
72 |
*@param version wma version
|
73 |
*@param decode_flags codec compression features
|
74 |
*@return log2 of the number of output samples per frame
|
75 |
*/
|
76 |
int av_cold ff_wma_get_frame_len_bits(int sample_rate, int version, |
77 |
unsigned int decode_flags) |
78 |
{ |
79 |
|
80 |
int frame_len_bits;
|
81 |
|
82 |
if (sample_rate <= 16000) { |
83 |
frame_len_bits = 9;
|
84 |
} else if (sample_rate <= 22050 || |
85 |
(sample_rate <= 32000 && version == 1)) { |
86 |
frame_len_bits = 10;
|
87 |
} else if (sample_rate <= 48000) { |
88 |
frame_len_bits = 11;
|
89 |
} else if (sample_rate <= 96000) { |
90 |
frame_len_bits = 12;
|
91 |
} else {
|
92 |
frame_len_bits = 13;
|
93 |
} |
94 |
|
95 |
if (version == 3) { |
96 |
int tmp = decode_flags & 0x6; |
97 |
if (tmp == 0x2) { |
98 |
++frame_len_bits; |
99 |
} else if (tmp == 0x4) { |
100 |
--frame_len_bits; |
101 |
} else if (tmp == 0x6) { |
102 |
frame_len_bits -= 2;
|
103 |
} |
104 |
} |
105 |
|
106 |
return frame_len_bits;
|
107 |
} |
108 |
|
109 |
int ff_wma_init(AVCodecContext *avctx, int flags2) |
110 |
{ |
111 |
WMACodecContext *s = avctx->priv_data; |
112 |
int i;
|
113 |
float bps1, high_freq;
|
114 |
volatile float bps; |
115 |
int sample_rate1;
|
116 |
int coef_vlc_table;
|
117 |
|
118 |
if ( avctx->sample_rate <= 0 || avctx->sample_rate > 50000 |
119 |
|| avctx->channels <= 0 || avctx->channels > 8 |
120 |
|| avctx->bit_rate <= 0)
|
121 |
return -1; |
122 |
|
123 |
s->sample_rate = avctx->sample_rate; |
124 |
s->nb_channels = avctx->channels; |
125 |
s->bit_rate = avctx->bit_rate; |
126 |
s->block_align = avctx->block_align; |
127 |
|
128 |
dsputil_init(&s->dsp, avctx); |
129 |
|
130 |
if (avctx->codec->id == CODEC_ID_WMAV1) {
|
131 |
s->version = 1;
|
132 |
} else {
|
133 |
s->version = 2;
|
134 |
} |
135 |
|
136 |
/* compute MDCT block size */
|
137 |
s->frame_len_bits = ff_wma_get_frame_len_bits(s->sample_rate, s->version, 0);
|
138 |
|
139 |
s->frame_len = 1 << s->frame_len_bits;
|
140 |
if (s->use_variable_block_len) {
|
141 |
int nb_max, nb;
|
142 |
nb = ((flags2 >> 3) & 3) + 1; |
143 |
if ((s->bit_rate / s->nb_channels) >= 32000) |
144 |
nb += 2;
|
145 |
nb_max = s->frame_len_bits - BLOCK_MIN_BITS; |
146 |
if (nb > nb_max)
|
147 |
nb = nb_max; |
148 |
s->nb_block_sizes = nb + 1;
|
149 |
} else {
|
150 |
s->nb_block_sizes = 1;
|
151 |
} |
152 |
|
153 |
/* init rate dependent parameters */
|
154 |
s->use_noise_coding = 1;
|
155 |
high_freq = s->sample_rate * 0.5; |
156 |
|
157 |
/* if version 2, then the rates are normalized */
|
158 |
sample_rate1 = s->sample_rate; |
159 |
if (s->version == 2) { |
160 |
if (sample_rate1 >= 44100) { |
161 |
sample_rate1 = 44100;
|
162 |
} else if (sample_rate1 >= 22050) { |
163 |
sample_rate1 = 22050;
|
164 |
} else if (sample_rate1 >= 16000) { |
165 |
sample_rate1 = 16000;
|
166 |
} else if (sample_rate1 >= 11025) { |
167 |
sample_rate1 = 11025;
|
168 |
} else if (sample_rate1 >= 8000) { |
169 |
sample_rate1 = 8000;
|
170 |
} |
171 |
} |
172 |
|
173 |
bps = (float)s->bit_rate / (float)(s->nb_channels * s->sample_rate); |
174 |
s->byte_offset_bits = av_log2((int)(bps * s->frame_len / 8.0 + 0.5)) + 2; |
175 |
|
176 |
/* compute high frequency value and choose if noise coding should
|
177 |
be activated */
|
178 |
bps1 = bps; |
179 |
if (s->nb_channels == 2) |
180 |
bps1 = bps * 1.6; |
181 |
if (sample_rate1 == 44100) { |
182 |
if (bps1 >= 0.61) { |
183 |
s->use_noise_coding = 0;
|
184 |
} else {
|
185 |
high_freq = high_freq * 0.4; |
186 |
} |
187 |
} else if (sample_rate1 == 22050) { |
188 |
if (bps1 >= 1.16) { |
189 |
s->use_noise_coding = 0;
|
190 |
} else if (bps1 >= 0.72) { |
191 |
high_freq = high_freq * 0.7; |
192 |
} else {
|
193 |
high_freq = high_freq * 0.6; |
194 |
} |
195 |
} else if (sample_rate1 == 16000) { |
196 |
if (bps > 0.5) { |
197 |
high_freq = high_freq * 0.5; |
198 |
} else {
|
199 |
high_freq = high_freq * 0.3; |
200 |
} |
201 |
} else if (sample_rate1 == 11025) { |
202 |
high_freq = high_freq * 0.7; |
203 |
} else if (sample_rate1 == 8000) { |
204 |
if (bps <= 0.625) { |
205 |
high_freq = high_freq * 0.5; |
206 |
} else if (bps > 0.75) { |
207 |
s->use_noise_coding = 0;
|
208 |
} else {
|
209 |
high_freq = high_freq * 0.65; |
210 |
} |
211 |
} else {
|
212 |
if (bps >= 0.8) { |
213 |
high_freq = high_freq * 0.75; |
214 |
} else if (bps >= 0.6) { |
215 |
high_freq = high_freq * 0.6; |
216 |
} else {
|
217 |
high_freq = high_freq * 0.5; |
218 |
} |
219 |
} |
220 |
dprintf(s->avctx, "flags2=0x%x\n", flags2);
|
221 |
dprintf(s->avctx, "version=%d channels=%d sample_rate=%d bitrate=%d block_align=%d\n",
|
222 |
s->version, s->nb_channels, s->sample_rate, s->bit_rate, |
223 |
s->block_align); |
224 |
dprintf(s->avctx, "bps=%f bps1=%f high_freq=%f bitoffset=%d\n",
|
225 |
bps, bps1, high_freq, s->byte_offset_bits); |
226 |
dprintf(s->avctx, "use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
|
227 |
s->use_noise_coding, s->use_exp_vlc, s->nb_block_sizes); |
228 |
|
229 |
/* compute the scale factor band sizes for each MDCT block size */
|
230 |
{ |
231 |
int a, b, pos, lpos, k, block_len, i, j, n;
|
232 |
const uint8_t *table;
|
233 |
|
234 |
if (s->version == 1) { |
235 |
s->coefs_start = 3;
|
236 |
} else {
|
237 |
s->coefs_start = 0;
|
238 |
} |
239 |
for (k = 0; k < s->nb_block_sizes; k++) { |
240 |
block_len = s->frame_len >> k; |
241 |
|
242 |
if (s->version == 1) { |
243 |
lpos = 0;
|
244 |
for (i = 0; i < 25; i++) { |
245 |
a = ff_wma_critical_freqs[i]; |
246 |
b = s->sample_rate; |
247 |
pos = ((block_len * 2 * a) + (b >> 1)) / b; |
248 |
if (pos > block_len)
|
249 |
pos = block_len; |
250 |
s->exponent_bands[0][i] = pos - lpos;
|
251 |
if (pos >= block_len) {
|
252 |
i++; |
253 |
break;
|
254 |
} |
255 |
lpos = pos; |
256 |
} |
257 |
s->exponent_sizes[0] = i;
|
258 |
} else {
|
259 |
/* hardcoded tables */
|
260 |
table = NULL;
|
261 |
a = s->frame_len_bits - BLOCK_MIN_BITS - k; |
262 |
if (a < 3) { |
263 |
if (s->sample_rate >= 44100) { |
264 |
table = exponent_band_44100[a]; |
265 |
} else if (s->sample_rate >= 32000) { |
266 |
table = exponent_band_32000[a]; |
267 |
} else if (s->sample_rate >= 22050) { |
268 |
table = exponent_band_22050[a]; |
269 |
} |
270 |
} |
271 |
if (table) {
|
272 |
n = *table++; |
273 |
for (i = 0; i < n; i++) |
274 |
s->exponent_bands[k][i] = table[i]; |
275 |
s->exponent_sizes[k] = n; |
276 |
} else {
|
277 |
j = 0;
|
278 |
lpos = 0;
|
279 |
for (i = 0; i < 25; i++) { |
280 |
a = ff_wma_critical_freqs[i]; |
281 |
b = s->sample_rate; |
282 |
pos = ((block_len * 2 * a) + (b << 1)) / (4 * b); |
283 |
pos <<= 2;
|
284 |
if (pos > block_len)
|
285 |
pos = block_len; |
286 |
if (pos > lpos)
|
287 |
s->exponent_bands[k][j++] = pos - lpos; |
288 |
if (pos >= block_len)
|
289 |
break;
|
290 |
lpos = pos; |
291 |
} |
292 |
s->exponent_sizes[k] = j; |
293 |
} |
294 |
} |
295 |
|
296 |
/* max number of coefs */
|
297 |
s->coefs_end[k] = (s->frame_len - ((s->frame_len * 9) / 100)) >> k; |
298 |
/* high freq computation */
|
299 |
s->high_band_start[k] = (int)((block_len * 2 * high_freq) / |
300 |
s->sample_rate + 0.5); |
301 |
n = s->exponent_sizes[k]; |
302 |
j = 0;
|
303 |
pos = 0;
|
304 |
for (i = 0; i < n; i++) { |
305 |
int start, end;
|
306 |
start = pos; |
307 |
pos += s->exponent_bands[k][i]; |
308 |
end = pos; |
309 |
if (start < s->high_band_start[k])
|
310 |
start = s->high_band_start[k]; |
311 |
if (end > s->coefs_end[k])
|
312 |
end = s->coefs_end[k]; |
313 |
if (end > start)
|
314 |
s->exponent_high_bands[k][j++] = end - start; |
315 |
} |
316 |
s->exponent_high_sizes[k] = j; |
317 |
#if 0
|
318 |
tprintf(s->avctx, "%5d: coefs_end=%d high_band_start=%d nb_high_bands=%d: ",
|
319 |
s->frame_len >> k,
|
320 |
s->coefs_end[k],
|
321 |
s->high_band_start[k],
|
322 |
s->exponent_high_sizes[k]);
|
323 |
for (j = 0; j < s->exponent_high_sizes[k]; j++)
|
324 |
tprintf(s->avctx, " %d", s->exponent_high_bands[k][j]);
|
325 |
tprintf(s->avctx, "\n");
|
326 |
#endif
|
327 |
} |
328 |
} |
329 |
|
330 |
#ifdef TRACE
|
331 |
{ |
332 |
int i, j;
|
333 |
for (i = 0; i < s->nb_block_sizes; i++) { |
334 |
tprintf(s->avctx, "%5d: n=%2d:",
|
335 |
s->frame_len >> i, |
336 |
s->exponent_sizes[i]); |
337 |
for (j = 0; j < s->exponent_sizes[i]; j++) |
338 |
tprintf(s->avctx, " %d", s->exponent_bands[i][j]);
|
339 |
tprintf(s->avctx, "\n");
|
340 |
} |
341 |
} |
342 |
#endif
|
343 |
|
344 |
/* init MDCT windows : simple sinus window */
|
345 |
for (i = 0; i < s->nb_block_sizes; i++) { |
346 |
ff_init_ff_sine_windows(s->frame_len_bits - i); |
347 |
s->windows[i] = ff_sine_windows[s->frame_len_bits - i]; |
348 |
} |
349 |
|
350 |
s->reset_block_lengths = 1;
|
351 |
|
352 |
if (s->use_noise_coding) {
|
353 |
|
354 |
/* init the noise generator */
|
355 |
if (s->use_exp_vlc) {
|
356 |
s->noise_mult = 0.02; |
357 |
} else {
|
358 |
s->noise_mult = 0.04; |
359 |
} |
360 |
|
361 |
#ifdef TRACE
|
362 |
for (i = 0; i < NOISE_TAB_SIZE; i++) |
363 |
s->noise_table[i] = 1.0 * s->noise_mult; |
364 |
#else
|
365 |
{ |
366 |
unsigned int seed; |
367 |
float norm;
|
368 |
seed = 1;
|
369 |
norm = (1.0 / (float)(1LL << 31)) * sqrt(3) * s->noise_mult; |
370 |
for (i = 0; i < NOISE_TAB_SIZE; i++) { |
371 |
seed = seed * 314159 + 1; |
372 |
s->noise_table[i] = (float)((int)seed) * norm; |
373 |
} |
374 |
} |
375 |
#endif
|
376 |
} |
377 |
|
378 |
/* choose the VLC tables for the coefficients */
|
379 |
coef_vlc_table = 2;
|
380 |
if (s->sample_rate >= 32000) { |
381 |
if (bps1 < 0.72) { |
382 |
coef_vlc_table = 0;
|
383 |
} else if (bps1 < 1.16) { |
384 |
coef_vlc_table = 1;
|
385 |
} |
386 |
} |
387 |
s->coef_vlcs[0]= &coef_vlcs[coef_vlc_table * 2 ]; |
388 |
s->coef_vlcs[1]= &coef_vlcs[coef_vlc_table * 2 + 1]; |
389 |
init_coef_vlc(&s->coef_vlc[0], &s->run_table[0], &s->level_table[0], &s->int_table[0], |
390 |
s->coef_vlcs[0]);
|
391 |
init_coef_vlc(&s->coef_vlc[1], &s->run_table[1], &s->level_table[1], &s->int_table[1], |
392 |
s->coef_vlcs[1]);
|
393 |
|
394 |
return 0; |
395 |
} |
396 |
|
397 |
int ff_wma_total_gain_to_bits(int total_gain) |
398 |
{ |
399 |
if (total_gain < 15) return 13; |
400 |
else if (total_gain < 32) return 12; |
401 |
else if (total_gain < 40) return 11; |
402 |
else if (total_gain < 45) return 10; |
403 |
else return 9; |
404 |
} |
405 |
|
406 |
int ff_wma_end(AVCodecContext *avctx)
|
407 |
{ |
408 |
WMACodecContext *s = avctx->priv_data; |
409 |
int i;
|
410 |
|
411 |
for (i = 0; i < s->nb_block_sizes; i++) |
412 |
ff_mdct_end(&s->mdct_ctx[i]); |
413 |
|
414 |
if (s->use_exp_vlc) {
|
415 |
free_vlc(&s->exp_vlc); |
416 |
} |
417 |
if (s->use_noise_coding) {
|
418 |
free_vlc(&s->hgain_vlc); |
419 |
} |
420 |
for (i = 0; i < 2; i++) { |
421 |
free_vlc(&s->coef_vlc[i]); |
422 |
av_free(s->run_table[i]); |
423 |
av_free(s->level_table[i]); |
424 |
av_free(s->int_table[i]); |
425 |
} |
426 |
|
427 |
return 0; |
428 |
} |
429 |
|
430 |
/**
|
431 |
* Decode an uncompressed coefficient.
|
432 |
* @param gb GetBitContext
|
433 |
* @return the decoded coefficient
|
434 |
*/
|
435 |
unsigned int ff_wma_get_large_val(GetBitContext* gb) |
436 |
{ |
437 |
/** consumes up to 34 bits */
|
438 |
int n_bits = 8; |
439 |
/** decode length */
|
440 |
if (get_bits1(gb)) {
|
441 |
n_bits += 8;
|
442 |
if (get_bits1(gb)) {
|
443 |
n_bits += 8;
|
444 |
if (get_bits1(gb)) {
|
445 |
n_bits += 7;
|
446 |
} |
447 |
} |
448 |
} |
449 |
return get_bits_long(gb, n_bits);
|
450 |
} |
451 |
|
452 |
/**
|
453 |
* Decode run level compressed coefficients.
|
454 |
* @param avctx codec context
|
455 |
* @param gb bitstream reader context
|
456 |
* @param vlc vlc table for get_vlc2
|
457 |
* @param level_table level codes
|
458 |
* @param run_table run codes
|
459 |
* @param version 0 for wma1,2 1 for wmapro
|
460 |
* @param ptr output buffer
|
461 |
* @param offset offset in the output buffer
|
462 |
* @param num_coefs number of input coefficents
|
463 |
* @param block_len input buffer length (2^n)
|
464 |
* @param frame_len_bits number of bits for escaped run codes
|
465 |
* @param coef_nb_bits number of bits for escaped level codes
|
466 |
* @return 0 on success, -1 otherwise
|
467 |
*/
|
468 |
int ff_wma_run_level_decode(AVCodecContext* avctx, GetBitContext* gb,
|
469 |
VLC *vlc, |
470 |
const float *level_table, const uint16_t *run_table, |
471 |
int version, WMACoef *ptr, int offset, |
472 |
int num_coefs, int block_len, int frame_len_bits, |
473 |
int coef_nb_bits)
|
474 |
{ |
475 |
int code, level, sign;
|
476 |
const uint32_t *ilvl = (const uint32_t*)level_table; |
477 |
uint32_t *iptr = (uint32_t*)ptr; |
478 |
const unsigned int coef_mask = block_len - 1; |
479 |
for (; offset < num_coefs; offset++) {
|
480 |
code = get_vlc2(gb, vlc->table, VLCBITS, VLCMAX); |
481 |
if (code > 1) { |
482 |
/** normal code */
|
483 |
offset += run_table[code]; |
484 |
sign = get_bits1(gb) - 1;
|
485 |
iptr[offset & coef_mask] = ilvl[code] ^ sign<<31;
|
486 |
} else if (code == 1) { |
487 |
/** EOB */
|
488 |
break;
|
489 |
} else {
|
490 |
/** escape */
|
491 |
if (!version) {
|
492 |
level = get_bits(gb, coef_nb_bits); |
493 |
/** NOTE: this is rather suboptimal. reading
|
494 |
block_len_bits would be better */
|
495 |
offset += get_bits(gb, frame_len_bits); |
496 |
} else {
|
497 |
level = ff_wma_get_large_val(gb); |
498 |
/** escape decode */
|
499 |
if (get_bits1(gb)) {
|
500 |
if (get_bits1(gb)) {
|
501 |
if (get_bits1(gb)) {
|
502 |
av_log(avctx,AV_LOG_ERROR, |
503 |
"broken escape sequence\n");
|
504 |
return -1; |
505 |
} else
|
506 |
offset += get_bits(gb, frame_len_bits) + 4;
|
507 |
} else
|
508 |
offset += get_bits(gb, 2) + 1; |
509 |
} |
510 |
} |
511 |
sign = get_bits1(gb) - 1;
|
512 |
ptr[offset & coef_mask] = (level^sign) - sign; |
513 |
} |
514 |
} |
515 |
/** NOTE: EOB can be omitted */
|
516 |
if (offset > num_coefs) {
|
517 |
av_log(avctx, AV_LOG_ERROR, "overflow in spectral RLE, ignoring\n");
|
518 |
return -1; |
519 |
} |
520 |
|
521 |
return 0; |
522 |
} |
523 |
|