ffmpeg / libavcodec / ppc / mpegvideo_altivec.c @ 5137235e
History | View | Annotate | Download (25.1 KB)
1 |
/*
|
---|---|
2 |
* Copyright (c) 2002 Dieter Shirley
|
3 |
*
|
4 |
* dct_unquantize_h263_altivec:
|
5 |
* Copyright (c) 2003 Romain Dolbeau <romain@dolbeau.org>
|
6 |
*
|
7 |
* This file is part of FFmpeg.
|
8 |
*
|
9 |
* FFmpeg is free software; you can redistribute it and/or
|
10 |
* modify it under the terms of the GNU Lesser General Public
|
11 |
* License as published by the Free Software Foundation; either
|
12 |
* version 2.1 of the License, or (at your option) any later version.
|
13 |
*
|
14 |
* FFmpeg is distributed in the hope that it will be useful,
|
15 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
16 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
17 |
* Lesser General Public License for more details.
|
18 |
*
|
19 |
* You should have received a copy of the GNU Lesser General Public
|
20 |
* License along with FFmpeg; if not, write to the Free Software
|
21 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
22 |
*/
|
23 |
|
24 |
#include <stdlib.h> |
25 |
#include <stdio.h> |
26 |
#include "libavcodec/dsputil.h" |
27 |
#include "libavcodec/mpegvideo.h" |
28 |
|
29 |
#include "dsputil_ppc.h" |
30 |
#include "util_altivec.h" |
31 |
// Swaps two variables (used for altivec registers)
|
32 |
#define SWAP(a,b) \
|
33 |
do { \
|
34 |
__typeof__(a) swap_temp=a; \ |
35 |
a=b; \ |
36 |
b=swap_temp; \ |
37 |
} while (0) |
38 |
|
39 |
// transposes a matrix consisting of four vectors with four elements each
|
40 |
#define TRANSPOSE4(a,b,c,d) \
|
41 |
do { \
|
42 |
__typeof__(a) _trans_ach = vec_mergeh(a, c); \ |
43 |
__typeof__(a) _trans_acl = vec_mergel(a, c); \ |
44 |
__typeof__(a) _trans_bdh = vec_mergeh(b, d); \ |
45 |
__typeof__(a) _trans_bdl = vec_mergel(b, d); \ |
46 |
\ |
47 |
a = vec_mergeh(_trans_ach, _trans_bdh); \ |
48 |
b = vec_mergel(_trans_ach, _trans_bdh); \ |
49 |
c = vec_mergeh(_trans_acl, _trans_bdl); \ |
50 |
d = vec_mergel(_trans_acl, _trans_bdl); \ |
51 |
} while (0) |
52 |
|
53 |
|
54 |
// Loads a four-byte value (int or float) from the target address
|
55 |
// into every element in the target vector. Only works if the
|
56 |
// target address is four-byte aligned (which should be always).
|
57 |
#define LOAD4(vec, address) \
|
58 |
{ \ |
59 |
__typeof__(vec)* _load_addr = (__typeof__(vec)*)(address); \ |
60 |
vector unsigned char _perm_vec = vec_lvsl(0,(address)); \ |
61 |
vec = vec_ld(0, _load_addr); \
|
62 |
vec = vec_perm(vec, vec, _perm_vec); \ |
63 |
vec = vec_splat(vec, 0); \
|
64 |
} |
65 |
|
66 |
|
67 |
#define FOUROF(a) {a,a,a,a}
|
68 |
|
69 |
int dct_quantize_altivec(MpegEncContext* s,
|
70 |
DCTELEM* data, int n,
|
71 |
int qscale, int* overflow) |
72 |
{ |
73 |
int lastNonZero;
|
74 |
vector float row0, row1, row2, row3, row4, row5, row6, row7;
|
75 |
vector float alt0, alt1, alt2, alt3, alt4, alt5, alt6, alt7;
|
76 |
const vector float zero = (const vector float)FOUROF(0.); |
77 |
// used after quantize step
|
78 |
int oldBaseValue = 0; |
79 |
|
80 |
// Load the data into the row/alt vectors
|
81 |
{ |
82 |
vector signed short data0, data1, data2, data3, data4, data5, data6, data7; |
83 |
|
84 |
data0 = vec_ld(0, data);
|
85 |
data1 = vec_ld(16, data);
|
86 |
data2 = vec_ld(32, data);
|
87 |
data3 = vec_ld(48, data);
|
88 |
data4 = vec_ld(64, data);
|
89 |
data5 = vec_ld(80, data);
|
90 |
data6 = vec_ld(96, data);
|
91 |
data7 = vec_ld(112, data);
|
92 |
|
93 |
// Transpose the data before we start
|
94 |
TRANSPOSE8(data0, data1, data2, data3, data4, data5, data6, data7); |
95 |
|
96 |
// load the data into floating point vectors. We load
|
97 |
// the high half of each row into the main row vectors
|
98 |
// and the low half into the alt vectors.
|
99 |
row0 = vec_ctf(vec_unpackh(data0), 0);
|
100 |
alt0 = vec_ctf(vec_unpackl(data0), 0);
|
101 |
row1 = vec_ctf(vec_unpackh(data1), 0);
|
102 |
alt1 = vec_ctf(vec_unpackl(data1), 0);
|
103 |
row2 = vec_ctf(vec_unpackh(data2), 0);
|
104 |
alt2 = vec_ctf(vec_unpackl(data2), 0);
|
105 |
row3 = vec_ctf(vec_unpackh(data3), 0);
|
106 |
alt3 = vec_ctf(vec_unpackl(data3), 0);
|
107 |
row4 = vec_ctf(vec_unpackh(data4), 0);
|
108 |
alt4 = vec_ctf(vec_unpackl(data4), 0);
|
109 |
row5 = vec_ctf(vec_unpackh(data5), 0);
|
110 |
alt5 = vec_ctf(vec_unpackl(data5), 0);
|
111 |
row6 = vec_ctf(vec_unpackh(data6), 0);
|
112 |
alt6 = vec_ctf(vec_unpackl(data6), 0);
|
113 |
row7 = vec_ctf(vec_unpackh(data7), 0);
|
114 |
alt7 = vec_ctf(vec_unpackl(data7), 0);
|
115 |
} |
116 |
|
117 |
// The following block could exist as a separate an altivec dct
|
118 |
// function. However, if we put it inline, the DCT data can remain
|
119 |
// in the vector local variables, as floats, which we'll use during the
|
120 |
// quantize step...
|
121 |
{ |
122 |
const vector float vec_0_298631336 = (vector float)FOUROF(0.298631336f); |
123 |
const vector float vec_0_390180644 = (vector float)FOUROF(-0.390180644f); |
124 |
const vector float vec_0_541196100 = (vector float)FOUROF(0.541196100f); |
125 |
const vector float vec_0_765366865 = (vector float)FOUROF(0.765366865f); |
126 |
const vector float vec_0_899976223 = (vector float)FOUROF(-0.899976223f); |
127 |
const vector float vec_1_175875602 = (vector float)FOUROF(1.175875602f); |
128 |
const vector float vec_1_501321110 = (vector float)FOUROF(1.501321110f); |
129 |
const vector float vec_1_847759065 = (vector float)FOUROF(-1.847759065f); |
130 |
const vector float vec_1_961570560 = (vector float)FOUROF(-1.961570560f); |
131 |
const vector float vec_2_053119869 = (vector float)FOUROF(2.053119869f); |
132 |
const vector float vec_2_562915447 = (vector float)FOUROF(-2.562915447f); |
133 |
const vector float vec_3_072711026 = (vector float)FOUROF(3.072711026f); |
134 |
|
135 |
|
136 |
int whichPass, whichHalf;
|
137 |
|
138 |
for(whichPass = 1; whichPass<=2; whichPass++) { |
139 |
for(whichHalf = 1; whichHalf<=2; whichHalf++) { |
140 |
vector float tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
|
141 |
vector float tmp10, tmp11, tmp12, tmp13;
|
142 |
vector float z1, z2, z3, z4, z5;
|
143 |
|
144 |
tmp0 = vec_add(row0, row7); // tmp0 = dataptr[0] + dataptr[7];
|
145 |
tmp7 = vec_sub(row0, row7); // tmp7 = dataptr[0] - dataptr[7];
|
146 |
tmp3 = vec_add(row3, row4); // tmp3 = dataptr[3] + dataptr[4];
|
147 |
tmp4 = vec_sub(row3, row4); // tmp4 = dataptr[3] - dataptr[4];
|
148 |
tmp1 = vec_add(row1, row6); // tmp1 = dataptr[1] + dataptr[6];
|
149 |
tmp6 = vec_sub(row1, row6); // tmp6 = dataptr[1] - dataptr[6];
|
150 |
tmp2 = vec_add(row2, row5); // tmp2 = dataptr[2] + dataptr[5];
|
151 |
tmp5 = vec_sub(row2, row5); // tmp5 = dataptr[2] - dataptr[5];
|
152 |
|
153 |
tmp10 = vec_add(tmp0, tmp3); // tmp10 = tmp0 + tmp3;
|
154 |
tmp13 = vec_sub(tmp0, tmp3); // tmp13 = tmp0 - tmp3;
|
155 |
tmp11 = vec_add(tmp1, tmp2); // tmp11 = tmp1 + tmp2;
|
156 |
tmp12 = vec_sub(tmp1, tmp2); // tmp12 = tmp1 - tmp2;
|
157 |
|
158 |
|
159 |
// dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);
|
160 |
row0 = vec_add(tmp10, tmp11); |
161 |
|
162 |
// dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
|
163 |
row4 = vec_sub(tmp10, tmp11); |
164 |
|
165 |
|
166 |
// z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
|
167 |
z1 = vec_madd(vec_add(tmp12, tmp13), vec_0_541196100, (vector float)zero);
|
168 |
|
169 |
// dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
|
170 |
// CONST_BITS-PASS1_BITS);
|
171 |
row2 = vec_madd(tmp13, vec_0_765366865, z1); |
172 |
|
173 |
// dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
|
174 |
// CONST_BITS-PASS1_BITS);
|
175 |
row6 = vec_madd(tmp12, vec_1_847759065, z1); |
176 |
|
177 |
z1 = vec_add(tmp4, tmp7); // z1 = tmp4 + tmp7;
|
178 |
z2 = vec_add(tmp5, tmp6); // z2 = tmp5 + tmp6;
|
179 |
z3 = vec_add(tmp4, tmp6); // z3 = tmp4 + tmp6;
|
180 |
z4 = vec_add(tmp5, tmp7); // z4 = tmp5 + tmp7;
|
181 |
|
182 |
// z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
|
183 |
z5 = vec_madd(vec_add(z3, z4), vec_1_175875602, (vector float)zero);
|
184 |
|
185 |
// z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
|
186 |
z3 = vec_madd(z3, vec_1_961570560, z5); |
187 |
|
188 |
// z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
|
189 |
z4 = vec_madd(z4, vec_0_390180644, z5); |
190 |
|
191 |
// The following adds are rolled into the multiplies above
|
192 |
// z3 = vec_add(z3, z5); // z3 += z5;
|
193 |
// z4 = vec_add(z4, z5); // z4 += z5;
|
194 |
|
195 |
// z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
|
196 |
// Wow! It's actually more efficient to roll this multiply
|
197 |
// into the adds below, even thought the multiply gets done twice!
|
198 |
// z2 = vec_madd(z2, vec_2_562915447, (vector float)zero);
|
199 |
|
200 |
// z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
|
201 |
// Same with this one...
|
202 |
// z1 = vec_madd(z1, vec_0_899976223, (vector float)zero);
|
203 |
|
204 |
// tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
|
205 |
// dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
|
206 |
row7 = vec_madd(tmp4, vec_0_298631336, vec_madd(z1, vec_0_899976223, z3)); |
207 |
|
208 |
// tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
|
209 |
// dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
|
210 |
row5 = vec_madd(tmp5, vec_2_053119869, vec_madd(z2, vec_2_562915447, z4)); |
211 |
|
212 |
// tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
|
213 |
// dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
|
214 |
row3 = vec_madd(tmp6, vec_3_072711026, vec_madd(z2, vec_2_562915447, z3)); |
215 |
|
216 |
// tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
|
217 |
// dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
|
218 |
row1 = vec_madd(z1, vec_0_899976223, vec_madd(tmp7, vec_1_501321110, z4)); |
219 |
|
220 |
// Swap the row values with the alts. If this is the first half,
|
221 |
// this sets up the low values to be acted on in the second half.
|
222 |
// If this is the second half, it puts the high values back in
|
223 |
// the row values where they are expected to be when we're done.
|
224 |
SWAP(row0, alt0); |
225 |
SWAP(row1, alt1); |
226 |
SWAP(row2, alt2); |
227 |
SWAP(row3, alt3); |
228 |
SWAP(row4, alt4); |
229 |
SWAP(row5, alt5); |
230 |
SWAP(row6, alt6); |
231 |
SWAP(row7, alt7); |
232 |
} |
233 |
|
234 |
if (whichPass == 1) { |
235 |
// transpose the data for the second pass
|
236 |
|
237 |
// First, block transpose the upper right with lower left.
|
238 |
SWAP(row4, alt0); |
239 |
SWAP(row5, alt1); |
240 |
SWAP(row6, alt2); |
241 |
SWAP(row7, alt3); |
242 |
|
243 |
// Now, transpose each block of four
|
244 |
TRANSPOSE4(row0, row1, row2, row3); |
245 |
TRANSPOSE4(row4, row5, row6, row7); |
246 |
TRANSPOSE4(alt0, alt1, alt2, alt3); |
247 |
TRANSPOSE4(alt4, alt5, alt6, alt7); |
248 |
} |
249 |
} |
250 |
} |
251 |
|
252 |
// perform the quantize step, using the floating point data
|
253 |
// still in the row/alt registers
|
254 |
{ |
255 |
const int* biasAddr; |
256 |
const vector signed int* qmat; |
257 |
vector float bias, negBias;
|
258 |
|
259 |
if (s->mb_intra) {
|
260 |
vector signed int baseVector; |
261 |
|
262 |
// We must cache element 0 in the intra case
|
263 |
// (it needs special handling).
|
264 |
baseVector = vec_cts(vec_splat(row0, 0), 0); |
265 |
vec_ste(baseVector, 0, &oldBaseValue);
|
266 |
|
267 |
qmat = (vector signed int*)s->q_intra_matrix[qscale]; |
268 |
biasAddr = &(s->intra_quant_bias); |
269 |
} else {
|
270 |
qmat = (vector signed int*)s->q_inter_matrix[qscale]; |
271 |
biasAddr = &(s->inter_quant_bias); |
272 |
} |
273 |
|
274 |
// Load the bias vector (We add 0.5 to the bias so that we're
|
275 |
// rounding when we convert to int, instead of flooring.)
|
276 |
{ |
277 |
vector signed int biasInt; |
278 |
const vector float negOneFloat = (vector float)FOUROF(-1.0f); |
279 |
LOAD4(biasInt, biasAddr); |
280 |
bias = vec_ctf(biasInt, QUANT_BIAS_SHIFT); |
281 |
negBias = vec_madd(bias, negOneFloat, zero); |
282 |
} |
283 |
|
284 |
{ |
285 |
vector float q0, q1, q2, q3, q4, q5, q6, q7;
|
286 |
|
287 |
q0 = vec_ctf(qmat[0], QMAT_SHIFT);
|
288 |
q1 = vec_ctf(qmat[2], QMAT_SHIFT);
|
289 |
q2 = vec_ctf(qmat[4], QMAT_SHIFT);
|
290 |
q3 = vec_ctf(qmat[6], QMAT_SHIFT);
|
291 |
q4 = vec_ctf(qmat[8], QMAT_SHIFT);
|
292 |
q5 = vec_ctf(qmat[10], QMAT_SHIFT);
|
293 |
q6 = vec_ctf(qmat[12], QMAT_SHIFT);
|
294 |
q7 = vec_ctf(qmat[14], QMAT_SHIFT);
|
295 |
|
296 |
row0 = vec_sel(vec_madd(row0, q0, negBias), vec_madd(row0, q0, bias), |
297 |
vec_cmpgt(row0, zero)); |
298 |
row1 = vec_sel(vec_madd(row1, q1, negBias), vec_madd(row1, q1, bias), |
299 |
vec_cmpgt(row1, zero)); |
300 |
row2 = vec_sel(vec_madd(row2, q2, negBias), vec_madd(row2, q2, bias), |
301 |
vec_cmpgt(row2, zero)); |
302 |
row3 = vec_sel(vec_madd(row3, q3, negBias), vec_madd(row3, q3, bias), |
303 |
vec_cmpgt(row3, zero)); |
304 |
row4 = vec_sel(vec_madd(row4, q4, negBias), vec_madd(row4, q4, bias), |
305 |
vec_cmpgt(row4, zero)); |
306 |
row5 = vec_sel(vec_madd(row5, q5, negBias), vec_madd(row5, q5, bias), |
307 |
vec_cmpgt(row5, zero)); |
308 |
row6 = vec_sel(vec_madd(row6, q6, negBias), vec_madd(row6, q6, bias), |
309 |
vec_cmpgt(row6, zero)); |
310 |
row7 = vec_sel(vec_madd(row7, q7, negBias), vec_madd(row7, q7, bias), |
311 |
vec_cmpgt(row7, zero)); |
312 |
|
313 |
q0 = vec_ctf(qmat[1], QMAT_SHIFT);
|
314 |
q1 = vec_ctf(qmat[3], QMAT_SHIFT);
|
315 |
q2 = vec_ctf(qmat[5], QMAT_SHIFT);
|
316 |
q3 = vec_ctf(qmat[7], QMAT_SHIFT);
|
317 |
q4 = vec_ctf(qmat[9], QMAT_SHIFT);
|
318 |
q5 = vec_ctf(qmat[11], QMAT_SHIFT);
|
319 |
q6 = vec_ctf(qmat[13], QMAT_SHIFT);
|
320 |
q7 = vec_ctf(qmat[15], QMAT_SHIFT);
|
321 |
|
322 |
alt0 = vec_sel(vec_madd(alt0, q0, negBias), vec_madd(alt0, q0, bias), |
323 |
vec_cmpgt(alt0, zero)); |
324 |
alt1 = vec_sel(vec_madd(alt1, q1, negBias), vec_madd(alt1, q1, bias), |
325 |
vec_cmpgt(alt1, zero)); |
326 |
alt2 = vec_sel(vec_madd(alt2, q2, negBias), vec_madd(alt2, q2, bias), |
327 |
vec_cmpgt(alt2, zero)); |
328 |
alt3 = vec_sel(vec_madd(alt3, q3, negBias), vec_madd(alt3, q3, bias), |
329 |
vec_cmpgt(alt3, zero)); |
330 |
alt4 = vec_sel(vec_madd(alt4, q4, negBias), vec_madd(alt4, q4, bias), |
331 |
vec_cmpgt(alt4, zero)); |
332 |
alt5 = vec_sel(vec_madd(alt5, q5, negBias), vec_madd(alt5, q5, bias), |
333 |
vec_cmpgt(alt5, zero)); |
334 |
alt6 = vec_sel(vec_madd(alt6, q6, negBias), vec_madd(alt6, q6, bias), |
335 |
vec_cmpgt(alt6, zero)); |
336 |
alt7 = vec_sel(vec_madd(alt7, q7, negBias), vec_madd(alt7, q7, bias), |
337 |
vec_cmpgt(alt7, zero)); |
338 |
} |
339 |
|
340 |
|
341 |
} |
342 |
|
343 |
// Store the data back into the original block
|
344 |
{ |
345 |
vector signed short data0, data1, data2, data3, data4, data5, data6, data7; |
346 |
|
347 |
data0 = vec_pack(vec_cts(row0, 0), vec_cts(alt0, 0)); |
348 |
data1 = vec_pack(vec_cts(row1, 0), vec_cts(alt1, 0)); |
349 |
data2 = vec_pack(vec_cts(row2, 0), vec_cts(alt2, 0)); |
350 |
data3 = vec_pack(vec_cts(row3, 0), vec_cts(alt3, 0)); |
351 |
data4 = vec_pack(vec_cts(row4, 0), vec_cts(alt4, 0)); |
352 |
data5 = vec_pack(vec_cts(row5, 0), vec_cts(alt5, 0)); |
353 |
data6 = vec_pack(vec_cts(row6, 0), vec_cts(alt6, 0)); |
354 |
data7 = vec_pack(vec_cts(row7, 0), vec_cts(alt7, 0)); |
355 |
|
356 |
{ |
357 |
// Clamp for overflow
|
358 |
vector signed int max_q_int, min_q_int; |
359 |
vector signed short max_q, min_q; |
360 |
|
361 |
LOAD4(max_q_int, &(s->max_qcoeff)); |
362 |
LOAD4(min_q_int, &(s->min_qcoeff)); |
363 |
|
364 |
max_q = vec_pack(max_q_int, max_q_int); |
365 |
min_q = vec_pack(min_q_int, min_q_int); |
366 |
|
367 |
data0 = vec_max(vec_min(data0, max_q), min_q); |
368 |
data1 = vec_max(vec_min(data1, max_q), min_q); |
369 |
data2 = vec_max(vec_min(data2, max_q), min_q); |
370 |
data4 = vec_max(vec_min(data4, max_q), min_q); |
371 |
data5 = vec_max(vec_min(data5, max_q), min_q); |
372 |
data6 = vec_max(vec_min(data6, max_q), min_q); |
373 |
data7 = vec_max(vec_min(data7, max_q), min_q); |
374 |
} |
375 |
|
376 |
{ |
377 |
vector bool char zero_01, zero_23, zero_45, zero_67; |
378 |
vector signed char scanIndexes_01, scanIndexes_23, scanIndexes_45, scanIndexes_67; |
379 |
vector signed char negOne = vec_splat_s8(-1); |
380 |
vector signed char* scanPtr = |
381 |
(vector signed char*)(s->intra_scantable.inverse); |
382 |
signed char lastNonZeroChar; |
383 |
|
384 |
// Determine the largest non-zero index.
|
385 |
zero_01 = vec_pack(vec_cmpeq(data0, (vector signed short)zero), |
386 |
vec_cmpeq(data1, (vector signed short)zero)); |
387 |
zero_23 = vec_pack(vec_cmpeq(data2, (vector signed short)zero), |
388 |
vec_cmpeq(data3, (vector signed short)zero)); |
389 |
zero_45 = vec_pack(vec_cmpeq(data4, (vector signed short)zero), |
390 |
vec_cmpeq(data5, (vector signed short)zero)); |
391 |
zero_67 = vec_pack(vec_cmpeq(data6, (vector signed short)zero), |
392 |
vec_cmpeq(data7, (vector signed short)zero)); |
393 |
|
394 |
// 64 biggest values
|
395 |
scanIndexes_01 = vec_sel(scanPtr[0], negOne, zero_01);
|
396 |
scanIndexes_23 = vec_sel(scanPtr[1], negOne, zero_23);
|
397 |
scanIndexes_45 = vec_sel(scanPtr[2], negOne, zero_45);
|
398 |
scanIndexes_67 = vec_sel(scanPtr[3], negOne, zero_67);
|
399 |
|
400 |
// 32 largest values
|
401 |
scanIndexes_01 = vec_max(scanIndexes_01, scanIndexes_23); |
402 |
scanIndexes_45 = vec_max(scanIndexes_45, scanIndexes_67); |
403 |
|
404 |
// 16 largest values
|
405 |
scanIndexes_01 = vec_max(scanIndexes_01, scanIndexes_45); |
406 |
|
407 |
// 8 largest values
|
408 |
scanIndexes_01 = vec_max(vec_mergeh(scanIndexes_01, negOne), |
409 |
vec_mergel(scanIndexes_01, negOne)); |
410 |
|
411 |
// 4 largest values
|
412 |
scanIndexes_01 = vec_max(vec_mergeh(scanIndexes_01, negOne), |
413 |
vec_mergel(scanIndexes_01, negOne)); |
414 |
|
415 |
// 2 largest values
|
416 |
scanIndexes_01 = vec_max(vec_mergeh(scanIndexes_01, negOne), |
417 |
vec_mergel(scanIndexes_01, negOne)); |
418 |
|
419 |
// largest value
|
420 |
scanIndexes_01 = vec_max(vec_mergeh(scanIndexes_01, negOne), |
421 |
vec_mergel(scanIndexes_01, negOne)); |
422 |
|
423 |
scanIndexes_01 = vec_splat(scanIndexes_01, 0);
|
424 |
|
425 |
|
426 |
vec_ste(scanIndexes_01, 0, &lastNonZeroChar);
|
427 |
|
428 |
lastNonZero = lastNonZeroChar; |
429 |
|
430 |
// While the data is still in vectors we check for the transpose IDCT permute
|
431 |
// and handle it using the vector unit if we can. This is the permute used
|
432 |
// by the altivec idct, so it is common when using the altivec dct.
|
433 |
|
434 |
if ((lastNonZero > 0) && (s->dsp.idct_permutation_type == FF_TRANSPOSE_IDCT_PERM)) { |
435 |
TRANSPOSE8(data0, data1, data2, data3, data4, data5, data6, data7); |
436 |
} |
437 |
|
438 |
vec_st(data0, 0, data);
|
439 |
vec_st(data1, 16, data);
|
440 |
vec_st(data2, 32, data);
|
441 |
vec_st(data3, 48, data);
|
442 |
vec_st(data4, 64, data);
|
443 |
vec_st(data5, 80, data);
|
444 |
vec_st(data6, 96, data);
|
445 |
vec_st(data7, 112, data);
|
446 |
} |
447 |
} |
448 |
|
449 |
// special handling of block[0]
|
450 |
if (s->mb_intra) {
|
451 |
if (!s->h263_aic) {
|
452 |
if (n < 4) |
453 |
oldBaseValue /= s->y_dc_scale; |
454 |
else
|
455 |
oldBaseValue /= s->c_dc_scale; |
456 |
} |
457 |
|
458 |
// Divide by 8, rounding the result
|
459 |
data[0] = (oldBaseValue + 4) >> 3; |
460 |
} |
461 |
|
462 |
// We handled the transpose permutation above and we don't
|
463 |
// need to permute the "no" permutation case.
|
464 |
if ((lastNonZero > 0) && |
465 |
(s->dsp.idct_permutation_type != FF_TRANSPOSE_IDCT_PERM) && |
466 |
(s->dsp.idct_permutation_type != FF_NO_IDCT_PERM)) { |
467 |
ff_block_permute(data, s->dsp.idct_permutation, |
468 |
s->intra_scantable.scantable, lastNonZero); |
469 |
} |
470 |
|
471 |
return lastNonZero;
|
472 |
} |
473 |
|
474 |
/* AltiVec version of dct_unquantize_h263
|
475 |
this code assumes `block' is 16 bytes-aligned */
|
476 |
void dct_unquantize_h263_altivec(MpegEncContext *s,
|
477 |
DCTELEM *block, int n, int qscale) |
478 |
{ |
479 |
POWERPC_PERF_DECLARE(altivec_dct_unquantize_h263_num, 1);
|
480 |
int i, level, qmul, qadd;
|
481 |
int nCoeffs;
|
482 |
|
483 |
assert(s->block_last_index[n]>=0);
|
484 |
|
485 |
POWERPC_PERF_START_COUNT(altivec_dct_unquantize_h263_num, 1);
|
486 |
|
487 |
qadd = (qscale - 1) | 1; |
488 |
qmul = qscale << 1;
|
489 |
|
490 |
if (s->mb_intra) {
|
491 |
if (!s->h263_aic) {
|
492 |
if (n < 4) |
493 |
block[0] = block[0] * s->y_dc_scale; |
494 |
else
|
495 |
block[0] = block[0] * s->c_dc_scale; |
496 |
}else
|
497 |
qadd = 0;
|
498 |
i = 1;
|
499 |
nCoeffs= 63; //does not always use zigzag table |
500 |
} else {
|
501 |
i = 0;
|
502 |
nCoeffs= s->intra_scantable.raster_end[ s->block_last_index[n] ]; |
503 |
} |
504 |
|
505 |
{ |
506 |
register const vector signed short vczero = (const vector signed short)vec_splat_s16(0); |
507 |
DECLARE_ALIGNED_16(short, qmul8[]) =
|
508 |
{ |
509 |
qmul, qmul, qmul, qmul, |
510 |
qmul, qmul, qmul, qmul |
511 |
}; |
512 |
DECLARE_ALIGNED_16(short, qadd8[]) =
|
513 |
{ |
514 |
qadd, qadd, qadd, qadd, |
515 |
qadd, qadd, qadd, qadd |
516 |
}; |
517 |
DECLARE_ALIGNED_16(short, nqadd8[]) =
|
518 |
{ |
519 |
-qadd, -qadd, -qadd, -qadd, |
520 |
-qadd, -qadd, -qadd, -qadd |
521 |
}; |
522 |
register vector signed short blockv, qmulv, qaddv, nqaddv, temp1; |
523 |
register vector bool short blockv_null, blockv_neg; |
524 |
register short backup_0 = block[0]; |
525 |
register int j = 0; |
526 |
|
527 |
qmulv = vec_ld(0, qmul8);
|
528 |
qaddv = vec_ld(0, qadd8);
|
529 |
nqaddv = vec_ld(0, nqadd8);
|
530 |
|
531 |
#if 0 // block *is* 16 bytes-aligned, it seems.
|
532 |
// first make sure block[j] is 16 bytes-aligned
|
533 |
for(j = 0; (j <= nCoeffs) && ((((unsigned long)block) + (j << 1)) & 0x0000000F) ; j++) {
|
534 |
level = block[j];
|
535 |
if (level) {
|
536 |
if (level < 0) {
|
537 |
level = level * qmul - qadd;
|
538 |
} else {
|
539 |
level = level * qmul + qadd;
|
540 |
}
|
541 |
block[j] = level;
|
542 |
}
|
543 |
}
|
544 |
#endif
|
545 |
|
546 |
// vectorize all the 16 bytes-aligned blocks
|
547 |
// of 8 elements
|
548 |
for(; (j + 7) <= nCoeffs ; j+=8) { |
549 |
blockv = vec_ld(j << 1, block);
|
550 |
blockv_neg = vec_cmplt(blockv, vczero); |
551 |
blockv_null = vec_cmpeq(blockv, vczero); |
552 |
// choose between +qadd or -qadd as the third operand
|
553 |
temp1 = vec_sel(qaddv, nqaddv, blockv_neg); |
554 |
// multiply & add (block{i,i+7} * qmul [+-] qadd)
|
555 |
temp1 = vec_mladd(blockv, qmulv, temp1); |
556 |
// put 0 where block[{i,i+7} used to have 0
|
557 |
blockv = vec_sel(temp1, blockv, blockv_null); |
558 |
vec_st(blockv, j << 1, block);
|
559 |
} |
560 |
|
561 |
// if nCoeffs isn't a multiple of 8, finish the job
|
562 |
// using good old scalar units.
|
563 |
// (we could do it using a truncated vector,
|
564 |
// but I'm not sure it's worth the hassle)
|
565 |
for(; j <= nCoeffs ; j++) {
|
566 |
level = block[j]; |
567 |
if (level) {
|
568 |
if (level < 0) { |
569 |
level = level * qmul - qadd; |
570 |
} else {
|
571 |
level = level * qmul + qadd; |
572 |
} |
573 |
block[j] = level; |
574 |
} |
575 |
} |
576 |
|
577 |
if (i == 1) { |
578 |
// cheat. this avoid special-casing the first iteration
|
579 |
block[0] = backup_0;
|
580 |
} |
581 |
} |
582 |
POWERPC_PERF_STOP_COUNT(altivec_dct_unquantize_h263_num, nCoeffs == 63);
|
583 |
} |
584 |
|
585 |
|
586 |
void idct_put_altivec(uint8_t *dest, int line_size, int16_t *block); |
587 |
void idct_add_altivec(uint8_t *dest, int line_size, int16_t *block); |
588 |
|
589 |
void MPV_common_init_altivec(MpegEncContext *s)
|
590 |
{ |
591 |
if ((mm_flags & FF_MM_ALTIVEC) == 0) return; |
592 |
|
593 |
if (s->avctx->lowres==0) { |
594 |
if ((s->avctx->idct_algo == FF_IDCT_AUTO) ||
|
595 |
(s->avctx->idct_algo == FF_IDCT_ALTIVEC)) { |
596 |
s->dsp.idct_put = idct_put_altivec; |
597 |
s->dsp.idct_add = idct_add_altivec; |
598 |
s->dsp.idct_permutation_type = FF_TRANSPOSE_IDCT_PERM; |
599 |
} |
600 |
} |
601 |
|
602 |
// Test to make sure that the dct required alignments are met.
|
603 |
if ((((long)(s->q_intra_matrix) & 0x0f) != 0) || |
604 |
(((long)(s->q_inter_matrix) & 0x0f) != 0)) { |
605 |
av_log(s->avctx, AV_LOG_INFO, "Internal Error: q-matrix blocks must be 16-byte aligned "
|
606 |
"to use AltiVec DCT. Reverting to non-AltiVec version.\n");
|
607 |
return;
|
608 |
} |
609 |
|
610 |
if (((long)(s->intra_scantable.inverse) & 0x0f) != 0) { |
611 |
av_log(s->avctx, AV_LOG_INFO, "Internal Error: scan table blocks must be 16-byte aligned "
|
612 |
"to use AltiVec DCT. Reverting to non-AltiVec version.\n");
|
613 |
return;
|
614 |
} |
615 |
|
616 |
|
617 |
if ((s->avctx->dct_algo == FF_DCT_AUTO) ||
|
618 |
(s->avctx->dct_algo == FF_DCT_ALTIVEC)) { |
619 |
#if 0 /* seems to cause trouble under some circumstances */
|
620 |
s->dct_quantize = dct_quantize_altivec;
|
621 |
#endif
|
622 |
s->dct_unquantize_h263_intra = dct_unquantize_h263_altivec; |
623 |
s->dct_unquantize_h263_inter = dct_unquantize_h263_altivec; |
624 |
} |
625 |
} |