Statistics
| Branch: | Revision:

ffmpeg / libavcodec / resample2.c @ 51a88020

History | View | Annotate | Download (8 KB)

1
/*
2
 * audio resampling
3
 * Copyright (c) 2004 Michael Niedermayer <michaelni@gmx.at>
4
 *
5
 * This library is free software; you can redistribute it and/or
6
 * modify it under the terms of the GNU Lesser General Public
7
 * License as published by the Free Software Foundation; either
8
 * version 2 of the License, or (at your option) any later version.
9
 *
10
 * This library is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13
 * Lesser General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU Lesser General Public
16
 * License along with this library; if not, write to the Free Software
17
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
18
 *
19
 */
20
 
21
/**
22
 * @file resample2.c
23
 * audio resampling
24
 * @author Michael Niedermayer <michaelni@gmx.at>
25
 */
26

    
27
#include "avcodec.h"
28
#include "common.h"
29
#include "dsputil.h"
30

    
31
#define PHASE_SHIFT 10
32
#define PHASE_COUNT (1<<PHASE_SHIFT)
33
#define PHASE_MASK (PHASE_COUNT-1)
34
#define FILTER_SIZE 16
35
//#define LINEAR 1
36

    
37
#if 1
38
#define FILTER_SHIFT 15
39

    
40
#define FELEM int16_t
41
#define FELEM2 int32_t
42
#define FELEM_MAX INT16_MAX
43
#define FELEM_MIN INT16_MIN
44
#else
45
#define FILTER_SHIFT 24
46

    
47
#define FELEM int32_t
48
#define FELEM2 int64_t
49
#define FELEM_MAX INT32_MAX
50
#define FELEM_MIN INT32_MIN
51
#endif
52

    
53

    
54
typedef struct AVResampleContext{
55
    FELEM *filter_bank;
56
    int filter_length;
57
    int ideal_dst_incr;
58
    int dst_incr;
59
    int index;
60
    int frac;
61
    int src_incr;
62
    int compensation_distance;
63
}AVResampleContext;
64

    
65
/**
66
 * 0th order modified bessel function of the first kind.
67
 */
68
double bessel(double x){
69
    double v=1;
70
    double t=1;
71
    int i;
72
    
73
    for(i=1; i<50; i++){
74
        t *= i;
75
        v += pow(x*x/4, i)/(t*t);
76
    }
77
    return v;
78
}
79

    
80
/**
81
 * builds a polyphase filterbank.
82
 * @param factor resampling factor
83
 * @param scale wanted sum of coefficients for each filter
84
 * @param type 0->cubic, 1->blackman nuttall windowed sinc, 2->kaiser windowed sinc beta=16
85
 */
86
void av_build_filter(FELEM *filter, double factor, int tap_count, int phase_count, int scale, int type){
87
    int ph, i, v;
88
    double x, y, w, tab[tap_count];
89
    const int center= (tap_count-1)/2;
90

    
91
    /* if upsampling, only need to interpolate, no filter */
92
    if (factor > 1.0)
93
        factor = 1.0;
94

    
95
    for(ph=0;ph<phase_count;ph++) {
96
        double norm = 0;
97
        double e= 0;
98
        for(i=0;i<tap_count;i++) {
99
            x = M_PI * ((double)(i - center) - (double)ph / phase_count) * factor;
100
            if (x == 0) y = 1.0;
101
            else        y = sin(x) / x;
102
            switch(type){
103
            case 0:{
104
                const float d= -0.5; //first order derivative = -0.5
105
                x = fabs(((double)(i - center) - (double)ph / phase_count) * factor);
106
                if(x<1.0) y= 1 - 3*x*x + 2*x*x*x + d*(            -x*x + x*x*x);
107
                else      y=                       d*(-4 + 8*x - 5*x*x + x*x*x);
108
                break;}
109
            case 1:
110
                w = 2.0*x / (factor*tap_count) + M_PI;
111
                y *= 0.3635819 - 0.4891775 * cos(w) + 0.1365995 * cos(2*w) - 0.0106411 * cos(3*w);
112
                break;
113
            case 2:
114
                w = 2.0*x / (factor*tap_count*M_PI);
115
                y *= bessel(16*sqrt(FFMAX(1-w*w, 0)));
116
                break;
117
            }
118

    
119
            tab[i] = y;
120
            norm += y;
121
        }
122

    
123
        /* normalize so that an uniform color remains the same */
124
        for(i=0;i<tap_count;i++) {
125
            v = clip(lrintf(tab[i] * scale / norm + e), FELEM_MIN, FELEM_MAX);
126
            filter[ph * tap_count + i] = v;
127
            e += tab[i] * scale / norm - v;
128
        }
129
    }
130
}
131

    
132
/**
133
 * initalizes a audio resampler.
134
 * note, if either rate is not a integer then simply scale both rates up so they are
135
 */
136
AVResampleContext *av_resample_init(int out_rate, int in_rate){
137
    AVResampleContext *c= av_mallocz(sizeof(AVResampleContext));
138
    double factor= FFMIN(out_rate / (double)in_rate, 1.0);
139

    
140
    memset(c, 0, sizeof(AVResampleContext));
141

    
142
    c->filter_length= ceil(FILTER_SIZE/factor);
143
    c->filter_bank= av_mallocz(c->filter_length*(PHASE_COUNT+1)*sizeof(FELEM));
144
    av_build_filter(c->filter_bank, factor, c->filter_length, PHASE_COUNT, 1<<FILTER_SHIFT, 1);
145
    memcpy(&c->filter_bank[c->filter_length*PHASE_COUNT+1], c->filter_bank, (c->filter_length-1)*sizeof(FELEM));
146
    c->filter_bank[c->filter_length*PHASE_COUNT]= c->filter_bank[c->filter_length - 1];
147

    
148
    c->src_incr= out_rate;
149
    c->ideal_dst_incr= c->dst_incr= in_rate * PHASE_COUNT;
150
    c->index= -PHASE_COUNT*((c->filter_length-1)/2);
151

    
152
    return c;
153
}
154

    
155
void av_resample_close(AVResampleContext *c){
156
    av_freep(&c->filter_bank);
157
    av_freep(&c);
158
}
159

    
160
void av_resample_compensate(AVResampleContext *c, int sample_delta, int compensation_distance){
161
//    sample_delta += (c->ideal_dst_incr - c->dst_incr)*(int64_t)c->compensation_distance / c->ideal_dst_incr;
162
    c->compensation_distance= compensation_distance;
163
    c->dst_incr = c->ideal_dst_incr - c->ideal_dst_incr * (int64_t)sample_delta / compensation_distance;
164
}
165

    
166
/**
167
 * resamples.
168
 * @param src an array of unconsumed samples
169
 * @param consumed the number of samples of src which have been consumed are returned here
170
 * @param src_size the number of unconsumed samples available
171
 * @param dst_size the amount of space in samples available in dst
172
 * @param update_ctx if this is 0 then the context wont be modified, that way several channels can be resampled with the same context
173
 * @return the number of samples written in dst or -1 if an error occured
174
 */
175
int av_resample(AVResampleContext *c, short *dst, short *src, int *consumed, int src_size, int dst_size, int update_ctx){
176
    int dst_index, i;
177
    int index= c->index;
178
    int frac= c->frac;
179
    int dst_incr_frac= c->dst_incr % c->src_incr;
180
    int dst_incr=      c->dst_incr / c->src_incr;
181
    int compensation_distance= c->compensation_distance;
182
    
183
    for(dst_index=0; dst_index < dst_size; dst_index++){
184
        FELEM *filter= c->filter_bank + c->filter_length*(index & PHASE_MASK);
185
        int sample_index= index >> PHASE_SHIFT;
186
        FELEM2 val=0;
187
                
188
        if(sample_index < 0){
189
            for(i=0; i<c->filter_length; i++)
190
                val += src[ABS(sample_index + i) % src_size] * filter[i];
191
        }else if(sample_index + c->filter_length > src_size){
192
            break;
193
        }else{
194
#ifdef LINEAR
195
            int64_t v=0;
196
            int sub_phase= (frac<<12) / c->src_incr;
197
            for(i=0; i<c->filter_length; i++){
198
                int64_t coeff= filter[i]*(FELEM2)(4096 - sub_phase) + filter[i + c->filter_length]*(FELEM2)sub_phase;
199
                v += src[sample_index + i] * coeff;
200
            }
201
            val= v>>12;
202
#else
203
            for(i=0; i<c->filter_length; i++){
204
                val += src[sample_index + i] * (FELEM2)filter[i];
205
            }
206
#endif
207
        }
208

    
209
        val = (val + (1<<(FILTER_SHIFT-1)))>>FILTER_SHIFT;
210
        dst[dst_index] = (unsigned)(val + 32768) > 65535 ? (val>>31) ^ 32767 : val;
211

    
212
        frac += dst_incr_frac;
213
        index += dst_incr;
214
        if(frac >= c->src_incr){
215
            frac -= c->src_incr;
216
            index++;
217
        }
218

    
219
        if(dst_index + 1 == compensation_distance){
220
            compensation_distance= 0;
221
            dst_incr_frac= c->ideal_dst_incr % c->src_incr;
222
            dst_incr=      c->ideal_dst_incr / c->src_incr;
223
        }
224
    }
225
    *consumed= FFMAX(index, 0) >> PHASE_SHIFT;
226
    index= FFMIN(index, 0);
227

    
228
    if(compensation_distance){
229
        compensation_distance -= dst_index;
230
        assert(compensation_distance > 0);
231
    }
232
    if(update_ctx){
233
        c->frac= frac;
234
        c->index= index;
235
        c->dst_incr= dst_incr_frac + c->src_incr*dst_incr;
236
        c->compensation_distance= compensation_distance;
237
    }
238
#if 0    
239
    if(update_ctx && !c->compensation_distance){
240
#undef rand
241
        av_resample_compensate(c, rand() % (8000*2) - 8000, 8000*2);
242
av_log(NULL, AV_LOG_DEBUG, "%d %d %d\n", c->dst_incr, c->ideal_dst_incr, c->compensation_distance);
243
    }
244
#endif
245
    
246
    return dst_index;
247
}