ffmpeg / libavcodec / mpegaudiodec.c @ 525ac37f
History  View  Annotate  Download (77.7 KB)
1 
/*


2 
* MPEG Audio decoder

3 
* Copyright (c) 2001, 2002 Fabrice Bellard

4 
*

5 
* This file is part of FFmpeg.

6 
*

7 
* FFmpeg is free software; you can redistribute it and/or

8 
* modify it under the terms of the GNU Lesser General Public

9 
* License as published by the Free Software Foundation; either

10 
* version 2.1 of the License, or (at your option) any later version.

11 
*

12 
* FFmpeg is distributed in the hope that it will be useful,

13 
* but WITHOUT ANY WARRANTY; without even the implied warranty of

14 
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

15 
* Lesser General Public License for more details.

16 
*

17 
* You should have received a copy of the GNU Lesser General Public

18 
* License along with FFmpeg; if not, write to the Free Software

19 
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 021101301 USA

20 
*/

21  
22 
/**

23 
* @file

24 
* MPEG Audio decoder.

25 
*/

26  
27 
#include "avcodec.h" 
28 
#include "get_bits.h" 
29 
#include "dsputil.h" 
30  
31 
/*

32 
* TODO:

33 
*  in low precision mode, use more 16 bit multiplies in synth filter

34 
*  test lsf / mpeg25 extensively.

35 
*/

36  
37 
#include "mpegaudio.h" 
38 
#include "mpegaudiodecheader.h" 
39  
40 
#include "mathops.h" 
41  
42 
#if CONFIG_FLOAT

43 
# define SHR(a,b) ((a)*(1.0f/(1<<(b)))) 
44 
# define compute_antialias compute_antialias_float

45 
# define FIXR_OLD(a) ((int)((a) * FRAC_ONE + 0.5)) 
46 
# define FIXR(x) ((float)(x)) 
47 
# define FIXHR(x) ((float)(x)) 
48 
# define MULH3(x, y, s) ((s)*(y)*(x))

49 
# define MULLx(x, y, s) ((y)*(x))

50 
# define RENAME(a) a ## _float 
51 
#else

52 
# define SHR(a,b) ((a)>>(b))

53 
# define compute_antialias compute_antialias_integer

54 
/* WARNING: only correct for posititive numbers */

55 
# define FIXR_OLD(a) ((int)((a) * FRAC_ONE + 0.5)) 
56 
# define FIXR(a) ((int)((a) * FRAC_ONE + 0.5)) 
57 
# define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5)) 
58 
# define MULH3(x, y, s) MULH((s)*(x), y)

59 
# define MULLx(x, y, s) MULL(x,y,s)

60 
# define RENAME(a) a

61 
#endif

62  
63 
/****************/

64  
65 
#define HEADER_SIZE 4 
66  
67 
#include "mpegaudiodata.h" 
68 
#include "mpegaudiodectab.h" 
69  
70 
static void compute_antialias_integer(MPADecodeContext *s, GranuleDef *g); 
71 
static void compute_antialias_float(MPADecodeContext *s, GranuleDef *g); 
72  
73 
/* vlc structure for decoding layer 3 huffman tables */

74 
static VLC huff_vlc[16]; 
75 
static VLC_TYPE huff_vlc_tables[

76 
0+128+128+128+130+128+154+166+ 
77 
142+204+190+170+542+460+662+414 
78 
][2];

79 
static const int huff_vlc_tables_sizes[16] = { 
80 
0, 128, 128, 128, 130, 128, 154, 166, 
81 
142, 204, 190, 170, 542, 460, 662, 414 
82 
}; 
83 
static VLC huff_quad_vlc[2]; 
84 
static VLC_TYPE huff_quad_vlc_tables[128+16][2]; 
85 
static const int huff_quad_vlc_tables_sizes[2] = { 
86 
128, 16 
87 
}; 
88 
/* computed from band_size_long */

89 
static uint16_t band_index_long[9][23]; 
90 
#include "mpegaudio_tablegen.h" 
91 
/* intensity stereo coef table */

92 
static INTFLOAT is_table[2][16]; 
93 
static INTFLOAT is_table_lsf[2][2][16]; 
94 
static int32_t csa_table[8][4]; 
95 
static float csa_table_float[8][4]; 
96 
static INTFLOAT mdct_win[8][36]; 
97  
98 
/* lower 2 bits: modulo 3, higher bits: shift */

99 
static uint16_t scale_factor_modshift[64]; 
100 
/* [i][j]: 2^(j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2)  1) */

101 
static int32_t scale_factor_mult[15][3]; 
102 
/* mult table for layer 2 group quantization */

103  
104 
#define SCALE_GEN(v) \

105 
{ FIXR_OLD(1.0 * (v)), FIXR_OLD(0.7937005259 * (v)), FIXR_OLD(0.6299605249 * (v)) } 
106  
107 
static const int32_t scale_factor_mult2[3][3] = { 
108 
SCALE_GEN(4.0 / 3.0), /* 3 steps */ 
109 
SCALE_GEN(4.0 / 5.0), /* 5 steps */ 
110 
SCALE_GEN(4.0 / 9.0), /* 9 steps */ 
111 
}; 
112  
113 
DECLARE_ALIGNED(16, MPA_INT, RENAME(ff_mpa_synth_window))[512]; 
114  
115 
/**

116 
* Convert region offsets to region sizes and truncate

117 
* size to big_values.

118 
*/

119 
static void ff_region_offset2size(GranuleDef *g){ 
120 
int i, k, j=0; 
121 
g>region_size[2] = (576 / 2); 
122 
for(i=0;i<3;i++) { 
123 
k = FFMIN(g>region_size[i], g>big_values); 
124 
g>region_size[i] = k  j; 
125 
j = k; 
126 
} 
127 
} 
128  
129 
static void ff_init_short_region(MPADecodeContext *s, GranuleDef *g){ 
130 
if (g>block_type == 2) 
131 
g>region_size[0] = (36 / 2); 
132 
else {

133 
if (s>sample_rate_index <= 2) 
134 
g>region_size[0] = (36 / 2); 
135 
else if (s>sample_rate_index != 8) 
136 
g>region_size[0] = (54 / 2); 
137 
else

138 
g>region_size[0] = (108 / 2); 
139 
} 
140 
g>region_size[1] = (576 / 2); 
141 
} 
142  
143 
static void ff_init_long_region(MPADecodeContext *s, GranuleDef *g, int ra1, int ra2){ 
144 
int l;

145 
g>region_size[0] =

146 
band_index_long[s>sample_rate_index][ra1 + 1] >> 1; 
147 
/* should not overflow */

148 
l = FFMIN(ra1 + ra2 + 2, 22); 
149 
g>region_size[1] =

150 
band_index_long[s>sample_rate_index][l] >> 1;

151 
} 
152  
153 
static void ff_compute_band_indexes(MPADecodeContext *s, GranuleDef *g){ 
154 
if (g>block_type == 2) { 
155 
if (g>switch_point) {

156 
/* if switched mode, we handle the 36 first samples as

157 
long blocks. For 8000Hz, we handle the 48 first

158 
exponents as long blocks (XXX: check this!) */

159 
if (s>sample_rate_index <= 2) 
160 
g>long_end = 8;

161 
else if (s>sample_rate_index != 8) 
162 
g>long_end = 6;

163 
else

164 
g>long_end = 4; /* 8000 Hz */ 
165  
166 
g>short_start = 2 + (s>sample_rate_index != 8); 
167 
} else {

168 
g>long_end = 0;

169 
g>short_start = 0;

170 
} 
171 
} else {

172 
g>short_start = 13;

173 
g>long_end = 22;

174 
} 
175 
} 
176  
177 
/* layer 1 unscaling */

178 
/* n = number of bits of the mantissa minus 1 */

179 
static inline int l1_unscale(int n, int mant, int scale_factor) 
180 
{ 
181 
int shift, mod;

182 
int64_t val; 
183  
184 
shift = scale_factor_modshift[scale_factor]; 
185 
mod = shift & 3;

186 
shift >>= 2;

187 
val = MUL64(mant + (1 << n) + 1, scale_factor_mult[n1][mod]); 
188 
shift += n; 
189 
/* NOTE: at this point, 1 <= shift >= 21 + 15 */

190 
return (int)((val + (1LL << (shift  1))) >> shift); 
191 
} 
192  
193 
static inline int l2_unscale_group(int steps, int mant, int scale_factor) 
194 
{ 
195 
int shift, mod, val;

196  
197 
shift = scale_factor_modshift[scale_factor]; 
198 
mod = shift & 3;

199 
shift >>= 2;

200  
201 
val = (mant  (steps >> 1)) * scale_factor_mult2[steps >> 2][mod]; 
202 
/* NOTE: at this point, 0 <= shift <= 21 */

203 
if (shift > 0) 
204 
val = (val + (1 << (shift  1))) >> shift; 
205 
return val;

206 
} 
207  
208 
/* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */

209 
static inline int l3_unscale(int value, int exponent) 
210 
{ 
211 
unsigned int m; 
212 
int e;

213  
214 
e = table_4_3_exp [4*value + (exponent&3)]; 
215 
m = table_4_3_value[4*value + (exponent&3)]; 
216 
e = (exponent >> 2);

217 
assert(e>=1);

218 
if (e > 31) 
219 
return 0; 
220 
m = (m + (1 << (e1))) >> e; 
221  
222 
return m;

223 
} 
224  
225 
/* all integer n^(4/3) computation code */

226 
#define DEV_ORDER 13 
227  
228 
#define POW_FRAC_BITS 24 
229 
#define POW_FRAC_ONE (1 << POW_FRAC_BITS) 
230 
#define POW_FIX(a) ((int)((a) * POW_FRAC_ONE)) 
231 
#define POW_MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> POW_FRAC_BITS)

232  
233 
static int dev_4_3_coefs[DEV_ORDER]; 
234  
235 
#if 0 /* unused */

236 
static int pow_mult3[3] = {

237 
POW_FIX(1.0),

238 
POW_FIX(1.25992104989487316476),

239 
POW_FIX(1.58740105196819947474),

240 
};

241 
#endif

242  
243 
static av_cold void int_pow_init(void) 
244 
{ 
245 
int i, a;

246  
247 
a = POW_FIX(1.0); 
248 
for(i=0;i<DEV_ORDER;i++) { 
249 
a = POW_MULL(a, POW_FIX(4.0 / 3.0)  i * POW_FIX(1.0)) / (i + 1); 
250 
dev_4_3_coefs[i] = a; 
251 
} 
252 
} 
253  
254 
#if 0 /* unused, remove? */

255 
/* return the mantissa and the binary exponent */

256 
static int int_pow(int i, int *exp_ptr)

257 
{

258 
int e, er, eq, j;

259 
int a, a1;

260 

261 
/* renormalize */

262 
a = i;

263 
e = POW_FRAC_BITS;

264 
while (a < (1 << (POW_FRAC_BITS  1))) {

265 
a = a << 1;

266 
e;

267 
}

268 
a = (1 << POW_FRAC_BITS);

269 
a1 = 0;

270 
for(j = DEV_ORDER  1; j >= 0; j)

271 
a1 = POW_MULL(a, dev_4_3_coefs[j] + a1);

272 
a = (1 << POW_FRAC_BITS) + a1;

273 
/* exponent compute (exact) */

274 
e = e * 4;

275 
er = e % 3;

276 
eq = e / 3;

277 
a = POW_MULL(a, pow_mult3[er]);

278 
while (a >= 2 * POW_FRAC_ONE) {

279 
a = a >> 1;

280 
eq++;

281 
}

282 
/* convert to float */

283 
while (a < POW_FRAC_ONE) {

284 
a = a << 1;

285 
eq;

286 
}

287 
/* now POW_FRAC_ONE <= a < 2 * POW_FRAC_ONE */

288 
#if POW_FRAC_BITS > FRAC_BITS

289 
a = (a + (1 << (POW_FRAC_BITS  FRAC_BITS  1))) >> (POW_FRAC_BITS  FRAC_BITS);

290 
/* correct overflow */

291 
if (a >= 2 * (1 << FRAC_BITS)) {

292 
a = a >> 1;

293 
eq++;

294 
}

295 
#endif

296 
*exp_ptr = eq; 
297 
return a;

298 
} 
299 
#endif

300  
301 
static av_cold int decode_init(AVCodecContext * avctx) 
302 
{ 
303 
MPADecodeContext *s = avctx>priv_data; 
304 
static int init=0; 
305 
int i, j, k;

306  
307 
s>avctx = avctx; 
308  
309 
avctx>sample_fmt= OUT_FMT; 
310 
s>error_recognition= avctx>error_recognition; 
311  
312 
if (!init && !avctx>parse_only) {

313 
int offset;

314  
315 
/* scale factors table for layer 1/2 */

316 
for(i=0;i<64;i++) { 
317 
int shift, mod;

318 
/* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */

319 
shift = (i / 3);

320 
mod = i % 3;

321 
scale_factor_modshift[i] = mod  (shift << 2);

322 
} 
323  
324 
/* scale factor multiply for layer 1 */

325 
for(i=0;i<15;i++) { 
326 
int n, norm;

327 
n = i + 2;

328 
norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n)  1); 
329 
scale_factor_mult[i][0] = MULLx(norm, FIXR(1.0 * 2.0), FRAC_BITS); 
330 
scale_factor_mult[i][1] = MULLx(norm, FIXR(0.7937005259 * 2.0), FRAC_BITS); 
331 
scale_factor_mult[i][2] = MULLx(norm, FIXR(0.6299605249 * 2.0), FRAC_BITS); 
332 
dprintf(avctx, "%d: norm=%x s=%x %x %x\n",

333 
i, norm, 
334 
scale_factor_mult[i][0],

335 
scale_factor_mult[i][1],

336 
scale_factor_mult[i][2]);

337 
} 
338  
339 
RENAME(ff_mpa_synth_init)(RENAME(ff_mpa_synth_window)); 
340  
341 
/* huffman decode tables */

342 
offset = 0;

343 
for(i=1;i<16;i++) { 
344 
const HuffTable *h = &mpa_huff_tables[i];

345 
int xsize, x, y;

346 
uint8_t tmp_bits [512];

347 
uint16_t tmp_codes[512];

348  
349 
memset(tmp_bits , 0, sizeof(tmp_bits )); 
350 
memset(tmp_codes, 0, sizeof(tmp_codes)); 
351  
352 
xsize = h>xsize; 
353  
354 
j = 0;

355 
for(x=0;x<xsize;x++) { 
356 
for(y=0;y<xsize;y++){ 
357 
tmp_bits [(x << 5)  y  ((x&&y)<<4)]= h>bits [j ]; 
358 
tmp_codes[(x << 5)  y  ((x&&y)<<4)]= h>codes[j++]; 
359 
} 
360 
} 
361  
362 
/* XXX: fail test */

363 
huff_vlc[i].table = huff_vlc_tables+offset; 
364 
huff_vlc[i].table_allocated = huff_vlc_tables_sizes[i]; 
365 
init_vlc(&huff_vlc[i], 7, 512, 
366 
tmp_bits, 1, 1, tmp_codes, 2, 2, 
367 
INIT_VLC_USE_NEW_STATIC); 
368 
offset += huff_vlc_tables_sizes[i]; 
369 
} 
370 
assert(offset == FF_ARRAY_ELEMS(huff_vlc_tables)); 
371  
372 
offset = 0;

373 
for(i=0;i<2;i++) { 
374 
huff_quad_vlc[i].table = huff_quad_vlc_tables+offset; 
375 
huff_quad_vlc[i].table_allocated = huff_quad_vlc_tables_sizes[i]; 
376 
init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16, 
377 
mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1, 
378 
INIT_VLC_USE_NEW_STATIC); 
379 
offset += huff_quad_vlc_tables_sizes[i]; 
380 
} 
381 
assert(offset == FF_ARRAY_ELEMS(huff_quad_vlc_tables)); 
382  
383 
for(i=0;i<9;i++) { 
384 
k = 0;

385 
for(j=0;j<22;j++) { 
386 
band_index_long[i][j] = k; 
387 
k += band_size_long[i][j]; 
388 
} 
389 
band_index_long[i][22] = k;

390 
} 
391  
392 
/* compute n ^ (4/3) and store it in mantissa/exp format */

393  
394 
int_pow_init(); 
395 
mpegaudio_tableinit(); 
396  
397 
for(i=0;i<7;i++) { 
398 
float f;

399 
INTFLOAT v; 
400 
if (i != 6) { 
401 
f = tan((double)i * M_PI / 12.0); 
402 
v = FIXR(f / (1.0 + f)); 
403 
} else {

404 
v = FIXR(1.0); 
405 
} 
406 
is_table[0][i] = v;

407 
is_table[1][6  i] = v; 
408 
} 
409 
/* invalid values */

410 
for(i=7;i<16;i++) 
411 
is_table[0][i] = is_table[1][i] = 0.0; 
412  
413 
for(i=0;i<16;i++) { 
414 
double f;

415 
int e, k;

416  
417 
for(j=0;j<2;j++) { 
418 
e = (j + 1) * ((i + 1) >> 1); 
419 
f = pow(2.0, e / 4.0); 
420 
k = i & 1;

421 
is_table_lsf[j][k ^ 1][i] = FIXR(f);

422 
is_table_lsf[j][k][i] = FIXR(1.0); 
423 
dprintf(avctx, "is_table_lsf %d %d: %x %x\n",

424 
i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]); 
425 
} 
426 
} 
427  
428 
for(i=0;i<8;i++) { 
429 
float ci, cs, ca;

430 
ci = ci_table[i]; 
431 
cs = 1.0 / sqrt(1.0 + ci * ci); 
432 
ca = cs * ci; 
433 
csa_table[i][0] = FIXHR(cs/4); 
434 
csa_table[i][1] = FIXHR(ca/4); 
435 
csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4); 
436 
csa_table[i][3] = FIXHR(ca/4)  FIXHR(cs/4); 
437 
csa_table_float[i][0] = cs;

438 
csa_table_float[i][1] = ca;

439 
csa_table_float[i][2] = ca + cs;

440 
csa_table_float[i][3] = ca  cs;

441 
} 
442  
443 
/* compute mdct windows */

444 
for(i=0;i<36;i++) { 
445 
for(j=0; j<4; j++){ 
446 
double d;

447  
448 
if(j==2 && i%3 != 1) 
449 
continue;

450  
451 
d= sin(M_PI * (i + 0.5) / 36.0); 
452 
if(j==1){ 
453 
if (i>=30) d= 0; 
454 
else if(i>=24) d= sin(M_PI * (i  18 + 0.5) / 12.0); 
455 
else if(i>=18) d= 1; 
456 
}else if(j==3){ 
457 
if (i< 6) d= 0; 
458 
else if(i< 12) d= sin(M_PI * (i  6 + 0.5) / 12.0); 
459 
else if(i< 18) d= 1; 
460 
} 
461 
//merge last stage of imdct into the window coefficients

462 
d*= 0.5 / cos(M_PI*(2*i + 19)/72); 
463  
464 
if(j==2) 
465 
mdct_win[j][i/3] = FIXHR((d / (1<<5))); 
466 
else

467 
mdct_win[j][i ] = FIXHR((d / (1<<5))); 
468 
} 
469 
} 
470  
471 
/* NOTE: we do frequency inversion adter the MDCT by changing

472 
the sign of the right window coefs */

473 
for(j=0;j<4;j++) { 
474 
for(i=0;i<36;i+=2) { 
475 
mdct_win[j + 4][i] = mdct_win[j][i];

476 
mdct_win[j + 4][i + 1] = mdct_win[j][i + 1]; 
477 
} 
478 
} 
479  
480 
init = 1;

481 
} 
482  
483 
if (avctx>codec_id == CODEC_ID_MP3ADU)

484 
s>adu_mode = 1;

485 
return 0; 
486 
} 
487  
488 
/* tab[i][j] = 1.0 / (2.0 * cos(pi*(2*k+1) / 2^(6  j))) */

489  
490 
/* cos(i*pi/64) */

491  
492 
#define COS0_0 FIXHR(0.50060299823519630134/2) 
493 
#define COS0_1 FIXHR(0.50547095989754365998/2) 
494 
#define COS0_2 FIXHR(0.51544730992262454697/2) 
495 
#define COS0_3 FIXHR(0.53104259108978417447/2) 
496 
#define COS0_4 FIXHR(0.55310389603444452782/2) 
497 
#define COS0_5 FIXHR(0.58293496820613387367/2) 
498 
#define COS0_6 FIXHR(0.62250412303566481615/2) 
499 
#define COS0_7 FIXHR(0.67480834145500574602/2) 
500 
#define COS0_8 FIXHR(0.74453627100229844977/2) 
501 
#define COS0_9 FIXHR(0.83934964541552703873/2) 
502 
#define COS0_10 FIXHR(0.97256823786196069369/2) 
503 
#define COS0_11 FIXHR(1.16943993343288495515/4) 
504 
#define COS0_12 FIXHR(1.48416461631416627724/4) 
505 
#define COS0_13 FIXHR(2.05778100995341155085/8) 
506 
#define COS0_14 FIXHR(3.40760841846871878570/8) 
507 
#define COS0_15 FIXHR(10.19000812354805681150/32) 
508  
509 
#define COS1_0 FIXHR(0.50241928618815570551/2) 
510 
#define COS1_1 FIXHR(0.52249861493968888062/2) 
511 
#define COS1_2 FIXHR(0.56694403481635770368/2) 
512 
#define COS1_3 FIXHR(0.64682178335999012954/2) 
513 
#define COS1_4 FIXHR(0.78815462345125022473/2) 
514 
#define COS1_5 FIXHR(1.06067768599034747134/4) 
515 
#define COS1_6 FIXHR(1.72244709823833392782/4) 
516 
#define COS1_7 FIXHR(5.10114861868916385802/16) 
517  
518 
#define COS2_0 FIXHR(0.50979557910415916894/2) 
519 
#define COS2_1 FIXHR(0.60134488693504528054/2) 
520 
#define COS2_2 FIXHR(0.89997622313641570463/2) 
521 
#define COS2_3 FIXHR(2.56291544774150617881/8) 
522  
523 
#define COS3_0 FIXHR(0.54119610014619698439/2) 
524 
#define COS3_1 FIXHR(1.30656296487637652785/4) 
525  
526 
#define COS4_0 FIXHR(0.70710678118654752439/2) 
527  
528 
/* butterfly operator */

529 
#define BF(a, b, c, s)\

530 
{\ 
531 
tmp0 = val##a + val##b;\ 
532 
tmp1 = val##a  val##b;\ 
533 
val##a = tmp0;\ 
534 
val##b = MULH3(tmp1, c, 1<<(s));\ 
535 
} 
536  
537 
#define BF0(a, b, c, s)\

538 
{\ 
539 
tmp0 = tab[a] + tab[b];\ 
540 
tmp1 = tab[a]  tab[b];\ 
541 
val##a = tmp0;\ 
542 
val##b = MULH3(tmp1, c, 1<<(s));\ 
543 
} 
544  
545 
#define BF1(a, b, c, d)\

546 
{\ 
547 
BF(a, b, COS4_0, 1);\

548 
BF(c, d,COS4_0, 1);\

549 
val##c += val##d;\ 
550 
} 
551  
552 
#define BF2(a, b, c, d)\

553 
{\ 
554 
BF(a, b, COS4_0, 1);\

555 
BF(c, d,COS4_0, 1);\

556 
val##c += val##d;\ 
557 
val##a += val##c;\ 
558 
val##c += val##b;\ 
559 
val##b += val##d;\ 
560 
} 
561  
562 
#define ADD(a, b) val##a += val##b 
563  
564 
/* DCT32 without 1/sqrt(2) coef zero scaling. */

565 
static void dct32(INTFLOAT *out, const INTFLOAT *tab) 
566 
{ 
567 
INTFLOAT tmp0, tmp1; 
568  
569 
INTFLOAT val0 , val1 , val2 , val3 , val4 , val5 , val6 , val7 , 
570 
val8 , val9 , val10, val11, val12, val13, val14, val15, 
571 
val16, val17, val18, val19, val20, val21, val22, val23, 
572 
val24, val25, val26, val27, val28, val29, val30, val31; 
573  
574 
/* pass 1 */

575 
BF0( 0, 31, COS0_0 , 1); 
576 
BF0(15, 16, COS0_15, 5); 
577 
/* pass 2 */

578 
BF( 0, 15, COS1_0 , 1); 
579 
BF(16, 31,COS1_0 , 1); 
580 
/* pass 1 */

581 
BF0( 7, 24, COS0_7 , 1); 
582 
BF0( 8, 23, COS0_8 , 1); 
583 
/* pass 2 */

584 
BF( 7, 8, COS1_7 , 4); 
585 
BF(23, 24,COS1_7 , 4); 
586 
/* pass 3 */

587 
BF( 0, 7, COS2_0 , 1); 
588 
BF( 8, 15,COS2_0 , 1); 
589 
BF(16, 23, COS2_0 , 1); 
590 
BF(24, 31,COS2_0 , 1); 
591 
/* pass 1 */

592 
BF0( 3, 28, COS0_3 , 1); 
593 
BF0(12, 19, COS0_12, 2); 
594 
/* pass 2 */

595 
BF( 3, 12, COS1_3 , 1); 
596 
BF(19, 28,COS1_3 , 1); 
597 
/* pass 1 */

598 
BF0( 4, 27, COS0_4 , 1); 
599 
BF0(11, 20, COS0_11, 2); 
600 
/* pass 2 */

601 
BF( 4, 11, COS1_4 , 1); 
602 
BF(20, 27,COS1_4 , 1); 
603 
/* pass 3 */

604 
BF( 3, 4, COS2_3 , 3); 
605 
BF(11, 12,COS2_3 , 3); 
606 
BF(19, 20, COS2_3 , 3); 
607 
BF(27, 28,COS2_3 , 3); 
608 
/* pass 4 */

609 
BF( 0, 3, COS3_0 , 1); 
610 
BF( 4, 7,COS3_0 , 1); 
611 
BF( 8, 11, COS3_0 , 1); 
612 
BF(12, 15,COS3_0 , 1); 
613 
BF(16, 19, COS3_0 , 1); 
614 
BF(20, 23,COS3_0 , 1); 
615 
BF(24, 27, COS3_0 , 1); 
616 
BF(28, 31,COS3_0 , 1); 
617  
618  
619  
620 
/* pass 1 */

621 
BF0( 1, 30, COS0_1 , 1); 
622 
BF0(14, 17, COS0_14, 3); 
623 
/* pass 2 */

624 
BF( 1, 14, COS1_1 , 1); 
625 
BF(17, 30,COS1_1 , 1); 
626 
/* pass 1 */

627 
BF0( 6, 25, COS0_6 , 1); 
628 
BF0( 9, 22, COS0_9 , 1); 
629 
/* pass 2 */

630 
BF( 6, 9, COS1_6 , 2); 
631 
BF(22, 25,COS1_6 , 2); 
632 
/* pass 3 */

633 
BF( 1, 6, COS2_1 , 1); 
634 
BF( 9, 14,COS2_1 , 1); 
635 
BF(17, 22, COS2_1 , 1); 
636 
BF(25, 30,COS2_1 , 1); 
637  
638 
/* pass 1 */

639 
BF0( 2, 29, COS0_2 , 1); 
640 
BF0(13, 18, COS0_13, 3); 
641 
/* pass 2 */

642 
BF( 2, 13, COS1_2 , 1); 
643 
BF(18, 29,COS1_2 , 1); 
644 
/* pass 1 */

645 
BF0( 5, 26, COS0_5 , 1); 
646 
BF0(10, 21, COS0_10, 1); 
647 
/* pass 2 */

648 
BF( 5, 10, COS1_5 , 2); 
649 
BF(21, 26,COS1_5 , 2); 
650 
/* pass 3 */

651 
BF( 2, 5, COS2_2 , 1); 
652 
BF(10, 13,COS2_2 , 1); 
653 
BF(18, 21, COS2_2 , 1); 
654 
BF(26, 29,COS2_2 , 1); 
655 
/* pass 4 */

656 
BF( 1, 2, COS3_1 , 2); 
657 
BF( 5, 6,COS3_1 , 2); 
658 
BF( 9, 10, COS3_1 , 2); 
659 
BF(13, 14,COS3_1 , 2); 
660 
BF(17, 18, COS3_1 , 2); 
661 
BF(21, 22,COS3_1 , 2); 
662 
BF(25, 26, COS3_1 , 2); 
663 
BF(29, 30,COS3_1 , 2); 
664  
665 
/* pass 5 */

666 
BF1( 0, 1, 2, 3); 
667 
BF2( 4, 5, 6, 7); 
668 
BF1( 8, 9, 10, 11); 
669 
BF2(12, 13, 14, 15); 
670 
BF1(16, 17, 18, 19); 
671 
BF2(20, 21, 22, 23); 
672 
BF1(24, 25, 26, 27); 
673 
BF2(28, 29, 30, 31); 
674  
675 
/* pass 6 */

676  
677 
ADD( 8, 12); 
678 
ADD(12, 10); 
679 
ADD(10, 14); 
680 
ADD(14, 9); 
681 
ADD( 9, 13); 
682 
ADD(13, 11); 
683 
ADD(11, 15); 
684  
685 
out[ 0] = val0;

686 
out[16] = val1;

687 
out[ 8] = val2;

688 
out[24] = val3;

689 
out[ 4] = val4;

690 
out[20] = val5;

691 
out[12] = val6;

692 
out[28] = val7;

693 
out[ 2] = val8;

694 
out[18] = val9;

695 
out[10] = val10;

696 
out[26] = val11;

697 
out[ 6] = val12;

698 
out[22] = val13;

699 
out[14] = val14;

700 
out[30] = val15;

701  
702 
ADD(24, 28); 
703 
ADD(28, 26); 
704 
ADD(26, 30); 
705 
ADD(30, 25); 
706 
ADD(25, 29); 
707 
ADD(29, 27); 
708 
ADD(27, 31); 
709  
710 
out[ 1] = val16 + val24;

711 
out[17] = val17 + val25;

712 
out[ 9] = val18 + val26;

713 
out[25] = val19 + val27;

714 
out[ 5] = val20 + val28;

715 
out[21] = val21 + val29;

716 
out[13] = val22 + val30;

717 
out[29] = val23 + val31;

718 
out[ 3] = val24 + val20;

719 
out[19] = val25 + val21;

720 
out[11] = val26 + val22;

721 
out[27] = val27 + val23;

722 
out[ 7] = val28 + val18;

723 
out[23] = val29 + val19;

724 
out[15] = val30 + val17;

725 
out[31] = val31;

726 
} 
727  
728 
#if CONFIG_FLOAT

729 
static inline float round_sample(float *sum) 
730 
{ 
731 
float sum1=*sum;

732 
*sum = 0;

733 
return sum1;

734 
} 
735  
736 
/* signed 16x16 > 32 multiply add accumulate */

737 
#define MACS(rt, ra, rb) rt+=(ra)*(rb)

738  
739 
/* signed 16x16 > 32 multiply */

740 
#define MULS(ra, rb) ((ra)*(rb))

741  
742 
#define MLSS(rt, ra, rb) rt=(ra)*(rb)

743  
744 
#elif FRAC_BITS <= 15 
745  
746 
static inline int round_sample(int *sum) 
747 
{ 
748 
int sum1;

749 
sum1 = (*sum) >> OUT_SHIFT; 
750 
*sum &= (1<<OUT_SHIFT)1; 
751 
return av_clip(sum1, OUT_MIN, OUT_MAX);

752 
} 
753  
754 
/* signed 16x16 > 32 multiply add accumulate */

755 
#define MACS(rt, ra, rb) MAC16(rt, ra, rb)

756  
757 
/* signed 16x16 > 32 multiply */

758 
#define MULS(ra, rb) MUL16(ra, rb)

759  
760 
#define MLSS(rt, ra, rb) MLS16(rt, ra, rb)

761  
762 
#else

763  
764 
static inline int round_sample(int64_t *sum) 
765 
{ 
766 
int sum1;

767 
sum1 = (int)((*sum) >> OUT_SHIFT);

768 
*sum &= (1<<OUT_SHIFT)1; 
769 
return av_clip(sum1, OUT_MIN, OUT_MAX);

770 
} 
771  
772 
# define MULS(ra, rb) MUL64(ra, rb)

773 
# define MACS(rt, ra, rb) MAC64(rt, ra, rb)

774 
# define MLSS(rt, ra, rb) MLS64(rt, ra, rb)

775 
#endif

776  
777 
#define SUM8(op, sum, w, p) \

778 
{ \ 
779 
op(sum, (w)[0 * 64], (p)[0 * 64]); \ 
780 
op(sum, (w)[1 * 64], (p)[1 * 64]); \ 
781 
op(sum, (w)[2 * 64], (p)[2 * 64]); \ 
782 
op(sum, (w)[3 * 64], (p)[3 * 64]); \ 
783 
op(sum, (w)[4 * 64], (p)[4 * 64]); \ 
784 
op(sum, (w)[5 * 64], (p)[5 * 64]); \ 
785 
op(sum, (w)[6 * 64], (p)[6 * 64]); \ 
786 
op(sum, (w)[7 * 64], (p)[7 * 64]); \ 
787 
} 
788  
789 
#define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \

790 
{ \ 
791 
INTFLOAT tmp;\ 
792 
tmp = p[0 * 64];\ 
793 
op1(sum1, (w1)[0 * 64], tmp);\ 
794 
op2(sum2, (w2)[0 * 64], tmp);\ 
795 
tmp = p[1 * 64];\ 
796 
op1(sum1, (w1)[1 * 64], tmp);\ 
797 
op2(sum2, (w2)[1 * 64], tmp);\ 
798 
tmp = p[2 * 64];\ 
799 
op1(sum1, (w1)[2 * 64], tmp);\ 
800 
op2(sum2, (w2)[2 * 64], tmp);\ 
801 
tmp = p[3 * 64];\ 
802 
op1(sum1, (w1)[3 * 64], tmp);\ 
803 
op2(sum2, (w2)[3 * 64], tmp);\ 
804 
tmp = p[4 * 64];\ 
805 
op1(sum1, (w1)[4 * 64], tmp);\ 
806 
op2(sum2, (w2)[4 * 64], tmp);\ 
807 
tmp = p[5 * 64];\ 
808 
op1(sum1, (w1)[5 * 64], tmp);\ 
809 
op2(sum2, (w2)[5 * 64], tmp);\ 
810 
tmp = p[6 * 64];\ 
811 
op1(sum1, (w1)[6 * 64], tmp);\ 
812 
op2(sum2, (w2)[6 * 64], tmp);\ 
813 
tmp = p[7 * 64];\ 
814 
op1(sum1, (w1)[7 * 64], tmp);\ 
815 
op2(sum2, (w2)[7 * 64], tmp);\ 
816 
} 
817  
818 
void av_cold RENAME(ff_mpa_synth_init)(MPA_INT *window)

819 
{ 
820 
int i;

821  
822 
/* max = 18760, max sum over all 16 coefs : 44736 */

823 
for(i=0;i<257;i++) { 
824 
INTFLOAT v; 
825 
v = ff_mpa_enwindow[i]; 
826 
#if CONFIG_FLOAT

827 
v *= 1.0 / (1LL<<(16 + FRAC_BITS)); 
828 
#elif WFRAC_BITS < 16 
829 
v = (v + (1 << (16  WFRAC_BITS  1))) >> (16  WFRAC_BITS); 
830 
#endif

831 
window[i] = v; 
832 
if ((i & 63) != 0) 
833 
v = v; 
834 
if (i != 0) 
835 
window[512  i] = v;

836 
} 
837 
} 
838  
839 
/* 32 sub band synthesis filter. Input: 32 sub band samples, Output:

840 
32 samples. */

841 
/* XXX: optimize by avoiding ring buffer usage */

842 
void RENAME(ff_mpa_synth_filter)(MPA_INT *synth_buf_ptr, int *synth_buf_offset, 
843 
MPA_INT *window, int *dither_state,

844 
OUT_INT *samples, int incr,

845 
INTFLOAT sb_samples[SBLIMIT]) 
846 
{ 
847 
register MPA_INT *synth_buf;

848 
register const MPA_INT *w, *w2, *p; 
849 
int j, offset;

850 
OUT_INT *samples2; 
851 
#if CONFIG_FLOAT

852 
float sum, sum2;

853 
#elif FRAC_BITS <= 15 
854 
int32_t tmp[32];

855 
int sum, sum2;

856 
#else

857 
int64_t sum, sum2; 
858 
#endif

859  
860 
offset = *synth_buf_offset; 
861 
synth_buf = synth_buf_ptr + offset; 
862  
863 
#if FRAC_BITS <= 15 && !CONFIG_FLOAT 
864 
dct32(tmp, sb_samples); 
865 
for(j=0;j<32;j++) { 
866 
/* NOTE: can cause a loss in precision if very high amplitude

867 
sound */

868 
synth_buf[j] = av_clip_int16(tmp[j]); 
869 
} 
870 
#else

871 
dct32(synth_buf, sb_samples); 
872 
#endif

873  
874 
/* copy to avoid wrap */

875 
memcpy(synth_buf + 512, synth_buf, 32 * sizeof(*synth_buf)); 
876  
877 
samples2 = samples + 31 * incr;

878 
w = window; 
879 
w2 = window + 31;

880  
881 
sum = *dither_state; 
882 
p = synth_buf + 16;

883 
SUM8(MACS, sum, w, p); 
884 
p = synth_buf + 48;

885 
SUM8(MLSS, sum, w + 32, p);

886 
*samples = round_sample(&sum); 
887 
samples += incr; 
888 
w++; 
889  
890 
/* we calculate two samples at the same time to avoid one memory

891 
access per two sample */

892 
for(j=1;j<16;j++) { 
893 
sum2 = 0;

894 
p = synth_buf + 16 + j;

895 
SUM8P2(sum, MACS, sum2, MLSS, w, w2, p); 
896 
p = synth_buf + 48  j;

897 
SUM8P2(sum, MLSS, sum2, MLSS, w + 32, w2 + 32, p); 
898  
899 
*samples = round_sample(&sum); 
900 
samples += incr; 
901 
sum += sum2; 
902 
*samples2 = round_sample(&sum); 
903 
samples2 = incr; 
904 
w++; 
905 
w2; 
906 
} 
907  
908 
p = synth_buf + 32;

909 
SUM8(MLSS, sum, w + 32, p);

910 
*samples = round_sample(&sum); 
911 
*dither_state= sum; 
912  
913 
offset = (offset  32) & 511; 
914 
*synth_buf_offset = offset; 
915 
} 
916  
917 
#define C3 FIXHR(0.86602540378443864676/2) 
918  
919 
/* 0.5 / cos(pi*(2*i+1)/36) */

920 
static const INTFLOAT icos36[9] = { 
921 
FIXR(0.50190991877167369479), 
922 
FIXR(0.51763809020504152469), //0 
923 
FIXR(0.55168895948124587824), 
924 
FIXR(0.61038729438072803416), 
925 
FIXR(0.70710678118654752439), //1 
926 
FIXR(0.87172339781054900991), 
927 
FIXR(1.18310079157624925896), 
928 
FIXR(1.93185165257813657349), //2 
929 
FIXR(5.73685662283492756461), 
930 
}; 
931  
932 
/* 0.5 / cos(pi*(2*i+1)/36) */

933 
static const INTFLOAT icos36h[9] = { 
934 
FIXHR(0.50190991877167369479/2), 
935 
FIXHR(0.51763809020504152469/2), //0 
936 
FIXHR(0.55168895948124587824/2), 
937 
FIXHR(0.61038729438072803416/2), 
938 
FIXHR(0.70710678118654752439/2), //1 
939 
FIXHR(0.87172339781054900991/2), 
940 
FIXHR(1.18310079157624925896/4), 
941 
FIXHR(1.93185165257813657349/4), //2 
942 
// FIXHR(5.73685662283492756461),

943 
}; 
944  
945 
/* 12 points IMDCT. We compute it "by hand" by factorizing obvious

946 
cases. */

947 
static void imdct12(INTFLOAT *out, INTFLOAT *in) 
948 
{ 
949 
INTFLOAT in0, in1, in2, in3, in4, in5, t1, t2; 
950  
951 
in0= in[0*3]; 
952 
in1= in[1*3] + in[0*3]; 
953 
in2= in[2*3] + in[1*3]; 
954 
in3= in[3*3] + in[2*3]; 
955 
in4= in[4*3] + in[3*3]; 
956 
in5= in[5*3] + in[4*3]; 
957 
in5 += in3; 
958 
in3 += in1; 
959  
960 
in2= MULH3(in2, C3, 2);

961 
in3= MULH3(in3, C3, 4);

962  
963 
t1 = in0  in4; 
964 
t2 = MULH3(in1  in5, icos36h[4], 2); 
965  
966 
out[ 7]=

967 
out[10]= t1 + t2;

968 
out[ 1]=

969 
out[ 4]= t1  t2;

970  
971 
in0 += SHR(in4, 1);

972 
in4 = in0 + in2; 
973 
in5 += 2*in1;

974 
in1 = MULH3(in5 + in3, icos36h[1], 1); 
975 
out[ 8]=

976 
out[ 9]= in4 + in1;

977 
out[ 2]=

978 
out[ 3]= in4  in1;

979  
980 
in0 = in2; 
981 
in5 = MULH3(in5  in3, icos36h[7], 2); 
982 
out[ 0]=

983 
out[ 5]= in0  in5;

984 
out[ 6]=

985 
out[11]= in0 + in5;

986 
} 
987  
988 
/* cos(pi*i/18) */

989 
#define C1 FIXHR(0.98480775301220805936/2) 
990 
#define C2 FIXHR(0.93969262078590838405/2) 
991 
#define C3 FIXHR(0.86602540378443864676/2) 
992 
#define C4 FIXHR(0.76604444311897803520/2) 
993 
#define C5 FIXHR(0.64278760968653932632/2) 
994 
#define C6 FIXHR(0.5/2) 
995 
#define C7 FIXHR(0.34202014332566873304/2) 
996 
#define C8 FIXHR(0.17364817766693034885/2) 
997  
998  
999 
/* using Lee like decomposition followed by hand coded 9 points DCT */

1000 
static void imdct36(INTFLOAT *out, INTFLOAT *buf, INTFLOAT *in, INTFLOAT *win) 
1001 
{ 
1002 
int i, j;

1003 
INTFLOAT t0, t1, t2, t3, s0, s1, s2, s3; 
1004 
INTFLOAT tmp[18], *tmp1, *in1;

1005  
1006 
for(i=17;i>=1;i) 
1007 
in[i] += in[i1];

1008 
for(i=17;i>=3;i=2) 
1009 
in[i] += in[i2];

1010  
1011 
for(j=0;j<2;j++) { 
1012 
tmp1 = tmp + j; 
1013 
in1 = in + j; 
1014  
1015 
t2 = in1[2*4] + in1[2*8]  in1[2*2]; 
1016  
1017 
t3 = in1[2*0] + SHR(in1[2*6],1); 
1018 
t1 = in1[2*0]  in1[2*6]; 
1019 
tmp1[ 6] = t1  SHR(t2,1); 
1020 
tmp1[16] = t1 + t2;

1021  
1022 
t0 = MULH3(in1[2*2] + in1[2*4] , C2, 2); 
1023 
t1 = MULH3(in1[2*4]  in1[2*8] , 2*C8, 1); 
1024 
t2 = MULH3(in1[2*2] + in1[2*8] , C4, 2); 
1025  
1026 
tmp1[10] = t3  t0  t2;

1027 
tmp1[ 2] = t3 + t0 + t1;

1028 
tmp1[14] = t3 + t2  t1;

1029  
1030 
tmp1[ 4] = MULH3(in1[2*5] + in1[2*7]  in1[2*1], C3, 2); 
1031 
t2 = MULH3(in1[2*1] + in1[2*5], C1, 2); 
1032 
t3 = MULH3(in1[2*5]  in1[2*7], 2*C7, 1); 
1033 
t0 = MULH3(in1[2*3], C3, 2); 
1034  
1035 
t1 = MULH3(in1[2*1] + in1[2*7], C5, 2); 
1036  
1037 
tmp1[ 0] = t2 + t3 + t0;

1038 
tmp1[12] = t2 + t1  t0;

1039 
tmp1[ 8] = t3  t1  t0;

1040 
} 
1041  
1042 
i = 0;

1043 
for(j=0;j<4;j++) { 
1044 
t0 = tmp[i]; 
1045 
t1 = tmp[i + 2];

1046 
s0 = t1 + t0; 
1047 
s2 = t1  t0; 
1048  
1049 
t2 = tmp[i + 1];

1050 
t3 = tmp[i + 3];

1051 
s1 = MULH3(t3 + t2, icos36h[j], 2);

1052 
s3 = MULLx(t3  t2, icos36[8  j], FRAC_BITS);

1053  
1054 
t0 = s0 + s1; 
1055 
t1 = s0  s1; 
1056 
out[(9 + j)*SBLIMIT] = MULH3(t1, win[9 + j], 1) + buf[9 + j]; 
1057 
out[(8  j)*SBLIMIT] = MULH3(t1, win[8  j], 1) + buf[8  j]; 
1058 
buf[9 + j] = MULH3(t0, win[18 + 9 + j], 1); 
1059 
buf[8  j] = MULH3(t0, win[18 + 8  j], 1); 
1060  
1061 
t0 = s2 + s3; 
1062 
t1 = s2  s3; 
1063 
out[(9 + 8  j)*SBLIMIT] = MULH3(t1, win[9 + 8  j], 1) + buf[9 + 8  j]; 
1064 
out[( j)*SBLIMIT] = MULH3(t1, win[ j], 1) + buf[ j];

1065 
buf[9 + 8  j] = MULH3(t0, win[18 + 9 + 8  j], 1); 
1066 
buf[ + j] = MULH3(t0, win[18 + j], 1); 
1067 
i += 4;

1068 
} 
1069  
1070 
s0 = tmp[16];

1071 
s1 = MULH3(tmp[17], icos36h[4], 2); 
1072 
t0 = s0 + s1; 
1073 
t1 = s0  s1; 
1074 
out[(9 + 4)*SBLIMIT] = MULH3(t1, win[9 + 4], 1) + buf[9 + 4]; 
1075 
out[(8  4)*SBLIMIT] = MULH3(t1, win[8  4], 1) + buf[8  4]; 
1076 
buf[9 + 4] = MULH3(t0, win[18 + 9 + 4], 1); 
1077 
buf[8  4] = MULH3(t0, win[18 + 8  4], 1); 
1078 
} 
1079  
1080 
/* return the number of decoded frames */

1081 
static int mp_decode_layer1(MPADecodeContext *s) 
1082 
{ 
1083 
int bound, i, v, n, ch, j, mant;

1084 
uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT]; 
1085 
uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT]; 
1086  
1087 
if (s>mode == MPA_JSTEREO)

1088 
bound = (s>mode_ext + 1) * 4; 
1089 
else

1090 
bound = SBLIMIT; 
1091  
1092 
/* allocation bits */

1093 
for(i=0;i<bound;i++) { 
1094 
for(ch=0;ch<s>nb_channels;ch++) { 
1095 
allocation[ch][i] = get_bits(&s>gb, 4);

1096 
} 
1097 
} 
1098 
for(i=bound;i<SBLIMIT;i++) {

1099 
allocation[0][i] = get_bits(&s>gb, 4); 
1100 
} 
1101  
1102 
/* scale factors */

1103 
for(i=0;i<bound;i++) { 
1104 
for(ch=0;ch<s>nb_channels;ch++) { 
1105 
if (allocation[ch][i])

1106 
scale_factors[ch][i] = get_bits(&s>gb, 6);

1107 
} 
1108 
} 
1109 
for(i=bound;i<SBLIMIT;i++) {

1110 
if (allocation[0][i]) { 
1111 
scale_factors[0][i] = get_bits(&s>gb, 6); 
1112 
scale_factors[1][i] = get_bits(&s>gb, 6); 
1113 
} 
1114 
} 
1115  
1116 
/* compute samples */

1117 
for(j=0;j<12;j++) { 
1118 
for(i=0;i<bound;i++) { 
1119 
for(ch=0;ch<s>nb_channels;ch++) { 
1120 
n = allocation[ch][i]; 
1121 
if (n) {

1122 
mant = get_bits(&s>gb, n + 1);

1123 
v = l1_unscale(n, mant, scale_factors[ch][i]); 
1124 
} else {

1125 
v = 0;

1126 
} 
1127 
s>sb_samples[ch][j][i] = v; 
1128 
} 
1129 
} 
1130 
for(i=bound;i<SBLIMIT;i++) {

1131 
n = allocation[0][i];

1132 
if (n) {

1133 
mant = get_bits(&s>gb, n + 1);

1134 
v = l1_unscale(n, mant, scale_factors[0][i]);

1135 
s>sb_samples[0][j][i] = v;

1136 
v = l1_unscale(n, mant, scale_factors[1][i]);

1137 
s>sb_samples[1][j][i] = v;

1138 
} else {

1139 
s>sb_samples[0][j][i] = 0; 
1140 
s>sb_samples[1][j][i] = 0; 
1141 
} 
1142 
} 
1143 
} 
1144 
return 12; 
1145 
} 
1146  
1147 
static int mp_decode_layer2(MPADecodeContext *s) 
1148 
{ 
1149 
int sblimit; /* number of used subbands */ 
1150 
const unsigned char *alloc_table; 
1151 
int table, bit_alloc_bits, i, j, ch, bound, v;

1152 
unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT]; 
1153 
unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT]; 
1154 
unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf; 
1155 
int scale, qindex, bits, steps, k, l, m, b;

1156  
1157 
/* select decoding table */

1158 
table = ff_mpa_l2_select_table(s>bit_rate / 1000, s>nb_channels,

1159 
s>sample_rate, s>lsf); 
1160 
sblimit = ff_mpa_sblimit_table[table]; 
1161 
alloc_table = ff_mpa_alloc_tables[table]; 
1162  
1163 
if (s>mode == MPA_JSTEREO)

1164 
bound = (s>mode_ext + 1) * 4; 
1165 
else

1166 
bound = sblimit; 
1167  
1168 
dprintf(s>avctx, "bound=%d sblimit=%d\n", bound, sblimit);

1169  
1170 
/* sanity check */

1171 
if( bound > sblimit ) bound = sblimit;

1172  
1173 
/* parse bit allocation */

1174 
j = 0;

1175 
for(i=0;i<bound;i++) { 
1176 
bit_alloc_bits = alloc_table[j]; 
1177 
for(ch=0;ch<s>nb_channels;ch++) { 
1178 
bit_alloc[ch][i] = get_bits(&s>gb, bit_alloc_bits); 
1179 
} 
1180 
j += 1 << bit_alloc_bits;

1181 
} 
1182 
for(i=bound;i<sblimit;i++) {

1183 
bit_alloc_bits = alloc_table[j]; 
1184 
v = get_bits(&s>gb, bit_alloc_bits); 
1185 
bit_alloc[0][i] = v;

1186 
bit_alloc[1][i] = v;

1187 
j += 1 << bit_alloc_bits;

1188 
} 
1189  
1190 
/* scale codes */

1191 
for(i=0;i<sblimit;i++) { 
1192 
for(ch=0;ch<s>nb_channels;ch++) { 
1193 
if (bit_alloc[ch][i])

1194 
scale_code[ch][i] = get_bits(&s>gb, 2);

1195 
} 
1196 
} 
1197  
1198 
/* scale factors */

1199 
for(i=0;i<sblimit;i++) { 
1200 
for(ch=0;ch<s>nb_channels;ch++) { 
1201 
if (bit_alloc[ch][i]) {

1202 
sf = scale_factors[ch][i]; 
1203 
switch(scale_code[ch][i]) {

1204 
default:

1205 
case 0: 
1206 
sf[0] = get_bits(&s>gb, 6); 
1207 
sf[1] = get_bits(&s>gb, 6); 
1208 
sf[2] = get_bits(&s>gb, 6); 
1209 
break;

1210 
case 2: 
1211 
sf[0] = get_bits(&s>gb, 6); 
1212 
sf[1] = sf[0]; 
1213 
sf[2] = sf[0]; 
1214 
break;

1215 
case 1: 
1216 
sf[0] = get_bits(&s>gb, 6); 
1217 
sf[2] = get_bits(&s>gb, 6); 
1218 
sf[1] = sf[0]; 
1219 
break;

1220 
case 3: 
1221 
sf[0] = get_bits(&s>gb, 6); 
1222 
sf[2] = get_bits(&s>gb, 6); 
1223 
sf[1] = sf[2]; 
1224 
break;

1225 
} 
1226 
} 
1227 
} 
1228 
} 
1229  
1230 
/* samples */

1231 
for(k=0;k<3;k++) { 
1232 
for(l=0;l<12;l+=3) { 
1233 
j = 0;

1234 
for(i=0;i<bound;i++) { 
1235 
bit_alloc_bits = alloc_table[j]; 
1236 
for(ch=0;ch<s>nb_channels;ch++) { 
1237 
b = bit_alloc[ch][i]; 
1238 
if (b) {

1239 
scale = scale_factors[ch][i][k]; 
1240 
qindex = alloc_table[j+b]; 
1241 
bits = ff_mpa_quant_bits[qindex]; 
1242 
if (bits < 0) { 
1243 
/* 3 values at the same time */

1244 
v = get_bits(&s>gb, bits); 
1245 
steps = ff_mpa_quant_steps[qindex]; 
1246 
s>sb_samples[ch][k * 12 + l + 0][i] = 
1247 
l2_unscale_group(steps, v % steps, scale); 
1248 
v = v / steps; 
1249 
s>sb_samples[ch][k * 12 + l + 1][i] = 
1250 
l2_unscale_group(steps, v % steps, scale); 
1251 
v = v / steps; 
1252 
s>sb_samples[ch][k * 12 + l + 2][i] = 
1253 
l2_unscale_group(steps, v, scale); 
1254 
} else {

1255 
for(m=0;m<3;m++) { 
1256 
v = get_bits(&s>gb, bits); 
1257 
v = l1_unscale(bits  1, v, scale);

1258 
s>sb_samples[ch][k * 12 + l + m][i] = v;

1259 
} 
1260 
} 
1261 
} else {

1262 
s>sb_samples[ch][k * 12 + l + 0][i] = 0; 
1263 
s>sb_samples[ch][k * 12 + l + 1][i] = 0; 
1264 
s>sb_samples[ch][k * 12 + l + 2][i] = 0; 
1265 
} 
1266 
} 
1267 
/* next subband in alloc table */

1268 
j += 1 << bit_alloc_bits;

1269 
} 
1270 
/* XXX: find a way to avoid this duplication of code */

1271 
for(i=bound;i<sblimit;i++) {

1272 
bit_alloc_bits = alloc_table[j]; 
1273 
b = bit_alloc[0][i];

1274 
if (b) {

1275 
int mant, scale0, scale1;

1276 
scale0 = scale_factors[0][i][k];

1277 
scale1 = scale_factors[1][i][k];

1278 
qindex = alloc_table[j+b]; 
1279 
bits = ff_mpa_quant_bits[qindex]; 
1280 
if (bits < 0) { 
1281 
/* 3 values at the same time */

1282 
v = get_bits(&s>gb, bits); 
1283 
steps = ff_mpa_quant_steps[qindex]; 
1284 
mant = v % steps; 
1285 
v = v / steps; 
1286 
s>sb_samples[0][k * 12 + l + 0][i] = 
1287 
l2_unscale_group(steps, mant, scale0); 
1288 
s>sb_samples[1][k * 12 + l + 0][i] = 
1289 
l2_unscale_group(steps, mant, scale1); 
1290 
mant = v % steps; 
1291 
v = v / steps; 
1292 
s>sb_samples[0][k * 12 + l + 1][i] = 
1293 
l2_unscale_group(steps, mant, scale0); 
1294 
s>sb_samples[1][k * 12 + l + 1][i] = 
1295 
l2_unscale_group(steps, mant, scale1); 
1296 
s>sb_samples[0][k * 12 + l + 2][i] = 
1297 
l2_unscale_group(steps, v, scale0); 
1298 
s>sb_samples[1][k * 12 + l + 2][i] = 
1299 
l2_unscale_group(steps, v, scale1); 
1300 
} else {

1301 
for(m=0;m<3;m++) { 
1302 
mant = get_bits(&s>gb, bits); 
1303 
s>sb_samples[0][k * 12 + l + m][i] = 
1304 
l1_unscale(bits  1, mant, scale0);

1305 
s>sb_samples[1][k * 12 + l + m][i] = 
1306 
l1_unscale(bits  1, mant, scale1);

1307 
} 
1308 
} 
1309 
} else {

1310 
s>sb_samples[0][k * 12 + l + 0][i] = 0; 
1311 
s>sb_samples[0][k * 12 + l + 1][i] = 0; 
1312 
s>sb_samples[0][k * 12 + l + 2][i] = 0; 
1313 
s>sb_samples[1][k * 12 + l + 0][i] = 0; 
1314 
s>sb_samples[1][k * 12 + l + 1][i] = 0; 
1315 
s>sb_samples[1][k * 12 + l + 2][i] = 0; 
1316 
} 
1317 
/* next subband in alloc table */

1318 
j += 1 << bit_alloc_bits;

1319 
} 
1320 
/* fill remaining samples to zero */

1321 
for(i=sblimit;i<SBLIMIT;i++) {

1322 
for(ch=0;ch<s>nb_channels;ch++) { 
1323 
s>sb_samples[ch][k * 12 + l + 0][i] = 0; 
1324 
s>sb_samples[ch][k * 12 + l + 1][i] = 0; 
1325 
s>sb_samples[ch][k * 12 + l + 2][i] = 0; 
1326 
} 
1327 
} 
1328 
} 
1329 
} 
1330 
return 3 * 12; 
1331 
} 
1332  
1333 
#define SPLIT(dst,sf,n)\

1334 
if(n==3){\ 
1335 
int m= (sf*171)>>9;\ 
1336 
dst= sf  3*m;\

1337 
sf=m;\ 
1338 
}else if(n==4){\ 
1339 
dst= sf&3;\

1340 
sf>>=2;\

1341 
}else if(n==5){\ 
1342 
int m= (sf*205)>>10;\ 
1343 
dst= sf  5*m;\

1344 
sf=m;\ 
1345 
}else if(n==6){\ 
1346 
int m= (sf*171)>>10;\ 
1347 
dst= sf  6*m;\

1348 
sf=m;\ 
1349 
}else{\

1350 
dst=0;\

1351 
} 
1352  
1353 
static av_always_inline void lsf_sf_expand(int *slen, 
1354 
int sf, int n1, int n2, int n3) 
1355 
{ 
1356 
SPLIT(slen[3], sf, n3)

1357 
SPLIT(slen[2], sf, n2)

1358 
SPLIT(slen[1], sf, n1)

1359 
slen[0] = sf;

1360 
} 
1361  
1362 
static void exponents_from_scale_factors(MPADecodeContext *s, 
1363 
GranuleDef *g, 
1364 
int16_t *exponents) 
1365 
{ 
1366 
const uint8_t *bstab, *pretab;

1367 
int len, i, j, k, l, v0, shift, gain, gains[3]; 
1368 
int16_t *exp_ptr; 
1369  
1370 
exp_ptr = exponents; 
1371 
gain = g>global_gain  210;

1372 
shift = g>scalefac_scale + 1;

1373  
1374 
bstab = band_size_long[s>sample_rate_index]; 
1375 
pretab = mpa_pretab[g>preflag]; 
1376 
for(i=0;i<g>long_end;i++) { 
1377 
v0 = gain  ((g>scale_factors[i] + pretab[i]) << shift) + 400;

1378 
len = bstab[i]; 
1379 
for(j=len;j>0;j) 
1380 
*exp_ptr++ = v0; 
1381 
} 
1382  
1383 
if (g>short_start < 13) { 
1384 
bstab = band_size_short[s>sample_rate_index]; 
1385 
gains[0] = gain  (g>subblock_gain[0] << 3); 
1386 
gains[1] = gain  (g>subblock_gain[1] << 3); 
1387 
gains[2] = gain  (g>subblock_gain[2] << 3); 
1388 
k = g>long_end; 
1389 
for(i=g>short_start;i<13;i++) { 
1390 
len = bstab[i]; 
1391 
for(l=0;l<3;l++) { 
1392 
v0 = gains[l]  (g>scale_factors[k++] << shift) + 400;

1393 
for(j=len;j>0;j) 
1394 
*exp_ptr++ = v0; 
1395 
} 
1396 
} 
1397 
} 
1398 
} 
1399  
1400 
/* handle n = 0 too */

1401 
static inline int get_bitsz(GetBitContext *s, int n) 
1402 
{ 
1403 
if (n == 0) 
1404 
return 0; 
1405 
else

1406 
return get_bits(s, n);

1407 
} 
1408  
1409  
1410 
static void switch_buffer(MPADecodeContext *s, int *pos, int *end_pos, int *end_pos2){ 
1411 
if(s>in_gb.buffer && *pos >= s>gb.size_in_bits){

1412 
s>gb= s>in_gb; 
1413 
s>in_gb.buffer=NULL;

1414 
assert((get_bits_count(&s>gb) & 7) == 0); 
1415 
skip_bits_long(&s>gb, *pos  *end_pos); 
1416 
*end_pos2= 
1417 
*end_pos= *end_pos2 + get_bits_count(&s>gb)  *pos; 
1418 
*pos= get_bits_count(&s>gb); 
1419 
} 
1420 
} 
1421  
1422 
/* Following is a optimized code for

1423 
INTFLOAT v = *src

1424 
if(get_bits1(&s>gb))

1425 
v = v;

1426 
*dst = v;

1427 
*/

1428 
#if CONFIG_FLOAT

1429 
#define READ_FLIP_SIGN(dst,src)\

1430 
v = AV_RN32A(src) ^ (get_bits1(&s>gb)<<31);\

1431 
AV_WN32A(dst, v); 
1432 
#else

1433 
#define READ_FLIP_SIGN(dst,src)\

1434 
v= get_bits1(&s>gb);\ 
1435 
*(dst) = (*(src) ^ v)  v; 
1436 
#endif

1437  
1438 
static int huffman_decode(MPADecodeContext *s, GranuleDef *g, 
1439 
int16_t *exponents, int end_pos2)

1440 
{ 
1441 
int s_index;

1442 
int i;

1443 
int last_pos, bits_left;

1444 
VLC *vlc; 
1445 
int end_pos= FFMIN(end_pos2, s>gb.size_in_bits);

1446  
1447 
/* low frequencies (called big values) */

1448 
s_index = 0;

1449 
for(i=0;i<3;i++) { 
1450 
int j, k, l, linbits;

1451 
j = g>region_size[i]; 
1452 
if (j == 0) 
1453 
continue;

1454 
/* select vlc table */

1455 
k = g>table_select[i]; 
1456 
l = mpa_huff_data[k][0];

1457 
linbits = mpa_huff_data[k][1];

1458 
vlc = &huff_vlc[l]; 
1459  
1460 
if(!l){

1461 
memset(&g>sb_hybrid[s_index], 0, sizeof(*g>sb_hybrid)*2*j); 
1462 
s_index += 2*j;

1463 
continue;

1464 
} 
1465  
1466 
/* read huffcode and compute each couple */

1467 
for(;j>0;j) { 
1468 
int exponent, x, y;

1469 
int v;

1470 
int pos= get_bits_count(&s>gb);

1471  
1472 
if (pos >= end_pos){

1473 
// av_log(NULL, AV_LOG_ERROR, "pos: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);

1474 
switch_buffer(s, &pos, &end_pos, &end_pos2); 
1475 
// av_log(NULL, AV_LOG_ERROR, "new pos: %d %d\n", pos, end_pos);

1476 
if(pos >= end_pos)

1477 
break;

1478 
} 
1479 
y = get_vlc2(&s>gb, vlc>table, 7, 3); 
1480  
1481 
if(!y){

1482 
g>sb_hybrid[s_index ] = 
1483 
g>sb_hybrid[s_index+1] = 0; 
1484 
s_index += 2;

1485 
continue;

1486 
} 
1487  
1488 
exponent= exponents[s_index]; 
1489  
1490 
dprintf(s>avctx, "region=%d n=%d x=%d y=%d exp=%d\n",

1491 
i, g>region_size[i]  j, x, y, exponent); 
1492 
if(y&16){ 
1493 
x = y >> 5;

1494 
y = y & 0x0f;

1495 
if (x < 15){ 
1496 
READ_FLIP_SIGN(g>sb_hybrid+s_index, RENAME(expval_table)[ exponent ]+x) 
1497 
}else{

1498 
x += get_bitsz(&s>gb, linbits); 
1499 
v = l3_unscale(x, exponent); 
1500 
if (get_bits1(&s>gb))

1501 
v = v; 
1502 
g>sb_hybrid[s_index] = v; 
1503 
} 
1504 
if (y < 15){ 
1505 
READ_FLIP_SIGN(g>sb_hybrid+s_index+1, RENAME(expval_table)[ exponent ]+y)

1506 
}else{

1507 
y += get_bitsz(&s>gb, linbits); 
1508 
v = l3_unscale(y, exponent); 
1509 
if (get_bits1(&s>gb))

1510 
v = v; 
1511 
g>sb_hybrid[s_index+1] = v;

1512 
} 
1513 
}else{

1514 
x = y >> 5;

1515 
y = y & 0x0f;

1516 
x += y; 
1517 
if (x < 15){ 
1518 
READ_FLIP_SIGN(g>sb_hybrid+s_index+!!y, RENAME(expval_table)[ exponent ]+x) 
1519 
}else{

1520 
x += get_bitsz(&s>gb, linbits); 
1521 
v = l3_unscale(x, exponent); 
1522 
if (get_bits1(&s>gb))

1523 
v = v; 
1524 
g>sb_hybrid[s_index+!!y] = v; 
1525 
} 
1526 
g>sb_hybrid[s_index+ !y] = 0;

1527 
} 
1528 
s_index+=2;

1529 
} 
1530 
} 
1531  
1532 
/* high frequencies */

1533 
vlc = &huff_quad_vlc[g>count1table_select]; 
1534 
last_pos=0;

1535 
while (s_index <= 572) { 
1536 
int pos, code;

1537 
pos = get_bits_count(&s>gb); 
1538 
if (pos >= end_pos) {

1539 
if (pos > end_pos2 && last_pos){

1540 
/* some encoders generate an incorrect size for this

1541 
part. We must go back into the data */

1542 
s_index = 4;

1543 
skip_bits_long(&s>gb, last_pos  pos); 
1544 
av_log(s>avctx, AV_LOG_INFO, "overread, skip %d enddists: %d %d\n", last_pos  pos, end_pospos, end_pos2pos);

1545 
if(s>error_recognition >= FF_ER_COMPLIANT)

1546 
s_index=0;

1547 
break;

1548 
} 
1549 
// av_log(NULL, AV_LOG_ERROR, "pos2: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);

1550 
switch_buffer(s, &pos, &end_pos, &end_pos2); 
1551 
// av_log(NULL, AV_LOG_ERROR, "new pos2: %d %d %d\n", pos, end_pos, s_index);

1552 
if(pos >= end_pos)

1553 
break;

1554 
} 
1555 
last_pos= pos; 
1556  
1557 
code = get_vlc2(&s>gb, vlc>table, vlc>bits, 1);

1558 
dprintf(s>avctx, "t=%d code=%d\n", g>count1table_select, code);

1559 
g>sb_hybrid[s_index+0]=

1560 
g>sb_hybrid[s_index+1]=

1561 
g>sb_hybrid[s_index+2]=

1562 
g>sb_hybrid[s_index+3]= 0; 
1563 
while(code){

1564 
static const int idxtab[16]={3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0}; 
1565 
int v;

1566 
int pos= s_index+idxtab[code];

1567 
code ^= 8>>idxtab[code];

1568 
READ_FLIP_SIGN(g>sb_hybrid+pos, RENAME(exp_table)+exponents[pos]) 
1569 
} 
1570 
s_index+=4;

1571 
} 
1572 
/* skip extension bits */

1573 
bits_left = end_pos2  get_bits_count(&s>gb); 
1574 
//av_log(NULL, AV_LOG_ERROR, "left:%d buf:%p\n", bits_left, s>in_gb.buffer);

1575 
if (bits_left < 0 && s>error_recognition >= FF_ER_COMPLIANT) { 
1576 
av_log(s>avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);

1577 
s_index=0;

1578 
}else if(bits_left > 0 && s>error_recognition >= FF_ER_AGGRESSIVE){ 
1579 
av_log(s>avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);

1580 
s_index=0;

1581 
} 
1582 
memset(&g>sb_hybrid[s_index], 0, sizeof(*g>sb_hybrid)*(576  s_index)); 
1583 
skip_bits_long(&s>gb, bits_left); 
1584  
1585 
i= get_bits_count(&s>gb); 
1586 
switch_buffer(s, &i, &end_pos, &end_pos2); 
1587  
1588 
return 0; 
1589 
} 
1590  
1591 
/* Reorder short blocks from bitstream order to interleaved order. It

1592 
would be faster to do it in parsing, but the code would be far more

1593 
complicated */

1594 
static void reorder_block(MPADecodeContext *s, GranuleDef *g) 
1595 
{ 
1596 
int i, j, len;

1597 
INTFLOAT *ptr, *dst, *ptr1; 
1598 
INTFLOAT tmp[576];

1599  
1600 
if (g>block_type != 2) 
1601 
return;

1602  
1603 
if (g>switch_point) {

1604 
if (s>sample_rate_index != 8) { 
1605 
ptr = g>sb_hybrid + 36;

1606 
} else {

1607 
ptr = g>sb_hybrid + 48;

1608 
} 
1609 
} else {

1610 
ptr = g>sb_hybrid; 
1611 
} 
1612  
1613 
for(i=g>short_start;i<13;i++) { 
1614 
len = band_size_short[s>sample_rate_index][i]; 
1615 
ptr1 = ptr; 
1616 
dst = tmp; 
1617 
for(j=len;j>0;j) { 
1618 
*dst++ = ptr[0*len];

1619 
*dst++ = ptr[1*len];

1620 
*dst++ = ptr[2*len];

1621 
ptr++; 
1622 
} 
1623 
ptr+=2*len;

1624 
memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1)); 
1625 
} 
1626 
} 
1627  
1628 
#define ISQRT2 FIXR(0.70710678118654752440) 
1629  
1630 
static void compute_stereo(MPADecodeContext *s, 
1631 
GranuleDef *g0, GranuleDef *g1) 
1632 
{ 
1633 
int i, j, k, l;

1634 
int sf_max, sf, len, non_zero_found;

1635 
INTFLOAT (*is_tab)[16], *tab0, *tab1, tmp0, tmp1, v1, v2;

1636 
int non_zero_found_short[3]; 
1637  
1638 
/* intensity stereo */

1639 
if (s>mode_ext & MODE_EXT_I_STEREO) {

1640 
if (!s>lsf) {

1641 
is_tab = is_table; 
1642 
sf_max = 7;

1643 
} else {

1644 
is_tab = is_table_lsf[g1>scalefac_compress & 1];

1645 
sf_max = 16;

1646 
} 
1647  
1648 
tab0 = g0>sb_hybrid + 576;

1649 
tab1 = g1>sb_hybrid + 576;

1650  
1651 
non_zero_found_short[0] = 0; 
1652 
non_zero_found_short[1] = 0; 
1653 
non_zero_found_short[2] = 0; 
1654 
k = (13  g1>short_start) * 3 + g1>long_end  3; 
1655 
for(i = 12;i >= g1>short_start;i) { 
1656 
/* for last band, use previous scale factor */

1657 
if (i != 11) 
1658 
k = 3;

1659 
len = band_size_short[s>sample_rate_index][i]; 
1660 
for(l=2;l>=0;l) { 
1661 
tab0 = len; 
1662 
tab1 = len; 
1663 
if (!non_zero_found_short[l]) {

1664 
/* test if non zero band. if so, stop doing istereo */

1665 
for(j=0;j<len;j++) { 
1666 
if (tab1[j] != 0) { 
1667 
non_zero_found_short[l] = 1;

1668 
goto found1;

1669 
} 
1670 
} 
1671 
sf = g1>scale_factors[k + l]; 
1672 
if (sf >= sf_max)

1673 
goto found1;

1674  
1675 
v1 = is_tab[0][sf];

1676 
v2 = is_tab[1][sf];

1677 
for(j=0;j<len;j++) { 
1678 
tmp0 = tab0[j]; 
1679 
tab0[j] = MULLx(tmp0, v1, FRAC_BITS); 
1680 
tab1[j] = MULLx(tmp0, v2, FRAC_BITS); 
1681 
} 
1682 
} else {

1683 
found1:

1684 
if (s>mode_ext & MODE_EXT_MS_STEREO) {

1685 
/* lower part of the spectrum : do ms stereo

1686 
if enabled */

1687 
for(j=0;j<len;j++) { 
1688 
tmp0 = tab0[j]; 
1689 
tmp1 = tab1[j]; 
1690 
tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS); 
1691 
tab1[j] = MULLx(tmp0  tmp1, ISQRT2, FRAC_BITS); 
1692 
} 
1693 
} 
1694 
} 
1695 
} 
1696 
} 
1697  
1698 
non_zero_found = non_zero_found_short[0] 

1699 
non_zero_found_short[1] 

1700 
non_zero_found_short[2];

1701  
1702 
for(i = g1>long_end  1;i >= 0;i) { 
1703 
len = band_size_long[s>sample_rate_index][i]; 
1704 
tab0 = len; 
1705 
tab1 = len; 
1706 
/* test if non zero band. if so, stop doing istereo */

1707 
if (!non_zero_found) {

1708 
for(j=0;j<len;j++) { 
1709 
if (tab1[j] != 0) { 
1710 
non_zero_found = 1;

1711 
goto found2;

1712 
} 
1713 
} 
1714 
/* for last band, use previous scale factor */

1715 
k = (i == 21) ? 20 : i; 
1716 
sf = g1>scale_factors[k]; 
1717 
if (sf >= sf_max)

1718 
goto found2;

1719 
v1 = is_tab[0][sf];

1720 
v2 = is_tab[1][sf];

1721 
for(j=0;j<len;j++) { 
1722 
tmp0 = tab0[j]; 
1723 
tab0[j] = MULLx(tmp0, v1, FRAC_BITS); 
1724 
tab1[j] = MULLx(tmp0, v2, FRAC_BITS); 
1725 
} 
1726 
} else {

1727 
found2:

1728 
if (s>mode_ext & MODE_EXT_MS_STEREO) {

1729 
/* lower part of the spectrum : do ms stereo

1730 
if enabled */

1731 
for(j=0;j<len;j++) { 
1732 
tmp0 = tab0[j]; 
1733 
tmp1 = tab1[j]; 
1734 
tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS); 
1735 
tab1[j] = MULLx(tmp0  tmp1, ISQRT2, FRAC_BITS); 
1736 
} 
1737 
} 
1738 
} 
1739 
} 
1740 
} else if (s>mode_ext & MODE_EXT_MS_STEREO) { 
1741 
/* ms stereo ONLY */

1742 
/* NOTE: the 1/sqrt(2) normalization factor is included in the

1743 
global gain */

1744 
tab0 = g0>sb_hybrid; 
1745 
tab1 = g1>sb_hybrid; 
1746 
for(i=0;i<576;i++) { 
1747 
tmp0 = tab0[i]; 
1748 
tmp1 = tab1[i]; 
1749 
tab0[i] = tmp0 + tmp1; 
1750 
tab1[i] = tmp0  tmp1; 
1751 
} 
1752 
} 
1753 
} 
1754  
1755 
static void compute_antialias_integer(MPADecodeContext *s, 
1756 
GranuleDef *g) 
1757 
{ 
1758 
int32_t *ptr, *csa; 
1759 
int n, i;

1760  
1761 
/* we antialias only "long" bands */

1762 
if (g>block_type == 2) { 
1763 
if (!g>switch_point)

1764 
return;

1765 
/* XXX: check this for 8000Hz case */

1766 
n = 1;

1767 
} else {

1768 
n = SBLIMIT  1;

1769 
} 
1770  
1771 
ptr = g>sb_hybrid + 18;

1772 
for(i = n;i > 0;i) { 
1773 
int tmp0, tmp1, tmp2;

1774 
csa = &csa_table[0][0]; 
1775 
#define INT_AA(j) \

1776 
tmp0 = ptr[1j];\

1777 
tmp1 = ptr[ j];\ 
1778 
tmp2= MULH(tmp0 + tmp1, csa[0+4*j]);\ 
1779 
ptr[1j] = 4*(tmp2  MULH(tmp1, csa[2+4*j]));\ 
1780 
ptr[ j] = 4*(tmp2 + MULH(tmp0, csa[3+4*j])); 
1781  
1782 
INT_AA(0)

1783 
INT_AA(1)

1784 
INT_AA(2)

1785 
INT_AA(3)

1786 
INT_AA(4)

1787 
INT_AA(5)

1788 
INT_AA(6)

1789 
INT_AA(7)

1790  
1791 
ptr += 18;

1792 
} 
1793 
} 
1794  
1795 
static void compute_antialias_float(MPADecodeContext *s, 
1796 
GranuleDef *g) 
1797 
{ 
1798 
float *ptr;

1799 
int n, i;

1800  
1801 
/* we antialias only "long" bands */

1802 
if (g>block_type == 2) { 
1803 
if (!g>switch_point)

1804 
return;

1805 
/* XXX: check this for 8000Hz case */

1806 
n = 1;

1807 
} else {

1808 
n = SBLIMIT  1;

1809 
} 
1810  
1811 
ptr = g>sb_hybrid + 18;

1812 
for(i = n;i > 0;i) { 
1813 
float tmp0, tmp1;

1814 
float *csa = &csa_table_float[0][0]; 
1815 
#define FLOAT_AA(j)\

1816 
tmp0= ptr[1j];\

1817 
tmp1= ptr[ j];\ 
1818 
ptr[1j] = tmp0 * csa[0+4*j]  tmp1 * csa[1+4*j];\ 
1819 
ptr[ j] = tmp0 * csa[1+4*j] + tmp1 * csa[0+4*j]; 
1820  
1821 
FLOAT_AA(0)

1822 
FLOAT_AA(1)

1823 
FLOAT_AA(2)

1824 
FLOAT_AA(3)

1825 
FLOAT_AA(4)

1826 
FLOAT_AA(5)

1827 
FLOAT_AA(6)

1828 
FLOAT_AA(7)

1829  
1830 
ptr += 18;

1831 
} 
1832 
} 
1833  
1834 
static void compute_imdct(MPADecodeContext *s, 
1835 
GranuleDef *g, 
1836 
INTFLOAT *sb_samples, 
1837 
INTFLOAT *mdct_buf) 
1838 
{ 
1839 
INTFLOAT *win, *win1, *out_ptr, *ptr, *buf, *ptr1; 
1840 
INTFLOAT out2[12];

1841 
int i, j, mdct_long_end, sblimit;

1842  
1843 
/* find last non zero block */

1844 
ptr = g>sb_hybrid + 576;

1845 
ptr1 = g>sb_hybrid + 2 * 18; 
1846 
while (ptr >= ptr1) {

1847 
int32_t *p; 
1848 
ptr = 6;

1849 
p= (int32_t*)ptr; 
1850 
if(p[0]  p[1]  p[2]  p[3]  p[4]  p[5]) 
1851 
break;

1852 
} 
1853 
sblimit = ((ptr  g>sb_hybrid) / 18) + 1; 
1854  
1855 
if (g>block_type == 2) { 
1856 
/* XXX: check for 8000 Hz */

1857 
if (g>switch_point)

1858 
mdct_long_end = 2;

1859 
else

1860 
mdct_long_end = 0;

1861 
} else {

1862 
mdct_long_end = sblimit; 
1863 
} 
1864  
1865 
buf = mdct_buf; 
1866 
ptr = g>sb_hybrid; 
1867 
for(j=0;j<mdct_long_end;j++) { 
1868 
/* apply window & overlap with previous buffer */

1869 
out_ptr = sb_samples + j; 
1870 
/* select window */

1871 
if (g>switch_point && j < 2) 
1872 
win1 = mdct_win[0];

1873 
else

1874 
win1 = mdct_win[g>block_type]; 
1875 
/* select frequency inversion */

1876 
win = win1 + ((4 * 36) & (j & 1)); 
1877 
imdct36(out_ptr, buf, ptr, win); 
1878 
out_ptr += 18*SBLIMIT;

1879 
ptr += 18;

1880 
buf += 18;

1881 
} 
1882 
for(j=mdct_long_end;j<sblimit;j++) {

1883 
/* select frequency inversion */

1884 
win = mdct_win[2] + ((4 * 36) & (j & 1)); 
1885 
out_ptr = sb_samples + j; 
1886  
1887 
for(i=0; i<6; i++){ 
1888 
*out_ptr = buf[i]; 
1889 
out_ptr += SBLIMIT; 
1890 
} 
1891 
imdct12(out2, ptr + 0);

1892 
for(i=0;i<6;i++) { 
1893 
*out_ptr = MULH3(out2[i ], win[i ], 1) + buf[i + 6*1]; 
1894 
buf[i + 6*2] = MULH3(out2[i + 6], win[i + 6], 1); 
1895 
out_ptr += SBLIMIT; 
1896 
} 
1897 
imdct12(out2, ptr + 1);

1898 
for(i=0;i<6;i++) { 
1899 
*out_ptr = MULH3(out2[i ], win[i ], 1) + buf[i + 6*2]; 
1900 
buf[i + 6*0] = MULH3(out2[i + 6], win[i + 6], 1); 
1901 
out_ptr += SBLIMIT; 
1902 
} 
1903 
imdct12(out2, ptr + 2);

1904 
for(i=0;i<6;i++) { 
1905 
buf[i + 6*0] = MULH3(out2[i ], win[i ], 1) + buf[i + 6*0]; 
1906 
buf[i + 6*1] = MULH3(out2[i + 6], win[i + 6], 1); 
1907 
buf[i + 6*2] = 0; 
1908 
} 
1909 
ptr += 18;

1910 
buf += 18;

1911 
} 
1912 
/* zero bands */

1913 
for(j=sblimit;j<SBLIMIT;j++) {

1914 
/* overlap */

1915 
out_ptr = sb_samples + j; 
1916 
for(i=0;i<18;i++) { 
1917 
*out_ptr = buf[i]; 
1918 
buf[i] = 0;

1919 
out_ptr += SBLIMIT; 
1920 
} 
1921 
buf += 18;

1922 
} 
1923 
} 
1924  
1925 
/* main layer3 decoding function */

1926 
static int mp_decode_layer3(MPADecodeContext *s) 
1927 
{ 
1928 
int nb_granules, main_data_begin, private_bits;

1929 
int gr, ch, blocksplit_flag, i, j, k, n, bits_pos;

1930 
GranuleDef *g; 
1931 
int16_t exponents[576]; //FIXME try INTFLOAT 
1932  
1933 
/* read side info */

1934 
if (s>lsf) {

1935 
main_data_begin = get_bits(&s>gb, 8);

1936 
private_bits = get_bits(&s>gb, s>nb_channels); 
1937 
nb_granules = 1;

1938 
} else {

1939 
main_data_begin = get_bits(&s>gb, 9);

1940 
if (s>nb_channels == 2) 
1941 
private_bits = get_bits(&s>gb, 3);

1942 
else

1943 
private_bits = get_bits(&s>gb, 5);

1944 
nb_granules = 2;

1945 
for(ch=0;ch<s>nb_channels;ch++) { 
1946 
s>granules[ch][0].scfsi = 0;/* all scale factors are transmitted */ 
1947 
s>granules[ch][1].scfsi = get_bits(&s>gb, 4); 
1948 
} 
1949 
} 
1950  
1951 
for(gr=0;gr<nb_granules;gr++) { 
1952 
for(ch=0;ch<s>nb_channels;ch++) { 
1953 
dprintf(s>avctx, "gr=%d ch=%d: side_info\n", gr, ch);

1954 
g = &s>granules[ch][gr]; 
1955 
g>part2_3_length = get_bits(&s>gb, 12);

1956 
g>big_values = get_bits(&s>gb, 9);

1957 
if(g>big_values > 288){ 
1958 
av_log(s>avctx, AV_LOG_ERROR, "big_values too big\n");

1959 
return 1; 
1960 
} 
1961  
1962 
g>global_gain = get_bits(&s>gb, 8);

1963 
/* if MS stereo only is selected, we precompute the

1964 
1/sqrt(2) renormalization factor */

1965 
if ((s>mode_ext & (MODE_EXT_MS_STEREO  MODE_EXT_I_STEREO)) ==

1966 
MODE_EXT_MS_STEREO) 
1967 
g>global_gain = 2;

1968 
if (s>lsf)

1969 
g>scalefac_compress = get_bits(&s>gb, 9);

1970 
else

1971 
g>scalefac_compress = get_bits(&s>gb, 4);

1972 
blocksplit_flag = get_bits1(&s>gb); 
1973 
if (blocksplit_flag) {

1974 
g>block_type = get_bits(&s>gb, 2);

1975 
if (g>block_type == 0){ 
1976 
av_log(s>avctx, AV_LOG_ERROR, "invalid block type\n");

1977 
return 1; 
1978 
} 
1979 
g>switch_point = get_bits1(&s>gb); 
1980 
for(i=0;i<2;i++) 
1981 
g>table_select[i] = get_bits(&s>gb, 5);

1982 
for(i=0;i<3;i++) 
1983 
g>subblock_gain[i] = get_bits(&s>gb, 3);

1984 
ff_init_short_region(s, g); 
1985 
} else {

1986 
int region_address1, region_address2;

1987 
g>block_type = 0;

1988 
g>switch_point = 0;

1989 
for(i=0;i<3;i++) 
1990 
g>table_select[i] = get_bits(&s>gb, 5);

1991 
/* compute huffman coded region sizes */

1992 
region_address1 = get_bits(&s>gb, 4);

1993 
region_address2 = get_bits(&s>gb, 3);

1994 
dprintf(s>avctx, "region1=%d region2=%d\n",

1995 
region_address1, region_address2); 
1996 
ff_init_long_region(s, g, region_address1, region_address2); 
1997 
} 
1998 
ff_region_offset2size(g); 
1999 
ff_compute_band_indexes(s, g); 
2000  
2001 
g>preflag = 0;

2002 
if (!s>lsf)

2003 
g>preflag = get_bits1(&s>gb); 
2004 
g>scalefac_scale = get_bits1(&s>gb); 
2005 
g>count1table_select = get_bits1(&s>gb); 
2006 
dprintf(s>avctx, "block_type=%d switch_point=%d\n",

2007 
g>block_type, g>switch_point); 
2008 
} 
2009 
} 
2010  
2011 
if (!s>adu_mode) {

2012 
const uint8_t *ptr = s>gb.buffer + (get_bits_count(&s>gb)>>3); 
2013 
assert((get_bits_count(&s>gb) & 7) == 0); 
2014 
/* now we get bits from the main_data_begin offset */

2015 
dprintf(s>avctx, "seekback: %d\n", main_data_begin);

2016 
//av_log(NULL, AV_LOG_ERROR, "backstep:%d, lastbuf:%d\n", main_data_begin, s>last_buf_size);

2017  
2018 
memcpy(s>last_buf + s>last_buf_size, ptr, EXTRABYTES); 
2019 
s>in_gb= s>gb; 
2020 
init_get_bits(&s>gb, s>last_buf, s>last_buf_size*8);

2021 
skip_bits_long(&s>gb, 8*(s>last_buf_size  main_data_begin));

2022 
} 
2023  
2024 
for(gr=0;gr<nb_granules;gr++) { 
2025 
for(ch=0;ch<s>nb_channels;ch++) { 
2026 
g = &s>granules[ch][gr]; 
2027 
if(get_bits_count(&s>gb)<0){ 
2028 
av_log(s>avctx, AV_LOG_DEBUG, "mdb:%d, lastbuf:%d skipping granule %d\n",

2029 
main_data_begin, s>last_buf_size, gr); 
2030 
skip_bits_long(&s>gb, g>part2_3_length); 
2031 
memset(g>sb_hybrid, 0, sizeof(g>sb_hybrid)); 
2032 
if(get_bits_count(&s>gb) >= s>gb.size_in_bits && s>in_gb.buffer){

2033 
skip_bits_long(&s>in_gb, get_bits_count(&s>gb)  s>gb.size_in_bits); 
2034 
s>gb= s>in_gb; 
2035 
s>in_gb.buffer=NULL;

2036 
} 
2037 
continue;

2038 
} 
2039  
2040 
bits_pos = get_bits_count(&s>gb); 
2041  
2042 
if (!s>lsf) {

2043 
uint8_t *sc; 
2044 
int slen, slen1, slen2;

2045  
2046 
/* MPEG1 scale factors */

2047 
slen1 = slen_table[0][g>scalefac_compress];

2048 
slen2 = slen_table[1][g>scalefac_compress];

2049 
dprintf(s>avctx, "slen1=%d slen2=%d\n", slen1, slen2);

2050 
if (g>block_type == 2) { 
2051 
n = g>switch_point ? 17 : 18; 
2052 
j = 0;

2053 
if(slen1){

2054 
for(i=0;i<n;i++) 
2055 
g>scale_factors[j++] = get_bits(&s>gb, slen1); 
2056 
}else{

2057 
for(i=0;i<n;i++) 
2058 
g>scale_factors[j++] = 0;

2059 
} 
2060 
if(slen2){

2061 
for(i=0;i<18;i++) 
2062 
g>scale_factors[j++] = get_bits(&s>gb, slen2); 
2063 
for(i=0;i<3;i++) 
2064 
g>scale_factors[j++] = 0;

2065 
}else{

2066 
for(i=0;i<21;i++) 
2067 
g>scale_factors[j++] = 0;

2068 
} 
2069 
} else {

2070 
sc = s>granules[ch][0].scale_factors;

2071 
j = 0;

2072 
for(k=0;k<4;k++) { 
2073 
n = (k == 0 ? 6 : 5); 
2074 
if ((g>scfsi & (0x8 >> k)) == 0) { 
2075 
slen = (k < 2) ? slen1 : slen2;

2076 
if(slen){

2077 
for(i=0;i<n;i++) 
2078 
g>scale_factors[j++] = get_bits(&s>gb, slen); 
2079 
}else{

2080 
for(i=0;i<n;i++) 
2081 
g>scale_factors[j++] = 0;

2082 
} 
2083 
} else {

2084 
/* simply copy from last granule */

2085 
for(i=0;i<n;i++) { 
2086 
g>scale_factors[j] = sc[j]; 
2087 
j++; 
2088 
} 
2089 
} 
2090 
} 
2091 
g>scale_factors[j++] = 0;

2092 
} 
2093 
} else {

2094 
int tindex, tindex2, slen[4], sl, sf; 
2095  
2096 
/* LSF scale factors */

2097 
if (g>block_type == 2) { 
2098 
tindex = g>switch_point ? 2 : 1; 
2099 
} else {

2100 
tindex = 0;

2101 
} 
2102 
sf = g>scalefac_compress; 
2103 
if ((s>mode_ext & MODE_EXT_I_STEREO) && ch == 1) { 
2104 
/* intensity stereo case */

2105 
sf >>= 1;

2106 
if (sf < 180) { 
2107 
lsf_sf_expand(slen, sf, 6, 6, 0); 
2108 
tindex2 = 3;

2109 
} else if (sf < 244) { 
2110 
lsf_sf_expand(slen, sf  180, 4, 4, 0); 
2111 
tindex2 = 4;

2112 
} else {

2113 
lsf_sf_expand(slen, sf  244, 3, 0, 0); 
2114 
tindex2 = 5;

2115 
} 
2116 
} else {

2117 
/* normal case */

2118 
if (sf < 400) { 
2119 
lsf_sf_expand(slen, sf, 5, 4, 4); 
2120 
tindex2 = 0;

2121 
} else if (sf < 500) { 
2122 
lsf_sf_expand(slen, sf  400, 5, 4, 0); 
2123 
tindex2 = 1;

2124 
} else {

2125 
lsf_sf_expand(slen, sf  500, 3, 0, 0); 
2126 
tindex2 = 2;

2127 
g>preflag = 1;

2128 
} 
2129 
} 
2130  
2131 
j = 0;

2132 
for(k=0;k<4;k++) { 
2133 
n = lsf_nsf_table[tindex2][tindex][k]; 
2134 
sl = slen[k]; 
2135 
if(sl){

2136 
for(i=0;i<n;i++) 
2137 
g>scale_factors[j++] = get_bits(&s>gb, sl); 
2138 
}else{

2139 
for(i=0;i<n;i++) 
2140 
g>scale_factors[j++] = 0;

2141 
} 
2142 
} 
2143 
/* XXX: should compute exact size */

2144 
for(;j<40;j++) 
2145 
g>scale_factors[j] = 0;

2146 
} 
2147  
2148 
exponents_from_scale_factors(s, g, exponents); 
2149  
2150 
/* read Huffman coded residue */

2151 
huffman_decode(s, g, exponents, bits_pos + g>part2_3_length); 
2152 
} /* ch */

2153  
2154 
if (s>nb_channels == 2) 
2155 
compute_stereo(s, &s>granules[0][gr], &s>granules[1][gr]); 
2156  
2157 
for(ch=0;ch<s>nb_channels;ch++) { 
2158 
g = &s>granules[ch][gr]; 
2159  
2160 
reorder_block(s, g); 
2161 
compute_antialias(s, g); 
2162 
compute_imdct(s, g, &s>sb_samples[ch][18 * gr][0], s>mdct_buf[ch]); 
2163 
} 
2164 
} /* gr */

2165 
if(get_bits_count(&s>gb)<0) 
2166 
skip_bits_long(&s>gb, get_bits_count(&s>gb)); 
2167 
return nb_granules * 18; 
2168 
} 
2169  
2170 
static int mp_decode_frame(MPADecodeContext *s, 
2171 
OUT_INT *samples, const uint8_t *buf, int buf_size) 
2172 
{ 
2173 
int i, nb_frames, ch;

2174 
OUT_INT *samples_ptr; 
2175  
2176 
init_get_bits(&s>gb, buf + HEADER_SIZE, (buf_size  HEADER_SIZE)*8);

2177  
2178 
/* skip error protection field */

2179 
if (s>error_protection)

2180 
skip_bits(&s>gb, 16);

2181  
2182 
dprintf(s>avctx, "frame %d:\n", s>frame_count);

2183 
switch(s>layer) {

2184 
case 1: 
2185 
s>avctx>frame_size = 384;

2186 
nb_frames = mp_decode_layer1(s); 
2187 
break;

2188 
case 2: 
2189 
s>avctx>frame_size = 1152;

2190 
nb_frames = mp_decode_layer2(s); 
2191 
break;

2192 
case 3: 
2193 
s>avctx>frame_size = s>lsf ? 576 : 1152; 
2194 
default:

2195 
nb_frames = mp_decode_layer3(s); 
2196  
2197 
s>last_buf_size=0;

2198 
if(s>in_gb.buffer){

2199 
align_get_bits(&s>gb); 
2200 
i= get_bits_left(&s>gb)>>3;

2201 
if(i >= 0 && i <= BACKSTEP_SIZE){ 
2202 
memmove(s>last_buf, s>gb.buffer + (get_bits_count(&s>gb)>>3), i);

2203 
s>last_buf_size=i; 
2204 
}else

2205 
av_log(s>avctx, AV_LOG_ERROR, "invalid old backstep %d\n", i);

2206 
s>gb= s>in_gb; 
2207 
s>in_gb.buffer= NULL;

2208 
} 
2209  
2210 
align_get_bits(&s>gb); 
2211 
assert((get_bits_count(&s>gb) & 7) == 0); 
2212 
i= get_bits_left(&s>gb)>>3;

2213  
2214 
if(i<0  i > BACKSTEP_SIZE  nb_frames<0){ 
2215 
if(i<0) 
2216 
av_log(s>avctx, AV_LOG_ERROR, "invalid new backstep %d\n", i);

2217 
i= FFMIN(BACKSTEP_SIZE, buf_size  HEADER_SIZE); 
2218 
} 
2219 
assert(i <= buf_size  HEADER_SIZE && i>= 0);

2220 
memcpy(s>last_buf + s>last_buf_size, s>gb.buffer + buf_size  HEADER_SIZE  i, i); 
2221 
s>last_buf_size += i; 
2222  
2223 
break;

2224 
} 
2225  
2226 
/* apply the synthesis filter */

2227 
for(ch=0;ch<s>nb_channels;ch++) { 
2228 
samples_ptr = samples + ch; 
2229 
for(i=0;i<nb_frames;i++) { 
2230 
RENAME(ff_mpa_synth_filter)(s>synth_buf[ch], &(s>synth_buf_offset[ch]), 
2231 
RENAME(ff_mpa_synth_window), &s>dither_state, 
2232 
samples_ptr, s>nb_channels, 
2233 
s>sb_samples[ch][i]); 
2234 
samples_ptr += 32 * s>nb_channels;

2235 
} 
2236 
} 
2237  
2238 
return nb_frames * 32 * sizeof(OUT_INT) * s>nb_channels; 
2239 
} 
2240  
2241 
static int decode_frame(AVCodecContext * avctx, 
2242 
void *data, int *data_size, 
2243 
AVPacket *avpkt) 
2244 
{ 
2245 
const uint8_t *buf = avpkt>data;

2246 
int buf_size = avpkt>size;

2247 
MPADecodeContext *s = avctx>priv_data; 
2248 
uint32_t header; 
2249 
int out_size;

2250 
OUT_INT *out_samples = data; 
2251  
2252 
if(buf_size < HEADER_SIZE)

2253 
return 1; 
2254  
2255 
header = AV_RB32(buf); 
2256 
if(ff_mpa_check_header(header) < 0){ 
2257 
av_log(avctx, AV_LOG_ERROR, "Header missing\n");

2258 
return 1; 
2259 
} 
2260  
2261 
if (ff_mpegaudio_decode_header((MPADecodeHeader *)s, header) == 1) { 
2262 
/* free format: prepare to compute frame size */

2263 
s>frame_size = 1;

2264 
return 1; 
2265 
} 
2266 
/* update codec info */

2267 
avctx>channels = s>nb_channels; 
2268 
avctx>bit_rate = s>bit_rate; 
2269 
avctx>sub_id = s>layer; 
2270  
2271 
if(*data_size < 1152*avctx>channels*sizeof(OUT_INT)) 
2272 
return 1; 
2273 
*data_size = 0;

2274  
2275 
if(s>frame_size<=0  s>frame_size > buf_size){ 
2276 
av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");

2277 
return 1; 
2278 
}else if(s>frame_size < buf_size){ 
2279 
av_log(avctx, AV_LOG_ERROR, "incorrect frame size\n");

2280 
buf_size= s>frame_size; 
2281 
} 
2282  
2283 
out_size = mp_decode_frame(s, out_samples, buf, buf_size); 
2284 
if(out_size>=0){ 
2285 
*data_size = out_size; 
2286 
avctx>sample_rate = s>sample_rate; 
2287 
//FIXME maybe move the other codec info stuff from above here too

2288 
}else

2289 
av_log(avctx, AV_LOG_DEBUG, "Error while decoding MPEG audio frame.\n"); //FIXME return 1 / but also return the number of bytes consumed 
2290 
s>frame_size = 0;

2291 
return buf_size;

2292 
} 
2293  
2294 
static void flush(AVCodecContext *avctx){ 
2295 
MPADecodeContext *s = avctx>priv_data; 
2296 
memset(s>synth_buf, 0, sizeof(s>synth_buf)); 
2297 
s>last_buf_size= 0;

2298 
} 
2299  
2300 
#if CONFIG_MP3ADU_DECODER

2301 
static int decode_frame_adu(AVCodecContext * avctx, 
2302 
void *data, int *data_size, 
2303 
AVPacket *avpkt) 
2304 
{ 
2305 
const uint8_t *buf = avpkt>data;

2306 
int buf_size = avpkt>size;

2307 
MPADecodeContext *s = avctx>priv_data; 
2308 
uint32_t header; 
2309 
int len, out_size;

2310 
OUT_INT *out_samples = data; 
2311  
2312 
len = buf_size; 
2313  
2314 
// Discard too short frames

2315 
if (buf_size < HEADER_SIZE) {

2316 
*data_size = 0;

2317 
return buf_size;

2318 
} 
2319  
2320  
2321 
if (len > MPA_MAX_CODED_FRAME_SIZE)

2322 
len = MPA_MAX_CODED_FRAME_SIZE; 
2323  
2324 
// Get header and restore sync word

2325 
header = AV_RB32(buf)  0xffe00000;

2326  
2327 
if (ff_mpa_check_header(header) < 0) { // Bad header, discard frame 
2328 
*data_size = 0;

2329 
return buf_size;

2330 
} 
2331  
2332 
ff_mpegaudio_decode_header((MPADecodeHeader *)s, header); 
2333 
/* update codec info */

2334 
avctx>sample_rate = s>sample_rate; 
2335 
avctx>channels = s>nb_channels; 
2336 
avctx>bit_rate = s>bit_rate; 
2337 
avctx>sub_id = s>layer; 
2338  
2339 
s>frame_size = len; 
2340  
2341 
if (avctx>parse_only) {

2342 
out_size = buf_size; 
2343 
} else {

2344 
out_size = mp_decode_frame(s, out_samples, buf, buf_size); 
2345 
} 
2346  
2347 
*data_size = out_size; 
2348 
return buf_size;

2349 
} 
2350 
#endif /* CONFIG_MP3ADU_DECODER */ 
2351  
2352 
#if CONFIG_MP3ON4_DECODER

2353  
2354 
/**

2355 
* Context for MP3On4 decoder

2356 
*/

2357 
typedef struct MP3On4DecodeContext { 
2358 
int frames; ///< number of mp3 frames per block (number of mp3 decoder instances) 
2359 
int syncword; ///< syncword patch 
2360 
const uint8_t *coff; ///< channels offsets in output buffer 
2361 
MPADecodeContext *mp3decctx[5]; ///< MPADecodeContext for every decoder instance 
2362 
} MP3On4DecodeContext; 
2363  
2364 
#include "mpeg4audio.h" 
2365  
2366 
/* Next 3 arrays are indexed by channel config number (passed via codecdata) */

2367 
static const uint8_t mp3Frames[8] = {0,1,1,2,3,3,4,5}; /* number of mp3 decoder instances */ 
2368 
/* offsets into output buffer, assume output order is FL FR BL BR C LFE */

2369 
static const uint8_t chan_offset[8][5] = { 
2370 
{0},

2371 
{0}, // C 
2372 
{0}, // FLR 
2373 
{2,0}, // C FLR 
2374 
{2,0,3}, // C FLR BS 
2375 
{4,0,2}, // C FLR BLRS 
2376 
{4,0,2,5}, // C FLR BLRS LFE 
2377 
{4,0,2,6,5}, // C FLR BLRS BLR LFE 
2378 
}; 
2379  
2380  
2381 
static int decode_init_mp3on4(AVCodecContext * avctx) 
2382 
{ 
2383 
MP3On4DecodeContext *s = avctx>priv_data; 
2384 
MPEG4AudioConfig cfg; 
2385 
int i;

2386  
2387 
if ((avctx>extradata_size < 2)  (avctx>extradata == NULL)) { 
2388 
av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");

2389 
return 1; 
2390 
} 
2391  
2392 
ff_mpeg4audio_get_config(&cfg, avctx>extradata, avctx>extradata_size); 
2393 
if (!cfg.chan_config  cfg.chan_config > 7) { 
2394 
av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");

2395 
return 1; 
2396 
} 
2397 
s>frames = mp3Frames[cfg.chan_config]; 
2398 
s>coff = chan_offset[cfg.chan_config]; 
2399 
avctx>channels = ff_mpeg4audio_channels[cfg.chan_config]; 
2400  
2401 
if (cfg.sample_rate < 16000) 
2402 
s>syncword = 0xffe00000;

2403 
else

2404 
s>syncword = 0xfff00000;

2405  
2406 
/* Init the first mp3 decoder in standard way, so that all tables get builded

2407 
* We replace avctx>priv_data with the context of the first decoder so that

2408 
* decode_init() does not have to be changed.

2409 
* Other decoders will be initialized here copying data from the first context

2410 
*/

2411 
// Allocate zeroed memory for the first decoder context

2412 
s>mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext)); 
2413 
// Put decoder context in place to make init_decode() happy

2414 
avctx>priv_data = s>mp3decctx[0];

2415 
decode_init(avctx); 
2416 
// Restore mp3on4 context pointer

2417 
avctx>priv_data = s; 
2418 
s>mp3decctx[0]>adu_mode = 1; // Set adu mode 
2419  
2420 
/* Create a separate codec/context for each frame (first is already ok).

2421 
* Each frame is 1 or 2 channels  up to 5 frames allowed

2422 
*/

2423 
for (i = 1; i < s>frames; i++) { 
2424 
s>mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));

2425 
s>mp3decctx[i]>adu_mode = 1;

2426 
s>mp3decctx[i]>avctx = avctx; 
2427 
} 
2428  
2429 
return 0; 
2430 
} 
2431  
2432  
2433 
static av_cold int decode_close_mp3on4(AVCodecContext * avctx) 
2434 
{ 
2435 
MP3On4DecodeContext *s = avctx>priv_data; 
2436 
int i;

2437  
2438 
for (i = 0; i < s>frames; i++) 
2439 
if (s>mp3decctx[i])

2440 
av_free(s>mp3decctx[i]); 
2441  
2442 
return 0; 
2443 
} 
2444  
2445  
2446 
static int decode_frame_mp3on4(AVCodecContext * avctx, 
2447 
void *data, int *data_size, 
2448 
AVPacket *avpkt) 
2449 
{ 
2450 
const uint8_t *buf = avpkt>data;

2451 
int buf_size = avpkt>size;

2452 
MP3On4DecodeContext *s = avctx>priv_data; 
2453 
MPADecodeContext *m; 
2454 
int fsize, len = buf_size, out_size = 0; 
2455 
uint32_t header; 
2456 
OUT_INT *out_samples = data; 
2457 
OUT_INT decoded_buf[MPA_FRAME_SIZE * MPA_MAX_CHANNELS]; 
2458 
OUT_INT *outptr, *bp; 
2459 
int fr, j, n;

2460  
2461 
if(*data_size < MPA_FRAME_SIZE * MPA_MAX_CHANNELS * s>frames * sizeof(OUT_INT)) 
2462 
return 1; 
2463  
2464 
*data_size = 0;

2465 
// Discard too short frames

2466 
if (buf_size < HEADER_SIZE)

2467 
return 1; 
2468  
2469 
// If only one decoder interleave is not needed

2470 
outptr = s>frames == 1 ? out_samples : decoded_buf;

2471  
2472 
avctx>bit_rate = 0;

2473  
2474 
for (fr = 0; fr < s>frames; fr++) { 
2475 
fsize = AV_RB16(buf) >> 4;

2476 
fsize = FFMIN3(fsize, len, MPA_MAX_CODED_FRAME_SIZE); 
2477 
m = s>mp3decctx[fr]; 
2478 
assert (m != NULL);

2479  
2480 
header = (AV_RB32(buf) & 0x000fffff)  s>syncword; // patch header 
2481  
2482 
if (ff_mpa_check_header(header) < 0) // Bad header, discard block 
2483 
break;

2484  
2485 
ff_mpegaudio_decode_header((MPADecodeHeader *)m, header); 
2486 
out_size += mp_decode_frame(m, outptr, buf, fsize); 
2487 
buf += fsize; 
2488 
len = fsize; 
2489  
2490 
if(s>frames > 1) { 
2491 
n = m>avctx>frame_size*m>nb_channels; 
2492 
/* interleave output data */

2493 
bp = out_samples + s>coff[fr]; 
2494 
if(m>nb_channels == 1) { 
2495 
for(j = 0; j < n; j++) { 
2496 
*bp = decoded_buf[j]; 
2497 
bp += avctx>channels; 
2498 
} 
2499 
} else {

2500 
for(j = 0; j < n; j++) { 
2501 
bp[0] = decoded_buf[j++];

2502 
bp[1] = decoded_buf[j];

2503 
bp += avctx>channels; 
2504 
} 
2505 
} 
2506 
} 
2507 
avctx>bit_rate += m>bit_rate; 
2508 
} 
2509  
2510 
/* update codec info */

2511 
avctx>sample_rate = s>mp3decctx[0]>sample_rate;

2512  
2513 
*data_size = out_size; 
2514 
return buf_size;

2515 
} 
2516 
#endif /* CONFIG_MP3ON4_DECODER */ 
2517  
2518 
#if !CONFIG_FLOAT

2519 
#if CONFIG_MP1_DECODER

2520 
AVCodec mp1_decoder = 
2521 
{ 
2522 
"mp1",

2523 
AVMEDIA_TYPE_AUDIO, 
2524 
CODEC_ID_MP1, 
2525 
sizeof(MPADecodeContext),

2526 
decode_init, 
2527 
NULL,

2528 
NULL,

2529 
decode_frame, 
2530 
CODEC_CAP_PARSE_ONLY, 
2531 
.flush= flush, 
2532 
.long_name= NULL_IF_CONFIG_SMALL("MP1 (MPEG audio layer 1)"),

2533 
}; 
2534 
#endif

2535 
#if CONFIG_MP2_DECODER

2536 
AVCodec mp2_decoder = 
2537 
{ 
2538 
"mp2",

2539 
AVMEDIA_TYPE_AUDIO, 
2540 
CODEC_ID_MP2, 
2541 
sizeof(MPADecodeContext),

2542 
decode_init, 
2543 
NULL,

2544 
NULL,

2545 
decode_frame, 
2546 
CODEC_CAP_PARSE_ONLY, 
2547 
.flush= flush, 
2548 
.long_name= NULL_IF_CONFIG_SMALL("MP2 (MPEG audio layer 2)"),

2549 
}; 
2550 
#endif

2551 
#if CONFIG_MP3_DECODER

2552 
AVCodec mp3_decoder = 
2553 
{ 
2554 
"mp3",

2555 
AVMEDIA_TYPE_AUDIO, 
2556 
CODEC_ID_MP3, 
2557 
sizeof(MPADecodeContext),

2558 
decode_init, 
2559 
NULL,

2560 
NULL,

2561 
decode_frame, 
2562 
CODEC_CAP_PARSE_ONLY, 
2563 
.flush= flush, 
2564 
.long_name= NULL_IF_CONFIG_SMALL("MP3 (MPEG audio layer 3)"),

2565 
}; 
2566 
#endif

2567 
#if CONFIG_MP3ADU_DECODER

2568 
AVCodec mp3adu_decoder = 
2569 
{ 
2570 
"mp3adu",

2571 
AVMEDIA_TYPE_AUDIO, 
2572 
CODEC_ID_MP3ADU, 
2573 
sizeof(MPADecodeContext),

2574 
decode_init, 
2575 
NULL,

2576 
NULL,

2577 
decode_frame_adu, 
2578 
CODEC_CAP_PARSE_ONLY, 
2579 
.flush= flush, 
2580 
.long_name= NULL_IF_CONFIG_SMALL("ADU (Application Data Unit) MP3 (MPEG audio layer 3)"),

2581 
}; 
2582 
#endif

2583 
#if CONFIG_MP3ON4_DECODER

2584 
AVCodec mp3on4_decoder = 
2585 
{ 
2586 
"mp3on4",

2587 
AVMEDIA_TYPE_AUDIO, 
2588 
CODEC_ID_MP3ON4, 
2589 
sizeof(MP3On4DecodeContext),

2590 
decode_init_mp3on4, 
2591 
NULL,

2592 
decode_close_mp3on4, 
2593 
decode_frame_mp3on4, 
2594 
.flush= flush, 
2595 
.long_name= NULL_IF_CONFIG_SMALL("MP3onMP4"),

2596 
}; 
2597 
#endif

2598 
#endif
