ffmpeg / libavcodec / liba52 / imdct.c @ 5509bffa
History | View | Annotate | Download (11.2 KB)
1 |
/*
|
---|---|
2 |
* imdct.c
|
3 |
* Copyright (C) 2000-2003 Michel Lespinasse <walken@zoy.org>
|
4 |
* Copyright (C) 1999-2000 Aaron Holtzman <aholtzma@ess.engr.uvic.ca>
|
5 |
*
|
6 |
* The ifft algorithms in this file have been largely inspired by Dan
|
7 |
* Bernstein's work, djbfft, available at http://cr.yp.to/djbfft.html
|
8 |
*
|
9 |
* This file is part of a52dec, a free ATSC A-52 stream decoder.
|
10 |
* See http://liba52.sourceforge.net/ for updates.
|
11 |
*
|
12 |
* a52dec is free software; you can redistribute it and/or modify
|
13 |
* it under the terms of the GNU General Public License as published by
|
14 |
* the Free Software Foundation; either version 2 of the License, or
|
15 |
* (at your option) any later version.
|
16 |
*
|
17 |
* a52dec is distributed in the hope that it will be useful,
|
18 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
19 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
20 |
* GNU General Public License for more details.
|
21 |
*
|
22 |
* You should have received a copy of the GNU General Public License
|
23 |
* along with this program; if not, write to the Free Software
|
24 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
25 |
*/
|
26 |
|
27 |
#include "a52.h" |
28 |
#include "a52_internal.h" |
29 |
#include "mm_accel.h" |
30 |
|
31 |
typedef struct complex_s { |
32 |
sample_t real; |
33 |
sample_t imag; |
34 |
} complex_t; |
35 |
|
36 |
static uint8_t fftorder[] = {
|
37 |
0,128, 64,192, 32,160,224, 96, 16,144, 80,208,240,112, 48,176, |
38 |
8,136, 72,200, 40,168,232,104,248,120, 56,184, 24,152,216, 88, |
39 |
4,132, 68,196, 36,164,228,100, 20,148, 84,212,244,116, 52,180, |
40 |
252,124, 60,188, 28,156,220, 92, 12,140, 76,204,236,108, 44,172, |
41 |
2,130, 66,194, 34,162,226, 98, 18,146, 82,210,242,114, 50,178, |
42 |
10,138, 74,202, 42,170,234,106,250,122, 58,186, 26,154,218, 90, |
43 |
254,126, 62,190, 30,158,222, 94, 14,142, 78,206,238,110, 46,174, |
44 |
6,134, 70,198, 38,166,230,102,246,118, 54,182, 22,150,214, 86 |
45 |
}; |
46 |
|
47 |
/* Root values for IFFT */
|
48 |
static sample_t roots16[3]; |
49 |
static sample_t roots32[7]; |
50 |
static sample_t roots64[15]; |
51 |
static sample_t roots128[31]; |
52 |
|
53 |
/* Twiddle factors for IMDCT */
|
54 |
static complex_t pre1[128]; |
55 |
static complex_t post1[64]; |
56 |
static complex_t pre2[64]; |
57 |
static complex_t post2[32]; |
58 |
|
59 |
static sample_t a52_imdct_window[256]; |
60 |
|
61 |
static void (* ifft128) (complex_t * buf); |
62 |
static void (* ifft64) (complex_t * buf); |
63 |
|
64 |
static inline void ifft2 (complex_t * buf) |
65 |
{ |
66 |
sample_t r, i; |
67 |
|
68 |
r = buf[0].real;
|
69 |
i = buf[0].imag;
|
70 |
buf[0].real += buf[1].real; |
71 |
buf[0].imag += buf[1].imag; |
72 |
buf[1].real = r - buf[1].real; |
73 |
buf[1].imag = i - buf[1].imag; |
74 |
} |
75 |
|
76 |
static inline void ifft4 (complex_t * buf) |
77 |
{ |
78 |
sample_t tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8; |
79 |
|
80 |
tmp1 = buf[0].real + buf[1].real; |
81 |
tmp2 = buf[3].real + buf[2].real; |
82 |
tmp3 = buf[0].imag + buf[1].imag; |
83 |
tmp4 = buf[2].imag + buf[3].imag; |
84 |
tmp5 = buf[0].real - buf[1].real; |
85 |
tmp6 = buf[0].imag - buf[1].imag; |
86 |
tmp7 = buf[2].imag - buf[3].imag; |
87 |
tmp8 = buf[3].real - buf[2].real; |
88 |
|
89 |
buf[0].real = tmp1 + tmp2;
|
90 |
buf[0].imag = tmp3 + tmp4;
|
91 |
buf[2].real = tmp1 - tmp2;
|
92 |
buf[2].imag = tmp3 - tmp4;
|
93 |
buf[1].real = tmp5 + tmp7;
|
94 |
buf[1].imag = tmp6 + tmp8;
|
95 |
buf[3].real = tmp5 - tmp7;
|
96 |
buf[3].imag = tmp6 - tmp8;
|
97 |
} |
98 |
|
99 |
/* basic radix-2 ifft butterfly */
|
100 |
|
101 |
#define BUTTERFLY_0(t0,t1,W0,W1,d0,d1) do { \ |
102 |
t0 = MUL (W1, d1) + MUL (W0, d0); \ |
103 |
t1 = MUL (W0, d1) - MUL (W1, d0); \ |
104 |
} while (0) |
105 |
|
106 |
/* radix-2 ifft butterfly with bias */
|
107 |
|
108 |
#define BUTTERFLY_B(t0,t1,W0,W1,d0,d1) do { \ |
109 |
t0 = BIAS (MUL (d1, W1) + MUL (d0, W0)); \ |
110 |
t1 = BIAS (MUL (d1, W0) - MUL (d0, W1)); \ |
111 |
} while (0) |
112 |
|
113 |
/* the basic split-radix ifft butterfly */
|
114 |
|
115 |
#define BUTTERFLY(a0,a1,a2,a3,wr,wi) do { \ |
116 |
BUTTERFLY_0 (tmp5, tmp6, wr, wi, a2.real, a2.imag); \ |
117 |
BUTTERFLY_0 (tmp8, tmp7, wr, wi, a3.imag, a3.real); \ |
118 |
tmp1 = tmp5 + tmp7; \ |
119 |
tmp2 = tmp6 + tmp8; \ |
120 |
tmp3 = tmp6 - tmp8; \ |
121 |
tmp4 = tmp7 - tmp5; \ |
122 |
a2.real = a0.real - tmp1; \ |
123 |
a2.imag = a0.imag - tmp2; \ |
124 |
a3.real = a1.real - tmp3; \ |
125 |
a3.imag = a1.imag - tmp4; \ |
126 |
a0.real += tmp1; \ |
127 |
a0.imag += tmp2; \ |
128 |
a1.real += tmp3; \ |
129 |
a1.imag += tmp4; \ |
130 |
} while (0) |
131 |
|
132 |
/* split-radix ifft butterfly, specialized for wr=1 wi=0 */
|
133 |
|
134 |
#define BUTTERFLY_ZERO(a0,a1,a2,a3) do { \ |
135 |
tmp1 = a2.real + a3.real; \ |
136 |
tmp2 = a2.imag + a3.imag; \ |
137 |
tmp3 = a2.imag - a3.imag; \ |
138 |
tmp4 = a3.real - a2.real; \ |
139 |
a2.real = a0.real - tmp1; \ |
140 |
a2.imag = a0.imag - tmp2; \ |
141 |
a3.real = a1.real - tmp3; \ |
142 |
a3.imag = a1.imag - tmp4; \ |
143 |
a0.real += tmp1; \ |
144 |
a0.imag += tmp2; \ |
145 |
a1.real += tmp3; \ |
146 |
a1.imag += tmp4; \ |
147 |
} while (0) |
148 |
|
149 |
/* split-radix ifft butterfly, specialized for wr=wi */
|
150 |
|
151 |
#define BUTTERFLY_HALF(a0,a1,a2,a3,w) do { \ |
152 |
tmp5 = MUL (a2.real + a2.imag, w); \ |
153 |
tmp6 = MUL (a2.imag - a2.real, w); \ |
154 |
tmp7 = MUL (a3.real - a3.imag, w); \ |
155 |
tmp8 = MUL (a3.imag + a3.real, w); \ |
156 |
tmp1 = tmp5 + tmp7; \ |
157 |
tmp2 = tmp6 + tmp8; \ |
158 |
tmp3 = tmp6 - tmp8; \ |
159 |
tmp4 = tmp7 - tmp5; \ |
160 |
a2.real = a0.real - tmp1; \ |
161 |
a2.imag = a0.imag - tmp2; \ |
162 |
a3.real = a1.real - tmp3; \ |
163 |
a3.imag = a1.imag - tmp4; \ |
164 |
a0.real += tmp1; \ |
165 |
a0.imag += tmp2; \ |
166 |
a1.real += tmp3; \ |
167 |
a1.imag += tmp4; \ |
168 |
} while (0) |
169 |
|
170 |
static inline void ifft8 (complex_t * buf) |
171 |
{ |
172 |
sample_t tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8; |
173 |
|
174 |
ifft4 (buf); |
175 |
ifft2 (buf + 4);
|
176 |
ifft2 (buf + 6);
|
177 |
BUTTERFLY_ZERO (buf[0], buf[2], buf[4], buf[6]); |
178 |
BUTTERFLY_HALF (buf[1], buf[3], buf[5], buf[7], roots16[1]); |
179 |
} |
180 |
|
181 |
static void ifft_pass (complex_t * buf, sample_t * weight, int n) |
182 |
{ |
183 |
complex_t * buf1; |
184 |
complex_t * buf2; |
185 |
complex_t * buf3; |
186 |
sample_t tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8; |
187 |
int i;
|
188 |
|
189 |
buf++; |
190 |
buf1 = buf + n; |
191 |
buf2 = buf + 2 * n;
|
192 |
buf3 = buf + 3 * n;
|
193 |
|
194 |
BUTTERFLY_ZERO (buf[-1], buf1[-1], buf2[-1], buf3[-1]); |
195 |
|
196 |
i = n - 1;
|
197 |
|
198 |
do {
|
199 |
BUTTERFLY (buf[0], buf1[0], buf2[0], buf3[0], |
200 |
weight[0], weight[2*i-n]); |
201 |
buf++; |
202 |
buf1++; |
203 |
buf2++; |
204 |
buf3++; |
205 |
weight++; |
206 |
} while (--i);
|
207 |
} |
208 |
|
209 |
static void ifft16 (complex_t * buf) |
210 |
{ |
211 |
ifft8 (buf); |
212 |
ifft4 (buf + 8);
|
213 |
ifft4 (buf + 12);
|
214 |
ifft_pass (buf, roots16, 4);
|
215 |
} |
216 |
|
217 |
static void ifft32 (complex_t * buf) |
218 |
{ |
219 |
ifft16 (buf); |
220 |
ifft8 (buf + 16);
|
221 |
ifft8 (buf + 24);
|
222 |
ifft_pass (buf, roots32, 8);
|
223 |
} |
224 |
|
225 |
static void ifft64_c (complex_t * buf) |
226 |
{ |
227 |
ifft32 (buf); |
228 |
ifft16 (buf + 32);
|
229 |
ifft16 (buf + 48);
|
230 |
ifft_pass (buf, roots64, 16);
|
231 |
} |
232 |
|
233 |
static void ifft128_c (complex_t * buf) |
234 |
{ |
235 |
ifft32 (buf); |
236 |
ifft16 (buf + 32);
|
237 |
ifft16 (buf + 48);
|
238 |
ifft_pass (buf, roots64, 16);
|
239 |
|
240 |
ifft32 (buf + 64);
|
241 |
ifft32 (buf + 96);
|
242 |
ifft_pass (buf, roots128, 32);
|
243 |
} |
244 |
|
245 |
void a52_imdct_512 (sample_t * data, sample_t * delay, sample_t bias)
|
246 |
{ |
247 |
int i, k;
|
248 |
sample_t t_r, t_i, a_r, a_i, b_r, b_i, w_1, w_2; |
249 |
const sample_t * window = a52_imdct_window;
|
250 |
complex_t buf[128];
|
251 |
|
252 |
for (i = 0; i < 128; i++) { |
253 |
k = fftorder[i]; |
254 |
t_r = pre1[i].real; |
255 |
t_i = pre1[i].imag; |
256 |
BUTTERFLY_0 (buf[i].real, buf[i].imag, t_r, t_i, data[k], data[255-k]);
|
257 |
} |
258 |
|
259 |
ifft128 (buf); |
260 |
|
261 |
/* Post IFFT complex multiply plus IFFT complex conjugate*/
|
262 |
/* Window and convert to real valued signal */
|
263 |
for (i = 0; i < 64; i++) { |
264 |
/* y[n] = z[n] * (xcos1[n] + j * xsin1[n]) ; */
|
265 |
t_r = post1[i].real; |
266 |
t_i = post1[i].imag; |
267 |
BUTTERFLY_0 (a_r, a_i, t_i, t_r, buf[i].imag, buf[i].real); |
268 |
BUTTERFLY_0 (b_r, b_i, t_r, t_i, buf[127-i].imag, buf[127-i].real); |
269 |
|
270 |
w_1 = window[2*i];
|
271 |
w_2 = window[255-2*i]; |
272 |
BUTTERFLY_B (data[255-2*i], data[2*i], w_2, w_1, a_r, delay[2*i]); |
273 |
delay[2*i] = a_i;
|
274 |
|
275 |
w_1 = window[2*i+1]; |
276 |
w_2 = window[254-2*i]; |
277 |
BUTTERFLY_B (data[2*i+1], data[254-2*i], w_1, w_2, b_r, delay[2*i+1]); |
278 |
delay[2*i+1] = b_i; |
279 |
} |
280 |
} |
281 |
|
282 |
void a52_imdct_256 (sample_t * data, sample_t * delay, sample_t bias)
|
283 |
{ |
284 |
int i, k;
|
285 |
sample_t t_r, t_i, a_r, a_i, b_r, b_i, c_r, c_i, d_r, d_i, w_1, w_2; |
286 |
const sample_t * window = a52_imdct_window;
|
287 |
complex_t buf1[64], buf2[64]; |
288 |
|
289 |
/* Pre IFFT complex multiply plus IFFT cmplx conjugate */
|
290 |
for (i = 0; i < 64; i++) { |
291 |
k = fftorder[i]; |
292 |
t_r = pre2[i].real; |
293 |
t_i = pre2[i].imag; |
294 |
BUTTERFLY_0 (buf1[i].real, buf1[i].imag, t_r, t_i, data[k], data[254-k]);
|
295 |
BUTTERFLY_0 (buf2[i].real, buf2[i].imag, t_r, t_i, data[k+1], data[255-k]); |
296 |
} |
297 |
|
298 |
ifft64 (buf1); |
299 |
ifft64 (buf2); |
300 |
|
301 |
/* Post IFFT complex multiply */
|
302 |
/* Window and convert to real valued signal */
|
303 |
for (i = 0; i < 32; i++) { |
304 |
/* y1[n] = z1[n] * (xcos2[n] + j * xs in2[n]) ; */
|
305 |
t_r = post2[i].real; |
306 |
t_i = post2[i].imag; |
307 |
BUTTERFLY_0 (a_r, a_i, t_i, t_r, buf1[i].imag, buf1[i].real); |
308 |
BUTTERFLY_0 (b_r, b_i, t_r, t_i, buf1[63-i].imag, buf1[63-i].real); |
309 |
BUTTERFLY_0 (c_r, c_i, t_i, t_r, buf2[i].imag, buf2[i].real); |
310 |
BUTTERFLY_0 (d_r, d_i, t_r, t_i, buf2[63-i].imag, buf2[63-i].real); |
311 |
|
312 |
w_1 = window[2*i];
|
313 |
w_2 = window[255-2*i]; |
314 |
BUTTERFLY_B (data[255-2*i], data[2*i], w_2, w_1, a_r, delay[2*i]); |
315 |
delay[2*i] = c_i;
|
316 |
|
317 |
w_1 = window[128+2*i]; |
318 |
w_2 = window[127-2*i]; |
319 |
BUTTERFLY_B (data[128+2*i], data[127-2*i], w_1, w_2, a_i, delay[127-2*i]); |
320 |
delay[127-2*i] = c_r; |
321 |
|
322 |
w_1 = window[2*i+1]; |
323 |
w_2 = window[254-2*i]; |
324 |
BUTTERFLY_B (data[254-2*i], data[2*i+1], w_2, w_1, b_i, delay[2*i+1]); |
325 |
delay[2*i+1] = d_r; |
326 |
|
327 |
w_1 = window[129+2*i]; |
328 |
w_2 = window[126-2*i]; |
329 |
BUTTERFLY_B (data[129+2*i], data[126-2*i], w_1, w_2, b_r, delay[126-2*i]); |
330 |
delay[126-2*i] = d_i; |
331 |
} |
332 |
} |
333 |
|
334 |
static double besselI0 (double x) |
335 |
{ |
336 |
double bessel = 1; |
337 |
int i = 100; |
338 |
|
339 |
do
|
340 |
bessel = bessel * x / (i * i) + 1;
|
341 |
while (--i);
|
342 |
return bessel;
|
343 |
} |
344 |
|
345 |
void a52_imdct_init (uint32_t mm_accel)
|
346 |
{ |
347 |
int i, k;
|
348 |
double sum;
|
349 |
double local_imdct_window[256]; |
350 |
|
351 |
/* compute imdct window - kaiser-bessel derived window, alpha = 5.0 */
|
352 |
sum = 0;
|
353 |
for (i = 0; i < 256; i++) { |
354 |
sum += besselI0 (i * (256 - i) * (5 * M_PI / 256) * (5 * M_PI / 256)); |
355 |
local_imdct_window[i] = sum; |
356 |
} |
357 |
sum++; |
358 |
for (i = 0; i < 256; i++) |
359 |
a52_imdct_window[i] = SAMPLE (sqrt (local_imdct_window[i] / sum)); |
360 |
|
361 |
for (i = 0; i < 3; i++) |
362 |
roots16[i] = SAMPLE (cos ((M_PI / 8) * (i + 1))); |
363 |
|
364 |
for (i = 0; i < 7; i++) |
365 |
roots32[i] = SAMPLE (cos ((M_PI / 16) * (i + 1))); |
366 |
|
367 |
for (i = 0; i < 15; i++) |
368 |
roots64[i] = SAMPLE (cos ((M_PI / 32) * (i + 1))); |
369 |
|
370 |
for (i = 0; i < 31; i++) |
371 |
roots128[i] = SAMPLE (cos ((M_PI / 64) * (i + 1))); |
372 |
|
373 |
for (i = 0; i < 64; i++) { |
374 |
k = fftorder[i] / 2 + 64; |
375 |
pre1[i].real = SAMPLE (cos ((M_PI / 256) * (k - 0.25))); |
376 |
pre1[i].imag = SAMPLE (sin ((M_PI / 256) * (k - 0.25))); |
377 |
} |
378 |
|
379 |
for (i = 64; i < 128; i++) { |
380 |
k = fftorder[i] / 2 + 64; |
381 |
pre1[i].real = SAMPLE (-cos ((M_PI / 256) * (k - 0.25))); |
382 |
pre1[i].imag = SAMPLE (-sin ((M_PI / 256) * (k - 0.25))); |
383 |
} |
384 |
|
385 |
for (i = 0; i < 64; i++) { |
386 |
post1[i].real = SAMPLE (cos ((M_PI / 256) * (i + 0.5))); |
387 |
post1[i].imag = SAMPLE (sin ((M_PI / 256) * (i + 0.5))); |
388 |
} |
389 |
|
390 |
for (i = 0; i < 64; i++) { |
391 |
k = fftorder[i] / 4;
|
392 |
pre2[i].real = SAMPLE (cos ((M_PI / 128) * (k - 0.25))); |
393 |
pre2[i].imag = SAMPLE (sin ((M_PI / 128) * (k - 0.25))); |
394 |
} |
395 |
|
396 |
for (i = 0; i < 32; i++) { |
397 |
post2[i].real = SAMPLE (cos ((M_PI / 128) * (i + 0.5))); |
398 |
post2[i].imag = SAMPLE (sin ((M_PI / 128) * (i + 0.5))); |
399 |
} |
400 |
|
401 |
#ifdef LIBA52_DJBFFT
|
402 |
if (mm_accel & MM_ACCEL_DJBFFT) {
|
403 |
ifft128 = (void (*) (complex_t *)) fftc4_un128;
|
404 |
ifft64 = (void (*) (complex_t *)) fftc4_un64;
|
405 |
} else
|
406 |
#endif
|
407 |
{ |
408 |
ifft128 = ifft128_c; |
409 |
ifft64 = ifft64_c; |
410 |
} |
411 |
} |