Statistics
| Branch: | Revision:

ffmpeg / libavcodec / liba52 / imdct.c @ 5509bffa

History | View | Annotate | Download (11.2 KB)

1
/*
2
 * imdct.c
3
 * Copyright (C) 2000-2003 Michel Lespinasse <walken@zoy.org>
4
 * Copyright (C) 1999-2000 Aaron Holtzman <aholtzma@ess.engr.uvic.ca>
5
 *
6
 * The ifft algorithms in this file have been largely inspired by Dan
7
 * Bernstein's work, djbfft, available at http://cr.yp.to/djbfft.html
8
 *
9
 * This file is part of a52dec, a free ATSC A-52 stream decoder.
10
 * See http://liba52.sourceforge.net/ for updates.
11
 *
12
 * a52dec is free software; you can redistribute it and/or modify
13
 * it under the terms of the GNU General Public License as published by
14
 * the Free Software Foundation; either version 2 of the License, or
15
 * (at your option) any later version.
16
 *
17
 * a52dec is distributed in the hope that it will be useful,
18
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20
 * GNU General Public License for more details.
21
 *
22
 * You should have received a copy of the GNU General Public License
23
 * along with this program; if not, write to the Free Software
24
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
25
 */
26

    
27
#include "a52.h"
28
#include "a52_internal.h"
29
#include "mm_accel.h"
30

    
31
typedef struct complex_s {
32
    sample_t real;
33
    sample_t imag;
34
} complex_t;
35

    
36
static uint8_t fftorder[] = {
37
      0,128, 64,192, 32,160,224, 96, 16,144, 80,208,240,112, 48,176,
38
      8,136, 72,200, 40,168,232,104,248,120, 56,184, 24,152,216, 88,
39
      4,132, 68,196, 36,164,228,100, 20,148, 84,212,244,116, 52,180,
40
    252,124, 60,188, 28,156,220, 92, 12,140, 76,204,236,108, 44,172,
41
      2,130, 66,194, 34,162,226, 98, 18,146, 82,210,242,114, 50,178,
42
     10,138, 74,202, 42,170,234,106,250,122, 58,186, 26,154,218, 90,
43
    254,126, 62,190, 30,158,222, 94, 14,142, 78,206,238,110, 46,174,
44
      6,134, 70,198, 38,166,230,102,246,118, 54,182, 22,150,214, 86
45
};
46

    
47
/* Root values for IFFT */
48
static sample_t roots16[3];
49
static sample_t roots32[7];
50
static sample_t roots64[15];
51
static sample_t roots128[31];
52

    
53
/* Twiddle factors for IMDCT */
54
static complex_t pre1[128];
55
static complex_t post1[64];
56
static complex_t pre2[64];
57
static complex_t post2[32];
58

    
59
static sample_t a52_imdct_window[256];
60

    
61
static void (* ifft128) (complex_t * buf);
62
static void (* ifft64) (complex_t * buf);
63

    
64
static inline void ifft2 (complex_t * buf)
65
{
66
    sample_t r, i;
67

    
68
    r = buf[0].real;
69
    i = buf[0].imag;
70
    buf[0].real += buf[1].real;
71
    buf[0].imag += buf[1].imag;
72
    buf[1].real = r - buf[1].real;
73
    buf[1].imag = i - buf[1].imag;
74
}
75

    
76
static inline void ifft4 (complex_t * buf)
77
{
78
    sample_t tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8;
79

    
80
    tmp1 = buf[0].real + buf[1].real;
81
    tmp2 = buf[3].real + buf[2].real;
82
    tmp3 = buf[0].imag + buf[1].imag;
83
    tmp4 = buf[2].imag + buf[3].imag;
84
    tmp5 = buf[0].real - buf[1].real;
85
    tmp6 = buf[0].imag - buf[1].imag;
86
    tmp7 = buf[2].imag - buf[3].imag;
87
    tmp8 = buf[3].real - buf[2].real;
88

    
89
    buf[0].real = tmp1 + tmp2;
90
    buf[0].imag = tmp3 + tmp4;
91
    buf[2].real = tmp1 - tmp2;
92
    buf[2].imag = tmp3 - tmp4;
93
    buf[1].real = tmp5 + tmp7;
94
    buf[1].imag = tmp6 + tmp8;
95
    buf[3].real = tmp5 - tmp7;
96
    buf[3].imag = tmp6 - tmp8;
97
}
98

    
99
/* basic radix-2 ifft butterfly */
100

    
101
#define BUTTERFLY_0(t0,t1,W0,W1,d0,d1) do {        \
102
    t0 = MUL (W1, d1) + MUL (W0, d0);                \
103
    t1 = MUL (W0, d1) - MUL (W1, d0);                \
104
} while (0)
105

    
106
/* radix-2 ifft butterfly with bias */
107

    
108
#define BUTTERFLY_B(t0,t1,W0,W1,d0,d1) do {        \
109
    t0 = BIAS (MUL (d1, W1) + MUL (d0, W0));        \
110
    t1 = BIAS (MUL (d1, W0) - MUL (d0, W1));        \
111
} while (0)
112

    
113
/* the basic split-radix ifft butterfly */
114

    
115
#define BUTTERFLY(a0,a1,a2,a3,wr,wi) do {                \
116
    BUTTERFLY_0 (tmp5, tmp6, wr, wi, a2.real, a2.imag);        \
117
    BUTTERFLY_0 (tmp8, tmp7, wr, wi, a3.imag, a3.real);        \
118
    tmp1 = tmp5 + tmp7;                                        \
119
    tmp2 = tmp6 + tmp8;                                        \
120
    tmp3 = tmp6 - tmp8;                                        \
121
    tmp4 = tmp7 - tmp5;                                        \
122
    a2.real = a0.real - tmp1;                                \
123
    a2.imag = a0.imag - tmp2;                                \
124
    a3.real = a1.real - tmp3;                                \
125
    a3.imag = a1.imag - tmp4;                                \
126
    a0.real += tmp1;                                        \
127
    a0.imag += tmp2;                                        \
128
    a1.real += tmp3;                                        \
129
    a1.imag += tmp4;                                        \
130
} while (0)
131

    
132
/* split-radix ifft butterfly, specialized for wr=1 wi=0 */
133

    
134
#define BUTTERFLY_ZERO(a0,a1,a2,a3) do {        \
135
    tmp1 = a2.real + a3.real;                        \
136
    tmp2 = a2.imag + a3.imag;                        \
137
    tmp3 = a2.imag - a3.imag;                        \
138
    tmp4 = a3.real - a2.real;                        \
139
    a2.real = a0.real - tmp1;                        \
140
    a2.imag = a0.imag - tmp2;                        \
141
    a3.real = a1.real - tmp3;                        \
142
    a3.imag = a1.imag - tmp4;                        \
143
    a0.real += tmp1;                                \
144
    a0.imag += tmp2;                                \
145
    a1.real += tmp3;                                \
146
    a1.imag += tmp4;                                \
147
} while (0)
148

    
149
/* split-radix ifft butterfly, specialized for wr=wi */
150

    
151
#define BUTTERFLY_HALF(a0,a1,a2,a3,w) do {        \
152
    tmp5 = MUL (a2.real + a2.imag, w);                \
153
    tmp6 = MUL (a2.imag - a2.real, w);                \
154
    tmp7 = MUL (a3.real - a3.imag, w);                \
155
    tmp8 = MUL (a3.imag + a3.real, w);                \
156
    tmp1 = tmp5 + tmp7;                                \
157
    tmp2 = tmp6 + tmp8;                                \
158
    tmp3 = tmp6 - tmp8;                                \
159
    tmp4 = tmp7 - tmp5;                                \
160
    a2.real = a0.real - tmp1;                        \
161
    a2.imag = a0.imag - tmp2;                        \
162
    a3.real = a1.real - tmp3;                        \
163
    a3.imag = a1.imag - tmp4;                        \
164
    a0.real += tmp1;                                \
165
    a0.imag += tmp2;                                \
166
    a1.real += tmp3;                                \
167
    a1.imag += tmp4;                                \
168
} while (0)
169

    
170
static inline void ifft8 (complex_t * buf)
171
{
172
    sample_t tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8;
173

    
174
    ifft4 (buf);
175
    ifft2 (buf + 4);
176
    ifft2 (buf + 6);
177
    BUTTERFLY_ZERO (buf[0], buf[2], buf[4], buf[6]);
178
    BUTTERFLY_HALF (buf[1], buf[3], buf[5], buf[7], roots16[1]);
179
}
180

    
181
static void ifft_pass (complex_t * buf, sample_t * weight, int n)
182
{
183
    complex_t * buf1;
184
    complex_t * buf2;
185
    complex_t * buf3;
186
    sample_t tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8;
187
    int i;
188

    
189
    buf++;
190
    buf1 = buf + n;
191
    buf2 = buf + 2 * n;
192
    buf3 = buf + 3 * n;
193

    
194
    BUTTERFLY_ZERO (buf[-1], buf1[-1], buf2[-1], buf3[-1]);
195

    
196
    i = n - 1;
197

    
198
    do {
199
        BUTTERFLY (buf[0], buf1[0], buf2[0], buf3[0],
200
                   weight[0], weight[2*i-n]);
201
        buf++;
202
        buf1++;
203
        buf2++;
204
        buf3++;
205
        weight++;
206
    } while (--i);
207
}
208

    
209
static void ifft16 (complex_t * buf)
210
{
211
    ifft8 (buf);
212
    ifft4 (buf + 8);
213
    ifft4 (buf + 12);
214
    ifft_pass (buf, roots16, 4);
215
}
216

    
217
static void ifft32 (complex_t * buf)
218
{
219
    ifft16 (buf);
220
    ifft8 (buf + 16);
221
    ifft8 (buf + 24);
222
    ifft_pass (buf, roots32, 8);
223
}
224

    
225
static void ifft64_c (complex_t * buf)
226
{
227
    ifft32 (buf);
228
    ifft16 (buf + 32);
229
    ifft16 (buf + 48);
230
    ifft_pass (buf, roots64, 16);
231
}
232

    
233
static void ifft128_c (complex_t * buf)
234
{
235
    ifft32 (buf);
236
    ifft16 (buf + 32);
237
    ifft16 (buf + 48);
238
    ifft_pass (buf, roots64, 16);
239

    
240
    ifft32 (buf + 64);
241
    ifft32 (buf + 96);
242
    ifft_pass (buf, roots128, 32);
243
}
244

    
245
void a52_imdct_512 (sample_t * data, sample_t * delay, sample_t bias)
246
{
247
    int i, k;
248
    sample_t t_r, t_i, a_r, a_i, b_r, b_i, w_1, w_2;
249
    const sample_t * window = a52_imdct_window;
250
    complex_t buf[128];
251

    
252
    for (i = 0; i < 128; i++) {
253
        k = fftorder[i];
254
        t_r = pre1[i].real;
255
        t_i = pre1[i].imag;
256
        BUTTERFLY_0 (buf[i].real, buf[i].imag, t_r, t_i, data[k], data[255-k]);
257
    }
258

    
259
    ifft128 (buf);
260

    
261
    /* Post IFFT complex multiply plus IFFT complex conjugate*/
262
    /* Window and convert to real valued signal */
263
    for (i = 0; i < 64; i++) {
264
        /* y[n] = z[n] * (xcos1[n] + j * xsin1[n]) ; */
265
        t_r = post1[i].real;
266
        t_i = post1[i].imag;
267
        BUTTERFLY_0 (a_r, a_i, t_i, t_r, buf[i].imag, buf[i].real);
268
        BUTTERFLY_0 (b_r, b_i, t_r, t_i, buf[127-i].imag, buf[127-i].real);
269

    
270
        w_1 = window[2*i];
271
        w_2 = window[255-2*i];
272
        BUTTERFLY_B (data[255-2*i], data[2*i], w_2, w_1, a_r, delay[2*i]);
273
        delay[2*i] = a_i;
274

    
275
        w_1 = window[2*i+1];
276
        w_2 = window[254-2*i];
277
        BUTTERFLY_B (data[2*i+1], data[254-2*i], w_1, w_2, b_r, delay[2*i+1]);
278
        delay[2*i+1] = b_i;
279
    }
280
}
281

    
282
void a52_imdct_256 (sample_t * data, sample_t * delay, sample_t bias)
283
{
284
    int i, k;
285
    sample_t t_r, t_i, a_r, a_i, b_r, b_i, c_r, c_i, d_r, d_i, w_1, w_2;
286
    const sample_t * window = a52_imdct_window;
287
    complex_t buf1[64], buf2[64];
288

    
289
    /* Pre IFFT complex multiply plus IFFT cmplx conjugate */
290
    for (i = 0; i < 64; i++) {
291
        k = fftorder[i];
292
        t_r = pre2[i].real;
293
        t_i = pre2[i].imag;
294
        BUTTERFLY_0 (buf1[i].real, buf1[i].imag, t_r, t_i, data[k], data[254-k]);
295
        BUTTERFLY_0 (buf2[i].real, buf2[i].imag, t_r, t_i, data[k+1], data[255-k]);
296
    }
297

    
298
    ifft64 (buf1);
299
    ifft64 (buf2);
300

    
301
    /* Post IFFT complex multiply */
302
    /* Window and convert to real valued signal */
303
    for (i = 0; i < 32; i++) {
304
        /* y1[n] = z1[n] * (xcos2[n] + j * xs in2[n]) ; */
305
        t_r = post2[i].real;
306
        t_i = post2[i].imag;
307
        BUTTERFLY_0 (a_r, a_i, t_i, t_r, buf1[i].imag, buf1[i].real);
308
        BUTTERFLY_0 (b_r, b_i, t_r, t_i, buf1[63-i].imag, buf1[63-i].real);
309
        BUTTERFLY_0 (c_r, c_i, t_i, t_r, buf2[i].imag, buf2[i].real);
310
        BUTTERFLY_0 (d_r, d_i, t_r, t_i, buf2[63-i].imag, buf2[63-i].real);
311

    
312
        w_1 = window[2*i];
313
        w_2 = window[255-2*i];
314
        BUTTERFLY_B (data[255-2*i], data[2*i], w_2, w_1, a_r, delay[2*i]);
315
        delay[2*i] = c_i;
316

    
317
        w_1 = window[128+2*i];
318
        w_2 = window[127-2*i];
319
        BUTTERFLY_B (data[128+2*i], data[127-2*i], w_1, w_2, a_i, delay[127-2*i]);
320
        delay[127-2*i] = c_r;
321

    
322
        w_1 = window[2*i+1];
323
        w_2 = window[254-2*i];
324
        BUTTERFLY_B (data[254-2*i], data[2*i+1], w_2, w_1, b_i, delay[2*i+1]);
325
        delay[2*i+1] = d_r;
326

    
327
        w_1 = window[129+2*i];
328
        w_2 = window[126-2*i];
329
        BUTTERFLY_B (data[129+2*i], data[126-2*i], w_1, w_2, b_r, delay[126-2*i]);
330
        delay[126-2*i] = d_i;
331
    }
332
}
333

    
334
static double besselI0 (double x)
335
{
336
    double bessel = 1;
337
    int i = 100;
338

    
339
    do
340
        bessel = bessel * x / (i * i) + 1;
341
    while (--i);
342
    return bessel;
343
}
344

    
345
void a52_imdct_init (uint32_t mm_accel)
346
{
347
    int i, k;
348
    double sum;
349
    double local_imdct_window[256];
350

    
351
    /* compute imdct window - kaiser-bessel derived window, alpha = 5.0 */
352
    sum = 0;
353
    for (i = 0; i < 256; i++) {
354
        sum += besselI0 (i * (256 - i) * (5 * M_PI / 256) * (5 * M_PI / 256));
355
        local_imdct_window[i] = sum;
356
    }
357
    sum++;
358
    for (i = 0; i < 256; i++)
359
        a52_imdct_window[i] = SAMPLE (sqrt (local_imdct_window[i] / sum));
360

    
361
    for (i = 0; i < 3; i++)
362
        roots16[i] = SAMPLE (cos ((M_PI / 8) * (i + 1)));
363

    
364
    for (i = 0; i < 7; i++)
365
        roots32[i] = SAMPLE (cos ((M_PI / 16) * (i + 1)));
366

    
367
    for (i = 0; i < 15; i++)
368
        roots64[i] = SAMPLE (cos ((M_PI / 32) * (i + 1)));
369

    
370
    for (i = 0; i < 31; i++)
371
        roots128[i] = SAMPLE (cos ((M_PI / 64) * (i + 1)));
372

    
373
    for (i = 0; i < 64; i++) {
374
        k = fftorder[i] / 2 + 64;
375
        pre1[i].real = SAMPLE (cos ((M_PI / 256) * (k - 0.25)));
376
        pre1[i].imag = SAMPLE (sin ((M_PI / 256) * (k - 0.25)));
377
    }
378

    
379
    for (i = 64; i < 128; i++) {
380
        k = fftorder[i] / 2 + 64;
381
        pre1[i].real = SAMPLE (-cos ((M_PI / 256) * (k - 0.25)));
382
        pre1[i].imag = SAMPLE (-sin ((M_PI / 256) * (k - 0.25)));
383
    }
384

    
385
    for (i = 0; i < 64; i++) {
386
        post1[i].real = SAMPLE (cos ((M_PI / 256) * (i + 0.5)));
387
        post1[i].imag = SAMPLE (sin ((M_PI / 256) * (i + 0.5)));
388
    }
389

    
390
    for (i = 0; i < 64; i++) {
391
        k = fftorder[i] / 4;
392
        pre2[i].real = SAMPLE (cos ((M_PI / 128) * (k - 0.25)));
393
        pre2[i].imag = SAMPLE (sin ((M_PI / 128) * (k - 0.25)));
394
    }
395

    
396
    for (i = 0; i < 32; i++) {
397
        post2[i].real = SAMPLE (cos ((M_PI / 128) * (i + 0.5)));
398
        post2[i].imag = SAMPLE (sin ((M_PI / 128) * (i + 0.5)));
399
    }
400

    
401
#ifdef LIBA52_DJBFFT
402
    if (mm_accel & MM_ACCEL_DJBFFT) {
403
        ifft128 = (void (*) (complex_t *)) fftc4_un128;
404
        ifft64 = (void (*) (complex_t *)) fftc4_un64;
405
    } else
406
#endif
407
    {
408
        ifft128 = ifft128_c;
409
        ifft64 = ifft64_c;
410
    }
411
}