Statistics
| Branch: | Revision:

ffmpeg / libavcodec / h264.h @ 599fe45b

History | View | Annotate | Download (55.7 KB)

1
/*
2
 * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
3
 * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21

    
22
/**
23
 * @file libavcodec/h264.h
24
 * H.264 / AVC / MPEG4 part10 codec.
25
 * @author Michael Niedermayer <michaelni@gmx.at>
26
 */
27

    
28
#ifndef AVCODEC_H264_H
29
#define AVCODEC_H264_H
30

    
31
#include "dsputil.h"
32
#include "cabac.h"
33
#include "mpegvideo.h"
34
#include "h264pred.h"
35
#include "rectangle.h"
36

    
37
#define interlaced_dct interlaced_dct_is_a_bad_name
38
#define mb_intra mb_intra_is_not_initialized_see_mb_type
39

    
40
#define LUMA_DC_BLOCK_INDEX   25
41
#define CHROMA_DC_BLOCK_INDEX 26
42

    
43
#define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8
44
#define COEFF_TOKEN_VLC_BITS           8
45
#define TOTAL_ZEROS_VLC_BITS           9
46
#define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3
47
#define RUN_VLC_BITS                   3
48
#define RUN7_VLC_BITS                  6
49

    
50
#define MAX_SPS_COUNT 32
51
#define MAX_PPS_COUNT 256
52

    
53
#define MAX_MMCO_COUNT 66
54

    
55
#define MAX_DELAYED_PIC_COUNT 16
56

    
57
/* Compiling in interlaced support reduces the speed
58
 * of progressive decoding by about 2%. */
59
#define ALLOW_INTERLACE
60

    
61
#define ALLOW_NOCHROMA
62

    
63
/**
64
 * The maximum number of slices supported by the decoder.
65
 * must be a power of 2
66
 */
67
#define MAX_SLICES 16
68

    
69
#ifdef ALLOW_INTERLACE
70
#define MB_MBAFF h->mb_mbaff
71
#define MB_FIELD h->mb_field_decoding_flag
72
#define FRAME_MBAFF h->mb_aff_frame
73
#define FIELD_PICTURE (s->picture_structure != PICT_FRAME)
74
#else
75
#define MB_MBAFF 0
76
#define MB_FIELD 0
77
#define FRAME_MBAFF 0
78
#define FIELD_PICTURE 0
79
#undef  IS_INTERLACED
80
#define IS_INTERLACED(mb_type) 0
81
#endif
82
#define FIELD_OR_MBAFF_PICTURE (FRAME_MBAFF || FIELD_PICTURE)
83

    
84
#ifdef ALLOW_NOCHROMA
85
#define CHROMA h->sps.chroma_format_idc
86
#else
87
#define CHROMA 1
88
#endif
89

    
90
#ifndef CABAC
91
#define CABAC h->pps.cabac
92
#endif
93

    
94
#define EXTENDED_SAR          255
95

    
96
#define MB_TYPE_REF0       MB_TYPE_ACPRED //dirty but it fits in 16 bit
97
#define MB_TYPE_8x8DCT     0x01000000
98
#define IS_REF0(a)         ((a) & MB_TYPE_REF0)
99
#define IS_8x8DCT(a)       ((a) & MB_TYPE_8x8DCT)
100

    
101
/**
102
 * Value of Picture.reference when Picture is not a reference picture, but
103
 * is held for delayed output.
104
 */
105
#define DELAYED_PIC_REF 4
106

    
107

    
108
/* NAL unit types */
109
enum {
110
    NAL_SLICE=1,
111
    NAL_DPA,
112
    NAL_DPB,
113
    NAL_DPC,
114
    NAL_IDR_SLICE,
115
    NAL_SEI,
116
    NAL_SPS,
117
    NAL_PPS,
118
    NAL_AUD,
119
    NAL_END_SEQUENCE,
120
    NAL_END_STREAM,
121
    NAL_FILLER_DATA,
122
    NAL_SPS_EXT,
123
    NAL_AUXILIARY_SLICE=19
124
};
125

    
126
/**
127
 * SEI message types
128
 */
129
typedef enum {
130
    SEI_BUFFERING_PERIOD             =  0, ///< buffering period (H.264, D.1.1)
131
    SEI_TYPE_PIC_TIMING              =  1, ///< picture timing
132
    SEI_TYPE_USER_DATA_UNREGISTERED  =  5, ///< unregistered user data
133
    SEI_TYPE_RECOVERY_POINT          =  6  ///< recovery point (frame # to decoder sync)
134
} SEI_Type;
135

    
136
/**
137
 * pic_struct in picture timing SEI message
138
 */
139
typedef enum {
140
    SEI_PIC_STRUCT_FRAME             = 0, ///<  0: %frame
141
    SEI_PIC_STRUCT_TOP_FIELD         = 1, ///<  1: top field
142
    SEI_PIC_STRUCT_BOTTOM_FIELD      = 2, ///<  2: bottom field
143
    SEI_PIC_STRUCT_TOP_BOTTOM        = 3, ///<  3: top field, bottom field, in that order
144
    SEI_PIC_STRUCT_BOTTOM_TOP        = 4, ///<  4: bottom field, top field, in that order
145
    SEI_PIC_STRUCT_TOP_BOTTOM_TOP    = 5, ///<  5: top field, bottom field, top field repeated, in that order
146
    SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM = 6, ///<  6: bottom field, top field, bottom field repeated, in that order
147
    SEI_PIC_STRUCT_FRAME_DOUBLING    = 7, ///<  7: %frame doubling
148
    SEI_PIC_STRUCT_FRAME_TRIPLING    = 8  ///<  8: %frame tripling
149
} SEI_PicStructType;
150

    
151
/**
152
 * Sequence parameter set
153
 */
154
typedef struct SPS{
155

    
156
    int profile_idc;
157
    int level_idc;
158
    int chroma_format_idc;
159
    int transform_bypass;              ///< qpprime_y_zero_transform_bypass_flag
160
    int log2_max_frame_num;            ///< log2_max_frame_num_minus4 + 4
161
    int poc_type;                      ///< pic_order_cnt_type
162
    int log2_max_poc_lsb;              ///< log2_max_pic_order_cnt_lsb_minus4
163
    int delta_pic_order_always_zero_flag;
164
    int offset_for_non_ref_pic;
165
    int offset_for_top_to_bottom_field;
166
    int poc_cycle_length;              ///< num_ref_frames_in_pic_order_cnt_cycle
167
    int ref_frame_count;               ///< num_ref_frames
168
    int gaps_in_frame_num_allowed_flag;
169
    int mb_width;                      ///< pic_width_in_mbs_minus1 + 1
170
    int mb_height;                     ///< pic_height_in_map_units_minus1 + 1
171
    int frame_mbs_only_flag;
172
    int mb_aff;                        ///<mb_adaptive_frame_field_flag
173
    int direct_8x8_inference_flag;
174
    int crop;                   ///< frame_cropping_flag
175
    unsigned int crop_left;            ///< frame_cropping_rect_left_offset
176
    unsigned int crop_right;           ///< frame_cropping_rect_right_offset
177
    unsigned int crop_top;             ///< frame_cropping_rect_top_offset
178
    unsigned int crop_bottom;          ///< frame_cropping_rect_bottom_offset
179
    int vui_parameters_present_flag;
180
    AVRational sar;
181
    int video_signal_type_present_flag;
182
    int full_range;
183
    int colour_description_present_flag;
184
    enum AVColorPrimaries color_primaries;
185
    enum AVColorTransferCharacteristic color_trc;
186
    enum AVColorSpace colorspace;
187
    int timing_info_present_flag;
188
    uint32_t num_units_in_tick;
189
    uint32_t time_scale;
190
    int fixed_frame_rate_flag;
191
    short offset_for_ref_frame[256]; //FIXME dyn aloc?
192
    int bitstream_restriction_flag;
193
    int num_reorder_frames;
194
    int scaling_matrix_present;
195
    uint8_t scaling_matrix4[6][16];
196
    uint8_t scaling_matrix8[2][64];
197
    int nal_hrd_parameters_present_flag;
198
    int vcl_hrd_parameters_present_flag;
199
    int pic_struct_present_flag;
200
    int time_offset_length;
201
    int cpb_cnt;                       ///< See H.264 E.1.2
202
    int initial_cpb_removal_delay_length; ///< initial_cpb_removal_delay_length_minus1 +1
203
    int cpb_removal_delay_length;      ///< cpb_removal_delay_length_minus1 + 1
204
    int dpb_output_delay_length;       ///< dpb_output_delay_length_minus1 + 1
205
    int bit_depth_luma;                ///< bit_depth_luma_minus8 + 8
206
    int bit_depth_chroma;              ///< bit_depth_chroma_minus8 + 8
207
    int residual_color_transform_flag; ///< residual_colour_transform_flag
208
}SPS;
209

    
210
/**
211
 * Picture parameter set
212
 */
213
typedef struct PPS{
214
    unsigned int sps_id;
215
    int cabac;                  ///< entropy_coding_mode_flag
216
    int pic_order_present;      ///< pic_order_present_flag
217
    int slice_group_count;      ///< num_slice_groups_minus1 + 1
218
    int mb_slice_group_map_type;
219
    unsigned int ref_count[2];  ///< num_ref_idx_l0/1_active_minus1 + 1
220
    int weighted_pred;          ///< weighted_pred_flag
221
    int weighted_bipred_idc;
222
    int init_qp;                ///< pic_init_qp_minus26 + 26
223
    int init_qs;                ///< pic_init_qs_minus26 + 26
224
    int chroma_qp_index_offset[2];
225
    int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
226
    int constrained_intra_pred; ///< constrained_intra_pred_flag
227
    int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag
228
    int transform_8x8_mode;     ///< transform_8x8_mode_flag
229
    uint8_t scaling_matrix4[6][16];
230
    uint8_t scaling_matrix8[2][64];
231
    uint8_t chroma_qp_table[2][64];  ///< pre-scaled (with chroma_qp_index_offset) version of qp_table
232
    int chroma_qp_diff;
233
}PPS;
234

    
235
/**
236
 * Memory management control operation opcode.
237
 */
238
typedef enum MMCOOpcode{
239
    MMCO_END=0,
240
    MMCO_SHORT2UNUSED,
241
    MMCO_LONG2UNUSED,
242
    MMCO_SHORT2LONG,
243
    MMCO_SET_MAX_LONG,
244
    MMCO_RESET,
245
    MMCO_LONG,
246
} MMCOOpcode;
247

    
248
/**
249
 * Memory management control operation.
250
 */
251
typedef struct MMCO{
252
    MMCOOpcode opcode;
253
    int short_pic_num;  ///< pic_num without wrapping (pic_num & max_pic_num)
254
    int long_arg;       ///< index, pic_num, or num long refs depending on opcode
255
} MMCO;
256

    
257
/**
258
 * H264Context
259
 */
260
typedef struct H264Context{
261
    MpegEncContext s;
262
    int nal_ref_idc;
263
    int nal_unit_type;
264
    uint8_t *rbsp_buffer[2];
265
    unsigned int rbsp_buffer_size[2];
266

    
267
    /**
268
      * Used to parse AVC variant of h264
269
      */
270
    int is_avc; ///< this flag is != 0 if codec is avc1
271
    int got_avcC; ///< flag used to parse avcC data only once
272
    int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
273

    
274
    int chroma_qp[2]; //QPc
275

    
276
    int qp_thresh;      ///< QP threshold to skip loopfilter
277

    
278
    int prev_mb_skipped;
279
    int next_mb_skipped;
280

    
281
    //prediction stuff
282
    int chroma_pred_mode;
283
    int intra16x16_pred_mode;
284

    
285
    int top_mb_xy;
286
    int left_mb_xy[2];
287

    
288
    int top_type;
289
    int left_type[2];
290

    
291
    int8_t intra4x4_pred_mode_cache[5*8];
292
    int8_t (*intra4x4_pred_mode)[8];
293
    H264PredContext hpc;
294
    unsigned int topleft_samples_available;
295
    unsigned int top_samples_available;
296
    unsigned int topright_samples_available;
297
    unsigned int left_samples_available;
298
    uint8_t (*top_borders[2])[16+2*8];
299
    uint8_t left_border[2*(17+2*9)];
300

    
301
    /**
302
     * non zero coeff count cache.
303
     * is 64 if not available.
304
     */
305
    DECLARE_ALIGNED_8(uint8_t, non_zero_count_cache)[6*8];
306

    
307
    /*
308
    .UU.YYYY
309
    .UU.YYYY
310
    .vv.YYYY
311
    .VV.YYYY
312
    */
313
    uint8_t (*non_zero_count)[32];
314

    
315
    /**
316
     * Motion vector cache.
317
     */
318
    DECLARE_ALIGNED_16(int16_t, mv_cache)[2][5*8][2];
319
    DECLARE_ALIGNED_8(int8_t, ref_cache)[2][5*8];
320
#define LIST_NOT_USED -1 //FIXME rename?
321
#define PART_NOT_AVAILABLE -2
322

    
323
    /**
324
     * is 1 if the specific list MV&references are set to 0,0,-2.
325
     */
326
    int mv_cache_clean[2];
327

    
328
    /**
329
     * number of neighbors (top and/or left) that used 8x8 dct
330
     */
331
    int neighbor_transform_size;
332

    
333
    /**
334
     * block_offset[ 0..23] for frame macroblocks
335
     * block_offset[24..47] for field macroblocks
336
     */
337
    int block_offset[2*(16+8)];
338

    
339
    uint32_t *mb2b_xy; //FIXME are these 4 a good idea?
340
    uint32_t *mb2b8_xy;
341
    int b_stride; //FIXME use s->b4_stride
342
    int b8_stride;
343

    
344
    int mb_linesize;   ///< may be equal to s->linesize or s->linesize*2, for mbaff
345
    int mb_uvlinesize;
346

    
347
    int emu_edge_width;
348
    int emu_edge_height;
349

    
350
    int halfpel_flag;
351
    int thirdpel_flag;
352

    
353
    int unknown_svq3_flag;
354
    int next_slice_index;
355

    
356
    SPS *sps_buffers[MAX_SPS_COUNT];
357
    SPS sps; ///< current sps
358

    
359
    PPS *pps_buffers[MAX_PPS_COUNT];
360
    /**
361
     * current pps
362
     */
363
    PPS pps; //FIXME move to Picture perhaps? (->no) do we need that?
364

    
365
    uint32_t dequant4_buffer[6][52][16];
366
    uint32_t dequant8_buffer[2][52][64];
367
    uint32_t (*dequant4_coeff[6])[16];
368
    uint32_t (*dequant8_coeff[2])[64];
369
    int dequant_coeff_pps;     ///< reinit tables when pps changes
370

    
371
    int slice_num;
372
    uint16_t *slice_table_base;
373
    uint16_t *slice_table;     ///< slice_table_base + 2*mb_stride + 1
374
    int slice_type;
375
    int slice_type_nos;        ///< S free slice type (SI/SP are remapped to I/P)
376
    int slice_type_fixed;
377

    
378
    //interlacing specific flags
379
    int mb_aff_frame;
380
    int mb_field_decoding_flag;
381
    int mb_mbaff;              ///< mb_aff_frame && mb_field_decoding_flag
382

    
383
    DECLARE_ALIGNED_8(uint16_t, sub_mb_type)[4];
384

    
385
    //POC stuff
386
    int poc_lsb;
387
    int poc_msb;
388
    int delta_poc_bottom;
389
    int delta_poc[2];
390
    int frame_num;
391
    int prev_poc_msb;             ///< poc_msb of the last reference pic for POC type 0
392
    int prev_poc_lsb;             ///< poc_lsb of the last reference pic for POC type 0
393
    int frame_num_offset;         ///< for POC type 2
394
    int prev_frame_num_offset;    ///< for POC type 2
395
    int prev_frame_num;           ///< frame_num of the last pic for POC type 1/2
396

    
397
    /**
398
     * frame_num for frames or 2*frame_num+1 for field pics.
399
     */
400
    int curr_pic_num;
401

    
402
    /**
403
     * max_frame_num or 2*max_frame_num for field pics.
404
     */
405
    int max_pic_num;
406

    
407
    //Weighted pred stuff
408
    int use_weight;
409
    int use_weight_chroma;
410
    int luma_log2_weight_denom;
411
    int chroma_log2_weight_denom;
412
    int luma_weight[2][48];
413
    int luma_offset[2][48];
414
    int chroma_weight[2][48][2];
415
    int chroma_offset[2][48][2];
416
    int implicit_weight[48][48];
417

    
418
    //deblock
419
    int deblocking_filter;         ///< disable_deblocking_filter_idc with 1<->0
420
    int slice_alpha_c0_offset;
421
    int slice_beta_offset;
422

    
423
    int redundant_pic_count;
424

    
425
    int direct_spatial_mv_pred;
426
    int dist_scale_factor[16];
427
    int dist_scale_factor_field[2][32];
428
    int map_col_to_list0[2][16+32];
429
    int map_col_to_list0_field[2][2][16+32];
430

    
431
    /**
432
     * num_ref_idx_l0/1_active_minus1 + 1
433
     */
434
    unsigned int ref_count[2];   ///< counts frames or fields, depending on current mb mode
435
    unsigned int list_count;
436
    uint8_t *list_counts;            ///< Array of list_count per MB specifying the slice type
437
    Picture *short_ref[32];
438
    Picture *long_ref[32];
439
    Picture default_ref_list[2][32]; ///< base reference list for all slices of a coded picture
440
    Picture ref_list[2][48];         /**< 0..15: frame refs, 16..47: mbaff field refs.
441
                                          Reordered version of default_ref_list
442
                                          according to picture reordering in slice header */
443
    int ref2frm[MAX_SLICES][2][64];  ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
444
    Picture *delayed_pic[MAX_DELAYED_PIC_COUNT+2]; //FIXME size?
445
    int outputed_poc;
446

    
447
    /**
448
     * memory management control operations buffer.
449
     */
450
    MMCO mmco[MAX_MMCO_COUNT];
451
    int mmco_index;
452

    
453
    int long_ref_count;  ///< number of actual long term references
454
    int short_ref_count; ///< number of actual short term references
455

    
456
    //data partitioning
457
    GetBitContext intra_gb;
458
    GetBitContext inter_gb;
459
    GetBitContext *intra_gb_ptr;
460
    GetBitContext *inter_gb_ptr;
461

    
462
    DECLARE_ALIGNED_16(DCTELEM, mb)[16*24];
463
    DCTELEM mb_padding[256];        ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either check that i is not too large or ensure that there is some unused stuff after mb
464

    
465
    /**
466
     * Cabac
467
     */
468
    CABACContext cabac;
469
    uint8_t      cabac_state[460];
470
    int          cabac_init_idc;
471

    
472
    /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0,1,2), 0x0? luma_cbp */
473
    uint16_t     *cbp_table;
474
    int cbp;
475
    int top_cbp;
476
    int left_cbp;
477
    /* chroma_pred_mode for i4x4 or i16x16, else 0 */
478
    uint8_t     *chroma_pred_mode_table;
479
    int         last_qscale_diff;
480
    int16_t     (*mvd_table[2])[2];
481
    DECLARE_ALIGNED_16(int16_t, mvd_cache)[2][5*8][2];
482
    uint8_t     *direct_table;
483
    uint8_t     direct_cache[5*8];
484

    
485
    uint8_t zigzag_scan[16];
486
    uint8_t zigzag_scan8x8[64];
487
    uint8_t zigzag_scan8x8_cavlc[64];
488
    uint8_t field_scan[16];
489
    uint8_t field_scan8x8[64];
490
    uint8_t field_scan8x8_cavlc[64];
491
    const uint8_t *zigzag_scan_q0;
492
    const uint8_t *zigzag_scan8x8_q0;
493
    const uint8_t *zigzag_scan8x8_cavlc_q0;
494
    const uint8_t *field_scan_q0;
495
    const uint8_t *field_scan8x8_q0;
496
    const uint8_t *field_scan8x8_cavlc_q0;
497

    
498
    int x264_build;
499

    
500
    /**
501
     * @defgroup multithreading Members for slice based multithreading
502
     * @{
503
     */
504
    struct H264Context *thread_context[MAX_THREADS];
505

    
506
    /**
507
     * current slice number, used to initalize slice_num of each thread/context
508
     */
509
    int current_slice;
510

    
511
    /**
512
     * Max number of threads / contexts.
513
     * This is equal to AVCodecContext.thread_count unless
514
     * multithreaded decoding is impossible, in which case it is
515
     * reduced to 1.
516
     */
517
    int max_contexts;
518

    
519
    /**
520
     *  1 if the single thread fallback warning has already been
521
     *  displayed, 0 otherwise.
522
     */
523
    int single_decode_warning;
524

    
525
    int last_slice_type;
526
    /** @} */
527

    
528
    int mb_xy;
529

    
530
    uint32_t svq3_watermark_key;
531

    
532
    /**
533
     * pic_struct in picture timing SEI message
534
     */
535
    SEI_PicStructType sei_pic_struct;
536

    
537
    /**
538
     * Complement sei_pic_struct
539
     * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
540
     * However, soft telecined frames may have these values.
541
     * This is used in an attempt to flag soft telecine progressive.
542
     */
543
    int prev_interlaced_frame;
544

    
545
    /**
546
     * Bit set of clock types for fields/frames in picture timing SEI message.
547
     * For each found ct_type, appropriate bit is set (e.g., bit 1 for
548
     * interlaced).
549
     */
550
    int sei_ct_type;
551

    
552
    /**
553
     * dpb_output_delay in picture timing SEI message, see H.264 C.2.2
554
     */
555
    int sei_dpb_output_delay;
556

    
557
    /**
558
     * cpb_removal_delay in picture timing SEI message, see H.264 C.1.2
559
     */
560
    int sei_cpb_removal_delay;
561

    
562
    /**
563
     * recovery_frame_cnt from SEI message
564
     *
565
     * Set to -1 if no recovery point SEI message found or to number of frames
566
     * before playback synchronizes. Frames having recovery point are key
567
     * frames.
568
     */
569
    int sei_recovery_frame_cnt;
570

    
571
    int is_complex;
572

    
573
    int luma_weight_flag[2];   ///< 7.4.3.2 luma_weight_lX_flag
574
    int chroma_weight_flag[2]; ///< 7.4.3.2 chroma_weight_lX_flag
575

    
576
    // Timestamp stuff
577
    int sei_buffering_period_present;  ///< Buffering period SEI flag
578
    int initial_cpb_removal_delay[32]; ///< Initial timestamps for CPBs
579
}H264Context;
580

    
581

    
582
extern const uint8_t ff_h264_chroma_qp[52];
583

    
584

    
585
/**
586
 * Decode SEI
587
 */
588
int ff_h264_decode_sei(H264Context *h);
589

    
590
/**
591
 * Decode SPS
592
 */
593
int ff_h264_decode_seq_parameter_set(H264Context *h);
594

    
595
/**
596
 * Decode PPS
597
 */
598
int ff_h264_decode_picture_parameter_set(H264Context *h, int bit_length);
599

    
600
/**
601
 * Decodes a network abstraction layer unit.
602
 * @param consumed is the number of bytes used as input
603
 * @param length is the length of the array
604
 * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing?
605
 * @returns decoded bytes, might be src+1 if no escapes
606
 */
607
const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length);
608

    
609
/**
610
 * identifies the exact end of the bitstream
611
 * @return the length of the trailing, or 0 if damaged
612
 */
613
int ff_h264_decode_rbsp_trailing(H264Context *h, const uint8_t *src);
614

    
615
/**
616
 * frees any data that may have been allocated in the H264 context like SPS, PPS etc.
617
 */
618
av_cold void ff_h264_free_context(H264Context *h);
619

    
620
/**
621
 * reconstructs bitstream slice_type.
622
 */
623
int ff_h264_get_slice_type(const H264Context *h);
624

    
625
/**
626
 * allocates tables.
627
 * needs width/height
628
 */
629
int ff_h264_alloc_tables(H264Context *h);
630

    
631
/**
632
 * fills the default_ref_list.
633
 */
634
int ff_h264_fill_default_ref_list(H264Context *h);
635

    
636
int ff_h264_decode_ref_pic_list_reordering(H264Context *h);
637
void ff_h264_fill_mbaff_ref_list(H264Context *h);
638
void ff_h264_remove_all_refs(H264Context *h);
639

    
640
/**
641
 * Executes the reference picture marking (memory management control operations).
642
 */
643
int ff_h264_execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count);
644

    
645
int ff_h264_decode_ref_pic_marking(H264Context *h, GetBitContext *gb);
646

    
647

    
648
/**
649
 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
650
 */
651
int ff_h264_check_intra4x4_pred_mode(H264Context *h);
652

    
653
/**
654
 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
655
 */
656
int ff_h264_check_intra_pred_mode(H264Context *h, int mode);
657

    
658
void ff_h264_write_back_intra_pred_mode(H264Context *h);
659
void ff_h264_hl_decode_mb(H264Context *h);
660
int ff_h264_frame_start(H264Context *h);
661
av_cold int ff_h264_decode_init(AVCodecContext *avctx);
662
av_cold int ff_h264_decode_end(AVCodecContext *avctx);
663
av_cold void ff_h264_decode_init_vlc(void);
664

    
665
/**
666
 * decodes a macroblock
667
 * @returns 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
668
 */
669
int ff_h264_decode_mb_cavlc(H264Context *h);
670

    
671
/**
672
 * decodes a CABAC coded macroblock
673
 * @returns 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
674
 */
675
int ff_h264_decode_mb_cabac(H264Context *h);
676

    
677
void ff_h264_init_cabac_states(H264Context *h);
678

    
679
void ff_h264_direct_dist_scale_factor(H264Context * const h);
680
void ff_h264_direct_ref_list_init(H264Context * const h);
681
void ff_h264_pred_direct_motion(H264Context * const h, int *mb_type);
682

    
683
void ff_h264_filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
684
void ff_h264_filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
685

    
686
/**
687
 * Reset SEI values at the beginning of the frame.
688
 *
689
 * @param h H.264 context.
690
 */
691
void ff_h264_reset_sei(H264Context *h);
692

    
693

    
694
/*
695
o-o o-o
696
 / / /
697
o-o o-o
698
 ,---'
699
o-o o-o
700
 / / /
701
o-o o-o
702
*/
703
//This table must be here because scan8[constant] must be known at compiletime
704
static const uint8_t scan8[16 + 2*4]={
705
 4+1*8, 5+1*8, 4+2*8, 5+2*8,
706
 6+1*8, 7+1*8, 6+2*8, 7+2*8,
707
 4+3*8, 5+3*8, 4+4*8, 5+4*8,
708
 6+3*8, 7+3*8, 6+4*8, 7+4*8,
709
 1+1*8, 2+1*8,
710
 1+2*8, 2+2*8,
711
 1+4*8, 2+4*8,
712
 1+5*8, 2+5*8,
713
};
714

    
715
static av_always_inline uint32_t pack16to32(int a, int b){
716
#if HAVE_BIGENDIAN
717
   return (b&0xFFFF) + (a<<16);
718
#else
719
   return (a&0xFFFF) + (b<<16);
720
#endif
721
}
722

    
723
/**
724
 * gets the chroma qp.
725
 */
726
static inline int get_chroma_qp(H264Context *h, int t, int qscale){
727
    return h->pps.chroma_qp_table[t][qscale];
728
}
729

    
730
static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my);
731

    
732
static void fill_decode_caches(H264Context *h, int mb_type){
733
    MpegEncContext * const s = &h->s;
734
    const int mb_xy= h->mb_xy;
735
    int topleft_xy, top_xy, topright_xy, left_xy[2];
736
    int topleft_type, top_type, topright_type, left_type[2];
737
    const uint8_t * left_block;
738
    int topleft_partition= -1;
739
    int i;
740
    static const uint8_t left_block_options[4][16]={
741
        {0,1,2,3,7,10,8,11,7+0*8, 7+1*8, 7+2*8, 7+3*8, 2+0*8, 2+3*8, 2+1*8, 2+2*8},
742
        {2,2,3,3,8,11,8,11,7+2*8, 7+2*8, 7+3*8, 7+3*8, 2+1*8, 2+2*8, 2+1*8, 2+2*8},
743
        {0,0,1,1,7,10,7,10,7+0*8, 7+0*8, 7+1*8, 7+1*8, 2+0*8, 2+3*8, 2+0*8, 2+3*8},
744
        {0,2,0,2,7,10,7,10,7+0*8, 7+2*8, 7+0*8, 7+2*8, 2+0*8, 2+3*8, 2+0*8, 2+3*8}
745
    };
746

    
747
    top_xy     = mb_xy  - (s->mb_stride << MB_FIELD);
748

    
749
    /* Wow, what a mess, why didn't they simplify the interlacing & intra
750
     * stuff, I can't imagine that these complex rules are worth it. */
751

    
752
    topleft_xy = top_xy - 1;
753
    topright_xy= top_xy + 1;
754
    left_xy[1] = left_xy[0] = mb_xy-1;
755
    left_block = left_block_options[0];
756
    if(FRAME_MBAFF){
757
        const int left_mb_field_flag     = IS_INTERLACED(s->current_picture.mb_type[mb_xy-1]);
758
        const int curr_mb_field_flag     = IS_INTERLACED(mb_type);
759
        if(s->mb_y&1){
760
            if (left_mb_field_flag != curr_mb_field_flag) {
761
                left_xy[1] = left_xy[0] = mb_xy - s->mb_stride - 1;
762
                if (curr_mb_field_flag) {
763
                    left_xy[1] += s->mb_stride;
764
                    left_block = left_block_options[3];
765
                } else {
766
                    topleft_xy += s->mb_stride;
767
                    // take top left mv from the middle of the mb, as opposed to all other modes which use the bottom right partition
768
                    topleft_partition = 0;
769
                    left_block = left_block_options[1];
770
                }
771
            }
772
        }else{
773
            if(curr_mb_field_flag){
774
                topleft_xy  += s->mb_stride & (((s->current_picture.mb_type[top_xy - 1]>>7)&1)-1);
775
                topright_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy + 1]>>7)&1)-1);
776
                top_xy      += s->mb_stride & (((s->current_picture.mb_type[top_xy    ]>>7)&1)-1);
777
            }
778
            if (left_mb_field_flag != curr_mb_field_flag) {
779
                left_xy[1] = left_xy[0] = mb_xy - 1;
780
                if (curr_mb_field_flag) {
781
                    left_xy[1] += s->mb_stride;
782
                    left_block = left_block_options[3];
783
                } else {
784
                    left_block = left_block_options[2];
785
                }
786
            }
787
        }
788
    }
789

    
790
    h->top_mb_xy = top_xy;
791
    h->left_mb_xy[0] = left_xy[0];
792
    h->left_mb_xy[1] = left_xy[1];
793
        topleft_type = h->slice_table[topleft_xy ] == h->slice_num ? s->current_picture.mb_type[topleft_xy] : 0;
794
        top_type     = h->slice_table[top_xy     ] == h->slice_num ? s->current_picture.mb_type[top_xy]     : 0;
795
        topright_type= h->slice_table[topright_xy] == h->slice_num ? s->current_picture.mb_type[topright_xy]: 0;
796
        left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0;
797
        left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0;
798

    
799
        if(IS_INTRA(mb_type)){
800
            int type_mask= h->pps.constrained_intra_pred ? IS_INTRA(-1) : -1;
801
            h->topleft_samples_available=
802
            h->top_samples_available=
803
            h->left_samples_available= 0xFFFF;
804
            h->topright_samples_available= 0xEEEA;
805

    
806
            if(!(top_type & type_mask)){
807
                h->topleft_samples_available= 0xB3FF;
808
                h->top_samples_available= 0x33FF;
809
                h->topright_samples_available= 0x26EA;
810
            }
811
            if(IS_INTERLACED(mb_type) != IS_INTERLACED(left_type[0])){
812
                if(IS_INTERLACED(mb_type)){
813
                    if(!(left_type[0] & type_mask)){
814
                        h->topleft_samples_available&= 0xDFFF;
815
                        h->left_samples_available&= 0x5FFF;
816
                    }
817
                    if(!(left_type[1] & type_mask)){
818
                        h->topleft_samples_available&= 0xFF5F;
819
                        h->left_samples_available&= 0xFF5F;
820
                    }
821
                }else{
822
                    int left_typei = h->slice_table[left_xy[0] + s->mb_stride ] == h->slice_num
823
                                    ? s->current_picture.mb_type[left_xy[0] + s->mb_stride] : 0;
824
                    assert(left_xy[0] == left_xy[1]);
825
                    if(!((left_typei & type_mask) && (left_type[0] & type_mask))){
826
                        h->topleft_samples_available&= 0xDF5F;
827
                        h->left_samples_available&= 0x5F5F;
828
                    }
829
                }
830
            }else{
831
                if(!(left_type[0] & type_mask)){
832
                    h->topleft_samples_available&= 0xDF5F;
833
                    h->left_samples_available&= 0x5F5F;
834
                }
835
            }
836

    
837
            if(!(topleft_type & type_mask))
838
                h->topleft_samples_available&= 0x7FFF;
839

    
840
            if(!(topright_type & type_mask))
841
                h->topright_samples_available&= 0xFBFF;
842

    
843
            if(IS_INTRA4x4(mb_type)){
844
                if(IS_INTRA4x4(top_type)){
845
                    h->intra4x4_pred_mode_cache[4+8*0]= h->intra4x4_pred_mode[top_xy][4];
846
                    h->intra4x4_pred_mode_cache[5+8*0]= h->intra4x4_pred_mode[top_xy][5];
847
                    h->intra4x4_pred_mode_cache[6+8*0]= h->intra4x4_pred_mode[top_xy][6];
848
                    h->intra4x4_pred_mode_cache[7+8*0]= h->intra4x4_pred_mode[top_xy][3];
849
                }else{
850
                    int pred;
851
                    if(!(top_type & type_mask))
852
                        pred= -1;
853
                    else{
854
                        pred= 2;
855
                    }
856
                    h->intra4x4_pred_mode_cache[4+8*0]=
857
                    h->intra4x4_pred_mode_cache[5+8*0]=
858
                    h->intra4x4_pred_mode_cache[6+8*0]=
859
                    h->intra4x4_pred_mode_cache[7+8*0]= pred;
860
                }
861
                for(i=0; i<2; i++){
862
                    if(IS_INTRA4x4(left_type[i])){
863
                        h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[0+2*i]];
864
                        h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[1+2*i]];
865
                    }else{
866
                        int pred;
867
                        if(!(left_type[i] & type_mask))
868
                            pred= -1;
869
                        else{
870
                            pred= 2;
871
                        }
872
                        h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
873
                        h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= pred;
874
                    }
875
                }
876
            }
877
        }
878

    
879

    
880
/*
881
0 . T T. T T T T
882
1 L . .L . . . .
883
2 L . .L . . . .
884
3 . T TL . . . .
885
4 L . .L . . . .
886
5 L . .. . . . .
887
*/
888
//FIXME constraint_intra_pred & partitioning & nnz (let us hope this is just a typo in the spec)
889
    if(top_type){
890
        *(uint32_t*)&h->non_zero_count_cache[4+8*0]= *(uint32_t*)&h->non_zero_count[top_xy][4+3*8];
891
            h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][1+1*8];
892
            h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][2+1*8];
893

    
894
            h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][1+2*8];
895
            h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][2+2*8];
896
    }else {
897
            h->non_zero_count_cache[1+8*0]=
898
            h->non_zero_count_cache[2+8*0]=
899

    
900
            h->non_zero_count_cache[1+8*3]=
901
            h->non_zero_count_cache[2+8*3]=
902
            *(uint32_t*)&h->non_zero_count_cache[4+8*0]= CABAC && !IS_INTRA(mb_type) ? 0 : 0x40404040;
903
    }
904

    
905
    for (i=0; i<2; i++) {
906
        if(left_type[i]){
907
            h->non_zero_count_cache[3+8*1 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+0+2*i]];
908
            h->non_zero_count_cache[3+8*2 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+1+2*i]];
909
                h->non_zero_count_cache[0+8*1 +   8*i]= h->non_zero_count[left_xy[i]][left_block[8+4+2*i]];
910
                h->non_zero_count_cache[0+8*4 +   8*i]= h->non_zero_count[left_xy[i]][left_block[8+5+2*i]];
911
        }else{
912
                h->non_zero_count_cache[3+8*1 + 2*8*i]=
913
                h->non_zero_count_cache[3+8*2 + 2*8*i]=
914
                h->non_zero_count_cache[0+8*1 +   8*i]=
915
                h->non_zero_count_cache[0+8*4 +   8*i]= CABAC && !IS_INTRA(mb_type) ? 0 : 64;
916
        }
917
    }
918

    
919
    if( CABAC ) {
920
        // top_cbp
921
        if(top_type) {
922
            h->top_cbp = h->cbp_table[top_xy];
923
        } else if(IS_INTRA(mb_type)) {
924
            h->top_cbp = 0x1C0;
925
        } else {
926
            h->top_cbp = 0;
927
        }
928
        // left_cbp
929
        if (left_type[0]) {
930
            h->left_cbp = h->cbp_table[left_xy[0]] & 0x1f0;
931
        } else if(IS_INTRA(mb_type)) {
932
            h->left_cbp = 0x1C0;
933
        } else {
934
            h->left_cbp = 0;
935
        }
936
        if (left_type[0]) {
937
            h->left_cbp |= ((h->cbp_table[left_xy[0]]>>((left_block[0]&(~1))+1))&0x1) << 1;
938
        }
939
        if (left_type[1]) {
940
            h->left_cbp |= ((h->cbp_table[left_xy[1]]>>((left_block[2]&(~1))+1))&0x1) << 3;
941
        }
942
    }
943

    
944
#if 1
945
    if(IS_INTER(mb_type) || IS_DIRECT(mb_type)){
946
        int list;
947
        for(list=0; list<h->list_count; list++){
948
            if(!USES_LIST(mb_type, list) && !IS_DIRECT(mb_type)){
949
                /*if(!h->mv_cache_clean[list]){
950
                    memset(h->mv_cache [list],  0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
951
                    memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
952
                    h->mv_cache_clean[list]= 1;
953
                }*/
954
                continue;
955
            }
956
            h->mv_cache_clean[list]= 0;
957

    
958
            if(USES_LIST(top_type, list)){
959
                const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
960
                const int b8_xy= h->mb2b8_xy[top_xy] + h->b8_stride;
961
                AV_COPY128(h->mv_cache[list][scan8[0] + 0 - 1*8], s->current_picture.motion_val[list][b_xy + 0]);
962
                    h->ref_cache[list][scan8[0] + 0 - 1*8]=
963
                    h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][b8_xy + 0];
964
                    h->ref_cache[list][scan8[0] + 2 - 1*8]=
965
                    h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][b8_xy + 1];
966
            }else{
967
                AV_ZERO128(h->mv_cache[list][scan8[0] + 0 - 1*8]);
968
                *(uint32_t*)&h->ref_cache[list][scan8[0] + 0 - 1*8]= ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101;
969
            }
970

    
971
            for(i=0; i<2; i++){
972
                int cache_idx = scan8[0] - 1 + i*2*8;
973
                if(USES_LIST(left_type[i], list)){
974
                    const int b_xy= h->mb2b_xy[left_xy[i]] + 3;
975
                    const int b8_xy= h->mb2b8_xy[left_xy[i]] + 1;
976
                    *(uint32_t*)h->mv_cache[list][cache_idx  ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0+i*2]];
977
                    *(uint32_t*)h->mv_cache[list][cache_idx+8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1+i*2]];
978
                        h->ref_cache[list][cache_idx  ]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[0+i*2]>>1)];
979
                        h->ref_cache[list][cache_idx+8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[1+i*2]>>1)];
980
                }else{
981
                    *(uint32_t*)h->mv_cache [list][cache_idx  ]=
982
                    *(uint32_t*)h->mv_cache [list][cache_idx+8]= 0;
983
                    h->ref_cache[list][cache_idx  ]=
984
                    h->ref_cache[list][cache_idx+8]= (left_type[i]) ? LIST_NOT_USED : PART_NOT_AVAILABLE;
985
                }
986
            }
987

    
988
            if((IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred) && !FRAME_MBAFF)
989
                continue;
990

    
991
            if(USES_LIST(topleft_type, list)){
992
                const int b_xy = h->mb2b_xy[topleft_xy] + 3 + h->b_stride + (topleft_partition & 2*h->b_stride);
993
                const int b8_xy= h->mb2b8_xy[topleft_xy] + 1 + (topleft_partition & h->b8_stride);
994
                *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
995
                h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy];
996
            }else{
997
                *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= 0;
998
                h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
999
            }
1000

    
1001
            if(USES_LIST(topright_type, list)){
1002
                const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride;
1003
                const int b8_xy= h->mb2b8_xy[topright_xy] + h->b8_stride;
1004
                *(uint32_t*)h->mv_cache[list][scan8[0] + 4 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
1005
                h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][b8_xy];
1006
            }else{
1007
                *(uint32_t*)h->mv_cache [list][scan8[0] + 4 - 1*8]= 0;
1008
                h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
1009
            }
1010

    
1011
            if((IS_SKIP(mb_type) || IS_DIRECT(mb_type)) && !FRAME_MBAFF)
1012
                continue;
1013

    
1014
            h->ref_cache[list][scan8[5 ]+1] =
1015
            h->ref_cache[list][scan8[7 ]+1] =
1016
            h->ref_cache[list][scan8[13]+1] =  //FIXME remove past 3 (init somewhere else)
1017
            h->ref_cache[list][scan8[4 ]] =
1018
            h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
1019
            *(uint32_t*)h->mv_cache [list][scan8[5 ]+1]=
1020
            *(uint32_t*)h->mv_cache [list][scan8[7 ]+1]=
1021
            *(uint32_t*)h->mv_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
1022
            *(uint32_t*)h->mv_cache [list][scan8[4 ]]=
1023
            *(uint32_t*)h->mv_cache [list][scan8[12]]= 0;
1024

    
1025
            if( CABAC ) {
1026
                /* XXX beurk, Load mvd */
1027
                if(USES_LIST(top_type, list)){
1028
                    const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
1029
                    AV_COPY128(h->mvd_cache[list][scan8[0] + 0 - 1*8], h->mvd_table[list][b_xy + 0]);
1030
                }else{
1031
                    AV_ZERO128(h->mvd_cache[list][scan8[0] + 0 - 1*8]);
1032
                }
1033
                if(USES_LIST(left_type[0], list)){
1034
                    const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
1035
                    *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[0]];
1036
                    *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[1]];
1037
                }else{
1038
                    *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 0*8]=
1039
                    *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 1*8]= 0;
1040
                }
1041
                if(USES_LIST(left_type[1], list)){
1042
                    const int b_xy= h->mb2b_xy[left_xy[1]] + 3;
1043
                    *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[2]];
1044
                    *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[3]];
1045
                }else{
1046
                    *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 2*8]=
1047
                    *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 3*8]= 0;
1048
                }
1049
                *(uint32_t*)h->mvd_cache [list][scan8[5 ]+1]=
1050
                *(uint32_t*)h->mvd_cache [list][scan8[7 ]+1]=
1051
                *(uint32_t*)h->mvd_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
1052
                *(uint32_t*)h->mvd_cache [list][scan8[4 ]]=
1053
                *(uint32_t*)h->mvd_cache [list][scan8[12]]= 0;
1054

    
1055
                if(h->slice_type_nos == FF_B_TYPE){
1056
                    fill_rectangle(&h->direct_cache[scan8[0]], 4, 4, 8, 0, 1);
1057

    
1058
                    if(IS_DIRECT(top_type)){
1059
                        *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0x01010101;
1060
                    }else if(IS_8X8(top_type)){
1061
                        int b8_xy = h->mb2b8_xy[top_xy] + h->b8_stride;
1062
                        h->direct_cache[scan8[0] + 0 - 1*8]= h->direct_table[b8_xy];
1063
                        h->direct_cache[scan8[0] + 2 - 1*8]= h->direct_table[b8_xy + 1];
1064
                    }else{
1065
                        *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0;
1066
                    }
1067

    
1068
                    if(IS_DIRECT(left_type[0]))
1069
                        h->direct_cache[scan8[0] - 1 + 0*8]= 1;
1070
                    else if(IS_8X8(left_type[0]))
1071
                        h->direct_cache[scan8[0] - 1 + 0*8]= h->direct_table[h->mb2b8_xy[left_xy[0]] + 1 + h->b8_stride*(left_block[0]>>1)];
1072
                    else
1073
                        h->direct_cache[scan8[0] - 1 + 0*8]= 0;
1074

    
1075
                    if(IS_DIRECT(left_type[1]))
1076
                        h->direct_cache[scan8[0] - 1 + 2*8]= 1;
1077
                    else if(IS_8X8(left_type[1]))
1078
                        h->direct_cache[scan8[0] - 1 + 2*8]= h->direct_table[h->mb2b8_xy[left_xy[1]] + 1 + h->b8_stride*(left_block[2]>>1)];
1079
                    else
1080
                        h->direct_cache[scan8[0] - 1 + 2*8]= 0;
1081
                }
1082
            }
1083

    
1084
            if(FRAME_MBAFF){
1085
#define MAP_MVS\
1086
                    MAP_F2F(scan8[0] - 1 - 1*8, topleft_type)\
1087
                    MAP_F2F(scan8[0] + 0 - 1*8, top_type)\
1088
                    MAP_F2F(scan8[0] + 1 - 1*8, top_type)\
1089
                    MAP_F2F(scan8[0] + 2 - 1*8, top_type)\
1090
                    MAP_F2F(scan8[0] + 3 - 1*8, top_type)\
1091
                    MAP_F2F(scan8[0] + 4 - 1*8, topright_type)\
1092
                    MAP_F2F(scan8[0] - 1 + 0*8, left_type[0])\
1093
                    MAP_F2F(scan8[0] - 1 + 1*8, left_type[0])\
1094
                    MAP_F2F(scan8[0] - 1 + 2*8, left_type[1])\
1095
                    MAP_F2F(scan8[0] - 1 + 3*8, left_type[1])
1096
                if(MB_FIELD){
1097
#define MAP_F2F(idx, mb_type)\
1098
                    if(!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
1099
                        h->ref_cache[list][idx] <<= 1;\
1100
                        h->mv_cache[list][idx][1] /= 2;\
1101
                        h->mvd_cache[list][idx][1] /= 2;\
1102
                    }
1103
                    MAP_MVS
1104
#undef MAP_F2F
1105
                }else{
1106
#define MAP_F2F(idx, mb_type)\
1107
                    if(IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
1108
                        h->ref_cache[list][idx] >>= 1;\
1109
                        h->mv_cache[list][idx][1] <<= 1;\
1110
                        h->mvd_cache[list][idx][1] <<= 1;\
1111
                    }
1112
                    MAP_MVS
1113
#undef MAP_F2F
1114
                }
1115
            }
1116
        }
1117
    }
1118
#endif
1119

    
1120
        h->neighbor_transform_size= !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[0]);
1121
}
1122

    
1123
/**
1124
 *
1125
 * @returns non zero if the loop filter can be skiped
1126
 */
1127
static int fill_filter_caches(H264Context *h, int mb_type){
1128
    MpegEncContext * const s = &h->s;
1129
    const int mb_xy= h->mb_xy;
1130
    int top_xy, left_xy[2];
1131
    int top_type, left_type[2];
1132
    int i;
1133

    
1134
    top_xy     = mb_xy  - (s->mb_stride << MB_FIELD);
1135

    
1136
    //FIXME deblocking could skip the intra and nnz parts.
1137

    
1138
    /* Wow, what a mess, why didn't they simplify the interlacing & intra
1139
     * stuff, I can't imagine that these complex rules are worth it. */
1140

    
1141
    left_xy[1] = left_xy[0] = mb_xy-1;
1142
    if(FRAME_MBAFF){
1143
        const int left_mb_field_flag     = IS_INTERLACED(s->current_picture.mb_type[mb_xy-1]);
1144
        const int curr_mb_field_flag     = IS_INTERLACED(mb_type);
1145
        if(s->mb_y&1){
1146
            if (left_mb_field_flag != curr_mb_field_flag) {
1147
                left_xy[0] = mb_xy - s->mb_stride - 1;
1148
                left_xy[1] = mb_xy                - 1;
1149
            }
1150
        }else{
1151
            if(curr_mb_field_flag){
1152
                top_xy      += s->mb_stride & (((s->current_picture.mb_type[top_xy    ]>>7)&1)-1);
1153
            }
1154
            if (left_mb_field_flag != curr_mb_field_flag) {
1155
                left_xy[0] = mb_xy                - 1;
1156
                left_xy[1] = mb_xy + s->mb_stride - 1;
1157
            }
1158
        }
1159
    }
1160

    
1161
    h->top_mb_xy = top_xy;
1162
    h->left_mb_xy[0] = left_xy[0];
1163
    h->left_mb_xy[1] = left_xy[1];
1164
    {
1165
        //for sufficiently low qp, filtering wouldn't do anything
1166
        //this is a conservative estimate: could also check beta_offset and more accurate chroma_qp
1167
        int qp_thresh = h->qp_thresh; //FIXME strictly we should store qp_thresh for each mb of a slice
1168
        int qp = s->current_picture.qscale_table[mb_xy];
1169
        if(qp <= qp_thresh
1170
           && (left_xy[0]<0 || ((qp + s->current_picture.qscale_table[left_xy[0]] + 1)>>1) <= qp_thresh)
1171
           && (top_xy   < 0 || ((qp + s->current_picture.qscale_table[top_xy    ] + 1)>>1) <= qp_thresh)){
1172
            if(!FRAME_MBAFF)
1173
                return 1;
1174
            if(   (left_xy[0]< 0            || ((qp + s->current_picture.qscale_table[left_xy[1]             ] + 1)>>1) <= qp_thresh)
1175
               && (top_xy    < s->mb_stride || ((qp + s->current_picture.qscale_table[top_xy    -s->mb_stride] + 1)>>1) <= qp_thresh))
1176
                return 1;
1177
        }
1178
    }
1179

    
1180
    if(h->deblocking_filter == 2){
1181
        h->top_type    = top_type     = h->slice_table[top_xy     ] == h->slice_num ? s->current_picture.mb_type[top_xy]     : 0;
1182
        h->left_type[0]= left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0;
1183
        h->left_type[1]= left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0;
1184
    }else{
1185
        h->top_type    = top_type     = h->slice_table[top_xy     ] < 0xFFFF ? s->current_picture.mb_type[top_xy]     : 0;
1186
        h->left_type[0]= left_type[0] = h->slice_table[left_xy[0] ] < 0xFFFF ? s->current_picture.mb_type[left_xy[0]] : 0;
1187
        h->left_type[1]= left_type[1] = h->slice_table[left_xy[1] ] < 0xFFFF ? s->current_picture.mb_type[left_xy[1]] : 0;
1188
    }
1189
    if(IS_INTRA(mb_type))
1190
        return 0;
1191

    
1192
    AV_COPY64(&h->non_zero_count_cache[0+8*1], &h->non_zero_count[mb_xy][ 0]);
1193
    AV_COPY64(&h->non_zero_count_cache[0+8*2], &h->non_zero_count[mb_xy][ 8]);
1194
    *((uint32_t*)&h->non_zero_count_cache[0+8*5])= *((uint32_t*)&h->non_zero_count[mb_xy][16]);
1195
    *((uint32_t*)&h->non_zero_count_cache[4+8*3])= *((uint32_t*)&h->non_zero_count[mb_xy][20]);
1196
    AV_COPY64(&h->non_zero_count_cache[0+8*4], &h->non_zero_count[mb_xy][24]);
1197

    
1198
    h->cbp= h->cbp_table[mb_xy];
1199

    
1200
    {
1201
        int list;
1202
        for(list=0; list<h->list_count; list++){
1203
            int8_t *ref;
1204
            int y, b_stride;
1205
            int16_t (*mv_dst)[2];
1206
            int16_t (*mv_src)[2];
1207

    
1208
            if(!USES_LIST(mb_type, list)){
1209
                fill_rectangle(  h->mv_cache[list][scan8[0]], 4, 4, 8, pack16to32(0,0), 4);
1210
                *(uint32_t*)&h->ref_cache[list][scan8[ 0]] =
1211
                *(uint32_t*)&h->ref_cache[list][scan8[ 2]] =
1212
                *(uint32_t*)&h->ref_cache[list][scan8[ 8]] =
1213
                *(uint32_t*)&h->ref_cache[list][scan8[10]] = ((LIST_NOT_USED)&0xFF)*0x01010101;
1214
                continue;
1215
            }
1216

    
1217
            ref = &s->current_picture.ref_index[list][h->mb2b8_xy[mb_xy]];
1218
            {
1219
                int (*ref2frm)[64] = h->ref2frm[ h->slice_num&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
1220
                *(uint32_t*)&h->ref_cache[list][scan8[ 0]] =
1221
                *(uint32_t*)&h->ref_cache[list][scan8[ 2]] = (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101;
1222
                ref += h->b8_stride;
1223
                *(uint32_t*)&h->ref_cache[list][scan8[ 8]] =
1224
                *(uint32_t*)&h->ref_cache[list][scan8[10]] = (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101;
1225
            }
1226

    
1227
            b_stride = h->b_stride;
1228
            mv_dst   = &h->mv_cache[list][scan8[0]];
1229
            mv_src   = &s->current_picture.motion_val[list][4*s->mb_x + 4*s->mb_y*b_stride];
1230
            for(y=0; y<4; y++){
1231
                AV_COPY128(mv_dst + 8*y, mv_src + y*b_stride);
1232
            }
1233

    
1234
        }
1235
    }
1236

    
1237

    
1238
/*
1239
0 . T T. T T T T
1240
1 L . .L . . . .
1241
2 L . .L . . . .
1242
3 . T TL . . . .
1243
4 L . .L . . . .
1244
5 L . .. . . . .
1245
*/
1246
//FIXME constraint_intra_pred & partitioning & nnz (let us hope this is just a typo in the spec)
1247
    if(top_type){
1248
        *(uint32_t*)&h->non_zero_count_cache[4+8*0]= *(uint32_t*)&h->non_zero_count[top_xy][4+3*8];
1249
    }
1250

    
1251
    if(left_type[0]){
1252
        h->non_zero_count_cache[3+8*1]= h->non_zero_count[left_xy[0]][7+0*8];
1253
        h->non_zero_count_cache[3+8*2]= h->non_zero_count[left_xy[0]][7+1*8];
1254
        h->non_zero_count_cache[3+8*3]= h->non_zero_count[left_xy[0]][7+2*8];
1255
        h->non_zero_count_cache[3+8*4]= h->non_zero_count[left_xy[0]][7+3*8];
1256
    }
1257

    
1258
    // CAVLC 8x8dct requires NNZ values for residual decoding that differ from what the loop filter needs
1259
    if(!CABAC && h->pps.transform_8x8_mode){
1260
        if(IS_8x8DCT(top_type)){
1261
            h->non_zero_count_cache[4+8*0]=
1262
            h->non_zero_count_cache[5+8*0]= h->cbp_table[top_xy] & 4;
1263
            h->non_zero_count_cache[6+8*0]=
1264
            h->non_zero_count_cache[7+8*0]= h->cbp_table[top_xy] & 8;
1265
        }
1266
        if(IS_8x8DCT(left_type[0])){
1267
            h->non_zero_count_cache[3+8*1]=
1268
            h->non_zero_count_cache[3+8*2]= h->cbp_table[left_xy[0]]&2; //FIXME check MBAFF
1269
        }
1270
        if(IS_8x8DCT(left_type[1])){
1271
            h->non_zero_count_cache[3+8*3]=
1272
            h->non_zero_count_cache[3+8*4]= h->cbp_table[left_xy[1]]&8; //FIXME check MBAFF
1273
        }
1274

    
1275
        if(IS_8x8DCT(mb_type)){
1276
            h->non_zero_count_cache[scan8[0   ]]= h->non_zero_count_cache[scan8[1   ]]=
1277
            h->non_zero_count_cache[scan8[2   ]]= h->non_zero_count_cache[scan8[3   ]]= h->cbp & 1;
1278

    
1279
            h->non_zero_count_cache[scan8[0+ 4]]= h->non_zero_count_cache[scan8[1+ 4]]=
1280
            h->non_zero_count_cache[scan8[2+ 4]]= h->non_zero_count_cache[scan8[3+ 4]]= h->cbp & 2;
1281

    
1282
            h->non_zero_count_cache[scan8[0+ 8]]= h->non_zero_count_cache[scan8[1+ 8]]=
1283
            h->non_zero_count_cache[scan8[2+ 8]]= h->non_zero_count_cache[scan8[3+ 8]]= h->cbp & 4;
1284

    
1285
            h->non_zero_count_cache[scan8[0+12]]= h->non_zero_count_cache[scan8[1+12]]=
1286
            h->non_zero_count_cache[scan8[2+12]]= h->non_zero_count_cache[scan8[3+12]]= h->cbp & 8;
1287
        }
1288
    }
1289

    
1290
    if(IS_INTER(mb_type) || IS_DIRECT(mb_type)){
1291
        int list;
1292
        for(list=0; list<h->list_count; list++){
1293
            if(USES_LIST(top_type, list)){
1294
                const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
1295
                const int b8_xy= h->mb2b8_xy[top_xy] + h->b8_stride;
1296
                int (*ref2frm)[64] = h->ref2frm[ h->slice_table[top_xy]&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
1297
                AV_COPY128(h->mv_cache[list][scan8[0] + 0 - 1*8], s->current_picture.motion_val[list][b_xy + 0]);
1298
                h->ref_cache[list][scan8[0] + 0 - 1*8]=
1299
                h->ref_cache[list][scan8[0] + 1 - 1*8]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + 0]];
1300
                h->ref_cache[list][scan8[0] + 2 - 1*8]=
1301
                h->ref_cache[list][scan8[0] + 3 - 1*8]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + 1]];
1302
            }else{
1303
                AV_ZERO128(h->mv_cache[list][scan8[0] + 0 - 1*8]);
1304
                *(uint32_t*)&h->ref_cache[list][scan8[0] + 0 - 1*8]= ((LIST_NOT_USED)&0xFF)*0x01010101;
1305
            }
1306

    
1307
            if(!IS_INTERLACED(mb_type^left_type[0])){
1308
                if(USES_LIST(left_type[0], list)){
1309
                    const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
1310
                    const int b8_xy= h->mb2b8_xy[left_xy[0]] + 1;
1311
                    int (*ref2frm)[64] = h->ref2frm[ h->slice_table[left_xy[0]]&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
1312
                    *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 0 ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*0];
1313
                    *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 8 ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*1];
1314
                    *(uint32_t*)h->mv_cache[list][scan8[0] - 1 +16 ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*2];
1315
                    *(uint32_t*)h->mv_cache[list][scan8[0] - 1 +24 ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*3];
1316
                    h->ref_cache[list][scan8[0] - 1 + 0 ]=
1317
                    h->ref_cache[list][scan8[0] - 1 + 8 ]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + h->b8_stride*0]];
1318
                    h->ref_cache[list][scan8[0] - 1 +16 ]=
1319
                    h->ref_cache[list][scan8[0] - 1 +24 ]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + h->b8_stride*1]];
1320
                }else{
1321
                    *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 0 ]=
1322
                    *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 8 ]=
1323
                    *(uint32_t*)h->mv_cache [list][scan8[0] - 1 +16 ]=
1324
                    *(uint32_t*)h->mv_cache [list][scan8[0] - 1 +24 ]= 0;
1325
                    h->ref_cache[list][scan8[0] - 1 + 0  ]=
1326
                    h->ref_cache[list][scan8[0] - 1 + 8  ]=
1327
                    h->ref_cache[list][scan8[0] - 1 + 16 ]=
1328
                    h->ref_cache[list][scan8[0] - 1 + 24 ]= LIST_NOT_USED;
1329
                }
1330
            }
1331
        }
1332
    }
1333

    
1334
    return 0;
1335
}
1336

    
1337
/**
1338
 * gets the predicted intra4x4 prediction mode.
1339
 */
1340
static inline int pred_intra_mode(H264Context *h, int n){
1341
    const int index8= scan8[n];
1342
    const int left= h->intra4x4_pred_mode_cache[index8 - 1];
1343
    const int top = h->intra4x4_pred_mode_cache[index8 - 8];
1344
    const int min= FFMIN(left, top);
1345

    
1346
    tprintf(h->s.avctx, "mode:%d %d min:%d\n", left ,top, min);
1347

    
1348
    if(min<0) return DC_PRED;
1349
    else      return min;
1350
}
1351

    
1352
static inline void write_back_non_zero_count(H264Context *h){
1353
    const int mb_xy= h->mb_xy;
1354

    
1355
    AV_COPY64(&h->non_zero_count[mb_xy][ 0], &h->non_zero_count_cache[0+8*1]);
1356
    AV_COPY64(&h->non_zero_count[mb_xy][ 8], &h->non_zero_count_cache[0+8*2]);
1357
    *((uint32_t*)&h->non_zero_count[mb_xy][16]) = *((uint32_t*)&h->non_zero_count_cache[0+8*5]);
1358
    *((uint32_t*)&h->non_zero_count[mb_xy][20]) = *((uint32_t*)&h->non_zero_count_cache[4+8*3]);
1359
    AV_COPY64(&h->non_zero_count[mb_xy][24], &h->non_zero_count_cache[0+8*4]);
1360
}
1361

    
1362
static inline void write_back_motion(H264Context *h, int mb_type){
1363
    MpegEncContext * const s = &h->s;
1364
    const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
1365
    const int b8_xy= 2*s->mb_x + 2*s->mb_y*h->b8_stride;
1366
    int list;
1367

    
1368
    if(!USES_LIST(mb_type, 0))
1369
        fill_rectangle(&s->current_picture.ref_index[0][b8_xy], 2, 2, h->b8_stride, (uint8_t)LIST_NOT_USED, 1);
1370

    
1371
    for(list=0; list<h->list_count; list++){
1372
        int y, b_stride;
1373
        int16_t (*mv_dst)[2];
1374
        int16_t (*mv_src)[2];
1375

    
1376
        if(!USES_LIST(mb_type, list))
1377
            continue;
1378

    
1379
        b_stride = h->b_stride;
1380
        mv_dst   = &s->current_picture.motion_val[list][b_xy];
1381
        mv_src   = &h->mv_cache[list][scan8[0]];
1382
        for(y=0; y<4; y++){
1383
            AV_COPY128(mv_dst + y*b_stride, mv_src + 8*y);
1384
        }
1385
        if( CABAC ) {
1386
            int16_t (*mvd_dst)[2] = &h->mvd_table[list][b_xy];
1387
            int16_t (*mvd_src)[2] = &h->mvd_cache[list][scan8[0]];
1388
            if(IS_SKIP(mb_type))
1389
                fill_rectangle(mvd_dst, 4, 4, h->b_stride, 0, 4);
1390
            else
1391
            for(y=0; y<4; y++){
1392
                AV_COPY128(mvd_dst + y*b_stride, mvd_src + 8*y);
1393
            }
1394
        }
1395

    
1396
        {
1397
            int8_t *ref_index = &s->current_picture.ref_index[list][b8_xy];
1398
            ref_index[0+0*h->b8_stride]= h->ref_cache[list][scan8[0]];
1399
            ref_index[1+0*h->b8_stride]= h->ref_cache[list][scan8[4]];
1400
            ref_index[0+1*h->b8_stride]= h->ref_cache[list][scan8[8]];
1401
            ref_index[1+1*h->b8_stride]= h->ref_cache[list][scan8[12]];
1402
        }
1403
    }
1404

    
1405
    if(h->slice_type_nos == FF_B_TYPE && CABAC){
1406
        if(IS_8X8(mb_type)){
1407
            uint8_t *direct_table = &h->direct_table[b8_xy];
1408
            direct_table[1+0*h->b8_stride] = IS_DIRECT(h->sub_mb_type[1]) ? 1 : 0;
1409
            direct_table[0+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[2]) ? 1 : 0;
1410
            direct_table[1+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[3]) ? 1 : 0;
1411
        }
1412
    }
1413
}
1414

    
1415
static inline int get_dct8x8_allowed(H264Context *h){
1416
    if(h->sps.direct_8x8_inference_flag)
1417
        return !(*(uint64_t*)h->sub_mb_type & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8                )*0x0001000100010001ULL));
1418
    else
1419
        return !(*(uint64_t*)h->sub_mb_type & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8|MB_TYPE_DIRECT2)*0x0001000100010001ULL));
1420
}
1421

    
1422
static void predict_field_decoding_flag(H264Context *h){
1423
    MpegEncContext * const s = &h->s;
1424
    const int mb_xy= h->mb_xy;
1425
    int mb_type = (h->slice_table[mb_xy-1] == h->slice_num)
1426
                ? s->current_picture.mb_type[mb_xy-1]
1427
                : (h->slice_table[mb_xy-s->mb_stride] == h->slice_num)
1428
                ? s->current_picture.mb_type[mb_xy-s->mb_stride]
1429
                : 0;
1430
    h->mb_mbaff = h->mb_field_decoding_flag = IS_INTERLACED(mb_type) ? 1 : 0;
1431
}
1432

    
1433
/**
1434
 * decodes a P_SKIP or B_SKIP macroblock
1435
 */
1436
static void decode_mb_skip(H264Context *h){
1437
    MpegEncContext * const s = &h->s;
1438
    const int mb_xy= h->mb_xy;
1439
    int mb_type=0;
1440

    
1441
    memset(h->non_zero_count[mb_xy], 0, 32);
1442
    memset(h->non_zero_count_cache + 8, 0, 8*5); //FIXME ugly, remove pfui
1443

    
1444
    if(MB_FIELD)
1445
        mb_type|= MB_TYPE_INTERLACED;
1446

    
1447
    if( h->slice_type_nos == FF_B_TYPE )
1448
    {
1449
        // just for fill_caches. pred_direct_motion will set the real mb_type
1450
        mb_type|= MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2|MB_TYPE_SKIP;
1451

    
1452
        fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
1453
        ff_h264_pred_direct_motion(h, &mb_type);
1454
        mb_type|= MB_TYPE_SKIP;
1455
    }
1456
    else
1457
    {
1458
        int mx, my;
1459
        mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P1L0|MB_TYPE_SKIP;
1460

    
1461
        fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
1462
        pred_pskip_motion(h, &mx, &my);
1463
        fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
1464
        fill_rectangle(  h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx,my), 4);
1465
    }
1466

    
1467
    write_back_motion(h, mb_type);
1468
    s->current_picture.mb_type[mb_xy]= mb_type;
1469
    s->current_picture.qscale_table[mb_xy]= s->qscale;
1470
    h->slice_table[ mb_xy ]= h->slice_num;
1471
    h->prev_mb_skipped= 1;
1472
}
1473

    
1474
#include "h264_mvpred.h" //For pred_pskip_motion()
1475

    
1476
#endif /* AVCODEC_H264_H */