ffmpeg / libavcodec / mpegaudiodec.c @ 59bebb11
History  View  Annotate  Download (72.9 KB)
1 
/*


2 
* MPEG Audio decoder

3 
* Copyright (c) 2001, 2002 Fabrice Bellard

4 
*

5 
* This file is part of FFmpeg.

6 
*

7 
* FFmpeg is free software; you can redistribute it and/or

8 
* modify it under the terms of the GNU Lesser General Public

9 
* License as published by the Free Software Foundation; either

10 
* version 2.1 of the License, or (at your option) any later version.

11 
*

12 
* FFmpeg is distributed in the hope that it will be useful,

13 
* but WITHOUT ANY WARRANTY; without even the implied warranty of

14 
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

15 
* Lesser General Public License for more details.

16 
*

17 
* You should have received a copy of the GNU Lesser General Public

18 
* License along with FFmpeg; if not, write to the Free Software

19 
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 021101301 USA

20 
*/

21  
22 
/**

23 
* @file

24 
* MPEG Audio decoder.

25 
*/

26  
27 
#include "avcodec.h" 
28 
#include "get_bits.h" 
29 
#include "dsputil.h" 
30  
31 
/*

32 
* TODO:

33 
*  in low precision mode, use more 16 bit multiplies in synth filter

34 
*  test lsf / mpeg25 extensively.

35 
*/

36  
37 
#include "mpegaudio.h" 
38 
#include "mpegaudiodecheader.h" 
39  
40 
#include "mathops.h" 
41  
42 
#if CONFIG_FLOAT

43 
# define SHR(a,b) ((a)*(1.0f/(1<<(b)))) 
44 
# define compute_antialias compute_antialias_float

45 
# define FIXR_OLD(a) ((int)((a) * FRAC_ONE + 0.5)) 
46 
# define FIXR(x) ((float)(x)) 
47 
# define FIXHR(x) ((float)(x)) 
48 
# define MULH3(x, y, s) ((s)*(y)*(x))

49 
# define MULLx(x, y, s) ((y)*(x))

50 
# define RENAME(a) a ## _float 
51 
#else

52 
# define SHR(a,b) ((a)>>(b))

53 
# define compute_antialias compute_antialias_integer

54 
/* WARNING: only correct for posititive numbers */

55 
# define FIXR_OLD(a) ((int)((a) * FRAC_ONE + 0.5)) 
56 
# define FIXR(a) ((int)((a) * FRAC_ONE + 0.5)) 
57 
# define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5)) 
58 
# define MULH3(x, y, s) MULH((s)*(x), y)

59 
# define MULLx(x, y, s) MULL(x,y,s)

60 
# define RENAME(a) a

61 
#endif

62  
63 
/****************/

64  
65 
#define HEADER_SIZE 4 
66  
67 
#include "mpegaudiodata.h" 
68 
#include "mpegaudiodectab.h" 
69  
70 
#if CONFIG_FLOAT

71 
# include "fft.h" 
72 
#else

73 
# include "dct32.c" 
74 
#endif

75  
76 
static void compute_antialias(MPADecodeContext *s, GranuleDef *g); 
77 
static void apply_window_mp3_c(MPA_INT *synth_buf, MPA_INT *window, 
78 
int *dither_state, OUT_INT *samples, int incr); 
79  
80 
/* vlc structure for decoding layer 3 huffman tables */

81 
static VLC huff_vlc[16]; 
82 
static VLC_TYPE huff_vlc_tables[

83 
0+128+128+128+130+128+154+166+ 
84 
142+204+190+170+542+460+662+414 
85 
][2];

86 
static const int huff_vlc_tables_sizes[16] = { 
87 
0, 128, 128, 128, 130, 128, 154, 166, 
88 
142, 204, 190, 170, 542, 460, 662, 414 
89 
}; 
90 
static VLC huff_quad_vlc[2]; 
91 
static VLC_TYPE huff_quad_vlc_tables[128+16][2]; 
92 
static const int huff_quad_vlc_tables_sizes[2] = { 
93 
128, 16 
94 
}; 
95 
/* computed from band_size_long */

96 
static uint16_t band_index_long[9][23]; 
97 
#include "mpegaudio_tablegen.h" 
98 
/* intensity stereo coef table */

99 
static INTFLOAT is_table[2][16]; 
100 
static INTFLOAT is_table_lsf[2][2][16]; 
101 
static int32_t csa_table[8][4]; 
102 
static float csa_table_float[8][4]; 
103 
static INTFLOAT mdct_win[8][36]; 
104  
105 
static int16_t division_tab3[1<<6 ]; 
106 
static int16_t division_tab5[1<<8 ]; 
107 
static int16_t division_tab9[1<<11]; 
108  
109 
static int16_t * const division_tabs[4] = { 
110 
division_tab3, division_tab5, NULL, division_tab9

111 
}; 
112  
113 
/* lower 2 bits: modulo 3, higher bits: shift */

114 
static uint16_t scale_factor_modshift[64]; 
115 
/* [i][j]: 2^(j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2)  1) */

116 
static int32_t scale_factor_mult[15][3]; 
117 
/* mult table for layer 2 group quantization */

118  
119 
#define SCALE_GEN(v) \

120 
{ FIXR_OLD(1.0 * (v)), FIXR_OLD(0.7937005259 * (v)), FIXR_OLD(0.6299605249 * (v)) } 
121  
122 
static const int32_t scale_factor_mult2[3][3] = { 
123 
SCALE_GEN(4.0 / 3.0), /* 3 steps */ 
124 
SCALE_GEN(4.0 / 5.0), /* 5 steps */ 
125 
SCALE_GEN(4.0 / 9.0), /* 9 steps */ 
126 
}; 
127  
128 
DECLARE_ALIGNED(16, MPA_INT, RENAME(ff_mpa_synth_window))[512+256]; 
129  
130 
/**

131 
* Convert region offsets to region sizes and truncate

132 
* size to big_values.

133 
*/

134 
static void ff_region_offset2size(GranuleDef *g){ 
135 
int i, k, j=0; 
136 
g>region_size[2] = (576 / 2); 
137 
for(i=0;i<3;i++) { 
138 
k = FFMIN(g>region_size[i], g>big_values); 
139 
g>region_size[i] = k  j; 
140 
j = k; 
141 
} 
142 
} 
143  
144 
static void ff_init_short_region(MPADecodeContext *s, GranuleDef *g){ 
145 
if (g>block_type == 2) 
146 
g>region_size[0] = (36 / 2); 
147 
else {

148 
if (s>sample_rate_index <= 2) 
149 
g>region_size[0] = (36 / 2); 
150 
else if (s>sample_rate_index != 8) 
151 
g>region_size[0] = (54 / 2); 
152 
else

153 
g>region_size[0] = (108 / 2); 
154 
} 
155 
g>region_size[1] = (576 / 2); 
156 
} 
157  
158 
static void ff_init_long_region(MPADecodeContext *s, GranuleDef *g, int ra1, int ra2){ 
159 
int l;

160 
g>region_size[0] =

161 
band_index_long[s>sample_rate_index][ra1 + 1] >> 1; 
162 
/* should not overflow */

163 
l = FFMIN(ra1 + ra2 + 2, 22); 
164 
g>region_size[1] =

165 
band_index_long[s>sample_rate_index][l] >> 1;

166 
} 
167  
168 
static void ff_compute_band_indexes(MPADecodeContext *s, GranuleDef *g){ 
169 
if (g>block_type == 2) { 
170 
if (g>switch_point) {

171 
/* if switched mode, we handle the 36 first samples as

172 
long blocks. For 8000Hz, we handle the 48 first

173 
exponents as long blocks (XXX: check this!) */

174 
if (s>sample_rate_index <= 2) 
175 
g>long_end = 8;

176 
else if (s>sample_rate_index != 8) 
177 
g>long_end = 6;

178 
else

179 
g>long_end = 4; /* 8000 Hz */ 
180  
181 
g>short_start = 2 + (s>sample_rate_index != 8); 
182 
} else {

183 
g>long_end = 0;

184 
g>short_start = 0;

185 
} 
186 
} else {

187 
g>short_start = 13;

188 
g>long_end = 22;

189 
} 
190 
} 
191  
192 
/* layer 1 unscaling */

193 
/* n = number of bits of the mantissa minus 1 */

194 
static inline int l1_unscale(int n, int mant, int scale_factor) 
195 
{ 
196 
int shift, mod;

197 
int64_t val; 
198  
199 
shift = scale_factor_modshift[scale_factor]; 
200 
mod = shift & 3;

201 
shift >>= 2;

202 
val = MUL64(mant + (1 << n) + 1, scale_factor_mult[n1][mod]); 
203 
shift += n; 
204 
/* NOTE: at this point, 1 <= shift >= 21 + 15 */

205 
return (int)((val + (1LL << (shift  1))) >> shift); 
206 
} 
207  
208 
static inline int l2_unscale_group(int steps, int mant, int scale_factor) 
209 
{ 
210 
int shift, mod, val;

211  
212 
shift = scale_factor_modshift[scale_factor]; 
213 
mod = shift & 3;

214 
shift >>= 2;

215  
216 
val = (mant  (steps >> 1)) * scale_factor_mult2[steps >> 2][mod]; 
217 
/* NOTE: at this point, 0 <= shift <= 21 */

218 
if (shift > 0) 
219 
val = (val + (1 << (shift  1))) >> shift; 
220 
return val;

221 
} 
222  
223 
/* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */

224 
static inline int l3_unscale(int value, int exponent) 
225 
{ 
226 
unsigned int m; 
227 
int e;

228  
229 
e = table_4_3_exp [4*value + (exponent&3)]; 
230 
m = table_4_3_value[4*value + (exponent&3)]; 
231 
e = (exponent >> 2);

232 
assert(e>=1);

233 
if (e > 31) 
234 
return 0; 
235 
m = (m + (1 << (e1))) >> e; 
236  
237 
return m;

238 
} 
239  
240 
/* all integer n^(4/3) computation code */

241 
#define DEV_ORDER 13 
242  
243 
#define POW_FRAC_BITS 24 
244 
#define POW_FRAC_ONE (1 << POW_FRAC_BITS) 
245 
#define POW_FIX(a) ((int)((a) * POW_FRAC_ONE)) 
246 
#define POW_MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> POW_FRAC_BITS)

247  
248 
static int dev_4_3_coefs[DEV_ORDER]; 
249  
250 
#if 0 /* unused */

251 
static int pow_mult3[3] = {

252 
POW_FIX(1.0),

253 
POW_FIX(1.25992104989487316476),

254 
POW_FIX(1.58740105196819947474),

255 
};

256 
#endif

257  
258 
static av_cold void int_pow_init(void) 
259 
{ 
260 
int i, a;

261  
262 
a = POW_FIX(1.0); 
263 
for(i=0;i<DEV_ORDER;i++) { 
264 
a = POW_MULL(a, POW_FIX(4.0 / 3.0)  i * POW_FIX(1.0)) / (i + 1); 
265 
dev_4_3_coefs[i] = a; 
266 
} 
267 
} 
268  
269 
#if 0 /* unused, remove? */

270 
/* return the mantissa and the binary exponent */

271 
static int int_pow(int i, int *exp_ptr)

272 
{

273 
int e, er, eq, j;

274 
int a, a1;

275 

276 
/* renormalize */

277 
a = i;

278 
e = POW_FRAC_BITS;

279 
while (a < (1 << (POW_FRAC_BITS  1))) {

280 
a = a << 1;

281 
e;

282 
}

283 
a = (1 << POW_FRAC_BITS);

284 
a1 = 0;

285 
for(j = DEV_ORDER  1; j >= 0; j)

286 
a1 = POW_MULL(a, dev_4_3_coefs[j] + a1);

287 
a = (1 << POW_FRAC_BITS) + a1;

288 
/* exponent compute (exact) */

289 
e = e * 4;

290 
er = e % 3;

291 
eq = e / 3;

292 
a = POW_MULL(a, pow_mult3[er]);

293 
while (a >= 2 * POW_FRAC_ONE) {

294 
a = a >> 1;

295 
eq++;

296 
}

297 
/* convert to float */

298 
while (a < POW_FRAC_ONE) {

299 
a = a << 1;

300 
eq;

301 
}

302 
/* now POW_FRAC_ONE <= a < 2 * POW_FRAC_ONE */

303 
#if POW_FRAC_BITS > FRAC_BITS

304 
a = (a + (1 << (POW_FRAC_BITS  FRAC_BITS  1))) >> (POW_FRAC_BITS  FRAC_BITS);

305 
/* correct overflow */

306 
if (a >= 2 * (1 << FRAC_BITS)) {

307 
a = a >> 1;

308 
eq++;

309 
}

310 
#endif

311 
*exp_ptr = eq; 
312 
return a;

313 
} 
314 
#endif

315  
316 
static av_cold int decode_init(AVCodecContext * avctx) 
317 
{ 
318 
MPADecodeContext *s = avctx>priv_data; 
319 
static int init=0; 
320 
int i, j, k;

321  
322 
s>avctx = avctx; 
323 
s>apply_window_mp3 = apply_window_mp3_c; 
324 
#if HAVE_MMX && CONFIG_FLOAT

325 
ff_mpegaudiodec_init_mmx(s); 
326 
#endif

327 
if (HAVE_ALTIVEC && CONFIG_FLOAT) ff_mpegaudiodec_init_altivec(s);

328  
329 
avctx>sample_fmt= OUT_FMT; 
330 
s>error_recognition= avctx>error_recognition; 
331  
332 
if (!init && !avctx>parse_only) {

333 
int offset;

334  
335 
/* scale factors table for layer 1/2 */

336 
for(i=0;i<64;i++) { 
337 
int shift, mod;

338 
/* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */

339 
shift = (i / 3);

340 
mod = i % 3;

341 
scale_factor_modshift[i] = mod  (shift << 2);

342 
} 
343  
344 
/* scale factor multiply for layer 1 */

345 
for(i=0;i<15;i++) { 
346 
int n, norm;

347 
n = i + 2;

348 
norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n)  1); 
349 
scale_factor_mult[i][0] = MULLx(norm, FIXR(1.0 * 2.0), FRAC_BITS); 
350 
scale_factor_mult[i][1] = MULLx(norm, FIXR(0.7937005259 * 2.0), FRAC_BITS); 
351 
scale_factor_mult[i][2] = MULLx(norm, FIXR(0.6299605249 * 2.0), FRAC_BITS); 
352 
dprintf(avctx, "%d: norm=%x s=%x %x %x\n",

353 
i, norm, 
354 
scale_factor_mult[i][0],

355 
scale_factor_mult[i][1],

356 
scale_factor_mult[i][2]);

357 
} 
358  
359 
#if CONFIG_FLOAT

360 
ff_dct_init(&s>dct, 5, DCT_II);

361 
#endif

362 
RENAME(ff_mpa_synth_init)(RENAME(ff_mpa_synth_window)); 
363  
364 
/* huffman decode tables */

365 
offset = 0;

366 
for(i=1;i<16;i++) { 
367 
const HuffTable *h = &mpa_huff_tables[i];

368 
int xsize, x, y;

369 
uint8_t tmp_bits [512];

370 
uint16_t tmp_codes[512];

371  
372 
memset(tmp_bits , 0, sizeof(tmp_bits )); 
373 
memset(tmp_codes, 0, sizeof(tmp_codes)); 
374  
375 
xsize = h>xsize; 
376  
377 
j = 0;

378 
for(x=0;x<xsize;x++) { 
379 
for(y=0;y<xsize;y++){ 
380 
tmp_bits [(x << 5)  y  ((x&&y)<<4)]= h>bits [j ]; 
381 
tmp_codes[(x << 5)  y  ((x&&y)<<4)]= h>codes[j++]; 
382 
} 
383 
} 
384  
385 
/* XXX: fail test */

386 
huff_vlc[i].table = huff_vlc_tables+offset; 
387 
huff_vlc[i].table_allocated = huff_vlc_tables_sizes[i]; 
388 
init_vlc(&huff_vlc[i], 7, 512, 
389 
tmp_bits, 1, 1, tmp_codes, 2, 2, 
390 
INIT_VLC_USE_NEW_STATIC); 
391 
offset += huff_vlc_tables_sizes[i]; 
392 
} 
393 
assert(offset == FF_ARRAY_ELEMS(huff_vlc_tables)); 
394  
395 
offset = 0;

396 
for(i=0;i<2;i++) { 
397 
huff_quad_vlc[i].table = huff_quad_vlc_tables+offset; 
398 
huff_quad_vlc[i].table_allocated = huff_quad_vlc_tables_sizes[i]; 
399 
init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16, 
400 
mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1, 
401 
INIT_VLC_USE_NEW_STATIC); 
402 
offset += huff_quad_vlc_tables_sizes[i]; 
403 
} 
404 
assert(offset == FF_ARRAY_ELEMS(huff_quad_vlc_tables)); 
405  
406 
for(i=0;i<9;i++) { 
407 
k = 0;

408 
for(j=0;j<22;j++) { 
409 
band_index_long[i][j] = k; 
410 
k += band_size_long[i][j]; 
411 
} 
412 
band_index_long[i][22] = k;

413 
} 
414  
415 
/* compute n ^ (4/3) and store it in mantissa/exp format */

416  
417 
int_pow_init(); 
418 
mpegaudio_tableinit(); 
419  
420 
for (i = 0; i < 4; i++) 
421 
if (ff_mpa_quant_bits[i] < 0) 
422 
for (j = 0; j < (1<<(ff_mpa_quant_bits[i]+1)); j++) { 
423 
int val1, val2, val3, steps;

424 
int val = j;

425 
steps = ff_mpa_quant_steps[i]; 
426 
val1 = val % steps; 
427 
val /= steps; 
428 
val2 = val % steps; 
429 
val3 = val / steps; 
430 
division_tabs[i][j] = val1 + (val2 << 4) + (val3 << 8); 
431 
} 
432  
433  
434 
for(i=0;i<7;i++) { 
435 
float f;

436 
INTFLOAT v; 
437 
if (i != 6) { 
438 
f = tan((double)i * M_PI / 12.0); 
439 
v = FIXR(f / (1.0 + f)); 
440 
} else {

441 
v = FIXR(1.0); 
442 
} 
443 
is_table[0][i] = v;

444 
is_table[1][6  i] = v; 
445 
} 
446 
/* invalid values */

447 
for(i=7;i<16;i++) 
448 
is_table[0][i] = is_table[1][i] = 0.0; 
449  
450 
for(i=0;i<16;i++) { 
451 
double f;

452 
int e, k;

453  
454 
for(j=0;j<2;j++) { 
455 
e = (j + 1) * ((i + 1) >> 1); 
456 
f = pow(2.0, e / 4.0); 
457 
k = i & 1;

458 
is_table_lsf[j][k ^ 1][i] = FIXR(f);

459 
is_table_lsf[j][k][i] = FIXR(1.0); 
460 
dprintf(avctx, "is_table_lsf %d %d: %x %x\n",

461 
i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]); 
462 
} 
463 
} 
464  
465 
for(i=0;i<8;i++) { 
466 
float ci, cs, ca;

467 
ci = ci_table[i]; 
468 
cs = 1.0 / sqrt(1.0 + ci * ci); 
469 
ca = cs * ci; 
470 
csa_table[i][0] = FIXHR(cs/4); 
471 
csa_table[i][1] = FIXHR(ca/4); 
472 
csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4); 
473 
csa_table[i][3] = FIXHR(ca/4)  FIXHR(cs/4); 
474 
csa_table_float[i][0] = cs;

475 
csa_table_float[i][1] = ca;

476 
csa_table_float[i][2] = ca + cs;

477 
csa_table_float[i][3] = ca  cs;

478 
} 
479  
480 
/* compute mdct windows */

481 
for(i=0;i<36;i++) { 
482 
for(j=0; j<4; j++){ 
483 
double d;

484  
485 
if(j==2 && i%3 != 1) 
486 
continue;

487  
488 
d= sin(M_PI * (i + 0.5) / 36.0); 
489 
if(j==1){ 
490 
if (i>=30) d= 0; 
491 
else if(i>=24) d= sin(M_PI * (i  18 + 0.5) / 12.0); 
492 
else if(i>=18) d= 1; 
493 
}else if(j==3){ 
494 
if (i< 6) d= 0; 
495 
else if(i< 12) d= sin(M_PI * (i  6 + 0.5) / 12.0); 
496 
else if(i< 18) d= 1; 
497 
} 
498 
//merge last stage of imdct into the window coefficients

499 
d*= 0.5 / cos(M_PI*(2*i + 19)/72); 
500  
501 
if(j==2) 
502 
mdct_win[j][i/3] = FIXHR((d / (1<<5))); 
503 
else

504 
mdct_win[j][i ] = FIXHR((d / (1<<5))); 
505 
} 
506 
} 
507  
508 
/* NOTE: we do frequency inversion adter the MDCT by changing

509 
the sign of the right window coefs */

510 
for(j=0;j<4;j++) { 
511 
for(i=0;i<36;i+=2) { 
512 
mdct_win[j + 4][i] = mdct_win[j][i];

513 
mdct_win[j + 4][i + 1] = mdct_win[j][i + 1]; 
514 
} 
515 
} 
516  
517 
init = 1;

518 
} 
519  
520 
if (avctx>codec_id == CODEC_ID_MP3ADU)

521 
s>adu_mode = 1;

522 
return 0; 
523 
} 
524  
525  
526 
#if CONFIG_FLOAT

527 
static inline float round_sample(float *sum) 
528 
{ 
529 
float sum1=*sum;

530 
*sum = 0;

531 
return sum1;

532 
} 
533  
534 
/* signed 16x16 > 32 multiply add accumulate */

535 
#define MACS(rt, ra, rb) rt+=(ra)*(rb)

536  
537 
/* signed 16x16 > 32 multiply */

538 
#define MULS(ra, rb) ((ra)*(rb))

539  
540 
#define MLSS(rt, ra, rb) rt=(ra)*(rb)

541  
542 
#elif FRAC_BITS <= 15 
543  
544 
static inline int round_sample(int *sum) 
545 
{ 
546 
int sum1;

547 
sum1 = (*sum) >> OUT_SHIFT; 
548 
*sum &= (1<<OUT_SHIFT)1; 
549 
return av_clip(sum1, OUT_MIN, OUT_MAX);

550 
} 
551  
552 
/* signed 16x16 > 32 multiply add accumulate */

553 
#define MACS(rt, ra, rb) MAC16(rt, ra, rb)

554  
555 
/* signed 16x16 > 32 multiply */

556 
#define MULS(ra, rb) MUL16(ra, rb)

557  
558 
#define MLSS(rt, ra, rb) MLS16(rt, ra, rb)

559  
560 
#else

561  
562 
static inline int round_sample(int64_t *sum) 
563 
{ 
564 
int sum1;

565 
sum1 = (int)((*sum) >> OUT_SHIFT);

566 
*sum &= (1<<OUT_SHIFT)1; 
567 
return av_clip(sum1, OUT_MIN, OUT_MAX);

568 
} 
569  
570 
# define MULS(ra, rb) MUL64(ra, rb)

571 
# define MACS(rt, ra, rb) MAC64(rt, ra, rb)

572 
# define MLSS(rt, ra, rb) MLS64(rt, ra, rb)

573 
#endif

574  
575 
#define SUM8(op, sum, w, p) \

576 
{ \ 
577 
op(sum, (w)[0 * 64], (p)[0 * 64]); \ 
578 
op(sum, (w)[1 * 64], (p)[1 * 64]); \ 
579 
op(sum, (w)[2 * 64], (p)[2 * 64]); \ 
580 
op(sum, (w)[3 * 64], (p)[3 * 64]); \ 
581 
op(sum, (w)[4 * 64], (p)[4 * 64]); \ 
582 
op(sum, (w)[5 * 64], (p)[5 * 64]); \ 
583 
op(sum, (w)[6 * 64], (p)[6 * 64]); \ 
584 
op(sum, (w)[7 * 64], (p)[7 * 64]); \ 
585 
} 
586  
587 
#define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \

588 
{ \ 
589 
INTFLOAT tmp;\ 
590 
tmp = p[0 * 64];\ 
591 
op1(sum1, (w1)[0 * 64], tmp);\ 
592 
op2(sum2, (w2)[0 * 64], tmp);\ 
593 
tmp = p[1 * 64];\ 
594 
op1(sum1, (w1)[1 * 64], tmp);\ 
595 
op2(sum2, (w2)[1 * 64], tmp);\ 
596 
tmp = p[2 * 64];\ 
597 
op1(sum1, (w1)[2 * 64], tmp);\ 
598 
op2(sum2, (w2)[2 * 64], tmp);\ 
599 
tmp = p[3 * 64];\ 
600 
op1(sum1, (w1)[3 * 64], tmp);\ 
601 
op2(sum2, (w2)[3 * 64], tmp);\ 
602 
tmp = p[4 * 64];\ 
603 
op1(sum1, (w1)[4 * 64], tmp);\ 
604 
op2(sum2, (w2)[4 * 64], tmp);\ 
605 
tmp = p[5 * 64];\ 
606 
op1(sum1, (w1)[5 * 64], tmp);\ 
607 
op2(sum2, (w2)[5 * 64], tmp);\ 
608 
tmp = p[6 * 64];\ 
609 
op1(sum1, (w1)[6 * 64], tmp);\ 
610 
op2(sum2, (w2)[6 * 64], tmp);\ 
611 
tmp = p[7 * 64];\ 
612 
op1(sum1, (w1)[7 * 64], tmp);\ 
613 
op2(sum2, (w2)[7 * 64], tmp);\ 
614 
} 
615  
616 
void av_cold RENAME(ff_mpa_synth_init)(MPA_INT *window)

617 
{ 
618 
int i, j;

619  
620 
/* max = 18760, max sum over all 16 coefs : 44736 */

621 
for(i=0;i<257;i++) { 
622 
INTFLOAT v; 
623 
v = ff_mpa_enwindow[i]; 
624 
#if CONFIG_FLOAT

625 
v *= 1.0 / (1LL<<(16 + FRAC_BITS)); 
626 
#elif WFRAC_BITS < 16 
627 
v = (v + (1 << (16  WFRAC_BITS  1))) >> (16  WFRAC_BITS); 
628 
#endif

629 
window[i] = v; 
630 
if ((i & 63) != 0) 
631 
v = v; 
632 
if (i != 0) 
633 
window[512  i] = v;

634 
} 
635  
636 
// Needed for avoiding shuffles in ASM implementations

637 
for(i=0; i < 8; i++) 
638 
for(j=0; j < 16; j++) 
639 
window[512+16*i+j] = window[64*i+32j]; 
640  
641 
for(i=0; i < 8; i++) 
642 
for(j=0; j < 16; j++) 
643 
window[512+128+16*i+j] = window[64*i+48j]; 
644 
} 
645  
646 
static void apply_window_mp3_c(MPA_INT *synth_buf, MPA_INT *window, 
647 
int *dither_state, OUT_INT *samples, int incr) 
648 
{ 
649 
register const MPA_INT *w, *w2, *p; 
650 
int j;

651 
OUT_INT *samples2; 
652 
#if CONFIG_FLOAT

653 
float sum, sum2;

654 
#elif FRAC_BITS <= 15 
655 
int sum, sum2;

656 
#else

657 
int64_t sum, sum2; 
658 
#endif

659  
660 
/* copy to avoid wrap */

661 
memcpy(synth_buf + 512, synth_buf, 32 * sizeof(*synth_buf)); 
662  
663 
samples2 = samples + 31 * incr;

664 
w = window; 
665 
w2 = window + 31;

666  
667 
sum = *dither_state; 
668 
p = synth_buf + 16;

669 
SUM8(MACS, sum, w, p); 
670 
p = synth_buf + 48;

671 
SUM8(MLSS, sum, w + 32, p);

672 
*samples = round_sample(&sum); 
673 
samples += incr; 
674 
w++; 
675  
676 
/* we calculate two samples at the same time to avoid one memory

677 
access per two sample */

678 
for(j=1;j<16;j++) { 
679 
sum2 = 0;

680 
p = synth_buf + 16 + j;

681 
SUM8P2(sum, MACS, sum2, MLSS, w, w2, p); 
682 
p = synth_buf + 48  j;

683 
SUM8P2(sum, MLSS, sum2, MLSS, w + 32, w2 + 32, p); 
684  
685 
*samples = round_sample(&sum); 
686 
samples += incr; 
687 
sum += sum2; 
688 
*samples2 = round_sample(&sum); 
689 
samples2 = incr; 
690 
w++; 
691 
w2; 
692 
} 
693  
694 
p = synth_buf + 32;

695 
SUM8(MLSS, sum, w + 32, p);

696 
*samples = round_sample(&sum); 
697 
*dither_state= sum; 
698 
} 
699  
700  
701 
/* 32 sub band synthesis filter. Input: 32 sub band samples, Output:

702 
32 samples. */

703 
/* XXX: optimize by avoiding ring buffer usage */

704 
#if !CONFIG_FLOAT

705 
void ff_mpa_synth_filter(MPA_INT *synth_buf_ptr, int *synth_buf_offset, 
706 
MPA_INT *window, int *dither_state,

707 
OUT_INT *samples, int incr,

708 
INTFLOAT sb_samples[SBLIMIT]) 
709 
{ 
710 
register MPA_INT *synth_buf;

711 
int offset;

712 
#if FRAC_BITS <= 15 
713 
int32_t tmp[32];

714 
int j;

715 
#endif

716  
717 
offset = *synth_buf_offset; 
718 
synth_buf = synth_buf_ptr + offset; 
719  
720 
#if FRAC_BITS <= 15 
721 
dct32(tmp, sb_samples); 
722 
for(j=0;j<32;j++) { 
723 
/* NOTE: can cause a loss in precision if very high amplitude

724 
sound */

725 
synth_buf[j] = av_clip_int16(tmp[j]); 
726 
} 
727 
#else

728 
dct32(synth_buf, sb_samples); 
729 
#endif

730  
731 
apply_window_mp3_c(synth_buf, window, dither_state, samples, incr); 
732  
733 
offset = (offset  32) & 511; 
734 
*synth_buf_offset = offset; 
735 
} 
736 
#endif

737  
738 
#define C3 FIXHR(0.86602540378443864676/2) 
739  
740 
/* 0.5 / cos(pi*(2*i+1)/36) */

741 
static const INTFLOAT icos36[9] = { 
742 
FIXR(0.50190991877167369479), 
743 
FIXR(0.51763809020504152469), //0 
744 
FIXR(0.55168895948124587824), 
745 
FIXR(0.61038729438072803416), 
746 
FIXR(0.70710678118654752439), //1 
747 
FIXR(0.87172339781054900991), 
748 
FIXR(1.18310079157624925896), 
749 
FIXR(1.93185165257813657349), //2 
750 
FIXR(5.73685662283492756461), 
751 
}; 
752  
753 
/* 0.5 / cos(pi*(2*i+1)/36) */

754 
static const INTFLOAT icos36h[9] = { 
755 
FIXHR(0.50190991877167369479/2), 
756 
FIXHR(0.51763809020504152469/2), //0 
757 
FIXHR(0.55168895948124587824/2), 
758 
FIXHR(0.61038729438072803416/2), 
759 
FIXHR(0.70710678118654752439/2), //1 
760 
FIXHR(0.87172339781054900991/2), 
761 
FIXHR(1.18310079157624925896/4), 
762 
FIXHR(1.93185165257813657349/4), //2 
763 
// FIXHR(5.73685662283492756461),

764 
}; 
765  
766 
/* 12 points IMDCT. We compute it "by hand" by factorizing obvious

767 
cases. */

768 
static void imdct12(INTFLOAT *out, INTFLOAT *in) 
769 
{ 
770 
INTFLOAT in0, in1, in2, in3, in4, in5, t1, t2; 
771  
772 
in0= in[0*3]; 
773 
in1= in[1*3] + in[0*3]; 
774 
in2= in[2*3] + in[1*3]; 
775 
in3= in[3*3] + in[2*3]; 
776 
in4= in[4*3] + in[3*3]; 
777 
in5= in[5*3] + in[4*3]; 
778 
in5 += in3; 
779 
in3 += in1; 
780  
781 
in2= MULH3(in2, C3, 2);

782 
in3= MULH3(in3, C3, 4);

783  
784 
t1 = in0  in4; 
785 
t2 = MULH3(in1  in5, icos36h[4], 2); 
786  
787 
out[ 7]=

788 
out[10]= t1 + t2;

789 
out[ 1]=

790 
out[ 4]= t1  t2;

791  
792 
in0 += SHR(in4, 1);

793 
in4 = in0 + in2; 
794 
in5 += 2*in1;

795 
in1 = MULH3(in5 + in3, icos36h[1], 1); 
796 
out[ 8]=

797 
out[ 9]= in4 + in1;

798 
out[ 2]=

799 
out[ 3]= in4  in1;

800  
801 
in0 = in2; 
802 
in5 = MULH3(in5  in3, icos36h[7], 2); 
803 
out[ 0]=

804 
out[ 5]= in0  in5;

805 
out[ 6]=

806 
out[11]= in0 + in5;

807 
} 
808  
809 
/* cos(pi*i/18) */

810 
#define C1 FIXHR(0.98480775301220805936/2) 
811 
#define C2 FIXHR(0.93969262078590838405/2) 
812 
#define C3 FIXHR(0.86602540378443864676/2) 
813 
#define C4 FIXHR(0.76604444311897803520/2) 
814 
#define C5 FIXHR(0.64278760968653932632/2) 
815 
#define C6 FIXHR(0.5/2) 
816 
#define C7 FIXHR(0.34202014332566873304/2) 
817 
#define C8 FIXHR(0.17364817766693034885/2) 
818  
819  
820 
/* using Lee like decomposition followed by hand coded 9 points DCT */

821 
static void imdct36(INTFLOAT *out, INTFLOAT *buf, INTFLOAT *in, INTFLOAT *win) 
822 
{ 
823 
int i, j;

824 
INTFLOAT t0, t1, t2, t3, s0, s1, s2, s3; 
825 
INTFLOAT tmp[18], *tmp1, *in1;

826  
827 
for(i=17;i>=1;i) 
828 
in[i] += in[i1];

829 
for(i=17;i>=3;i=2) 
830 
in[i] += in[i2];

831  
832 
for(j=0;j<2;j++) { 
833 
tmp1 = tmp + j; 
834 
in1 = in + j; 
835  
836 
t2 = in1[2*4] + in1[2*8]  in1[2*2]; 
837  
838 
t3 = in1[2*0] + SHR(in1[2*6],1); 
839 
t1 = in1[2*0]  in1[2*6]; 
840 
tmp1[ 6] = t1  SHR(t2,1); 
841 
tmp1[16] = t1 + t2;

842  
843 
t0 = MULH3(in1[2*2] + in1[2*4] , C2, 2); 
844 
t1 = MULH3(in1[2*4]  in1[2*8] , 2*C8, 1); 
845 
t2 = MULH3(in1[2*2] + in1[2*8] , C4, 2); 
846  
847 
tmp1[10] = t3  t0  t2;

848 
tmp1[ 2] = t3 + t0 + t1;

849 
tmp1[14] = t3 + t2  t1;

850  
851 
tmp1[ 4] = MULH3(in1[2*5] + in1[2*7]  in1[2*1], C3, 2); 
852 
t2 = MULH3(in1[2*1] + in1[2*5], C1, 2); 
853 
t3 = MULH3(in1[2*5]  in1[2*7], 2*C7, 1); 
854 
t0 = MULH3(in1[2*3], C3, 2); 
855  
856 
t1 = MULH3(in1[2*1] + in1[2*7], C5, 2); 
857  
858 
tmp1[ 0] = t2 + t3 + t0;

859 
tmp1[12] = t2 + t1  t0;

860 
tmp1[ 8] = t3  t1  t0;

861 
} 
862  
863 
i = 0;

864 
for(j=0;j<4;j++) { 
865 
t0 = tmp[i]; 
866 
t1 = tmp[i + 2];

867 
s0 = t1 + t0; 
868 
s2 = t1  t0; 
869  
870 
t2 = tmp[i + 1];

871 
t3 = tmp[i + 3];

872 
s1 = MULH3(t3 + t2, icos36h[j], 2);

873 
s3 = MULLx(t3  t2, icos36[8  j], FRAC_BITS);

874  
875 
t0 = s0 + s1; 
876 
t1 = s0  s1; 
877 
out[(9 + j)*SBLIMIT] = MULH3(t1, win[9 + j], 1) + buf[9 + j]; 
878 
out[(8  j)*SBLIMIT] = MULH3(t1, win[8  j], 1) + buf[8  j]; 
879 
buf[9 + j] = MULH3(t0, win[18 + 9 + j], 1); 
880 
buf[8  j] = MULH3(t0, win[18 + 8  j], 1); 
881  
882 
t0 = s2 + s3; 
883 
t1 = s2  s3; 
884 
out[(9 + 8  j)*SBLIMIT] = MULH3(t1, win[9 + 8  j], 1) + buf[9 + 8  j]; 
885 
out[( j)*SBLIMIT] = MULH3(t1, win[ j], 1) + buf[ j];

886 
buf[9 + 8  j] = MULH3(t0, win[18 + 9 + 8  j], 1); 
887 
buf[ + j] = MULH3(t0, win[18 + j], 1); 
888 
i += 4;

889 
} 
890  
891 
s0 = tmp[16];

892 
s1 = MULH3(tmp[17], icos36h[4], 2); 
893 
t0 = s0 + s1; 
894 
t1 = s0  s1; 
895 
out[(9 + 4)*SBLIMIT] = MULH3(t1, win[9 + 4], 1) + buf[9 + 4]; 
896 
out[(8  4)*SBLIMIT] = MULH3(t1, win[8  4], 1) + buf[8  4]; 
897 
buf[9 + 4] = MULH3(t0, win[18 + 9 + 4], 1); 
898 
buf[8  4] = MULH3(t0, win[18 + 8  4], 1); 
899 
} 
900  
901 
/* return the number of decoded frames */

902 
static int mp_decode_layer1(MPADecodeContext *s) 
903 
{ 
904 
int bound, i, v, n, ch, j, mant;

905 
uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT]; 
906 
uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT]; 
907  
908 
if (s>mode == MPA_JSTEREO)

909 
bound = (s>mode_ext + 1) * 4; 
910 
else

911 
bound = SBLIMIT; 
912  
913 
/* allocation bits */

914 
for(i=0;i<bound;i++) { 
915 
for(ch=0;ch<s>nb_channels;ch++) { 
916 
allocation[ch][i] = get_bits(&s>gb, 4);

917 
} 
918 
} 
919 
for(i=bound;i<SBLIMIT;i++) {

920 
allocation[0][i] = get_bits(&s>gb, 4); 
921 
} 
922  
923 
/* scale factors */

924 
for(i=0;i<bound;i++) { 
925 
for(ch=0;ch<s>nb_channels;ch++) { 
926 
if (allocation[ch][i])

927 
scale_factors[ch][i] = get_bits(&s>gb, 6);

928 
} 
929 
} 
930 
for(i=bound;i<SBLIMIT;i++) {

931 
if (allocation[0][i]) { 
932 
scale_factors[0][i] = get_bits(&s>gb, 6); 
933 
scale_factors[1][i] = get_bits(&s>gb, 6); 
934 
} 
935 
} 
936  
937 
/* compute samples */

938 
for(j=0;j<12;j++) { 
939 
for(i=0;i<bound;i++) { 
940 
for(ch=0;ch<s>nb_channels;ch++) { 
941 
n = allocation[ch][i]; 
942 
if (n) {

943 
mant = get_bits(&s>gb, n + 1);

944 
v = l1_unscale(n, mant, scale_factors[ch][i]); 
945 
} else {

946 
v = 0;

947 
} 
948 
s>sb_samples[ch][j][i] = v; 
949 
} 
950 
} 
951 
for(i=bound;i<SBLIMIT;i++) {

952 
n = allocation[0][i];

953 
if (n) {

954 
mant = get_bits(&s>gb, n + 1);

955 
v = l1_unscale(n, mant, scale_factors[0][i]);

956 
s>sb_samples[0][j][i] = v;

957 
v = l1_unscale(n, mant, scale_factors[1][i]);

958 
s>sb_samples[1][j][i] = v;

959 
} else {

960 
s>sb_samples[0][j][i] = 0; 
961 
s>sb_samples[1][j][i] = 0; 
962 
} 
963 
} 
964 
} 
965 
return 12; 
966 
} 
967  
968 
static int mp_decode_layer2(MPADecodeContext *s) 
969 
{ 
970 
int sblimit; /* number of used subbands */ 
971 
const unsigned char *alloc_table; 
972 
int table, bit_alloc_bits, i, j, ch, bound, v;

973 
unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT]; 
974 
unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT]; 
975 
unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf; 
976 
int scale, qindex, bits, steps, k, l, m, b;

977  
978 
/* select decoding table */

979 
table = ff_mpa_l2_select_table(s>bit_rate / 1000, s>nb_channels,

980 
s>sample_rate, s>lsf); 
981 
sblimit = ff_mpa_sblimit_table[table]; 
982 
alloc_table = ff_mpa_alloc_tables[table]; 
983  
984 
if (s>mode == MPA_JSTEREO)

985 
bound = (s>mode_ext + 1) * 4; 
986 
else

987 
bound = sblimit; 
988  
989 
dprintf(s>avctx, "bound=%d sblimit=%d\n", bound, sblimit);

990  
991 
/* sanity check */

992 
if( bound > sblimit ) bound = sblimit;

993  
994 
/* parse bit allocation */

995 
j = 0;

996 
for(i=0;i<bound;i++) { 
997 
bit_alloc_bits = alloc_table[j]; 
998 
for(ch=0;ch<s>nb_channels;ch++) { 
999 
bit_alloc[ch][i] = get_bits(&s>gb, bit_alloc_bits); 
1000 
} 
1001 
j += 1 << bit_alloc_bits;

1002 
} 
1003 
for(i=bound;i<sblimit;i++) {

1004 
bit_alloc_bits = alloc_table[j]; 
1005 
v = get_bits(&s>gb, bit_alloc_bits); 
1006 
bit_alloc[0][i] = v;

1007 
bit_alloc[1][i] = v;

1008 
j += 1 << bit_alloc_bits;

1009 
} 
1010  
1011 
/* scale codes */

1012 
for(i=0;i<sblimit;i++) { 
1013 
for(ch=0;ch<s>nb_channels;ch++) { 
1014 
if (bit_alloc[ch][i])

1015 
scale_code[ch][i] = get_bits(&s>gb, 2);

1016 
} 
1017 
} 
1018  
1019 
/* scale factors */

1020 
for(i=0;i<sblimit;i++) { 
1021 
for(ch=0;ch<s>nb_channels;ch++) { 
1022 
if (bit_alloc[ch][i]) {

1023 
sf = scale_factors[ch][i]; 
1024 
switch(scale_code[ch][i]) {

1025 
default:

1026 
case 0: 
1027 
sf[0] = get_bits(&s>gb, 6); 
1028 
sf[1] = get_bits(&s>gb, 6); 
1029 
sf[2] = get_bits(&s>gb, 6); 
1030 
break;

1031 
case 2: 
1032 
sf[0] = get_bits(&s>gb, 6); 
1033 
sf[1] = sf[0]; 
1034 
sf[2] = sf[0]; 
1035 
break;

1036 
case 1: 
1037 
sf[0] = get_bits(&s>gb, 6); 
1038 
sf[2] = get_bits(&s>gb, 6); 
1039 
sf[1] = sf[0]; 
1040 
break;

1041 
case 3: 
1042 
sf[0] = get_bits(&s>gb, 6); 
1043 
sf[2] = get_bits(&s>gb, 6); 
1044 
sf[1] = sf[2]; 
1045 
break;

1046 
} 
1047 
} 
1048 
} 
1049 
} 
1050  
1051 
/* samples */

1052 
for(k=0;k<3;k++) { 
1053 
for(l=0;l<12;l+=3) { 
1054 
j = 0;

1055 
for(i=0;i<bound;i++) { 
1056 
bit_alloc_bits = alloc_table[j]; 
1057 
for(ch=0;ch<s>nb_channels;ch++) { 
1058 
b = bit_alloc[ch][i]; 
1059 
if (b) {

1060 
scale = scale_factors[ch][i][k]; 
1061 
qindex = alloc_table[j+b]; 
1062 
bits = ff_mpa_quant_bits[qindex]; 
1063 
if (bits < 0) { 
1064 
int v2;

1065 
/* 3 values at the same time */

1066 
v = get_bits(&s>gb, bits); 
1067 
v2 = division_tabs[qindex][v]; 
1068 
steps = ff_mpa_quant_steps[qindex]; 
1069  
1070 
s>sb_samples[ch][k * 12 + l + 0][i] = 
1071 
l2_unscale_group(steps, v2 & 15, scale);

1072 
s>sb_samples[ch][k * 12 + l + 1][i] = 
1073 
l2_unscale_group(steps, (v2 >> 4) & 15, scale); 
1074 
s>sb_samples[ch][k * 12 + l + 2][i] = 
1075 
l2_unscale_group(steps, v2 >> 8 , scale);

1076 
} else {

1077 
for(m=0;m<3;m++) { 
1078 
v = get_bits(&s>gb, bits); 
1079 
v = l1_unscale(bits  1, v, scale);

1080 
s>sb_samples[ch][k * 12 + l + m][i] = v;

1081 
} 
1082 
} 
1083 
} else {

1084 
s>sb_samples[ch][k * 12 + l + 0][i] = 0; 
1085 
s>sb_samples[ch][k * 12 + l + 1][i] = 0; 
1086 
s>sb_samples[ch][k * 12 + l + 2][i] = 0; 
1087 
} 
1088 
} 
1089 
/* next subband in alloc table */

1090 
j += 1 << bit_alloc_bits;

1091 
} 
1092 
/* XXX: find a way to avoid this duplication of code */

1093 
for(i=bound;i<sblimit;i++) {

1094 
bit_alloc_bits = alloc_table[j]; 
1095 
b = bit_alloc[0][i];

1096 
if (b) {

1097 
int mant, scale0, scale1;

1098 
scale0 = scale_factors[0][i][k];

1099 
scale1 = scale_factors[1][i][k];

1100 
qindex = alloc_table[j+b]; 
1101 
bits = ff_mpa_quant_bits[qindex]; 
1102 
if (bits < 0) { 
1103 
/* 3 values at the same time */

1104 
v = get_bits(&s>gb, bits); 
1105 
steps = ff_mpa_quant_steps[qindex]; 
1106 
mant = v % steps; 
1107 
v = v / steps; 
1108 
s>sb_samples[0][k * 12 + l + 0][i] = 
1109 
l2_unscale_group(steps, mant, scale0); 
1110 
s>sb_samples[1][k * 12 + l + 0][i] = 
1111 
l2_unscale_group(steps, mant, scale1); 
1112 
mant = v % steps; 
1113 
v = v / steps; 
1114 
s>sb_samples[0][k * 12 + l + 1][i] = 
1115 
l2_unscale_group(steps, mant, scale0); 
1116 
s>sb_samples[1][k * 12 + l + 1][i] = 
1117 
l2_unscale_group(steps, mant, scale1); 
1118 
s>sb_samples[0][k * 12 + l + 2][i] = 
1119 
l2_unscale_group(steps, v, scale0); 
1120 
s>sb_samples[1][k * 12 + l + 2][i] = 
1121 
l2_unscale_group(steps, v, scale1); 
1122 
} else {

1123 
for(m=0;m<3;m++) { 
1124 
mant = get_bits(&s>gb, bits); 
1125 
s>sb_samples[0][k * 12 + l + m][i] = 
1126 
l1_unscale(bits  1, mant, scale0);

1127 
s>sb_samples[1][k * 12 + l + m][i] = 
1128 
l1_unscale(bits  1, mant, scale1);

1129 
} 
1130 
} 
1131 
} else {

1132 
s>sb_samples[0][k * 12 + l + 0][i] = 0; 
1133 
s>sb_samples[0][k * 12 + l + 1][i] = 0; 
1134 
s>sb_samples[0][k * 12 + l + 2][i] = 0; 
1135 
s>sb_samples[1][k * 12 + l + 0][i] = 0; 
1136 
s>sb_samples[1][k * 12 + l + 1][i] = 0; 
1137 
s>sb_samples[1][k * 12 + l + 2][i] = 0; 
1138 
} 
1139 
/* next subband in alloc table */

1140 
j += 1 << bit_alloc_bits;

1141 
} 
1142 
/* fill remaining samples to zero */

1143 
for(i=sblimit;i<SBLIMIT;i++) {

1144 
for(ch=0;ch<s>nb_channels;ch++) { 
1145 
s>sb_samples[ch][k * 12 + l + 0][i] = 0; 
1146 
s>sb_samples[ch][k * 12 + l + 1][i] = 0; 
1147 
s>sb_samples[ch][k * 12 + l + 2][i] = 0; 
1148 
} 
1149 
} 
1150 
} 
1151 
} 
1152 
return 3 * 12; 
1153 
} 
1154  
1155 
#define SPLIT(dst,sf,n)\

1156 
if(n==3){\ 
1157 
int m= (sf*171)>>9;\ 
1158 
dst= sf  3*m;\

1159 
sf=m;\ 
1160 
}else if(n==4){\ 
1161 
dst= sf&3;\

1162 
sf>>=2;\

1163 
}else if(n==5){\ 
1164 
int m= (sf*205)>>10;\ 
1165 
dst= sf  5*m;\

1166 
sf=m;\ 
1167 
}else if(n==6){\ 
1168 
int m= (sf*171)>>10;\ 
1169 
dst= sf  6*m;\

1170 
sf=m;\ 
1171 
}else{\

1172 
dst=0;\

1173 
} 
1174  
1175 
static av_always_inline void lsf_sf_expand(int *slen, 
1176 
int sf, int n1, int n2, int n3) 
1177 
{ 
1178 
SPLIT(slen[3], sf, n3)

1179 
SPLIT(slen[2], sf, n2)

1180 
SPLIT(slen[1], sf, n1)

1181 
slen[0] = sf;

1182 
} 
1183  
1184 
static void exponents_from_scale_factors(MPADecodeContext *s, 
1185 
GranuleDef *g, 
1186 
int16_t *exponents) 
1187 
{ 
1188 
const uint8_t *bstab, *pretab;

1189 
int len, i, j, k, l, v0, shift, gain, gains[3]; 
1190 
int16_t *exp_ptr; 
1191  
1192 
exp_ptr = exponents; 
1193 
gain = g>global_gain  210;

1194 
shift = g>scalefac_scale + 1;

1195  
1196 
bstab = band_size_long[s>sample_rate_index]; 
1197 
pretab = mpa_pretab[g>preflag]; 
1198 
for(i=0;i<g>long_end;i++) { 
1199 
v0 = gain  ((g>scale_factors[i] + pretab[i]) << shift) + 400;

1200 
len = bstab[i]; 
1201 
for(j=len;j>0;j) 
1202 
*exp_ptr++ = v0; 
1203 
} 
1204  
1205 
if (g>short_start < 13) { 
1206 
bstab = band_size_short[s>sample_rate_index]; 
1207 
gains[0] = gain  (g>subblock_gain[0] << 3); 
1208 
gains[1] = gain  (g>subblock_gain[1] << 3); 
1209 
gains[2] = gain  (g>subblock_gain[2] << 3); 
1210 
k = g>long_end; 
1211 
for(i=g>short_start;i<13;i++) { 
1212 
len = bstab[i]; 
1213 
for(l=0;l<3;l++) { 
1214 
v0 = gains[l]  (g>scale_factors[k++] << shift) + 400;

1215 
for(j=len;j>0;j) 
1216 
*exp_ptr++ = v0; 
1217 
} 
1218 
} 
1219 
} 
1220 
} 
1221  
1222 
/* handle n = 0 too */

1223 
static inline int get_bitsz(GetBitContext *s, int n) 
1224 
{ 
1225 
if (n == 0) 
1226 
return 0; 
1227 
else

1228 
return get_bits(s, n);

1229 
} 
1230  
1231  
1232 
static void switch_buffer(MPADecodeContext *s, int *pos, int *end_pos, int *end_pos2){ 
1233 
if(s>in_gb.buffer && *pos >= s>gb.size_in_bits){

1234 
s>gb= s>in_gb; 
1235 
s>in_gb.buffer=NULL;

1236 
assert((get_bits_count(&s>gb) & 7) == 0); 
1237 
skip_bits_long(&s>gb, *pos  *end_pos); 
1238 
*end_pos2= 
1239 
*end_pos= *end_pos2 + get_bits_count(&s>gb)  *pos; 
1240 
*pos= get_bits_count(&s>gb); 
1241 
} 
1242 
} 
1243  
1244 
/* Following is a optimized code for

1245 
INTFLOAT v = *src

1246 
if(get_bits1(&s>gb))

1247 
v = v;

1248 
*dst = v;

1249 
*/

1250 
#if CONFIG_FLOAT

1251 
#define READ_FLIP_SIGN(dst,src)\

1252 
v = AV_RN32A(src) ^ (get_bits1(&s>gb)<<31);\

1253 
AV_WN32A(dst, v); 
1254 
#else

1255 
#define READ_FLIP_SIGN(dst,src)\

1256 
v= get_bits1(&s>gb);\ 
1257 
*(dst) = (*(src) ^ v)  v; 
1258 
#endif

1259  
1260 
static int huffman_decode(MPADecodeContext *s, GranuleDef *g, 
1261 
int16_t *exponents, int end_pos2)

1262 
{ 
1263 
int s_index;

1264 
int i;

1265 
int last_pos, bits_left;

1266 
VLC *vlc; 
1267 
int end_pos= FFMIN(end_pos2, s>gb.size_in_bits);

1268  
1269 
/* low frequencies (called big values) */

1270 
s_index = 0;

1271 
for(i=0;i<3;i++) { 
1272 
int j, k, l, linbits;

1273 
j = g>region_size[i]; 
1274 
if (j == 0) 
1275 
continue;

1276 
/* select vlc table */

1277 
k = g>table_select[i]; 
1278 
l = mpa_huff_data[k][0];

1279 
linbits = mpa_huff_data[k][1];

1280 
vlc = &huff_vlc[l]; 
1281  
1282 
if(!l){

1283 
memset(&g>sb_hybrid[s_index], 0, sizeof(*g>sb_hybrid)*2*j); 
1284 
s_index += 2*j;

1285 
continue;

1286 
} 
1287  
1288 
/* read huffcode and compute each couple */

1289 
for(;j>0;j) { 
1290 
int exponent, x, y;

1291 
int v;

1292 
int pos= get_bits_count(&s>gb);

1293  
1294 
if (pos >= end_pos){

1295 
// av_log(NULL, AV_LOG_ERROR, "pos: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);

1296 
switch_buffer(s, &pos, &end_pos, &end_pos2); 
1297 
// av_log(NULL, AV_LOG_ERROR, "new pos: %d %d\n", pos, end_pos);

1298 
if(pos >= end_pos)

1299 
break;

1300 
} 
1301 
y = get_vlc2(&s>gb, vlc>table, 7, 3); 
1302  
1303 
if(!y){

1304 
g>sb_hybrid[s_index ] = 
1305 
g>sb_hybrid[s_index+1] = 0; 
1306 
s_index += 2;

1307 
continue;

1308 
} 
1309  
1310 
exponent= exponents[s_index]; 
1311  
1312 
dprintf(s>avctx, "region=%d n=%d x=%d y=%d exp=%d\n",

1313 
i, g>region_size[i]  j, x, y, exponent); 
1314 
if(y&16){ 
1315 
x = y >> 5;

1316 
y = y & 0x0f;

1317 
if (x < 15){ 
1318 
READ_FLIP_SIGN(g>sb_hybrid+s_index, RENAME(expval_table)[ exponent ]+x) 
1319 
}else{

1320 
x += get_bitsz(&s>gb, linbits); 
1321 
v = l3_unscale(x, exponent); 
1322 
if (get_bits1(&s>gb))

1323 
v = v; 
1324 
g>sb_hybrid[s_index] = v; 
1325 
} 
1326 
if (y < 15){ 
1327 
READ_FLIP_SIGN(g>sb_hybrid+s_index+1, RENAME(expval_table)[ exponent ]+y)

1328 
}else{

1329 
y += get_bitsz(&s>gb, linbits); 
1330 
v = l3_unscale(y, exponent); 
1331 
if (get_bits1(&s>gb))

1332 
v = v; 
1333 
g>sb_hybrid[s_index+1] = v;

1334 
} 
1335 
}else{

1336 
x = y >> 5;

1337 
y = y & 0x0f;

1338 
x += y; 
1339 
if (x < 15){ 
1340 
READ_FLIP_SIGN(g>sb_hybrid+s_index+!!y, RENAME(expval_table)[ exponent ]+x) 
1341 
}else{

1342 
x += get_bitsz(&s>gb, linbits); 
1343 
v = l3_unscale(x, exponent); 
1344 
if (get_bits1(&s>gb))

1345 
v = v; 
1346 
g>sb_hybrid[s_index+!!y] = v; 
1347 
} 
1348 
g>sb_hybrid[s_index+ !y] = 0;

1349 
} 
1350 
s_index+=2;

1351 
} 
1352 
} 
1353  
1354 
/* high frequencies */

1355 
vlc = &huff_quad_vlc[g>count1table_select]; 
1356 
last_pos=0;

1357 
while (s_index <= 572) { 
1358 
int pos, code;

1359 
pos = get_bits_count(&s>gb); 
1360 
if (pos >= end_pos) {

1361 
if (pos > end_pos2 && last_pos){

1362 
/* some encoders generate an incorrect size for this

1363 
part. We must go back into the data */

1364 
s_index = 4;

1365 
skip_bits_long(&s>gb, last_pos  pos); 
1366 
av_log(s>avctx, AV_LOG_INFO, "overread, skip %d enddists: %d %d\n", last_pos  pos, end_pospos, end_pos2pos);

1367 
if(s>error_recognition >= FF_ER_COMPLIANT)

1368 
s_index=0;

1369 
break;

1370 
} 
1371 
// av_log(NULL, AV_LOG_ERROR, "pos2: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);

1372 
switch_buffer(s, &pos, &end_pos, &end_pos2); 
1373 
// av_log(NULL, AV_LOG_ERROR, "new pos2: %d %d %d\n", pos, end_pos, s_index);

1374 
if(pos >= end_pos)

1375 
break;

1376 
} 
1377 
last_pos= pos; 
1378  
1379 
code = get_vlc2(&s>gb, vlc>table, vlc>bits, 1);

1380 
dprintf(s>avctx, "t=%d code=%d\n", g>count1table_select, code);

1381 
g>sb_hybrid[s_index+0]=

1382 
g>sb_hybrid[s_index+1]=

1383 
g>sb_hybrid[s_index+2]=

1384 
g>sb_hybrid[s_index+3]= 0; 
1385 
while(code){

1386 
static const int idxtab[16]={3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0}; 
1387 
int v;

1388 
int pos= s_index+idxtab[code];

1389 
code ^= 8>>idxtab[code];

1390 
READ_FLIP_SIGN(g>sb_hybrid+pos, RENAME(exp_table)+exponents[pos]) 
1391 
} 
1392 
s_index+=4;

1393 
} 
1394 
/* skip extension bits */

1395 
bits_left = end_pos2  get_bits_count(&s>gb); 
1396 
//av_log(NULL, AV_LOG_ERROR, "left:%d buf:%p\n", bits_left, s>in_gb.buffer);

1397 
if (bits_left < 0 && s>error_recognition >= FF_ER_COMPLIANT) { 
1398 
av_log(s>avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);

1399 
s_index=0;

1400 
}else if(bits_left > 0 && s>error_recognition >= FF_ER_AGGRESSIVE){ 
1401 
av_log(s>avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);

1402 
s_index=0;

1403 
} 
1404 
memset(&g>sb_hybrid[s_index], 0, sizeof(*g>sb_hybrid)*(576  s_index)); 
1405 
skip_bits_long(&s>gb, bits_left); 
1406  
1407 
i= get_bits_count(&s>gb); 
1408 
switch_buffer(s, &i, &end_pos, &end_pos2); 
1409  
1410 
return 0; 
1411 
} 
1412  
1413 
/* Reorder short blocks from bitstream order to interleaved order. It

1414 
would be faster to do it in parsing, but the code would be far more

1415 
complicated */

1416 
static void reorder_block(MPADecodeContext *s, GranuleDef *g) 
1417 
{ 
1418 
int i, j, len;

1419 
INTFLOAT *ptr, *dst, *ptr1; 
1420 
INTFLOAT tmp[576];

1421  
1422 
if (g>block_type != 2) 
1423 
return;

1424  
1425 
if (g>switch_point) {

1426 
if (s>sample_rate_index != 8) { 
1427 
ptr = g>sb_hybrid + 36;

1428 
} else {

1429 
ptr = g>sb_hybrid + 48;

1430 
} 
1431 
} else {

1432 
ptr = g>sb_hybrid; 
1433 
} 
1434  
1435 
for(i=g>short_start;i<13;i++) { 
1436 
len = band_size_short[s>sample_rate_index][i]; 
1437 
ptr1 = ptr; 
1438 
dst = tmp; 
1439 
for(j=len;j>0;j) { 
1440 
*dst++ = ptr[0*len];

1441 
*dst++ = ptr[1*len];

1442 
*dst++ = ptr[2*len];

1443 
ptr++; 
1444 
} 
1445 
ptr+=2*len;

1446 
memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1)); 
1447 
} 
1448 
} 
1449  
1450 
#define ISQRT2 FIXR(0.70710678118654752440) 
1451  
1452 
static void compute_stereo(MPADecodeContext *s, 
1453 
GranuleDef *g0, GranuleDef *g1) 
1454 
{ 
1455 
int i, j, k, l;

1456 
int sf_max, sf, len, non_zero_found;

1457 
INTFLOAT (*is_tab)[16], *tab0, *tab1, tmp0, tmp1, v1, v2;

1458 
int non_zero_found_short[3]; 
1459  
1460 
/* intensity stereo */

1461 
if (s>mode_ext & MODE_EXT_I_STEREO) {

1462 
if (!s>lsf) {

1463 
is_tab = is_table; 
1464 
sf_max = 7;

1465 
} else {

1466 
is_tab = is_table_lsf[g1>scalefac_compress & 1];

1467 
sf_max = 16;

1468 
} 
1469  
1470 
tab0 = g0>sb_hybrid + 576;

1471 
tab1 = g1>sb_hybrid + 576;

1472  
1473 
non_zero_found_short[0] = 0; 
1474 
non_zero_found_short[1] = 0; 
1475 
non_zero_found_short[2] = 0; 
1476 
k = (13  g1>short_start) * 3 + g1>long_end  3; 
1477 
for(i = 12;i >= g1>short_start;i) { 
1478 
/* for last band, use previous scale factor */

1479 
if (i != 11) 
1480 
k = 3;

1481 
len = band_size_short[s>sample_rate_index][i]; 
1482 
for(l=2;l>=0;l) { 
1483 
tab0 = len; 
1484 
tab1 = len; 
1485 
if (!non_zero_found_short[l]) {

1486 
/* test if non zero band. if so, stop doing istereo */

1487 
for(j=0;j<len;j++) { 
1488 
if (tab1[j] != 0) { 
1489 
non_zero_found_short[l] = 1;

1490 
goto found1;

1491 
} 
1492 
} 
1493 
sf = g1>scale_factors[k + l]; 
1494 
if (sf >= sf_max)

1495 
goto found1;

1496  
1497 
v1 = is_tab[0][sf];

1498 
v2 = is_tab[1][sf];

1499 
for(j=0;j<len;j++) { 
1500 
tmp0 = tab0[j]; 
1501 
tab0[j] = MULLx(tmp0, v1, FRAC_BITS); 
1502 
tab1[j] = MULLx(tmp0, v2, FRAC_BITS); 
1503 
} 
1504 
} else {

1505 
found1:

1506 
if (s>mode_ext & MODE_EXT_MS_STEREO) {

1507 
/* lower part of the spectrum : do ms stereo

1508 
if enabled */

1509 
for(j=0;j<len;j++) { 
1510 
tmp0 = tab0[j]; 
1511 
tmp1 = tab1[j]; 
1512 
tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS); 
1513 
tab1[j] = MULLx(tmp0  tmp1, ISQRT2, FRAC_BITS); 
1514 
} 
1515 
} 
1516 
} 
1517 
} 
1518 
} 
1519  
1520 
non_zero_found = non_zero_found_short[0] 

1521 
non_zero_found_short[1] 

1522 
non_zero_found_short[2];

1523  
1524 
for(i = g1>long_end  1;i >= 0;i) { 
1525 
len = band_size_long[s>sample_rate_index][i]; 
1526 
tab0 = len; 
1527 
tab1 = len; 
1528 
/* test if non zero band. if so, stop doing istereo */

1529 
if (!non_zero_found) {

1530 
for(j=0;j<len;j++) { 
1531 
if (tab1[j] != 0) { 
1532 
non_zero_found = 1;

1533 
goto found2;

1534 
} 
1535 
} 
1536 
/* for last band, use previous scale factor */

1537 
k = (i == 21) ? 20 : i; 
1538 
sf = g1>scale_factors[k]; 
1539 
if (sf >= sf_max)

1540 
goto found2;

1541 
v1 = is_tab[0][sf];

1542 
v2 = is_tab[1][sf];

1543 
for(j=0;j<len;j++) { 
1544 
tmp0 = tab0[j]; 
1545 
tab0[j] = MULLx(tmp0, v1, FRAC_BITS); 
1546 
tab1[j] = MULLx(tmp0, v2, FRAC_BITS); 
1547 
} 
1548 
} else {

1549 
found2:

1550 
if (s>mode_ext & MODE_EXT_MS_STEREO) {

1551 
/* lower part of the spectrum : do ms stereo

1552 
if enabled */

1553 
for(j=0;j<len;j++) { 
1554 
tmp0 = tab0[j]; 
1555 
tmp1 = tab1[j]; 
1556 
tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS); 
1557 
tab1[j] = MULLx(tmp0  tmp1, ISQRT2, FRAC_BITS); 
1558 
} 
1559 
} 
1560 
} 
1561 
} 
1562 
} else if (s>mode_ext & MODE_EXT_MS_STEREO) { 
1563 
/* ms stereo ONLY */

1564 
/* NOTE: the 1/sqrt(2) normalization factor is included in the

1565 
global gain */

1566 
tab0 = g0>sb_hybrid; 
1567 
tab1 = g1>sb_hybrid; 
1568 
for(i=0;i<576;i++) { 
1569 
tmp0 = tab0[i]; 
1570 
tmp1 = tab1[i]; 
1571 
tab0[i] = tmp0 + tmp1; 
1572 
tab1[i] = tmp0  tmp1; 
1573 
} 
1574 
} 
1575 
} 
1576  
1577 
#if !CONFIG_FLOAT

1578 
static void compute_antialias_integer(MPADecodeContext *s, 
1579 
GranuleDef *g) 
1580 
{ 
1581 
int32_t *ptr, *csa; 
1582 
int n, i;

1583  
1584 
/* we antialias only "long" bands */

1585 
if (g>block_type == 2) { 
1586 
if (!g>switch_point)

1587 
return;

1588 
/* XXX: check this for 8000Hz case */

1589 
n = 1;

1590 
} else {

1591 
n = SBLIMIT  1;

1592 
} 
1593  
1594 
ptr = g>sb_hybrid + 18;

1595 
for(i = n;i > 0;i) { 
1596 
int tmp0, tmp1, tmp2;

1597 
csa = &csa_table[0][0]; 
1598 
#define INT_AA(j) \

1599 
tmp0 = ptr[1j];\

1600 
tmp1 = ptr[ j];\ 
1601 
tmp2= MULH(tmp0 + tmp1, csa[0+4*j]);\ 
1602 
ptr[1j] = 4*(tmp2  MULH(tmp1, csa[2+4*j]));\ 
1603 
ptr[ j] = 4*(tmp2 + MULH(tmp0, csa[3+4*j])); 
1604  
1605 
INT_AA(0)

1606 
INT_AA(1)

1607 
INT_AA(2)

1608 
INT_AA(3)

1609 
INT_AA(4)

1610 
INT_AA(5)

1611 
INT_AA(6)

1612 
INT_AA(7)

1613  
1614 
ptr += 18;

1615 
} 
1616 
} 
1617 
#endif

1618  
1619 
static void compute_imdct(MPADecodeContext *s, 
1620 
GranuleDef *g, 
1621 
INTFLOAT *sb_samples, 
1622 
INTFLOAT *mdct_buf) 
1623 
{ 
1624 
INTFLOAT *win, *win1, *out_ptr, *ptr, *buf, *ptr1; 
1625 
INTFLOAT out2[12];

1626 
int i, j, mdct_long_end, sblimit;

1627  
1628 
/* find last non zero block */

1629 
ptr = g>sb_hybrid + 576;

1630 
ptr1 = g>sb_hybrid + 2 * 18; 
1631 
while (ptr >= ptr1) {

1632 
int32_t *p; 
1633 
ptr = 6;

1634 
p= (int32_t*)ptr; 
1635 
if(p[0]  p[1]  p[2]  p[3]  p[4]  p[5]) 
1636 
break;

1637 
} 
1638 
sblimit = ((ptr  g>sb_hybrid) / 18) + 1; 
1639  
1640 
if (g>block_type == 2) { 
1641 
/* XXX: check for 8000 Hz */

1642 
if (g>switch_point)

1643 
mdct_long_end = 2;

1644 
else

1645 
mdct_long_end = 0;

1646 
} else {

1647 
mdct_long_end = sblimit; 
1648 
} 
1649  
1650 
buf = mdct_buf; 
1651 
ptr = g>sb_hybrid; 
1652 
for(j=0;j<mdct_long_end;j++) { 
1653 
/* apply window & overlap with previous buffer */

1654 
out_ptr = sb_samples + j; 
1655 
/* select window */

1656 
if (g>switch_point && j < 2) 
1657 
win1 = mdct_win[0];

1658 
else

1659 
win1 = mdct_win[g>block_type]; 
1660 
/* select frequency inversion */

1661 
win = win1 + ((4 * 36) & (j & 1)); 
1662 
imdct36(out_ptr, buf, ptr, win); 
1663 
out_ptr += 18*SBLIMIT;

1664 
ptr += 18;

1665 
buf += 18;

1666 
} 
1667 
for(j=mdct_long_end;j<sblimit;j++) {

1668 
/* select frequency inversion */

1669 
win = mdct_win[2] + ((4 * 36) & (j & 1)); 
1670 
out_ptr = sb_samples + j; 
1671  
1672 
for(i=0; i<6; i++){ 
1673 
*out_ptr = buf[i]; 
1674 
out_ptr += SBLIMIT; 
1675 
} 
1676 
imdct12(out2, ptr + 0);

1677 
for(i=0;i<6;i++) { 
1678 
*out_ptr = MULH3(out2[i ], win[i ], 1) + buf[i + 6*1]; 
1679 
buf[i + 6*2] = MULH3(out2[i + 6], win[i + 6], 1); 
1680 
out_ptr += SBLIMIT; 
1681 
} 
1682 
imdct12(out2, ptr + 1);

1683 
for(i=0;i<6;i++) { 
1684 
*out_ptr = MULH3(out2[i ], win[i ], 1) + buf[i + 6*2]; 
1685 
buf[i + 6*0] = MULH3(out2[i + 6], win[i + 6], 1); 
1686 
out_ptr += SBLIMIT; 
1687 
} 
1688 
imdct12(out2, ptr + 2);

1689 
for(i=0;i<6;i++) { 
1690 
buf[i + 6*0] = MULH3(out2[i ], win[i ], 1) + buf[i + 6*0]; 
1691 
buf[i + 6*1] = MULH3(out2[i + 6], win[i + 6], 1); 
1692 
buf[i + 6*2] = 0; 
1693 
} 
1694 
ptr += 18;

1695 
buf += 18;

1696 
} 
1697 
/* zero bands */

1698 
for(j=sblimit;j<SBLIMIT;j++) {

1699 
/* overlap */

1700 
out_ptr = sb_samples + j; 
1701 
for(i=0;i<18;i++) { 
1702 
*out_ptr = buf[i]; 
1703 
buf[i] = 0;

1704 
out_ptr += SBLIMIT; 
1705 
} 
1706 
buf += 18;

1707 
} 
1708 
} 
1709  
1710 
/* main layer3 decoding function */

1711 
static int mp_decode_layer3(MPADecodeContext *s) 
1712 
{ 
1713 
int nb_granules, main_data_begin, private_bits;

1714 
int gr, ch, blocksplit_flag, i, j, k, n, bits_pos;

1715 
GranuleDef *g; 
1716 
int16_t exponents[576]; //FIXME try INTFLOAT 
1717  
1718 
/* read side info */

1719 
if (s>lsf) {

1720 
main_data_begin = get_bits(&s>gb, 8);

1721 
private_bits = get_bits(&s>gb, s>nb_channels); 
1722 
nb_granules = 1;

1723 
} else {

1724 
main_data_begin = get_bits(&s>gb, 9);

1725 
if (s>nb_channels == 2) 
1726 
private_bits = get_bits(&s>gb, 3);

1727 
else

1728 
private_bits = get_bits(&s>gb, 5);

1729 
nb_granules = 2;

1730 
for(ch=0;ch<s>nb_channels;ch++) { 
1731 
s>granules[ch][0].scfsi = 0;/* all scale factors are transmitted */ 
1732 
s>granules[ch][1].scfsi = get_bits(&s>gb, 4); 
1733 
} 
1734 
} 
1735  
1736 
for(gr=0;gr<nb_granules;gr++) { 
1737 
for(ch=0;ch<s>nb_channels;ch++) { 
1738 
dprintf(s>avctx, "gr=%d ch=%d: side_info\n", gr, ch);

1739 
g = &s>granules[ch][gr]; 
1740 
g>part2_3_length = get_bits(&s>gb, 12);

1741 
g>big_values = get_bits(&s>gb, 9);

1742 
if(g>big_values > 288){ 
1743 
av_log(s>avctx, AV_LOG_ERROR, "big_values too big\n");

1744 
return 1; 
1745 
} 
1746  
1747 
g>global_gain = get_bits(&s>gb, 8);

1748 
/* if MS stereo only is selected, we precompute the

1749 
1/sqrt(2) renormalization factor */

1750 
if ((s>mode_ext & (MODE_EXT_MS_STEREO  MODE_EXT_I_STEREO)) ==

1751 
MODE_EXT_MS_STEREO) 
1752 
g>global_gain = 2;

1753 
if (s>lsf)

1754 
g>scalefac_compress = get_bits(&s>gb, 9);

1755 
else

1756 
g>scalefac_compress = get_bits(&s>gb, 4);

1757 
blocksplit_flag = get_bits1(&s>gb); 
1758 
if (blocksplit_flag) {

1759 
g>block_type = get_bits(&s>gb, 2);

1760 
if (g>block_type == 0){ 
1761 
av_log(s>avctx, AV_LOG_ERROR, "invalid block type\n");

1762 
return 1; 
1763 
} 
1764 
g>switch_point = get_bits1(&s>gb); 
1765 
for(i=0;i<2;i++) 
1766 
g>table_select[i] = get_bits(&s>gb, 5);

1767 
for(i=0;i<3;i++) 
1768 
g>subblock_gain[i] = get_bits(&s>gb, 3);

1769 
ff_init_short_region(s, g); 
1770 
} else {

1771 
int region_address1, region_address2;

1772 
g>block_type = 0;

1773 
g>switch_point = 0;

1774 
for(i=0;i<3;i++) 
1775 
g>table_select[i] = get_bits(&s>gb, 5);

1776 
/* compute huffman coded region sizes */

1777 
region_address1 = get_bits(&s>gb, 4);

1778 
region_address2 = get_bits(&s>gb, 3);

1779 
dprintf(s>avctx, "region1=%d region2=%d\n",

1780 
region_address1, region_address2); 
1781 
ff_init_long_region(s, g, region_address1, region_address2); 
1782 
} 
1783 
ff_region_offset2size(g); 
1784 
ff_compute_band_indexes(s, g); 
1785  
1786 
g>preflag = 0;

1787 
if (!s>lsf)

1788 
g>preflag = get_bits1(&s>gb); 
1789 
g>scalefac_scale = get_bits1(&s>gb); 
1790 
g>count1table_select = get_bits1(&s>gb); 
1791 
dprintf(s>avctx, "block_type=%d switch_point=%d\n",

1792 
g>block_type, g>switch_point); 
1793 
} 
1794 
} 
1795  
1796 
if (!s>adu_mode) {

1797 
const uint8_t *ptr = s>gb.buffer + (get_bits_count(&s>gb)>>3); 
1798 
assert((get_bits_count(&s>gb) & 7) == 0); 
1799 
/* now we get bits from the main_data_begin offset */

1800 
dprintf(s>avctx, "seekback: %d\n", main_data_begin);

1801 
//av_log(NULL, AV_LOG_ERROR, "backstep:%d, lastbuf:%d\n", main_data_begin, s>last_buf_size);

1802  
1803 
memcpy(s>last_buf + s>last_buf_size, ptr, EXTRABYTES); 
1804 
s>in_gb= s>gb; 
1805 
init_get_bits(&s>gb, s>last_buf, s>last_buf_size*8);

1806 
skip_bits_long(&s>gb, 8*(s>last_buf_size  main_data_begin));

1807 
} 
1808  
1809 
for(gr=0;gr<nb_granules;gr++) { 
1810 
for(ch=0;ch<s>nb_channels;ch++) { 
1811 
g = &s>granules[ch][gr]; 
1812 
if(get_bits_count(&s>gb)<0){ 
1813 
av_log(s>avctx, AV_LOG_DEBUG, "mdb:%d, lastbuf:%d skipping granule %d\n",

1814 
main_data_begin, s>last_buf_size, gr); 
1815 
skip_bits_long(&s>gb, g>part2_3_length); 
1816 
memset(g>sb_hybrid, 0, sizeof(g>sb_hybrid)); 
1817 
if(get_bits_count(&s>gb) >= s>gb.size_in_bits && s>in_gb.buffer){

1818 
skip_bits_long(&s>in_gb, get_bits_count(&s>gb)  s>gb.size_in_bits); 
1819 
s>gb= s>in_gb; 
1820 
s>in_gb.buffer=NULL;

1821 
} 
1822 
continue;

1823 
} 
1824  
1825 
bits_pos = get_bits_count(&s>gb); 
1826  
1827 
if (!s>lsf) {

1828 
uint8_t *sc; 
1829 
int slen, slen1, slen2;

1830  
1831 
/* MPEG1 scale factors */

1832 
slen1 = slen_table[0][g>scalefac_compress];

1833 
slen2 = slen_table[1][g>scalefac_compress];

1834 
dprintf(s>avctx, "slen1=%d slen2=%d\n", slen1, slen2);

1835 
if (g>block_type == 2) { 
1836 
n = g>switch_point ? 17 : 18; 
1837 
j = 0;

1838 
if(slen1){

1839 
for(i=0;i<n;i++) 
1840 
g>scale_factors[j++] = get_bits(&s>gb, slen1); 
1841 
}else{

1842 
for(i=0;i<n;i++) 
1843 
g>scale_factors[j++] = 0;

1844 
} 
1845 
if(slen2){

1846 
for(i=0;i<18;i++) 
1847 
g>scale_factors[j++] = get_bits(&s>gb, slen2); 
1848 
for(i=0;i<3;i++) 
1849 
g>scale_factors[j++] = 0;

1850 
}else{

1851 
for(i=0;i<21;i++) 
1852 
g>scale_factors[j++] = 0;

1853 
} 
1854 
} else {

1855 
sc = s>granules[ch][0].scale_factors;

1856 
j = 0;

1857 
for(k=0;k<4;k++) { 
1858 
n = (k == 0 ? 6 : 5); 
1859 
if ((g>scfsi & (0x8 >> k)) == 0) { 
1860 
slen = (k < 2) ? slen1 : slen2;

1861 
if(slen){

1862 
for(i=0;i<n;i++) 
1863 
g>scale_factors[j++] = get_bits(&s>gb, slen); 
1864 
}else{

1865 
for(i=0;i<n;i++) 
1866 
g>scale_factors[j++] = 0;

1867 
} 
1868 
} else {

1869 
/* simply copy from last granule */

1870 
for(i=0;i<n;i++) { 
1871 
g>scale_factors[j] = sc[j]; 
1872 
j++; 
1873 
} 
1874 
} 
1875 
} 
1876 
g>scale_factors[j++] = 0;

1877 
} 
1878 
} else {

1879 
int tindex, tindex2, slen[4], sl, sf; 
1880  
1881 
/* LSF scale factors */

1882 
if (g>block_type == 2) { 
1883 
tindex = g>switch_point ? 2 : 1; 
1884 
} else {

1885 
tindex = 0;

1886 
} 
1887 
sf = g>scalefac_compress; 
1888 
if ((s>mode_ext & MODE_EXT_I_STEREO) && ch == 1) { 
1889 
/* intensity stereo case */

1890 
sf >>= 1;

1891 
if (sf < 180) { 
1892 
lsf_sf_expand(slen, sf, 6, 6, 0); 
1893 
tindex2 = 3;

1894 
} else if (sf < 244) { 
1895 
lsf_sf_expand(slen, sf  180, 4, 4, 0); 
1896 
tindex2 = 4;

1897 
} else {

1898 
lsf_sf_expand(slen, sf  244, 3, 0, 0); 
1899 
tindex2 = 5;

1900 
} 
1901 
} else {

1902 
/* normal case */

1903 
if (sf < 400) { 
1904 
lsf_sf_expand(slen, sf, 5, 4, 4); 
1905 
tindex2 = 0;

1906 
} else if (sf < 500) { 
1907 
lsf_sf_expand(slen, sf  400, 5, 4, 0); 
1908 
tindex2 = 1;

1909 
} else {

1910 
lsf_sf_expand(slen, sf  500, 3, 0, 0); 
1911 
tindex2 = 2;

1912 
g>preflag = 1;

1913 
} 
1914 
} 
1915  
1916 
j = 0;

1917 
for(k=0;k<4;k++) { 
1918 
n = lsf_nsf_table[tindex2][tindex][k]; 
1919 
sl = slen[k]; 
1920 
if(sl){

1921 
for(i=0;i<n;i++) 
1922 
g>scale_factors[j++] = get_bits(&s>gb, sl); 
1923 
}else{

1924 
for(i=0;i<n;i++) 
1925 
g>scale_factors[j++] = 0;

1926 
} 
1927 
} 
1928 
/* XXX: should compute exact size */

1929 
for(;j<40;j++) 
1930 
g>scale_factors[j] = 0;

1931 
} 
1932  
1933 
exponents_from_scale_factors(s, g, exponents); 
1934  
1935 
/* read Huffman coded residue */

1936 
huffman_decode(s, g, exponents, bits_pos + g>part2_3_length); 
1937 
} /* ch */

1938  
1939 
if (s>nb_channels == 2) 
1940 
compute_stereo(s, &s>granules[0][gr], &s>granules[1][gr]); 
1941  
1942 
for(ch=0;ch<s>nb_channels;ch++) { 
1943 
g = &s>granules[ch][gr]; 
1944  
1945 
reorder_block(s, g); 
1946 
compute_antialias(s, g); 
1947 
compute_imdct(s, g, &s>sb_samples[ch][18 * gr][0], s>mdct_buf[ch]); 
1948 
} 
1949 
} /* gr */

1950 
if(get_bits_count(&s>gb)<0) 
1951 
skip_bits_long(&s>gb, get_bits_count(&s>gb)); 
1952 
return nb_granules * 18; 
1953 
} 
1954  
1955 
static int mp_decode_frame(MPADecodeContext *s, 
1956 
OUT_INT *samples, const uint8_t *buf, int buf_size) 
1957 
{ 
1958 
int i, nb_frames, ch;

1959 
OUT_INT *samples_ptr; 
1960  
1961 
init_get_bits(&s>gb, buf + HEADER_SIZE, (buf_size  HEADER_SIZE)*8);

1962  
1963 
/* skip error protection field */

1964 
if (s>error_protection)

1965 
skip_bits(&s>gb, 16);

1966  
1967 
dprintf(s>avctx, "frame %d:\n", s>frame_count);

1968 
switch(s>layer) {

1969 
case 1: 
1970 
s>avctx>frame_size = 384;

1971 
nb_frames = mp_decode_layer1(s); 
1972 
break;

1973 
case 2: 
1974 
s>avctx>frame_size = 1152;

1975 
nb_frames = mp_decode_layer2(s); 
1976 
break;

1977 
case 3: 
1978 
s>avctx>frame_size = s>lsf ? 576 : 1152; 
1979 
default:

1980 
nb_frames = mp_decode_layer3(s); 
1981  
1982 
s>last_buf_size=0;

1983 
if(s>in_gb.buffer){

1984 
align_get_bits(&s>gb); 
1985 
i= get_bits_left(&s>gb)>>3;

1986 
if(i >= 0 && i <= BACKSTEP_SIZE){ 
1987 
memmove(s>last_buf, s>gb.buffer + (get_bits_count(&s>gb)>>3), i);

1988 
s>last_buf_size=i; 
1989 
}else

1990 
av_log(s>avctx, AV_LOG_ERROR, "invalid old backstep %d\n", i);

1991 
s>gb= s>in_gb; 
1992 
s>in_gb.buffer= NULL;

1993 
} 
1994  
1995 
align_get_bits(&s>gb); 
1996 
assert((get_bits_count(&s>gb) & 7) == 0); 
1997 
i= get_bits_left(&s>gb)>>3;

1998  
1999 
if(i<0  i > BACKSTEP_SIZE  nb_frames<0){ 
2000 
if(i<0) 
2001 
av_log(s>avctx, AV_LOG_ERROR, "invalid new backstep %d\n", i);

2002 
i= FFMIN(BACKSTEP_SIZE, buf_size  HEADER_SIZE); 
2003 
} 
2004 
assert(i <= buf_size  HEADER_SIZE && i>= 0);

2005 
memcpy(s>last_buf + s>last_buf_size, s>gb.buffer + buf_size  HEADER_SIZE  i, i); 
2006 
s>last_buf_size += i; 
2007  
2008 
break;

2009 
} 
2010  
2011 
/* apply the synthesis filter */

2012 
for(ch=0;ch<s>nb_channels;ch++) { 
2013 
samples_ptr = samples + ch; 
2014 
for(i=0;i<nb_frames;i++) { 
2015 
RENAME(ff_mpa_synth_filter)( 
2016 
#if CONFIG_FLOAT

2017 
s, 
2018 
#endif

2019 
s>synth_buf[ch], &(s>synth_buf_offset[ch]), 
2020 
RENAME(ff_mpa_synth_window), &s>dither_state, 
2021 
samples_ptr, s>nb_channels, 
2022 
s>sb_samples[ch][i]); 
2023 
samples_ptr += 32 * s>nb_channels;

2024 
} 
2025 
} 
2026  
2027 
return nb_frames * 32 * sizeof(OUT_INT) * s>nb_channels; 
2028 
} 
2029  
2030 
static int decode_frame(AVCodecContext * avctx, 
2031 
void *data, int *data_size, 
2032 
AVPacket *avpkt) 
2033 
{ 
2034 
const uint8_t *buf = avpkt>data;

2035 
int buf_size = avpkt>size;

2036 
MPADecodeContext *s = avctx>priv_data; 
2037 
uint32_t header; 
2038 
int out_size;

2039 
OUT_INT *out_samples = data; 
2040  
2041 
if(buf_size < HEADER_SIZE)

2042 
return 1; 
2043  
2044 
header = AV_RB32(buf); 
2045 
if(ff_mpa_check_header(header) < 0){ 
2046 
av_log(avctx, AV_LOG_ERROR, "Header missing\n");

2047 
return 1; 
2048 
} 
2049  
2050 
if (ff_mpegaudio_decode_header((MPADecodeHeader *)s, header) == 1) { 
2051 
/* free format: prepare to compute frame size */

2052 
s>frame_size = 1;

2053 
return 1; 
2054 
} 
2055 
/* update codec info */

2056 
avctx>channels = s>nb_channels; 
2057 
avctx>bit_rate = s>bit_rate; 
2058 
avctx>sub_id = s>layer; 
2059  
2060 
if(*data_size < 1152*avctx>channels*sizeof(OUT_INT)) 
2061 
return 1; 
2062 
*data_size = 0;

2063  
2064 
if(s>frame_size<=0  s>frame_size > buf_size){ 
2065 
av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");

2066 
return 1; 
2067 
}else if(s>frame_size < buf_size){ 
2068 
av_log(avctx, AV_LOG_ERROR, "incorrect frame size\n");

2069 
buf_size= s>frame_size; 
2070 
} 
2071  
2072 
out_size = mp_decode_frame(s, out_samples, buf, buf_size); 
2073 
if(out_size>=0){ 
2074 
*data_size = out_size; 
2075 
avctx>sample_rate = s>sample_rate; 
2076 
//FIXME maybe move the other codec info stuff from above here too

2077 
}else

2078 
av_log(avctx, AV_LOG_DEBUG, "Error while decoding MPEG audio frame.\n"); //FIXME return 1 / but also return the number of bytes consumed 
2079 
s>frame_size = 0;

2080 
return buf_size;

2081 
} 
2082  
2083 
static void flush(AVCodecContext *avctx){ 
2084 
MPADecodeContext *s = avctx>priv_data; 
2085 
memset(s>synth_buf, 0, sizeof(s>synth_buf)); 
2086 
s>last_buf_size= 0;

2087 
} 
2088  
2089 
#if CONFIG_MP3ADU_DECODER  CONFIG_MP3ADUFLOAT_DECODER

2090 
static int decode_frame_adu(AVCodecContext * avctx, 
2091 
void *data, int *data_size, 
2092 
AVPacket *avpkt) 
2093 
{ 
2094 
const uint8_t *buf = avpkt>data;

2095 
int buf_size = avpkt>size;

2096 
MPADecodeContext *s = avctx>priv_data; 
2097 
uint32_t header; 
2098 
int len, out_size;

2099 
OUT_INT *out_samples = data; 
2100  
2101 
len = buf_size; 
2102  
2103 
// Discard too short frames

2104 
if (buf_size < HEADER_SIZE) {

2105 
*data_size = 0;

2106 
return buf_size;

2107 
} 
2108  
2109  
2110 
if (len > MPA_MAX_CODED_FRAME_SIZE)

2111 
len = MPA_MAX_CODED_FRAME_SIZE; 
2112  
2113 
// Get header and restore sync word

2114 
header = AV_RB32(buf)  0xffe00000;

2115  
2116 
if (ff_mpa_check_header(header) < 0) { // Bad header, discard frame 
2117 
*data_size = 0;

2118 
return buf_size;

2119 
} 
2120  
2121 
ff_mpegaudio_decode_header((MPADecodeHeader *)s, header); 
2122 
/* update codec info */

2123 
avctx>sample_rate = s>sample_rate; 
2124 
avctx>channels = s>nb_channels; 
2125 
avctx>bit_rate = s>bit_rate; 
2126 
avctx>sub_id = s>layer; 
2127  
2128 
s>frame_size = len; 
2129  
2130 
if (avctx>parse_only) {

2131 
out_size = buf_size; 
2132 
} else {

2133 
out_size = mp_decode_frame(s, out_samples, buf, buf_size); 
2134 
} 
2135  
2136 
*data_size = out_size; 
2137 
return buf_size;

2138 
} 
2139 
#endif /* CONFIG_MP3ADU_DECODER  CONFIG_MP3ADUFLOAT_DECODER */ 
2140  
2141 
#if CONFIG_MP3ON4_DECODER  CONFIG_MP3ON4FLOAT_DECODER

2142  
2143 
/**

2144 
* Context for MP3On4 decoder

2145 
*/

2146 
typedef struct MP3On4DecodeContext { 
2147 
int frames; ///< number of mp3 frames per block (number of mp3 decoder instances) 
2148 
int syncword; ///< syncword patch 
2149 
const uint8_t *coff; ///< channels offsets in output buffer 
2150 
MPADecodeContext *mp3decctx[5]; ///< MPADecodeContext for every decoder instance 
2151 
} MP3On4DecodeContext; 
2152  
2153 
#include "mpeg4audio.h" 
2154  
2155 
/* Next 3 arrays are indexed by channel config number (passed via codecdata) */

2156 
static const uint8_t mp3Frames[8] = {0,1,1,2,3,3,4,5}; /* number of mp3 decoder instances */ 
2157 
/* offsets into output buffer, assume output order is FL FR BL BR C LFE */

2158 
static const uint8_t chan_offset[8][5] = { 
2159 
{0},

2160 
{0}, // C 
2161 
{0}, // FLR 
2162 
{2,0}, // C FLR 
2163 
{2,0,3}, // C FLR BS 
2164 
{4,0,2}, // C FLR BLRS 
2165 
{4,0,2,5}, // C FLR BLRS LFE 
2166 
{4,0,2,6,5}, // C FLR BLRS BLR LFE 
2167 
}; 
2168  
2169  
2170 
static int decode_init_mp3on4(AVCodecContext * avctx) 
2171 
{ 
2172 
MP3On4DecodeContext *s = avctx>priv_data; 
2173 
MPEG4AudioConfig cfg; 
2174 
int i;

2175  
2176 
if ((avctx>extradata_size < 2)  (avctx>extradata == NULL)) { 
2177 
av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");

2178 
return 1; 
2179 
} 
2180  
2181 
ff_mpeg4audio_get_config(&cfg, avctx>extradata, avctx>extradata_size); 
2182 
if (!cfg.chan_config  cfg.chan_config > 7) { 
2183 
av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");

2184 
return 1; 
2185 
} 
2186 
s>frames = mp3Frames[cfg.chan_config]; 
2187 
s>coff = chan_offset[cfg.chan_config]; 
2188 
avctx>channels = ff_mpeg4audio_channels[cfg.chan_config]; 
2189  
2190 
if (cfg.sample_rate < 16000) 
2191 
s>syncword = 0xffe00000;

2192 
else

2193 
s>syncword = 0xfff00000;

2194  
2195 
/* Init the first mp3 decoder in standard way, so that all tables get builded

2196 
* We replace avctx>priv_data with the context of the first decoder so that

2197 
* decode_init() does not have to be changed.

2198 
* Other decoders will be initialized here copying data from the first context

2199 
*/

2200 
// Allocate zeroed memory for the first decoder context

2201 
s>mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext)); 
2202 
// Put decoder context in place to make init_decode() happy

2203 
avctx>priv_data = s>mp3decctx[0];

2204 
decode_init(avctx); 
2205 
// Restore mp3on4 context pointer

2206 
avctx>priv_data = s; 
2207 
s>mp3decctx[0]>adu_mode = 1; // Set adu mode 
2208  
2209 
/* Create a separate codec/context for each frame (first is already ok).

2210 
* Each frame is 1 or 2 channels  up to 5 frames allowed

2211 
*/

2212 
for (i = 1; i < s>frames; i++) { 
2213 
s>mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));

2214 
s>mp3decctx[i]>adu_mode = 1;

2215 
s>mp3decctx[i]>avctx = avctx; 
2216 
} 
2217  
2218 
return 0; 
2219 
} 
2220  
2221  
2222 
static av_cold int decode_close_mp3on4(AVCodecContext * avctx) 
2223 
{ 
2224 
MP3On4DecodeContext *s = avctx>priv_data; 
2225 
int i;

2226  
2227 
for (i = 0; i < s>frames; i++) 
2228 
if (s>mp3decctx[i])

2229 
av_free(s>mp3decctx[i]); 
2230  
2231 
return 0; 
2232 
} 
2233  
2234  
2235 
static int decode_frame_mp3on4(AVCodecContext * avctx, 
2236 
void *data, int *data_size, 
2237 
AVPacket *avpkt) 
2238 
{ 
2239 
const uint8_t *buf = avpkt>data;

2240 
int buf_size = avpkt>size;

2241 
MP3On4DecodeContext *s = avctx>priv_data; 
2242 
MPADecodeContext *m; 
2243 
int fsize, len = buf_size, out_size = 0; 
2244 
uint32_t header; 
2245 
OUT_INT *out_samples = data; 
2246 
OUT_INT decoded_buf[MPA_FRAME_SIZE * MPA_MAX_CHANNELS]; 
2247 
OUT_INT *outptr, *bp; 
2248 
int fr, j, n;

2249  
2250 
if(*data_size < MPA_FRAME_SIZE * MPA_MAX_CHANNELS * s>frames * sizeof(OUT_INT)) 
2251 
return 1; 
2252  
2253 
*data_size = 0;

2254 
// Discard too short frames

2255 
if (buf_size < HEADER_SIZE)

2256 
return 1; 
2257  
2258 
// If only one decoder interleave is not needed

2259 
outptr = s>frames == 1 ? out_samples : decoded_buf;

2260  
2261 
avctx>bit_rate = 0;

2262  
2263 
for (fr = 0; fr < s>frames; fr++) { 
2264 
fsize = AV_RB16(buf) >> 4;

2265 
fsize = FFMIN3(fsize, len, MPA_MAX_CODED_FRAME_SIZE); 
2266 
m = s>mp3decctx[fr]; 
2267 
assert (m != NULL);

2268  
2269 
header = (AV_RB32(buf) & 0x000fffff)  s>syncword; // patch header 
2270  
2271 
if (ff_mpa_check_header(header) < 0) // Bad header, discard block 
2272 
break;

2273  
2274 
ff_mpegaudio_decode_header((MPADecodeHeader *)m, header); 
2275 
out_size += mp_decode_frame(m, outptr, buf, fsize); 
2276 
buf += fsize; 
2277 
len = fsize; 
2278  
2279 
if(s>frames > 1) { 
2280 
n = m>avctx>frame_size*m>nb_channels; 
2281 
/* interleave output data */

2282 
bp = out_samples + s>coff[fr]; 
2283 
if(m>nb_channels == 1) { 
2284 
for(j = 0; j < n; j++) { 
2285 
*bp = decoded_buf[j]; 
2286 
bp += avctx>channels; 
2287 
} 
2288 
} else {

2289 
for(j = 0; j < n; j++) { 
2290 
bp[0] = decoded_buf[j++];

2291 
bp[1] = decoded_buf[j];

2292 
bp += avctx>channels; 
2293 
} 
2294 
} 
2295 
} 
2296 
avctx>bit_rate += m>bit_rate; 
2297 
} 
2298  
2299 
/* update codec info */

2300 
avctx>sample_rate = s>mp3decctx[0]>sample_rate;

2301  
2302 
*data_size = out_size; 
2303 
return buf_size;

2304 
} 
2305 
#endif /* CONFIG_MP3ON4_DECODER  CONFIG_MP3ON4FLOAT_DECODER */ 
2306  
2307 
#if !CONFIG_FLOAT

2308 
#if CONFIG_MP1_DECODER

2309 
AVCodec mp1_decoder = 
2310 
{ 
2311 
"mp1",

2312 
AVMEDIA_TYPE_AUDIO, 
2313 
CODEC_ID_MP1, 
2314 
sizeof(MPADecodeContext),

2315 
decode_init, 
2316 
NULL,

2317 
NULL,

2318 
decode_frame, 
2319 
CODEC_CAP_PARSE_ONLY, 
2320 
.flush= flush, 
2321 
.long_name= NULL_IF_CONFIG_SMALL("MP1 (MPEG audio layer 1)"),

2322 
}; 
2323 
#endif

2324 
#if CONFIG_MP2_DECODER

2325 
AVCodec mp2_decoder = 
2326 
{ 
2327 
"mp2",

2328 
AVMEDIA_TYPE_AUDIO, 
2329 
CODEC_ID_MP2, 
2330 
sizeof(MPADecodeContext),

2331 
decode_init, 
2332 
NULL,

2333 
NULL,

2334 
decode_frame, 
2335 
CODEC_CAP_PARSE_ONLY, 
2336 
.flush= flush, 
2337 
.long_name= NULL_IF_CONFIG_SMALL("MP2 (MPEG audio layer 2)"),

2338 
}; 
2339 
#endif

2340 
#if CONFIG_MP3_DECODER

2341 
AVCodec mp3_decoder = 
2342 
{ 
2343 
"mp3",

2344 
AVMEDIA_TYPE_AUDIO, 
2345 
CODEC_ID_MP3, 
2346 
sizeof(MPADecodeContext),

2347 
decode_init, 
2348 
NULL,

2349 
NULL,

2350 
decode_frame, 
2351 
CODEC_CAP_PARSE_ONLY, 
2352 
.flush= flush, 
2353 
.long_name= NULL_IF_CONFIG_SMALL("MP3 (MPEG audio layer 3)"),

2354 
}; 
2355 
#endif

2356 
#if CONFIG_MP3ADU_DECODER

2357 
AVCodec mp3adu_decoder = 
2358 
{ 
2359 
"mp3adu",

2360 
AVMEDIA_TYPE_AUDIO, 
2361 
CODEC_ID_MP3ADU, 
2362 
sizeof(MPADecodeContext),

2363 
decode_init, 
2364 
NULL,

2365 
NULL,

2366 
decode_frame_adu, 
2367 
CODEC_CAP_PARSE_ONLY, 
2368 
.flush= flush, 
2369 
.long_name= NULL_IF_CONFIG_SMALL("ADU (Application Data Unit) MP3 (MPEG audio layer 3)"),

2370 
}; 
2371 
#endif

2372 
#if CONFIG_MP3ON4_DECODER

2373 
AVCodec mp3on4_decoder = 
2374 
{ 
2375 
"mp3on4",

2376 
AVMEDIA_TYPE_AUDIO, 
2377 
CODEC_ID_MP3ON4, 
2378 
sizeof(MP3On4DecodeContext),

2379 
decode_init_mp3on4, 
2380 
NULL,

2381 
decode_close_mp3on4, 
2382 
decode_frame_mp3on4, 
2383 
.flush= flush, 
2384 
.long_name= NULL_IF_CONFIG_SMALL("MP3onMP4"),

2385 
}; 
2386 
#endif

2387 
#endif
