Statistics
| Branch: | Revision:

ffmpeg / libavcodec / adpcm.c @ 5d6e4c16

History | View | Annotate | Download (63.2 KB)

1
/*
2
 * ADPCM codecs
3
 * Copyright (c) 2001-2003 The ffmpeg Project
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
#include "avcodec.h"
22
#include "get_bits.h"
23
#include "put_bits.h"
24
#include "bytestream.h"
25

    
26
/**
27
 * @file
28
 * ADPCM codecs.
29
 * First version by Francois Revol (revol@free.fr)
30
 * Fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
31
 *   by Mike Melanson (melanson@pcisys.net)
32
 * CD-ROM XA ADPCM codec by BERO
33
 * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
34
 * EA ADPCM R1/R2/R3 decoder by Peter Ross (pross@xvid.org)
35
 * EA IMA EACS decoder by Peter Ross (pross@xvid.org)
36
 * EA IMA SEAD decoder by Peter Ross (pross@xvid.org)
37
 * EA ADPCM XAS decoder by Peter Ross (pross@xvid.org)
38
 * MAXIS EA ADPCM decoder by Robert Marston (rmarston@gmail.com)
39
 * THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl)
40
 *
41
 * Features and limitations:
42
 *
43
 * Reference documents:
44
 * http://www.pcisys.net/~melanson/codecs/simpleaudio.html
45
 * http://www.geocities.com/SiliconValley/8682/aud3.txt
46
 * http://openquicktime.sourceforge.net/plugins.htm
47
 * XAnim sources (xa_codec.c) http://www.rasnaimaging.com/people/lapus/download.html
48
 * http://www.cs.ucla.edu/~leec/mediabench/applications.html
49
 * SoX source code http://home.sprynet.com/~cbagwell/sox.html
50
 *
51
 * CD-ROM XA:
52
 * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html
53
 * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html
54
 * readstr http://www.geocities.co.jp/Playtown/2004/
55
 */
56

    
57
#define BLKSIZE 1024
58

    
59
/* step_table[] and index_table[] are from the ADPCM reference source */
60
/* This is the index table: */
61
static const int index_table[16] = {
62
    -1, -1, -1, -1, 2, 4, 6, 8,
63
    -1, -1, -1, -1, 2, 4, 6, 8,
64
};
65

    
66
/**
67
 * This is the step table. Note that many programs use slight deviations from
68
 * this table, but such deviations are negligible:
69
 */
70
static const int step_table[89] = {
71
    7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
72
    19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
73
    50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
74
    130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
75
    337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
76
    876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
77
    2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
78
    5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
79
    15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
80
};
81

    
82
/* These are for MS-ADPCM */
83
/* AdaptationTable[], AdaptCoeff1[], and AdaptCoeff2[] are from libsndfile */
84
static const int AdaptationTable[] = {
85
        230, 230, 230, 230, 307, 409, 512, 614,
86
        768, 614, 512, 409, 307, 230, 230, 230
87
};
88

    
89
/** Divided by 4 to fit in 8-bit integers */
90
static const uint8_t AdaptCoeff1[] = {
91
        64, 128, 0, 48, 60, 115, 98
92
};
93

    
94
/** Divided by 4 to fit in 8-bit integers */
95
static const int8_t AdaptCoeff2[] = {
96
        0, -64, 0, 16, 0, -52, -58
97
};
98

    
99
/* These are for CD-ROM XA ADPCM */
100
static const int xa_adpcm_table[5][2] = {
101
   {   0,   0 },
102
   {  60,   0 },
103
   { 115, -52 },
104
   {  98, -55 },
105
   { 122, -60 }
106
};
107

    
108
static const int ea_adpcm_table[] = {
109
    0, 240, 460, 392, 0, 0, -208, -220, 0, 1,
110
    3, 4, 7, 8, 10, 11, 0, -1, -3, -4
111
};
112

    
113
// padded to zero where table size is less then 16
114
static const int swf_index_tables[4][16] = {
115
    /*2*/ { -1, 2 },
116
    /*3*/ { -1, -1, 2, 4 },
117
    /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
118
    /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
119
};
120

    
121
static const int yamaha_indexscale[] = {
122
    230, 230, 230, 230, 307, 409, 512, 614,
123
    230, 230, 230, 230, 307, 409, 512, 614
124
};
125

    
126
static const int yamaha_difflookup[] = {
127
    1, 3, 5, 7, 9, 11, 13, 15,
128
    -1, -3, -5, -7, -9, -11, -13, -15
129
};
130

    
131
/* end of tables */
132

    
133
typedef struct ADPCMChannelStatus {
134
    int predictor;
135
    short int step_index;
136
    int step;
137
    /* for encoding */
138
    int prev_sample;
139

    
140
    /* MS version */
141
    short sample1;
142
    short sample2;
143
    int coeff1;
144
    int coeff2;
145
    int idelta;
146
} ADPCMChannelStatus;
147

    
148
typedef struct TrellisPath {
149
    int nibble;
150
    int prev;
151
} TrellisPath;
152

    
153
typedef struct TrellisNode {
154
    uint32_t ssd;
155
    int path;
156
    int sample1;
157
    int sample2;
158
    int step;
159
} TrellisNode;
160

    
161
typedef struct ADPCMContext {
162
    ADPCMChannelStatus status[6];
163
    TrellisPath *paths;
164
    TrellisNode *node_buf;
165
    TrellisNode **nodep_buf;
166
} ADPCMContext;
167

    
168
#define FREEZE_INTERVAL 128
169

    
170
/* XXX: implement encoding */
171

    
172
#if CONFIG_ENCODERS
173
static av_cold int adpcm_encode_init(AVCodecContext *avctx)
174
{
175
    ADPCMContext *s = avctx->priv_data;
176
    uint8_t *extradata;
177
    int i;
178
    if (avctx->channels > 2)
179
        return -1; /* only stereo or mono =) */
180

    
181
    if(avctx->trellis && (unsigned)avctx->trellis > 16U){
182
        av_log(avctx, AV_LOG_ERROR, "invalid trellis size\n");
183
        return -1;
184
    }
185

    
186
    if (avctx->trellis) {
187
        int frontier = 1 << avctx->trellis;
188
        int max_paths =  frontier * FREEZE_INTERVAL;
189
        FF_ALLOC_OR_GOTO(avctx, s->paths,     max_paths * sizeof(*s->paths), error);
190
        FF_ALLOC_OR_GOTO(avctx, s->node_buf,  2 * frontier * sizeof(*s->node_buf), error);
191
        FF_ALLOC_OR_GOTO(avctx, s->nodep_buf, 2 * frontier * sizeof(*s->nodep_buf), error);
192
    }
193

    
194
    switch(avctx->codec->id) {
195
    case CODEC_ID_ADPCM_IMA_WAV:
196
        avctx->frame_size = (BLKSIZE - 4 * avctx->channels) * 8 / (4 * avctx->channels) + 1; /* each 16 bits sample gives one nibble */
197
                                                             /* and we have 4 bytes per channel overhead */
198
        avctx->block_align = BLKSIZE;
199
        /* seems frame_size isn't taken into account... have to buffer the samples :-( */
200
        break;
201
    case CODEC_ID_ADPCM_IMA_QT:
202
        avctx->frame_size = 64;
203
        avctx->block_align = 34 * avctx->channels;
204
        break;
205
    case CODEC_ID_ADPCM_MS:
206
        avctx->frame_size = (BLKSIZE - 7 * avctx->channels) * 2 / avctx->channels + 2; /* each 16 bits sample gives one nibble */
207
                                                             /* and we have 7 bytes per channel overhead */
208
        avctx->block_align = BLKSIZE;
209
        avctx->extradata_size = 32;
210
        extradata = avctx->extradata = av_malloc(avctx->extradata_size);
211
        if (!extradata)
212
            return AVERROR(ENOMEM);
213
        bytestream_put_le16(&extradata, avctx->frame_size);
214
        bytestream_put_le16(&extradata, 7); /* wNumCoef */
215
        for (i = 0; i < 7; i++) {
216
            bytestream_put_le16(&extradata, AdaptCoeff1[i] * 4);
217
            bytestream_put_le16(&extradata, AdaptCoeff2[i] * 4);
218
        }
219
        break;
220
    case CODEC_ID_ADPCM_YAMAHA:
221
        avctx->frame_size = BLKSIZE * avctx->channels;
222
        avctx->block_align = BLKSIZE;
223
        break;
224
    case CODEC_ID_ADPCM_SWF:
225
        if (avctx->sample_rate != 11025 &&
226
            avctx->sample_rate != 22050 &&
227
            avctx->sample_rate != 44100) {
228
            av_log(avctx, AV_LOG_ERROR, "Sample rate must be 11025, 22050 or 44100\n");
229
            goto error;
230
        }
231
        avctx->frame_size = 512 * (avctx->sample_rate / 11025);
232
        break;
233
    default:
234
        goto error;
235
    }
236

    
237
    avctx->coded_frame= avcodec_alloc_frame();
238
    avctx->coded_frame->key_frame= 1;
239

    
240
    return 0;
241
error:
242
    av_freep(&s->paths);
243
    av_freep(&s->node_buf);
244
    av_freep(&s->nodep_buf);
245
    return -1;
246
}
247

    
248
static av_cold int adpcm_encode_close(AVCodecContext *avctx)
249
{
250
    ADPCMContext *s = avctx->priv_data;
251
    av_freep(&avctx->coded_frame);
252
    av_freep(&s->paths);
253
    av_freep(&s->node_buf);
254
    av_freep(&s->nodep_buf);
255

    
256
    return 0;
257
}
258

    
259

    
260
static inline unsigned char adpcm_ima_compress_sample(ADPCMChannelStatus *c, short sample)
261
{
262
    int delta = sample - c->prev_sample;
263
    int nibble = FFMIN(7, abs(delta)*4/step_table[c->step_index]) + (delta<0)*8;
264
    c->prev_sample += ((step_table[c->step_index] * yamaha_difflookup[nibble]) / 8);
265
    c->prev_sample = av_clip_int16(c->prev_sample);
266
    c->step_index = av_clip(c->step_index + index_table[nibble], 0, 88);
267
    return nibble;
268
}
269

    
270
static inline unsigned char adpcm_ms_compress_sample(ADPCMChannelStatus *c, short sample)
271
{
272
    int predictor, nibble, bias;
273

    
274
    predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
275

    
276
    nibble= sample - predictor;
277
    if(nibble>=0) bias= c->idelta/2;
278
    else          bias=-c->idelta/2;
279

    
280
    nibble= (nibble + bias) / c->idelta;
281
    nibble= av_clip(nibble, -8, 7)&0x0F;
282

    
283
    predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
284

    
285
    c->sample2 = c->sample1;
286
    c->sample1 = av_clip_int16(predictor);
287

    
288
    c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
289
    if (c->idelta < 16) c->idelta = 16;
290

    
291
    return nibble;
292
}
293

    
294
static inline unsigned char adpcm_yamaha_compress_sample(ADPCMChannelStatus *c, short sample)
295
{
296
    int nibble, delta;
297

    
298
    if(!c->step) {
299
        c->predictor = 0;
300
        c->step = 127;
301
    }
302

    
303
    delta = sample - c->predictor;
304

    
305
    nibble = FFMIN(7, abs(delta)*4/c->step) + (delta<0)*8;
306

    
307
    c->predictor += ((c->step * yamaha_difflookup[nibble]) / 8);
308
    c->predictor = av_clip_int16(c->predictor);
309
    c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
310
    c->step = av_clip(c->step, 127, 24567);
311

    
312
    return nibble;
313
}
314

    
315
static void adpcm_compress_trellis(AVCodecContext *avctx, const short *samples,
316
                                   uint8_t *dst, ADPCMChannelStatus *c, int n)
317
{
318
    //FIXME 6% faster if frontier is a compile-time constant
319
    ADPCMContext *s = avctx->priv_data;
320
    const int frontier = 1 << avctx->trellis;
321
    const int stride = avctx->channels;
322
    const int version = avctx->codec->id;
323
    TrellisPath *paths = s->paths, *p;
324
    TrellisNode *node_buf = s->node_buf;
325
    TrellisNode **nodep_buf = s->nodep_buf;
326
    TrellisNode **nodes = nodep_buf; // nodes[] is always sorted by .ssd
327
    TrellisNode **nodes_next = nodep_buf + frontier;
328
    int pathn = 0, froze = -1, i, j, k;
329

    
330
    memset(nodep_buf, 0, 2 * frontier * sizeof(*nodep_buf));
331
    nodes[0] = node_buf + frontier;
332
    nodes[0]->ssd = 0;
333
    nodes[0]->path = 0;
334
    nodes[0]->step = c->step_index;
335
    nodes[0]->sample1 = c->sample1;
336
    nodes[0]->sample2 = c->sample2;
337
    if((version == CODEC_ID_ADPCM_IMA_WAV) || (version == CODEC_ID_ADPCM_IMA_QT) || (version == CODEC_ID_ADPCM_SWF))
338
        nodes[0]->sample1 = c->prev_sample;
339
    if(version == CODEC_ID_ADPCM_MS)
340
        nodes[0]->step = c->idelta;
341
    if(version == CODEC_ID_ADPCM_YAMAHA) {
342
        if(c->step == 0) {
343
            nodes[0]->step = 127;
344
            nodes[0]->sample1 = 0;
345
        } else {
346
            nodes[0]->step = c->step;
347
            nodes[0]->sample1 = c->predictor;
348
        }
349
    }
350

    
351
    for(i=0; i<n; i++) {
352
        TrellisNode *t = node_buf + frontier*(i&1);
353
        TrellisNode **u;
354
        int sample = samples[i*stride];
355
        memset(nodes_next, 0, frontier*sizeof(TrellisNode*));
356
        for(j=0; j<frontier && nodes[j]; j++) {
357
            // higher j have higher ssd already, so they're unlikely to use a suboptimal next sample too
358
            const int range = (j < frontier/2) ? 1 : 0;
359
            const int step = nodes[j]->step;
360
            int nidx;
361
            if(version == CODEC_ID_ADPCM_MS) {
362
                const int predictor = ((nodes[j]->sample1 * c->coeff1) + (nodes[j]->sample2 * c->coeff2)) / 64;
363
                const int div = (sample - predictor) / step;
364
                const int nmin = av_clip(div-range, -8, 6);
365
                const int nmax = av_clip(div+range, -7, 7);
366
                for(nidx=nmin; nidx<=nmax; nidx++) {
367
                    const int nibble = nidx & 0xf;
368
                    int dec_sample = predictor + nidx * step;
369
#define STORE_NODE(NAME, STEP_INDEX)\
370
                    int d;\
371
                    uint32_t ssd;\
372
                    dec_sample = av_clip_int16(dec_sample);\
373
                    d = sample - dec_sample;\
374
                    ssd = nodes[j]->ssd + d*d;\
375
                    if(nodes_next[frontier-1] && ssd >= nodes_next[frontier-1]->ssd)\
376
                        continue;\
377
                    /* Collapse any two states with the same previous sample value. \
378
                     * One could also distinguish states by step and by 2nd to last
379
                     * sample, but the effects of that are negligible. */\
380
                    for(k=0; k<frontier && nodes_next[k]; k++) {\
381
                        if(dec_sample == nodes_next[k]->sample1) {\
382
                            assert(ssd >= nodes_next[k]->ssd);\
383
                            goto next_##NAME;\
384
                        }\
385
                    }\
386
                    for(k=0; k<frontier; k++) {\
387
                        if(!nodes_next[k] || ssd < nodes_next[k]->ssd) {\
388
                            TrellisNode *u = nodes_next[frontier-1];\
389
                            if(!u) {\
390
                                assert(pathn < FREEZE_INTERVAL<<avctx->trellis);\
391
                                u = t++;\
392
                                u->path = pathn++;\
393
                            }\
394
                            u->ssd = ssd;\
395
                            u->step = STEP_INDEX;\
396
                            u->sample2 = nodes[j]->sample1;\
397
                            u->sample1 = dec_sample;\
398
                            paths[u->path].nibble = nibble;\
399
                            paths[u->path].prev = nodes[j]->path;\
400
                            memmove(&nodes_next[k+1], &nodes_next[k], (frontier-k-1)*sizeof(TrellisNode*));\
401
                            nodes_next[k] = u;\
402
                            break;\
403
                        }\
404
                    }\
405
                    next_##NAME:;
406
                    STORE_NODE(ms, FFMAX(16, (AdaptationTable[nibble] * step) >> 8));
407
                }
408
            } else if((version == CODEC_ID_ADPCM_IMA_WAV)|| (version == CODEC_ID_ADPCM_IMA_QT)|| (version == CODEC_ID_ADPCM_SWF)) {
409
#define LOOP_NODES(NAME, STEP_TABLE, STEP_INDEX)\
410
                const int predictor = nodes[j]->sample1;\
411
                const int div = (sample - predictor) * 4 / STEP_TABLE;\
412
                int nmin = av_clip(div-range, -7, 6);\
413
                int nmax = av_clip(div+range, -6, 7);\
414
                if(nmin<=0) nmin--; /* distinguish -0 from +0 */\
415
                if(nmax<0) nmax--;\
416
                for(nidx=nmin; nidx<=nmax; nidx++) {\
417
                    const int nibble = nidx<0 ? 7-nidx : nidx;\
418
                    int dec_sample = predictor + (STEP_TABLE * yamaha_difflookup[nibble]) / 8;\
419
                    STORE_NODE(NAME, STEP_INDEX);\
420
                }
421
                LOOP_NODES(ima, step_table[step], av_clip(step + index_table[nibble], 0, 88));
422
            } else { //CODEC_ID_ADPCM_YAMAHA
423
                LOOP_NODES(yamaha, step, av_clip((step * yamaha_indexscale[nibble]) >> 8, 127, 24567));
424
#undef LOOP_NODES
425
#undef STORE_NODE
426
            }
427
        }
428

    
429
        u = nodes;
430
        nodes = nodes_next;
431
        nodes_next = u;
432

    
433
        // prevent overflow
434
        if(nodes[0]->ssd > (1<<28)) {
435
            for(j=1; j<frontier && nodes[j]; j++)
436
                nodes[j]->ssd -= nodes[0]->ssd;
437
            nodes[0]->ssd = 0;
438
        }
439

    
440
        // merge old paths to save memory
441
        if(i == froze + FREEZE_INTERVAL) {
442
            p = &paths[nodes[0]->path];
443
            for(k=i; k>froze; k--) {
444
                dst[k] = p->nibble;
445
                p = &paths[p->prev];
446
            }
447
            froze = i;
448
            pathn = 0;
449
            // other nodes might use paths that don't coincide with the frozen one.
450
            // checking which nodes do so is too slow, so just kill them all.
451
            // this also slightly improves quality, but I don't know why.
452
            memset(nodes+1, 0, (frontier-1)*sizeof(TrellisNode*));
453
        }
454
    }
455

    
456
    p = &paths[nodes[0]->path];
457
    for(i=n-1; i>froze; i--) {
458
        dst[i] = p->nibble;
459
        p = &paths[p->prev];
460
    }
461

    
462
    c->predictor = nodes[0]->sample1;
463
    c->sample1 = nodes[0]->sample1;
464
    c->sample2 = nodes[0]->sample2;
465
    c->step_index = nodes[0]->step;
466
    c->step = nodes[0]->step;
467
    c->idelta = nodes[0]->step;
468
}
469

    
470
static int adpcm_encode_frame(AVCodecContext *avctx,
471
                            unsigned char *frame, int buf_size, void *data)
472
{
473
    int n, i, st;
474
    short *samples;
475
    unsigned char *dst;
476
    ADPCMContext *c = avctx->priv_data;
477
    uint8_t *buf;
478

    
479
    dst = frame;
480
    samples = (short *)data;
481
    st= avctx->channels == 2;
482
/*    n = (BLKSIZE - 4 * avctx->channels) / (2 * 8 * avctx->channels); */
483

    
484
    switch(avctx->codec->id) {
485
    case CODEC_ID_ADPCM_IMA_WAV:
486
        n = avctx->frame_size / 8;
487
            c->status[0].prev_sample = (signed short)samples[0]; /* XXX */
488
/*            c->status[0].step_index = 0; *//* XXX: not sure how to init the state machine */
489
            bytestream_put_le16(&dst, c->status[0].prev_sample);
490
            *dst++ = (unsigned char)c->status[0].step_index;
491
            *dst++ = 0; /* unknown */
492
            samples++;
493
            if (avctx->channels == 2) {
494
                c->status[1].prev_sample = (signed short)samples[0];
495
/*                c->status[1].step_index = 0; */
496
                bytestream_put_le16(&dst, c->status[1].prev_sample);
497
                *dst++ = (unsigned char)c->status[1].step_index;
498
                *dst++ = 0;
499
                samples++;
500
            }
501

    
502
            /* stereo: 4 bytes (8 samples) for left, 4 bytes for right, 4 bytes left, ... */
503
            if(avctx->trellis > 0) {
504
                FF_ALLOC_OR_GOTO(avctx, buf, 2*n*8, error);
505
                adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n*8);
506
                if(avctx->channels == 2)
507
                    adpcm_compress_trellis(avctx, samples+1, buf + n*8, &c->status[1], n*8);
508
                for(i=0; i<n; i++) {
509
                    *dst++ = buf[8*i+0] | (buf[8*i+1] << 4);
510
                    *dst++ = buf[8*i+2] | (buf[8*i+3] << 4);
511
                    *dst++ = buf[8*i+4] | (buf[8*i+5] << 4);
512
                    *dst++ = buf[8*i+6] | (buf[8*i+7] << 4);
513
                    if (avctx->channels == 2) {
514
                        uint8_t *buf1 = buf + n*8;
515
                        *dst++ = buf1[8*i+0] | (buf1[8*i+1] << 4);
516
                        *dst++ = buf1[8*i+2] | (buf1[8*i+3] << 4);
517
                        *dst++ = buf1[8*i+4] | (buf1[8*i+5] << 4);
518
                        *dst++ = buf1[8*i+6] | (buf1[8*i+7] << 4);
519
                    }
520
                }
521
                av_free(buf);
522
            } else
523
            for (; n>0; n--) {
524
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[0]);
525
                *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels]) << 4;
526
                dst++;
527
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 2]);
528
                *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 3]) << 4;
529
                dst++;
530
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 4]);
531
                *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 5]) << 4;
532
                dst++;
533
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 6]);
534
                *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 7]) << 4;
535
                dst++;
536
                /* right channel */
537
                if (avctx->channels == 2) {
538
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[1]);
539
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[3]) << 4;
540
                    dst++;
541
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[5]);
542
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[7]) << 4;
543
                    dst++;
544
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[9]);
545
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[11]) << 4;
546
                    dst++;
547
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[13]);
548
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[15]) << 4;
549
                    dst++;
550
                }
551
                samples += 8 * avctx->channels;
552
            }
553
        break;
554
    case CODEC_ID_ADPCM_IMA_QT:
555
    {
556
        int ch, i;
557
        PutBitContext pb;
558
        init_put_bits(&pb, dst, buf_size*8);
559

    
560
        for(ch=0; ch<avctx->channels; ch++){
561
            put_bits(&pb, 9, (c->status[ch].prev_sample + 0x10000) >> 7);
562
            put_bits(&pb, 7, c->status[ch].step_index);
563
            if(avctx->trellis > 0) {
564
                uint8_t buf[64];
565
                adpcm_compress_trellis(avctx, samples+ch, buf, &c->status[ch], 64);
566
                for(i=0; i<64; i++)
567
                    put_bits(&pb, 4, buf[i^1]);
568
                c->status[ch].prev_sample = c->status[ch].predictor & ~0x7F;
569
            } else {
570
                for (i=0; i<64; i+=2){
571
                    int t1, t2;
572
                    t1 = adpcm_ima_compress_sample(&c->status[ch], samples[avctx->channels*(i+0)+ch]);
573
                    t2 = adpcm_ima_compress_sample(&c->status[ch], samples[avctx->channels*(i+1)+ch]);
574
                    put_bits(&pb, 4, t2);
575
                    put_bits(&pb, 4, t1);
576
                }
577
                c->status[ch].prev_sample &= ~0x7F;
578
            }
579
        }
580

    
581
        flush_put_bits(&pb);
582
        dst += put_bits_count(&pb)>>3;
583
        break;
584
    }
585
    case CODEC_ID_ADPCM_SWF:
586
    {
587
        int i;
588
        PutBitContext pb;
589
        init_put_bits(&pb, dst, buf_size*8);
590

    
591
        n = avctx->frame_size-1;
592

    
593
        //Store AdpcmCodeSize
594
        put_bits(&pb, 2, 2);                //Set 4bits flash adpcm format
595

    
596
        //Init the encoder state
597
        for(i=0; i<avctx->channels; i++){
598
            c->status[i].step_index = av_clip(c->status[i].step_index, 0, 63); // clip step so it fits 6 bits
599
            put_sbits(&pb, 16, samples[i]);
600
            put_bits(&pb, 6, c->status[i].step_index);
601
            c->status[i].prev_sample = (signed short)samples[i];
602
        }
603

    
604
        if(avctx->trellis > 0) {
605
            FF_ALLOC_OR_GOTO(avctx, buf, 2*n, error);
606
            adpcm_compress_trellis(avctx, samples+2, buf, &c->status[0], n);
607
            if (avctx->channels == 2)
608
                adpcm_compress_trellis(avctx, samples+3, buf+n, &c->status[1], n);
609
            for(i=0; i<n; i++) {
610
                put_bits(&pb, 4, buf[i]);
611
                if (avctx->channels == 2)
612
                    put_bits(&pb, 4, buf[n+i]);
613
            }
614
            av_free(buf);
615
        } else {
616
            for (i=1; i<avctx->frame_size; i++) {
617
                put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels*i]));
618
                if (avctx->channels == 2)
619
                    put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[1], samples[2*i+1]));
620
            }
621
        }
622
        flush_put_bits(&pb);
623
        dst += put_bits_count(&pb)>>3;
624
        break;
625
    }
626
    case CODEC_ID_ADPCM_MS:
627
        for(i=0; i<avctx->channels; i++){
628
            int predictor=0;
629

    
630
            *dst++ = predictor;
631
            c->status[i].coeff1 = AdaptCoeff1[predictor];
632
            c->status[i].coeff2 = AdaptCoeff2[predictor];
633
        }
634
        for(i=0; i<avctx->channels; i++){
635
            if (c->status[i].idelta < 16)
636
                c->status[i].idelta = 16;
637

    
638
            bytestream_put_le16(&dst, c->status[i].idelta);
639
        }
640
        for(i=0; i<avctx->channels; i++){
641
            c->status[i].sample2= *samples++;
642
        }
643
        for(i=0; i<avctx->channels; i++){
644
            c->status[i].sample1= *samples++;
645

    
646
            bytestream_put_le16(&dst, c->status[i].sample1);
647
        }
648
        for(i=0; i<avctx->channels; i++)
649
            bytestream_put_le16(&dst, c->status[i].sample2);
650

    
651
        if(avctx->trellis > 0) {
652
            int n = avctx->block_align - 7*avctx->channels;
653
            FF_ALLOC_OR_GOTO(avctx, buf, 2*n, error);
654
            if(avctx->channels == 1) {
655
                adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n);
656
                for(i=0; i<n; i+=2)
657
                    *dst++ = (buf[i] << 4) | buf[i+1];
658
            } else {
659
                adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n);
660
                adpcm_compress_trellis(avctx, samples+1, buf+n, &c->status[1], n);
661
                for(i=0; i<n; i++)
662
                    *dst++ = (buf[i] << 4) | buf[n+i];
663
            }
664
            av_free(buf);
665
        } else
666
        for(i=7*avctx->channels; i<avctx->block_align; i++) {
667
            int nibble;
668
            nibble = adpcm_ms_compress_sample(&c->status[ 0], *samples++)<<4;
669
            nibble|= adpcm_ms_compress_sample(&c->status[st], *samples++);
670
            *dst++ = nibble;
671
        }
672
        break;
673
    case CODEC_ID_ADPCM_YAMAHA:
674
        n = avctx->frame_size / 2;
675
        if(avctx->trellis > 0) {
676
            FF_ALLOC_OR_GOTO(avctx, buf, 2*n*2, error);
677
            n *= 2;
678
            if(avctx->channels == 1) {
679
                adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n);
680
                for(i=0; i<n; i+=2)
681
                    *dst++ = buf[i] | (buf[i+1] << 4);
682
            } else {
683
                adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n);
684
                adpcm_compress_trellis(avctx, samples+1, buf+n, &c->status[1], n);
685
                for(i=0; i<n; i++)
686
                    *dst++ = buf[i] | (buf[n+i] << 4);
687
            }
688
            av_free(buf);
689
        } else
690
            for (n *= avctx->channels; n>0; n--) {
691
                int nibble;
692
                nibble  = adpcm_yamaha_compress_sample(&c->status[ 0], *samples++);
693
                nibble |= adpcm_yamaha_compress_sample(&c->status[st], *samples++) << 4;
694
                *dst++ = nibble;
695
            }
696
        break;
697
    default:
698
    error:
699
        return -1;
700
    }
701
    return dst - frame;
702
}
703
#endif //CONFIG_ENCODERS
704

    
705
static av_cold int adpcm_decode_init(AVCodecContext * avctx)
706
{
707
    ADPCMContext *c = avctx->priv_data;
708
    unsigned int max_channels = 2;
709

    
710
    switch(avctx->codec->id) {
711
    case CODEC_ID_ADPCM_EA_R1:
712
    case CODEC_ID_ADPCM_EA_R2:
713
    case CODEC_ID_ADPCM_EA_R3:
714
        max_channels = 6;
715
        break;
716
    }
717
    if(avctx->channels > max_channels){
718
        return -1;
719
    }
720

    
721
    switch(avctx->codec->id) {
722
    case CODEC_ID_ADPCM_CT:
723
        c->status[0].step = c->status[1].step = 511;
724
        break;
725
    case CODEC_ID_ADPCM_IMA_WAV:
726
        if (avctx->bits_per_coded_sample != 4) {
727
            av_log(avctx, AV_LOG_ERROR, "Only 4-bit ADPCM IMA WAV files are supported\n");
728
            return -1;
729
        }
730
        break;
731
    case CODEC_ID_ADPCM_IMA_WS:
732
        if (avctx->extradata && avctx->extradata_size == 2 * 4) {
733
            c->status[0].predictor = AV_RL32(avctx->extradata);
734
            c->status[1].predictor = AV_RL32(avctx->extradata + 4);
735
        }
736
        break;
737
    default:
738
        break;
739
    }
740
    avctx->sample_fmt = AV_SAMPLE_FMT_S16;
741
    return 0;
742
}
743

    
744
static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift)
745
{
746
    int step_index;
747
    int predictor;
748
    int sign, delta, diff, step;
749

    
750
    step = step_table[c->step_index];
751
    step_index = c->step_index + index_table[(unsigned)nibble];
752
    if (step_index < 0) step_index = 0;
753
    else if (step_index > 88) step_index = 88;
754

    
755
    sign = nibble & 8;
756
    delta = nibble & 7;
757
    /* perform direct multiplication instead of series of jumps proposed by
758
     * the reference ADPCM implementation since modern CPUs can do the mults
759
     * quickly enough */
760
    diff = ((2 * delta + 1) * step) >> shift;
761
    predictor = c->predictor;
762
    if (sign) predictor -= diff;
763
    else predictor += diff;
764

    
765
    c->predictor = av_clip_int16(predictor);
766
    c->step_index = step_index;
767

    
768
    return (short)c->predictor;
769
}
770

    
771
static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, char nibble)
772
{
773
    int predictor;
774

    
775
    predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
776
    predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
777

    
778
    c->sample2 = c->sample1;
779
    c->sample1 = av_clip_int16(predictor);
780
    c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
781
    if (c->idelta < 16) c->idelta = 16;
782

    
783
    return c->sample1;
784
}
785

    
786
static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble)
787
{
788
    int sign, delta, diff;
789
    int new_step;
790

    
791
    sign = nibble & 8;
792
    delta = nibble & 7;
793
    /* perform direct multiplication instead of series of jumps proposed by
794
     * the reference ADPCM implementation since modern CPUs can do the mults
795
     * quickly enough */
796
    diff = ((2 * delta + 1) * c->step) >> 3;
797
    /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
798
    c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff);
799
    c->predictor = av_clip_int16(c->predictor);
800
    /* calculate new step and clamp it to range 511..32767 */
801
    new_step = (AdaptationTable[nibble & 7] * c->step) >> 8;
802
    c->step = av_clip(new_step, 511, 32767);
803

    
804
    return (short)c->predictor;
805
}
806

    
807
static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift)
808
{
809
    int sign, delta, diff;
810

    
811
    sign = nibble & (1<<(size-1));
812
    delta = nibble & ((1<<(size-1))-1);
813
    diff = delta << (7 + c->step + shift);
814

    
815
    /* clamp result */
816
    c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256);
817

    
818
    /* calculate new step */
819
    if (delta >= (2*size - 3) && c->step < 3)
820
        c->step++;
821
    else if (delta == 0 && c->step > 0)
822
        c->step--;
823

    
824
    return (short) c->predictor;
825
}
826

    
827
static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble)
828
{
829
    if(!c->step) {
830
        c->predictor = 0;
831
        c->step = 127;
832
    }
833

    
834
    c->predictor += (c->step * yamaha_difflookup[nibble]) / 8;
835
    c->predictor = av_clip_int16(c->predictor);
836
    c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
837
    c->step = av_clip(c->step, 127, 24567);
838
    return c->predictor;
839
}
840

    
841
static void xa_decode(short *out, const unsigned char *in,
842
    ADPCMChannelStatus *left, ADPCMChannelStatus *right, int inc)
843
{
844
    int i, j;
845
    int shift,filter,f0,f1;
846
    int s_1,s_2;
847
    int d,s,t;
848

    
849
    for(i=0;i<4;i++) {
850

    
851
        shift  = 12 - (in[4+i*2] & 15);
852
        filter = in[4+i*2] >> 4;
853
        f0 = xa_adpcm_table[filter][0];
854
        f1 = xa_adpcm_table[filter][1];
855

    
856
        s_1 = left->sample1;
857
        s_2 = left->sample2;
858

    
859
        for(j=0;j<28;j++) {
860
            d = in[16+i+j*4];
861

    
862
            t = (signed char)(d<<4)>>4;
863
            s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
864
            s_2 = s_1;
865
            s_1 = av_clip_int16(s);
866
            *out = s_1;
867
            out += inc;
868
        }
869

    
870
        if (inc==2) { /* stereo */
871
            left->sample1 = s_1;
872
            left->sample2 = s_2;
873
            s_1 = right->sample1;
874
            s_2 = right->sample2;
875
            out = out + 1 - 28*2;
876
        }
877

    
878
        shift  = 12 - (in[5+i*2] & 15);
879
        filter = in[5+i*2] >> 4;
880

    
881
        f0 = xa_adpcm_table[filter][0];
882
        f1 = xa_adpcm_table[filter][1];
883

    
884
        for(j=0;j<28;j++) {
885
            d = in[16+i+j*4];
886

    
887
            t = (signed char)d >> 4;
888
            s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
889
            s_2 = s_1;
890
            s_1 = av_clip_int16(s);
891
            *out = s_1;
892
            out += inc;
893
        }
894

    
895
        if (inc==2) { /* stereo */
896
            right->sample1 = s_1;
897
            right->sample2 = s_2;
898
            out -= 1;
899
        } else {
900
            left->sample1 = s_1;
901
            left->sample2 = s_2;
902
        }
903
    }
904
}
905

    
906

    
907
/* DK3 ADPCM support macro */
908
#define DK3_GET_NEXT_NIBBLE() \
909
    if (decode_top_nibble_next) \
910
    { \
911
        nibble = last_byte >> 4; \
912
        decode_top_nibble_next = 0; \
913
    } \
914
    else \
915
    { \
916
        last_byte = *src++; \
917
        if (src >= buf + buf_size) break; \
918
        nibble = last_byte & 0x0F; \
919
        decode_top_nibble_next = 1; \
920
    }
921

    
922
static int adpcm_decode_frame(AVCodecContext *avctx,
923
                            void *data, int *data_size,
924
                            AVPacket *avpkt)
925
{
926
    const uint8_t *buf = avpkt->data;
927
    int buf_size = avpkt->size;
928
    ADPCMContext *c = avctx->priv_data;
929
    ADPCMChannelStatus *cs;
930
    int n, m, channel, i;
931
    int block_predictor[2];
932
    short *samples;
933
    short *samples_end;
934
    const uint8_t *src;
935
    int st; /* stereo */
936

    
937
    /* DK3 ADPCM accounting variables */
938
    unsigned char last_byte = 0;
939
    unsigned char nibble;
940
    int decode_top_nibble_next = 0;
941
    int diff_channel;
942

    
943
    /* EA ADPCM state variables */
944
    uint32_t samples_in_chunk;
945
    int32_t previous_left_sample, previous_right_sample;
946
    int32_t current_left_sample, current_right_sample;
947
    int32_t next_left_sample, next_right_sample;
948
    int32_t coeff1l, coeff2l, coeff1r, coeff2r;
949
    uint8_t shift_left, shift_right;
950
    int count1, count2;
951
    int coeff[2][2], shift[2];//used in EA MAXIS ADPCM
952

    
953
    if (!buf_size)
954
        return 0;
955

    
956
    //should protect all 4bit ADPCM variants
957
    //8 is needed for CODEC_ID_ADPCM_IMA_WAV with 2 channels
958
    //
959
    if(*data_size/4 < buf_size + 8)
960
        return -1;
961

    
962
    samples = data;
963
    samples_end= samples + *data_size/2;
964
    *data_size= 0;
965
    src = buf;
966

    
967
    st = avctx->channels == 2 ? 1 : 0;
968

    
969
    switch(avctx->codec->id) {
970
    case CODEC_ID_ADPCM_IMA_QT:
971
        n = buf_size - 2*avctx->channels;
972
        for (channel = 0; channel < avctx->channels; channel++) {
973
            cs = &(c->status[channel]);
974
            /* (pppppp) (piiiiiii) */
975

    
976
            /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
977
            cs->predictor = (*src++) << 8;
978
            cs->predictor |= (*src & 0x80);
979
            cs->predictor &= 0xFF80;
980

    
981
            /* sign extension */
982
            if(cs->predictor & 0x8000)
983
                cs->predictor -= 0x10000;
984

    
985
            cs->predictor = av_clip_int16(cs->predictor);
986

    
987
            cs->step_index = (*src++) & 0x7F;
988

    
989
            if (cs->step_index > 88){
990
                av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
991
                cs->step_index = 88;
992
            }
993

    
994
            cs->step = step_table[cs->step_index];
995

    
996
            samples = (short*)data + channel;
997

    
998
            for(m=32; n>0 && m>0; n--, m--) { /* in QuickTime, IMA is encoded by chuncks of 34 bytes (=64 samples) */
999
                *samples = adpcm_ima_expand_nibble(cs, src[0] & 0x0F, 3);
1000
                samples += avctx->channels;
1001
                *samples = adpcm_ima_expand_nibble(cs, src[0] >> 4  , 3);
1002
                samples += avctx->channels;
1003
                src ++;
1004
            }
1005
        }
1006
        if (st)
1007
            samples--;
1008
        break;
1009
    case CODEC_ID_ADPCM_IMA_WAV:
1010
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
1011
            buf_size = avctx->block_align;
1012

    
1013
//        samples_per_block= (block_align-4*chanels)*8 / (bits_per_sample * chanels) + 1;
1014

    
1015
        for(i=0; i<avctx->channels; i++){
1016
            cs = &(c->status[i]);
1017
            cs->predictor = *samples++ = (int16_t)bytestream_get_le16(&src);
1018

    
1019
            cs->step_index = *src++;
1020
            if (cs->step_index > 88){
1021
                av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
1022
                cs->step_index = 88;
1023
            }
1024
            if (*src++) av_log(avctx, AV_LOG_ERROR, "unused byte should be null but is %d!!\n", src[-1]); /* unused */
1025
        }
1026

    
1027
        while(src < buf + buf_size){
1028
            for(m=0; m<4; m++){
1029
                for(i=0; i<=st; i++)
1030
                    *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] & 0x0F, 3);
1031
                for(i=0; i<=st; i++)
1032
                    *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] >> 4  , 3);
1033
                src++;
1034
            }
1035
            src += 4*st;
1036
        }
1037
        break;
1038
    case CODEC_ID_ADPCM_4XM:
1039
        cs = &(c->status[0]);
1040
        c->status[0].predictor= (int16_t)bytestream_get_le16(&src);
1041
        if(st){
1042
            c->status[1].predictor= (int16_t)bytestream_get_le16(&src);
1043
        }
1044
        c->status[0].step_index= (int16_t)bytestream_get_le16(&src);
1045
        if(st){
1046
            c->status[1].step_index= (int16_t)bytestream_get_le16(&src);
1047
        }
1048
        if (cs->step_index < 0) cs->step_index = 0;
1049
        if (cs->step_index > 88) cs->step_index = 88;
1050

    
1051
        m= (buf_size - (src - buf))>>st;
1052
        for(i=0; i<m; i++) {
1053
            *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] & 0x0F, 4);
1054
            if (st)
1055
                *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] & 0x0F, 4);
1056
            *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] >> 4, 4);
1057
            if (st)
1058
                *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] >> 4, 4);
1059
        }
1060

    
1061
        src += m<<st;
1062

    
1063
        break;
1064
    case CODEC_ID_ADPCM_MS:
1065
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
1066
            buf_size = avctx->block_align;
1067
        n = buf_size - 7 * avctx->channels;
1068
        if (n < 0)
1069
            return -1;
1070
        block_predictor[0] = av_clip(*src++, 0, 6);
1071
        block_predictor[1] = 0;
1072
        if (st)
1073
            block_predictor[1] = av_clip(*src++, 0, 6);
1074
        c->status[0].idelta = (int16_t)bytestream_get_le16(&src);
1075
        if (st){
1076
            c->status[1].idelta = (int16_t)bytestream_get_le16(&src);
1077
        }
1078
        c->status[0].coeff1 = AdaptCoeff1[block_predictor[0]];
1079
        c->status[0].coeff2 = AdaptCoeff2[block_predictor[0]];
1080
        c->status[1].coeff1 = AdaptCoeff1[block_predictor[1]];
1081
        c->status[1].coeff2 = AdaptCoeff2[block_predictor[1]];
1082

    
1083
        c->status[0].sample1 = bytestream_get_le16(&src);
1084
        if (st) c->status[1].sample1 = bytestream_get_le16(&src);
1085
        c->status[0].sample2 = bytestream_get_le16(&src);
1086
        if (st) c->status[1].sample2 = bytestream_get_le16(&src);
1087

    
1088
        *samples++ = c->status[0].sample2;
1089
        if (st) *samples++ = c->status[1].sample2;
1090
        *samples++ = c->status[0].sample1;
1091
        if (st) *samples++ = c->status[1].sample1;
1092
        for(;n>0;n--) {
1093
            *samples++ = adpcm_ms_expand_nibble(&c->status[0 ], src[0] >> 4  );
1094
            *samples++ = adpcm_ms_expand_nibble(&c->status[st], src[0] & 0x0F);
1095
            src ++;
1096
        }
1097
        break;
1098
    case CODEC_ID_ADPCM_IMA_DK4:
1099
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
1100
            buf_size = avctx->block_align;
1101

    
1102
        c->status[0].predictor  = (int16_t)bytestream_get_le16(&src);
1103
        c->status[0].step_index = *src++;
1104
        src++;
1105
        *samples++ = c->status[0].predictor;
1106
        if (st) {
1107
            c->status[1].predictor  = (int16_t)bytestream_get_le16(&src);
1108
            c->status[1].step_index = *src++;
1109
            src++;
1110
            *samples++ = c->status[1].predictor;
1111
        }
1112
        while (src < buf + buf_size) {
1113

    
1114
            /* take care of the top nibble (always left or mono channel) */
1115
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1116
                src[0] >> 4, 3);
1117

    
1118
            /* take care of the bottom nibble, which is right sample for
1119
             * stereo, or another mono sample */
1120
            if (st)
1121
                *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1122
                    src[0] & 0x0F, 3);
1123
            else
1124
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1125
                    src[0] & 0x0F, 3);
1126

    
1127
            src++;
1128
        }
1129
        break;
1130
    case CODEC_ID_ADPCM_IMA_DK3:
1131
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
1132
            buf_size = avctx->block_align;
1133

    
1134
        if(buf_size + 16 > (samples_end - samples)*3/8)
1135
            return -1;
1136

    
1137
        c->status[0].predictor  = (int16_t)AV_RL16(src + 10);
1138
        c->status[1].predictor  = (int16_t)AV_RL16(src + 12);
1139
        c->status[0].step_index = src[14];
1140
        c->status[1].step_index = src[15];
1141
        /* sign extend the predictors */
1142
        src += 16;
1143
        diff_channel = c->status[1].predictor;
1144

    
1145
        /* the DK3_GET_NEXT_NIBBLE macro issues the break statement when
1146
         * the buffer is consumed */
1147
        while (1) {
1148

    
1149
            /* for this algorithm, c->status[0] is the sum channel and
1150
             * c->status[1] is the diff channel */
1151

    
1152
            /* process the first predictor of the sum channel */
1153
            DK3_GET_NEXT_NIBBLE();
1154
            adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1155

    
1156
            /* process the diff channel predictor */
1157
            DK3_GET_NEXT_NIBBLE();
1158
            adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
1159

    
1160
            /* process the first pair of stereo PCM samples */
1161
            diff_channel = (diff_channel + c->status[1].predictor) / 2;
1162
            *samples++ = c->status[0].predictor + c->status[1].predictor;
1163
            *samples++ = c->status[0].predictor - c->status[1].predictor;
1164

    
1165
            /* process the second predictor of the sum channel */
1166
            DK3_GET_NEXT_NIBBLE();
1167
            adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1168

    
1169
            /* process the second pair of stereo PCM samples */
1170
            diff_channel = (diff_channel + c->status[1].predictor) / 2;
1171
            *samples++ = c->status[0].predictor + c->status[1].predictor;
1172
            *samples++ = c->status[0].predictor - c->status[1].predictor;
1173
        }
1174
        break;
1175
    case CODEC_ID_ADPCM_IMA_ISS:
1176
        c->status[0].predictor  = (int16_t)AV_RL16(src + 0);
1177
        c->status[0].step_index = src[2];
1178
        src += 4;
1179
        if(st) {
1180
            c->status[1].predictor  = (int16_t)AV_RL16(src + 0);
1181
            c->status[1].step_index = src[2];
1182
            src += 4;
1183
        }
1184

    
1185
        while (src < buf + buf_size) {
1186

    
1187
            if (st) {
1188
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1189
                    src[0] >> 4  , 3);
1190
                *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1191
                    src[0] & 0x0F, 3);
1192
            } else {
1193
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1194
                    src[0] & 0x0F, 3);
1195
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1196
                    src[0] >> 4  , 3);
1197
            }
1198

    
1199
            src++;
1200
        }
1201
        break;
1202
    case CODEC_ID_ADPCM_IMA_WS:
1203
        /* no per-block initialization; just start decoding the data */
1204
        while (src < buf + buf_size) {
1205

    
1206
            if (st) {
1207
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1208
                    src[0] >> 4  , 3);
1209
                *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1210
                    src[0] & 0x0F, 3);
1211
            } else {
1212
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1213
                    src[0] >> 4  , 3);
1214
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1215
                    src[0] & 0x0F, 3);
1216
            }
1217

    
1218
            src++;
1219
        }
1220
        break;
1221
    case CODEC_ID_ADPCM_XA:
1222
        while (buf_size >= 128) {
1223
            xa_decode(samples, src, &c->status[0], &c->status[1],
1224
                avctx->channels);
1225
            src += 128;
1226
            samples += 28 * 8;
1227
            buf_size -= 128;
1228
        }
1229
        break;
1230
    case CODEC_ID_ADPCM_IMA_EA_EACS:
1231
        samples_in_chunk = bytestream_get_le32(&src) >> (1-st);
1232

    
1233
        if (samples_in_chunk > buf_size-4-(8<<st)) {
1234
            src += buf_size - 4;
1235
            break;
1236
        }
1237

    
1238
        for (i=0; i<=st; i++)
1239
            c->status[i].step_index = bytestream_get_le32(&src);
1240
        for (i=0; i<=st; i++)
1241
            c->status[i].predictor  = bytestream_get_le32(&src);
1242

    
1243
        for (; samples_in_chunk; samples_in_chunk--, src++) {
1244
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],  *src>>4,   3);
1245
            *samples++ = adpcm_ima_expand_nibble(&c->status[st], *src&0x0F, 3);
1246
        }
1247
        break;
1248
    case CODEC_ID_ADPCM_IMA_EA_SEAD:
1249
        for (; src < buf+buf_size; src++) {
1250
            *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[0] >> 4, 6);
1251
            *samples++ = adpcm_ima_expand_nibble(&c->status[st],src[0]&0x0F, 6);
1252
        }
1253
        break;
1254
    case CODEC_ID_ADPCM_EA:
1255
        if (buf_size < 4 || AV_RL32(src) >= ((buf_size - 12) * 2)) {
1256
            src += buf_size;
1257
            break;
1258
        }
1259
        samples_in_chunk = AV_RL32(src);
1260
        src += 4;
1261
        current_left_sample   = (int16_t)bytestream_get_le16(&src);
1262
        previous_left_sample  = (int16_t)bytestream_get_le16(&src);
1263
        current_right_sample  = (int16_t)bytestream_get_le16(&src);
1264
        previous_right_sample = (int16_t)bytestream_get_le16(&src);
1265

    
1266
        for (count1 = 0; count1 < samples_in_chunk/28;count1++) {
1267
            coeff1l = ea_adpcm_table[ *src >> 4       ];
1268
            coeff2l = ea_adpcm_table[(*src >> 4  ) + 4];
1269
            coeff1r = ea_adpcm_table[*src & 0x0F];
1270
            coeff2r = ea_adpcm_table[(*src & 0x0F) + 4];
1271
            src++;
1272

    
1273
            shift_left  = (*src >> 4  ) + 8;
1274
            shift_right = (*src & 0x0F) + 8;
1275
            src++;
1276

    
1277
            for (count2 = 0; count2 < 28; count2++) {
1278
                next_left_sample  = (int32_t)((*src & 0xF0) << 24) >> shift_left;
1279
                next_right_sample = (int32_t)((*src & 0x0F) << 28) >> shift_right;
1280
                src++;
1281

    
1282
                next_left_sample = (next_left_sample +
1283
                    (current_left_sample * coeff1l) +
1284
                    (previous_left_sample * coeff2l) + 0x80) >> 8;
1285
                next_right_sample = (next_right_sample +
1286
                    (current_right_sample * coeff1r) +
1287
                    (previous_right_sample * coeff2r) + 0x80) >> 8;
1288

    
1289
                previous_left_sample = current_left_sample;
1290
                current_left_sample = av_clip_int16(next_left_sample);
1291
                previous_right_sample = current_right_sample;
1292
                current_right_sample = av_clip_int16(next_right_sample);
1293
                *samples++ = (unsigned short)current_left_sample;
1294
                *samples++ = (unsigned short)current_right_sample;
1295
            }
1296
        }
1297

    
1298
        if (src - buf == buf_size - 2)
1299
            src += 2; // Skip terminating 0x0000
1300

    
1301
        break;
1302
    case CODEC_ID_ADPCM_EA_MAXIS_XA:
1303
        for(channel = 0; channel < avctx->channels; channel++) {
1304
            for (i=0; i<2; i++)
1305
                coeff[channel][i] = ea_adpcm_table[(*src >> 4) + 4*i];
1306
            shift[channel] = (*src & 0x0F) + 8;
1307
            src++;
1308
        }
1309
        for (count1 = 0; count1 < (buf_size - avctx->channels) / avctx->channels; count1++) {
1310
            for(i = 4; i >= 0; i-=4) { /* Pairwise samples LL RR (st) or LL LL (mono) */
1311
                for(channel = 0; channel < avctx->channels; channel++) {
1312
                    int32_t sample = (int32_t)(((*(src+channel) >> i) & 0x0F) << 0x1C) >> shift[channel];
1313
                    sample = (sample +
1314
                             c->status[channel].sample1 * coeff[channel][0] +
1315
                             c->status[channel].sample2 * coeff[channel][1] + 0x80) >> 8;
1316
                    c->status[channel].sample2 = c->status[channel].sample1;
1317
                    c->status[channel].sample1 = av_clip_int16(sample);
1318
                    *samples++ = c->status[channel].sample1;
1319
                }
1320
            }
1321
            src+=avctx->channels;
1322
        }
1323
        break;
1324
    case CODEC_ID_ADPCM_EA_R1:
1325
    case CODEC_ID_ADPCM_EA_R2:
1326
    case CODEC_ID_ADPCM_EA_R3: {
1327
        /* channel numbering
1328
           2chan: 0=fl, 1=fr
1329
           4chan: 0=fl, 1=rl, 2=fr, 3=rr
1330
           6chan: 0=fl, 1=c,  2=fr, 3=rl,  4=rr, 5=sub */
1331
        const int big_endian = avctx->codec->id == CODEC_ID_ADPCM_EA_R3;
1332
        int32_t previous_sample, current_sample, next_sample;
1333
        int32_t coeff1, coeff2;
1334
        uint8_t shift;
1335
        unsigned int channel;
1336
        uint16_t *samplesC;
1337
        const uint8_t *srcC;
1338
        const uint8_t *src_end = buf + buf_size;
1339

    
1340
        samples_in_chunk = (big_endian ? bytestream_get_be32(&src)
1341
                                       : bytestream_get_le32(&src)) / 28;
1342
        if (samples_in_chunk > UINT32_MAX/(28*avctx->channels) ||
1343
            28*samples_in_chunk*avctx->channels > samples_end-samples) {
1344
            src += buf_size - 4;
1345
            break;
1346
        }
1347

    
1348
        for (channel=0; channel<avctx->channels; channel++) {
1349
            int32_t offset = (big_endian ? bytestream_get_be32(&src)
1350
                                         : bytestream_get_le32(&src))
1351
                           + (avctx->channels-channel-1) * 4;
1352

    
1353
            if ((offset < 0) || (offset >= src_end - src - 4)) break;
1354
            srcC  = src + offset;
1355
            samplesC = samples + channel;
1356

    
1357
            if (avctx->codec->id == CODEC_ID_ADPCM_EA_R1) {
1358
                current_sample  = (int16_t)bytestream_get_le16(&srcC);
1359
                previous_sample = (int16_t)bytestream_get_le16(&srcC);
1360
            } else {
1361
                current_sample  = c->status[channel].predictor;
1362
                previous_sample = c->status[channel].prev_sample;
1363
            }
1364

    
1365
            for (count1=0; count1<samples_in_chunk; count1++) {
1366
                if (*srcC == 0xEE) {  /* only seen in R2 and R3 */
1367
                    srcC++;
1368
                    if (srcC > src_end - 30*2) break;
1369
                    current_sample  = (int16_t)bytestream_get_be16(&srcC);
1370
                    previous_sample = (int16_t)bytestream_get_be16(&srcC);
1371

    
1372
                    for (count2=0; count2<28; count2++) {
1373
                        *samplesC = (int16_t)bytestream_get_be16(&srcC);
1374
                        samplesC += avctx->channels;
1375
                    }
1376
                } else {
1377
                    coeff1 = ea_adpcm_table[ *srcC>>4     ];
1378
                    coeff2 = ea_adpcm_table[(*srcC>>4) + 4];
1379
                    shift = (*srcC++ & 0x0F) + 8;
1380

    
1381
                    if (srcC > src_end - 14) break;
1382
                    for (count2=0; count2<28; count2++) {
1383
                        if (count2 & 1)
1384
                            next_sample = (int32_t)((*srcC++ & 0x0F) << 28) >> shift;
1385
                        else
1386
                            next_sample = (int32_t)((*srcC   & 0xF0) << 24) >> shift;
1387

    
1388
                        next_sample += (current_sample  * coeff1) +
1389
                                       (previous_sample * coeff2);
1390
                        next_sample = av_clip_int16(next_sample >> 8);
1391

    
1392
                        previous_sample = current_sample;
1393
                        current_sample  = next_sample;
1394
                        *samplesC = current_sample;
1395
                        samplesC += avctx->channels;
1396
                    }
1397
                }
1398
            }
1399

    
1400
            if (avctx->codec->id != CODEC_ID_ADPCM_EA_R1) {
1401
                c->status[channel].predictor   = current_sample;
1402
                c->status[channel].prev_sample = previous_sample;
1403
            }
1404
        }
1405

    
1406
        src = src + buf_size - (4 + 4*avctx->channels);
1407
        samples += 28 * samples_in_chunk * avctx->channels;
1408
        break;
1409
    }
1410
    case CODEC_ID_ADPCM_EA_XAS:
1411
        if (samples_end-samples < 32*4*avctx->channels
1412
            || buf_size < (4+15)*4*avctx->channels) {
1413
            src += buf_size;
1414
            break;
1415
        }
1416
        for (channel=0; channel<avctx->channels; channel++) {
1417
            int coeff[2][4], shift[4];
1418
            short *s2, *s = &samples[channel];
1419
            for (n=0; n<4; n++, s+=32*avctx->channels) {
1420
                for (i=0; i<2; i++)
1421
                    coeff[i][n] = ea_adpcm_table[(src[0]&0x0F)+4*i];
1422
                shift[n] = (src[2]&0x0F) + 8;
1423
                for (s2=s, i=0; i<2; i++, src+=2, s2+=avctx->channels)
1424
                    s2[0] = (src[0]&0xF0) + (src[1]<<8);
1425
            }
1426

    
1427
            for (m=2; m<32; m+=2) {
1428
                s = &samples[m*avctx->channels + channel];
1429
                for (n=0; n<4; n++, src++, s+=32*avctx->channels) {
1430
                    for (s2=s, i=0; i<8; i+=4, s2+=avctx->channels) {
1431
                        int level = (int32_t)((*src & (0xF0>>i)) << (24+i)) >> shift[n];
1432
                        int pred  = s2[-1*avctx->channels] * coeff[0][n]
1433
                                  + s2[-2*avctx->channels] * coeff[1][n];
1434
                        s2[0] = av_clip_int16((level + pred + 0x80) >> 8);
1435
                    }
1436
                }
1437
            }
1438
        }
1439
        samples += 32*4*avctx->channels;
1440
        break;
1441
    case CODEC_ID_ADPCM_IMA_AMV:
1442
    case CODEC_ID_ADPCM_IMA_SMJPEG:
1443
        c->status[0].predictor = (int16_t)bytestream_get_le16(&src);
1444
        c->status[0].step_index = bytestream_get_le16(&src);
1445

    
1446
        if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
1447
            src+=4;
1448

    
1449
        while (src < buf + buf_size) {
1450
            char hi, lo;
1451
            lo = *src & 0x0F;
1452
            hi = *src >> 4;
1453

    
1454
            if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
1455
                FFSWAP(char, hi, lo);
1456

    
1457
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1458
                lo, 3);
1459
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1460
                hi, 3);
1461
            src++;
1462
        }
1463
        break;
1464
    case CODEC_ID_ADPCM_CT:
1465
        while (src < buf + buf_size) {
1466
            if (st) {
1467
                *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1468
                    src[0] >> 4);
1469
                *samples++ = adpcm_ct_expand_nibble(&c->status[1],
1470
                    src[0] & 0x0F);
1471
            } else {
1472
                *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1473
                    src[0] >> 4);
1474
                *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1475
                    src[0] & 0x0F);
1476
            }
1477
            src++;
1478
        }
1479
        break;
1480
    case CODEC_ID_ADPCM_SBPRO_4:
1481
    case CODEC_ID_ADPCM_SBPRO_3:
1482
    case CODEC_ID_ADPCM_SBPRO_2:
1483
        if (!c->status[0].step_index) {
1484
            /* the first byte is a raw sample */
1485
            *samples++ = 128 * (*src++ - 0x80);
1486
            if (st)
1487
              *samples++ = 128 * (*src++ - 0x80);
1488
            c->status[0].step_index = 1;
1489
        }
1490
        if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_4) {
1491
            while (src < buf + buf_size) {
1492
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1493
                    src[0] >> 4, 4, 0);
1494
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1495
                    src[0] & 0x0F, 4, 0);
1496
                src++;
1497
            }
1498
        } else if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_3) {
1499
            while (src < buf + buf_size && samples + 2 < samples_end) {
1500
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1501
                     src[0] >> 5        , 3, 0);
1502
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1503
                    (src[0] >> 2) & 0x07, 3, 0);
1504
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1505
                    src[0] & 0x03, 2, 0);
1506
                src++;
1507
            }
1508
        } else {
1509
            while (src < buf + buf_size && samples + 3 < samples_end) {
1510
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1511
                     src[0] >> 6        , 2, 2);
1512
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1513
                    (src[0] >> 4) & 0x03, 2, 2);
1514
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1515
                    (src[0] >> 2) & 0x03, 2, 2);
1516
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1517
                    src[0] & 0x03, 2, 2);
1518
                src++;
1519
            }
1520
        }
1521
        break;
1522
    case CODEC_ID_ADPCM_SWF:
1523
    {
1524
        GetBitContext gb;
1525
        const int *table;
1526
        int k0, signmask, nb_bits, count;
1527
        int size = buf_size*8;
1528

    
1529
        init_get_bits(&gb, buf, size);
1530

    
1531
        //read bits & initial values
1532
        nb_bits = get_bits(&gb, 2)+2;
1533
        //av_log(NULL,AV_LOG_INFO,"nb_bits: %d\n", nb_bits);
1534
        table = swf_index_tables[nb_bits-2];
1535
        k0 = 1 << (nb_bits-2);
1536
        signmask = 1 << (nb_bits-1);
1537

    
1538
        while (get_bits_count(&gb) <= size - 22*avctx->channels) {
1539
            for (i = 0; i < avctx->channels; i++) {
1540
                *samples++ = c->status[i].predictor = get_sbits(&gb, 16);
1541
                c->status[i].step_index = get_bits(&gb, 6);
1542
            }
1543

    
1544
            for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) {
1545
                int i;
1546

    
1547
                for (i = 0; i < avctx->channels; i++) {
1548
                    // similar to IMA adpcm
1549
                    int delta = get_bits(&gb, nb_bits);
1550
                    int step = step_table[c->status[i].step_index];
1551
                    long vpdiff = 0; // vpdiff = (delta+0.5)*step/4
1552
                    int k = k0;
1553

    
1554
                    do {
1555
                        if (delta & k)
1556
                            vpdiff += step;
1557
                        step >>= 1;
1558
                        k >>= 1;
1559
                    } while(k);
1560
                    vpdiff += step;
1561

    
1562
                    if (delta & signmask)
1563
                        c->status[i].predictor -= vpdiff;
1564
                    else
1565
                        c->status[i].predictor += vpdiff;
1566

    
1567
                    c->status[i].step_index += table[delta & (~signmask)];
1568

    
1569
                    c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
1570
                    c->status[i].predictor = av_clip_int16(c->status[i].predictor);
1571

    
1572
                    *samples++ = c->status[i].predictor;
1573
                    if (samples >= samples_end) {
1574
                        av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n");
1575
                        return -1;
1576
                    }
1577
                }
1578
            }
1579
        }
1580
        src += buf_size;
1581
        break;
1582
    }
1583
    case CODEC_ID_ADPCM_YAMAHA:
1584
        while (src < buf + buf_size) {
1585
            if (st) {
1586
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1587
                        src[0] & 0x0F);
1588
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[1],
1589
                        src[0] >> 4  );
1590
            } else {
1591
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1592
                        src[0] & 0x0F);
1593
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1594
                        src[0] >> 4  );
1595
            }
1596
            src++;
1597
        }
1598
        break;
1599
    case CODEC_ID_ADPCM_THP:
1600
    {
1601
        int table[2][16];
1602
        unsigned int samplecnt;
1603
        int prev[2][2];
1604
        int ch;
1605

    
1606
        if (buf_size < 80) {
1607
            av_log(avctx, AV_LOG_ERROR, "frame too small\n");
1608
            return -1;
1609
        }
1610

    
1611
        src+=4;
1612
        samplecnt = bytestream_get_be32(&src);
1613

    
1614
        for (i = 0; i < 32; i++)
1615
            table[0][i] = (int16_t)bytestream_get_be16(&src);
1616

    
1617
        /* Initialize the previous sample.  */
1618
        for (i = 0; i < 4; i++)
1619
            prev[0][i] = (int16_t)bytestream_get_be16(&src);
1620

    
1621
        if (samplecnt >= (samples_end - samples) /  (st + 1)) {
1622
            av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n");
1623
            return -1;
1624
        }
1625

    
1626
        for (ch = 0; ch <= st; ch++) {
1627
            samples = (unsigned short *) data + ch;
1628

    
1629
            /* Read in every sample for this channel.  */
1630
            for (i = 0; i < samplecnt / 14; i++) {
1631
                int index = (*src >> 4) & 7;
1632
                unsigned int exp = 28 - (*src++ & 15);
1633
                int factor1 = table[ch][index * 2];
1634
                int factor2 = table[ch][index * 2 + 1];
1635

    
1636
                /* Decode 14 samples.  */
1637
                for (n = 0; n < 14; n++) {
1638
                    int32_t sampledat;
1639
                    if(n&1) sampledat=  *src++    <<28;
1640
                    else    sampledat= (*src&0xF0)<<24;
1641

    
1642
                    sampledat = ((prev[ch][0]*factor1
1643
                                + prev[ch][1]*factor2) >> 11) + (sampledat>>exp);
1644
                    *samples = av_clip_int16(sampledat);
1645
                    prev[ch][1] = prev[ch][0];
1646
                    prev[ch][0] = *samples++;
1647

    
1648
                    /* In case of stereo, skip one sample, this sample
1649
                       is for the other channel.  */
1650
                    samples += st;
1651
                }
1652
            }
1653
        }
1654

    
1655
        /* In the previous loop, in case stereo is used, samples is
1656
           increased exactly one time too often.  */
1657
        samples -= st;
1658
        break;
1659
    }
1660

    
1661
    default:
1662
        return -1;
1663
    }
1664
    *data_size = (uint8_t *)samples - (uint8_t *)data;
1665
    return src - buf;
1666
}
1667

    
1668

    
1669

    
1670
#if CONFIG_ENCODERS
1671
#define ADPCM_ENCODER(id,name,long_name_)       \
1672
AVCodec name ## _encoder = {                    \
1673
    #name,                                      \
1674
    AVMEDIA_TYPE_AUDIO,                         \
1675
    id,                                         \
1676
    sizeof(ADPCMContext),                       \
1677
    adpcm_encode_init,                          \
1678
    adpcm_encode_frame,                         \
1679
    adpcm_encode_close,                         \
1680
    NULL,                                       \
1681
    .sample_fmts = (const enum AVSampleFormat[]){AV_SAMPLE_FMT_S16,AV_SAMPLE_FMT_NONE}, \
1682
    .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
1683
};
1684
#else
1685
#define ADPCM_ENCODER(id,name,long_name_)
1686
#endif
1687

    
1688
#if CONFIG_DECODERS
1689
#define ADPCM_DECODER(id,name,long_name_)       \
1690
AVCodec name ## _decoder = {                    \
1691
    #name,                                      \
1692
    AVMEDIA_TYPE_AUDIO,                         \
1693
    id,                                         \
1694
    sizeof(ADPCMContext),                       \
1695
    adpcm_decode_init,                          \
1696
    NULL,                                       \
1697
    NULL,                                       \
1698
    adpcm_decode_frame,                         \
1699
    .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
1700
};
1701
#else
1702
#define ADPCM_DECODER(id,name,long_name_)
1703
#endif
1704

    
1705
#define ADPCM_CODEC(id,name,long_name_)         \
1706
    ADPCM_ENCODER(id,name,long_name_) ADPCM_DECODER(id,name,long_name_)
1707

    
1708
/* Note: Do not forget to add new entries to the Makefile as well. */
1709
ADPCM_DECODER(CODEC_ID_ADPCM_4XM, adpcm_4xm, "ADPCM 4X Movie");
1710
ADPCM_DECODER(CODEC_ID_ADPCM_CT, adpcm_ct, "ADPCM Creative Technology");
1711
ADPCM_DECODER(CODEC_ID_ADPCM_EA, adpcm_ea, "ADPCM Electronic Arts");
1712
ADPCM_DECODER(CODEC_ID_ADPCM_EA_MAXIS_XA, adpcm_ea_maxis_xa, "ADPCM Electronic Arts Maxis CDROM XA");
1713
ADPCM_DECODER(CODEC_ID_ADPCM_EA_R1, adpcm_ea_r1, "ADPCM Electronic Arts R1");
1714
ADPCM_DECODER(CODEC_ID_ADPCM_EA_R2, adpcm_ea_r2, "ADPCM Electronic Arts R2");
1715
ADPCM_DECODER(CODEC_ID_ADPCM_EA_R3, adpcm_ea_r3, "ADPCM Electronic Arts R3");
1716
ADPCM_DECODER(CODEC_ID_ADPCM_EA_XAS, adpcm_ea_xas, "ADPCM Electronic Arts XAS");
1717
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_AMV, adpcm_ima_amv, "ADPCM IMA AMV");
1718
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK3, adpcm_ima_dk3, "ADPCM IMA Duck DK3");
1719
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK4, adpcm_ima_dk4, "ADPCM IMA Duck DK4");
1720
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_EACS, adpcm_ima_ea_eacs, "ADPCM IMA Electronic Arts EACS");
1721
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_SEAD, adpcm_ima_ea_sead, "ADPCM IMA Electronic Arts SEAD");
1722
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_ISS, adpcm_ima_iss, "ADPCM IMA Funcom ISS");
1723
ADPCM_CODEC  (CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt, "ADPCM IMA QuickTime");
1724
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_SMJPEG, adpcm_ima_smjpeg, "ADPCM IMA Loki SDL MJPEG");
1725
ADPCM_CODEC  (CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav, "ADPCM IMA WAV");
1726
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_WS, adpcm_ima_ws, "ADPCM IMA Westwood");
1727
ADPCM_CODEC  (CODEC_ID_ADPCM_MS, adpcm_ms, "ADPCM Microsoft");
1728
ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_2, adpcm_sbpro_2, "ADPCM Sound Blaster Pro 2-bit");
1729
ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_3, adpcm_sbpro_3, "ADPCM Sound Blaster Pro 2.6-bit");
1730
ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_4, adpcm_sbpro_4, "ADPCM Sound Blaster Pro 4-bit");
1731
ADPCM_CODEC  (CODEC_ID_ADPCM_SWF, adpcm_swf, "ADPCM Shockwave Flash");
1732
ADPCM_DECODER(CODEC_ID_ADPCM_THP, adpcm_thp, "ADPCM Nintendo Gamecube THP");
1733
ADPCM_DECODER(CODEC_ID_ADPCM_XA, adpcm_xa, "ADPCM CDROM XA");
1734
ADPCM_CODEC  (CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha, "ADPCM Yamaha");